1 | ///////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | /// \file stream_decoder_mt.c
|
---|
4 | /// \brief Multithreaded .xz Stream decoder
|
---|
5 | //
|
---|
6 | // Authors: Sebastian Andrzej Siewior
|
---|
7 | // Lasse Collin
|
---|
8 | //
|
---|
9 | // This file has been put into the public domain.
|
---|
10 | // You can do whatever you want with this file.
|
---|
11 | //
|
---|
12 | ///////////////////////////////////////////////////////////////////////////////
|
---|
13 |
|
---|
14 | #include "common.h"
|
---|
15 | #include "block_decoder.h"
|
---|
16 | #include "stream_decoder.h"
|
---|
17 | #include "index.h"
|
---|
18 | #include "outqueue.h"
|
---|
19 |
|
---|
20 |
|
---|
21 | typedef enum {
|
---|
22 | /// Waiting for work.
|
---|
23 | /// Main thread may change this to THR_RUN or THR_EXIT.
|
---|
24 | THR_IDLE,
|
---|
25 |
|
---|
26 | /// Decoding is in progress.
|
---|
27 | /// Main thread may change this to THR_STOP or THR_EXIT.
|
---|
28 | /// The worker thread may change this to THR_IDLE.
|
---|
29 | THR_RUN,
|
---|
30 |
|
---|
31 | /// The main thread wants the thread to stop whatever it was doing
|
---|
32 | /// but not exit. Main thread may change this to THR_EXIT.
|
---|
33 | /// The worker thread may change this to THR_IDLE.
|
---|
34 | THR_STOP,
|
---|
35 |
|
---|
36 | /// The main thread wants the thread to exit.
|
---|
37 | THR_EXIT,
|
---|
38 |
|
---|
39 | } worker_state;
|
---|
40 |
|
---|
41 |
|
---|
42 | typedef enum {
|
---|
43 | /// Partial updates (storing of worker thread progress
|
---|
44 | /// to lzma_outbuf) are disabled.
|
---|
45 | PARTIAL_DISABLED,
|
---|
46 |
|
---|
47 | /// Main thread requests partial updates to be enabled but
|
---|
48 | /// no partial update has been done by the worker thread yet.
|
---|
49 | ///
|
---|
50 | /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
|
---|
51 | /// use of the worker-thread mutex. Other transitions don't
|
---|
52 | /// need a mutex.
|
---|
53 | PARTIAL_START,
|
---|
54 |
|
---|
55 | /// Partial updates are enabled and the worker thread has done
|
---|
56 | /// at least one partial update.
|
---|
57 | PARTIAL_ENABLED,
|
---|
58 |
|
---|
59 | } partial_update_mode;
|
---|
60 |
|
---|
61 |
|
---|
62 | struct worker_thread {
|
---|
63 | /// Worker state is protected with our mutex.
|
---|
64 | worker_state state;
|
---|
65 |
|
---|
66 | /// Input buffer that will contain the whole Block except Block Header.
|
---|
67 | uint8_t *in;
|
---|
68 |
|
---|
69 | /// Amount of memory allocated for "in"
|
---|
70 | size_t in_size;
|
---|
71 |
|
---|
72 | /// Number of bytes written to "in" by the main thread
|
---|
73 | size_t in_filled;
|
---|
74 |
|
---|
75 | /// Number of bytes consumed from "in" by the worker thread.
|
---|
76 | size_t in_pos;
|
---|
77 |
|
---|
78 | /// Amount of uncompressed data that has been decoded. This local
|
---|
79 | /// copy is needed because updating outbuf->pos requires locking
|
---|
80 | /// the main mutex (coder->mutex).
|
---|
81 | size_t out_pos;
|
---|
82 |
|
---|
83 | /// Pointer to the main structure is needed to (1) lock the main
|
---|
84 | /// mutex (coder->mutex) when updating outbuf->pos and (2) when
|
---|
85 | /// putting this thread back to the stack of free threads.
|
---|
86 | struct lzma_stream_coder *coder;
|
---|
87 |
|
---|
88 | /// The allocator is set by the main thread. Since a copy of the
|
---|
89 | /// pointer is kept here, the application must not change the
|
---|
90 | /// allocator before calling lzma_end().
|
---|
91 | const lzma_allocator *allocator;
|
---|
92 |
|
---|
93 | /// Output queue buffer to which the uncompressed data is written.
|
---|
94 | lzma_outbuf *outbuf;
|
---|
95 |
|
---|
96 | /// Amount of compressed data that has already been decompressed.
|
---|
97 | /// This is updated from in_pos when our mutex is locked.
|
---|
98 | /// This is size_t, not uint64_t, because per-thread progress
|
---|
99 | /// is limited to sizes of allocated buffers.
|
---|
100 | size_t progress_in;
|
---|
101 |
|
---|
102 | /// Like progress_in but for uncompressed data.
|
---|
103 | size_t progress_out;
|
---|
104 |
|
---|
105 | /// Updating outbuf->pos requires locking the main mutex
|
---|
106 | /// (coder->mutex). Since the main thread will only read output
|
---|
107 | /// from the oldest outbuf in the queue, only the worker thread
|
---|
108 | /// that is associated with the oldest outbuf needs to update its
|
---|
109 | /// outbuf->pos. This avoids useless mutex contention that would
|
---|
110 | /// happen if all worker threads were frequently locking the main
|
---|
111 | /// mutex to update their outbuf->pos.
|
---|
112 | ///
|
---|
113 | /// Only when partial_update is something else than PARTIAL_DISABLED,
|
---|
114 | /// this worker thread will update outbuf->pos after each call to
|
---|
115 | /// the Block decoder.
|
---|
116 | partial_update_mode partial_update;
|
---|
117 |
|
---|
118 | /// Block decoder
|
---|
119 | lzma_next_coder block_decoder;
|
---|
120 |
|
---|
121 | /// Thread-specific Block options are needed because the Block
|
---|
122 | /// decoder modifies the struct given to it at initialization.
|
---|
123 | lzma_block block_options;
|
---|
124 |
|
---|
125 | /// Filter chain memory usage
|
---|
126 | uint64_t mem_filters;
|
---|
127 |
|
---|
128 | /// Next structure in the stack of free worker threads.
|
---|
129 | struct worker_thread *next;
|
---|
130 |
|
---|
131 | mythread_mutex mutex;
|
---|
132 | mythread_cond cond;
|
---|
133 |
|
---|
134 | /// The ID of this thread is used to join the thread
|
---|
135 | /// when it's not needed anymore.
|
---|
136 | mythread thread_id;
|
---|
137 | };
|
---|
138 |
|
---|
139 |
|
---|
140 | struct lzma_stream_coder {
|
---|
141 | enum {
|
---|
142 | SEQ_STREAM_HEADER,
|
---|
143 | SEQ_BLOCK_HEADER,
|
---|
144 | SEQ_BLOCK_INIT,
|
---|
145 | SEQ_BLOCK_THR_INIT,
|
---|
146 | SEQ_BLOCK_THR_RUN,
|
---|
147 | SEQ_BLOCK_DIRECT_INIT,
|
---|
148 | SEQ_BLOCK_DIRECT_RUN,
|
---|
149 | SEQ_INDEX_WAIT_OUTPUT,
|
---|
150 | SEQ_INDEX_DECODE,
|
---|
151 | SEQ_STREAM_FOOTER,
|
---|
152 | SEQ_STREAM_PADDING,
|
---|
153 | SEQ_ERROR,
|
---|
154 | } sequence;
|
---|
155 |
|
---|
156 | /// Block decoder
|
---|
157 | lzma_next_coder block_decoder;
|
---|
158 |
|
---|
159 | /// Every Block Header will be decoded into this structure.
|
---|
160 | /// This is also used to initialize a Block decoder when in
|
---|
161 | /// direct mode. In threaded mode, a thread-specific copy will
|
---|
162 | /// be made for decoder initialization because the Block decoder
|
---|
163 | /// will modify the structure given to it.
|
---|
164 | lzma_block block_options;
|
---|
165 |
|
---|
166 | /// Buffer to hold a filter chain for Block Header decoding and
|
---|
167 | /// initialization. These are freed after successful Block decoder
|
---|
168 | /// initialization or at stream_decoder_mt_end(). The thread-specific
|
---|
169 | /// copy of block_options won't hold a pointer to filters[] after
|
---|
170 | /// initialization.
|
---|
171 | lzma_filter filters[LZMA_FILTERS_MAX + 1];
|
---|
172 |
|
---|
173 | /// Stream Flags from Stream Header
|
---|
174 | lzma_stream_flags stream_flags;
|
---|
175 |
|
---|
176 | /// Index is hashed so that it can be compared to the sizes of Blocks
|
---|
177 | /// with O(1) memory usage.
|
---|
178 | lzma_index_hash *index_hash;
|
---|
179 |
|
---|
180 |
|
---|
181 | /// Maximum wait time if cannot use all the input and cannot
|
---|
182 | /// fill the output buffer. This is in milliseconds.
|
---|
183 | uint32_t timeout;
|
---|
184 |
|
---|
185 |
|
---|
186 | /// Error code from a worker thread.
|
---|
187 | ///
|
---|
188 | /// \note Use mutex.
|
---|
189 | lzma_ret thread_error;
|
---|
190 |
|
---|
191 | /// Error code to return after pending output has been copied out. If
|
---|
192 | /// set in read_output_and_wait(), this is a mirror of thread_error.
|
---|
193 | /// If set in stream_decode_mt() then it's, for example, error that
|
---|
194 | /// occurred when decoding Block Header.
|
---|
195 | lzma_ret pending_error;
|
---|
196 |
|
---|
197 | /// Number of threads that will be created at maximum.
|
---|
198 | uint32_t threads_max;
|
---|
199 |
|
---|
200 | /// Number of thread structures that have been initialized from
|
---|
201 | /// "threads", and thus the number of worker threads actually
|
---|
202 | /// created so far.
|
---|
203 | uint32_t threads_initialized;
|
---|
204 |
|
---|
205 | /// Array of allocated thread-specific structures. When no threads
|
---|
206 | /// are in use (direct mode) this is NULL. In threaded mode this
|
---|
207 | /// points to an array of threads_max number of worker_thread structs.
|
---|
208 | struct worker_thread *threads;
|
---|
209 |
|
---|
210 | /// Stack of free threads. When a thread finishes, it puts itself
|
---|
211 | /// back into this stack. This starts as empty because threads
|
---|
212 | /// are created only when actually needed.
|
---|
213 | ///
|
---|
214 | /// \note Use mutex.
|
---|
215 | struct worker_thread *threads_free;
|
---|
216 |
|
---|
217 | /// The most recent worker thread to which the main thread writes
|
---|
218 | /// the new input from the application.
|
---|
219 | struct worker_thread *thr;
|
---|
220 |
|
---|
221 | /// Output buffer queue for decompressed data from the worker threads
|
---|
222 | ///
|
---|
223 | /// \note Use mutex with operations that need it.
|
---|
224 | lzma_outq outq;
|
---|
225 |
|
---|
226 | mythread_mutex mutex;
|
---|
227 | mythread_cond cond;
|
---|
228 |
|
---|
229 |
|
---|
230 | /// Memory usage that will not be exceeded in multi-threaded mode.
|
---|
231 | /// Single-threaded mode can exceed this even by a large amount.
|
---|
232 | uint64_t memlimit_threading;
|
---|
233 |
|
---|
234 | /// Memory usage limit that should never be exceeded.
|
---|
235 | /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
|
---|
236 | /// even in single-threaded mode without exceeding this limit.
|
---|
237 | uint64_t memlimit_stop;
|
---|
238 |
|
---|
239 | /// Amount of memory in use by the direct mode decoder
|
---|
240 | /// (coder->block_decoder). In threaded mode this is 0.
|
---|
241 | uint64_t mem_direct_mode;
|
---|
242 |
|
---|
243 | /// Amount of memory needed by the running worker threads.
|
---|
244 | /// This doesn't include the memory needed by the output buffer.
|
---|
245 | ///
|
---|
246 | /// \note Use mutex.
|
---|
247 | uint64_t mem_in_use;
|
---|
248 |
|
---|
249 | /// Amount of memory used by the idle (cached) threads.
|
---|
250 | ///
|
---|
251 | /// \note Use mutex.
|
---|
252 | uint64_t mem_cached;
|
---|
253 |
|
---|
254 |
|
---|
255 | /// Amount of memory needed for the filter chain of the next Block.
|
---|
256 | uint64_t mem_next_filters;
|
---|
257 |
|
---|
258 | /// Amount of memory needed for the thread-specific input buffer
|
---|
259 | /// for the next Block.
|
---|
260 | uint64_t mem_next_in;
|
---|
261 |
|
---|
262 | /// Amount of memory actually needed to decode the next Block
|
---|
263 | /// in threaded mode. This is
|
---|
264 | /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
|
---|
265 | uint64_t mem_next_block;
|
---|
266 |
|
---|
267 |
|
---|
268 | /// Amount of compressed data in Stream Header + Blocks that have
|
---|
269 | /// already been finished.
|
---|
270 | ///
|
---|
271 | /// \note Use mutex.
|
---|
272 | uint64_t progress_in;
|
---|
273 |
|
---|
274 | /// Amount of uncompressed data in Blocks that have already
|
---|
275 | /// been finished.
|
---|
276 | ///
|
---|
277 | /// \note Use mutex.
|
---|
278 | uint64_t progress_out;
|
---|
279 |
|
---|
280 |
|
---|
281 | /// If true, LZMA_NO_CHECK is returned if the Stream has
|
---|
282 | /// no integrity check.
|
---|
283 | bool tell_no_check;
|
---|
284 |
|
---|
285 | /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
|
---|
286 | /// an integrity check that isn't supported by this liblzma build.
|
---|
287 | bool tell_unsupported_check;
|
---|
288 |
|
---|
289 | /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
|
---|
290 | bool tell_any_check;
|
---|
291 |
|
---|
292 | /// If true, we will tell the Block decoder to skip calculating
|
---|
293 | /// and verifying the integrity check.
|
---|
294 | bool ignore_check;
|
---|
295 |
|
---|
296 | /// If true, we will decode concatenated Streams that possibly have
|
---|
297 | /// Stream Padding between or after them. LZMA_STREAM_END is returned
|
---|
298 | /// once the application isn't giving us any new input (LZMA_FINISH),
|
---|
299 | /// and we aren't in the middle of a Stream, and possible
|
---|
300 | /// Stream Padding is a multiple of four bytes.
|
---|
301 | bool concatenated;
|
---|
302 |
|
---|
303 | /// If true, we will return any errors immediately instead of first
|
---|
304 | /// producing all output before the location of the error.
|
---|
305 | bool fail_fast;
|
---|
306 |
|
---|
307 |
|
---|
308 | /// When decoding concatenated Streams, this is true as long as we
|
---|
309 | /// are decoding the first Stream. This is needed to avoid misleading
|
---|
310 | /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
|
---|
311 | /// bytes.
|
---|
312 | bool first_stream;
|
---|
313 |
|
---|
314 | /// This is used to track if the previous call to stream_decode_mt()
|
---|
315 | /// had output space (*out_pos < out_size) and managed to fill the
|
---|
316 | /// output buffer (*out_pos == out_size). This may be set to true
|
---|
317 | /// in read_output_and_wait(). This is read and then reset to false
|
---|
318 | /// at the beginning of stream_decode_mt().
|
---|
319 | ///
|
---|
320 | /// This is needed to support applications that call lzma_code() in
|
---|
321 | /// such a way that more input is provided only when lzma_code()
|
---|
322 | /// didn't fill the output buffer completely. Basically, this makes
|
---|
323 | /// it easier to convert such applications from single-threaded
|
---|
324 | /// decoder to multi-threaded decoder.
|
---|
325 | bool out_was_filled;
|
---|
326 |
|
---|
327 | /// Write position in buffer[] and position in Stream Padding
|
---|
328 | size_t pos;
|
---|
329 |
|
---|
330 | /// Buffer to hold Stream Header, Block Header, and Stream Footer.
|
---|
331 | /// Block Header has biggest maximum size.
|
---|
332 | uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
|
---|
333 | };
|
---|
334 |
|
---|
335 |
|
---|
336 | /// Enables updating of outbuf->pos. This is a callback function that is
|
---|
337 | /// used with lzma_outq_enable_partial_output().
|
---|
338 | static void
|
---|
339 | worker_enable_partial_update(void *thr_ptr)
|
---|
340 | {
|
---|
341 | struct worker_thread *thr = thr_ptr;
|
---|
342 |
|
---|
343 | mythread_sync(thr->mutex) {
|
---|
344 | thr->partial_update = PARTIAL_START;
|
---|
345 | mythread_cond_signal(&thr->cond);
|
---|
346 | }
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | /// Things do to at THR_STOP or when finishing a Block.
|
---|
351 | /// This is called with thr->mutex locked.
|
---|
352 | static void
|
---|
353 | worker_stop(struct worker_thread *thr)
|
---|
354 | {
|
---|
355 | // Update memory usage counters.
|
---|
356 | thr->coder->mem_in_use -= thr->in_size;
|
---|
357 | thr->in_size = 0; // thr->in was freed above.
|
---|
358 |
|
---|
359 | thr->coder->mem_in_use -= thr->mem_filters;
|
---|
360 | thr->coder->mem_cached += thr->mem_filters;
|
---|
361 |
|
---|
362 | // Put this thread to the stack of free threads.
|
---|
363 | thr->next = thr->coder->threads_free;
|
---|
364 | thr->coder->threads_free = thr;
|
---|
365 |
|
---|
366 | mythread_cond_signal(&thr->coder->cond);
|
---|
367 | return;
|
---|
368 | }
|
---|
369 |
|
---|
370 |
|
---|
371 | static MYTHREAD_RET_TYPE
|
---|
372 | #ifndef VBOX
|
---|
373 | worker_decoder(void *thr_ptr)
|
---|
374 | #else
|
---|
375 | worker_decoder(RTTHREAD hThread, void *thr_ptr)
|
---|
376 | #endif
|
---|
377 | {
|
---|
378 | struct worker_thread *thr = thr_ptr;
|
---|
379 | size_t in_filled;
|
---|
380 | partial_update_mode partial_update;
|
---|
381 | lzma_ret ret;
|
---|
382 |
|
---|
383 | next_loop_lock:
|
---|
384 |
|
---|
385 | mythread_mutex_lock(&thr->mutex);
|
---|
386 | next_loop_unlocked:
|
---|
387 |
|
---|
388 | if (thr->state == THR_IDLE) {
|
---|
389 | mythread_cond_wait(&thr->cond, &thr->mutex);
|
---|
390 | goto next_loop_unlocked;
|
---|
391 | }
|
---|
392 |
|
---|
393 | if (thr->state == THR_EXIT) {
|
---|
394 | mythread_mutex_unlock(&thr->mutex);
|
---|
395 |
|
---|
396 | lzma_free(thr->in, thr->allocator);
|
---|
397 | lzma_next_end(&thr->block_decoder, thr->allocator);
|
---|
398 |
|
---|
399 | mythread_mutex_destroy(&thr->mutex);
|
---|
400 | mythread_cond_destroy(&thr->cond);
|
---|
401 |
|
---|
402 | return MYTHREAD_RET_VALUE;
|
---|
403 | }
|
---|
404 |
|
---|
405 | if (thr->state == THR_STOP) {
|
---|
406 | thr->state = THR_IDLE;
|
---|
407 | mythread_mutex_unlock(&thr->mutex);
|
---|
408 |
|
---|
409 | mythread_sync(thr->coder->mutex) {
|
---|
410 | worker_stop(thr);
|
---|
411 | }
|
---|
412 |
|
---|
413 | goto next_loop_lock;
|
---|
414 | }
|
---|
415 |
|
---|
416 | assert(thr->state == THR_RUN);
|
---|
417 |
|
---|
418 | // Update progress info for get_progress().
|
---|
419 | thr->progress_in = thr->in_pos;
|
---|
420 | thr->progress_out = thr->out_pos;
|
---|
421 |
|
---|
422 | // If we don't have any new input, wait for a signal from the main
|
---|
423 | // thread except if partial output has just been enabled. In that
|
---|
424 | // case we will do one normal run so that the partial output info
|
---|
425 | // gets passed to the main thread. The call to block_decoder.code()
|
---|
426 | // is useless but harmless as it can occur only once per Block.
|
---|
427 | in_filled = thr->in_filled;
|
---|
428 | partial_update = thr->partial_update;
|
---|
429 |
|
---|
430 | if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
|
---|
431 | mythread_cond_wait(&thr->cond, &thr->mutex);
|
---|
432 | goto next_loop_unlocked;
|
---|
433 | }
|
---|
434 |
|
---|
435 | mythread_mutex_unlock(&thr->mutex);
|
---|
436 |
|
---|
437 | // Pass the input in small chunks to the Block decoder.
|
---|
438 | // This way we react reasonably fast if we are told to stop/exit,
|
---|
439 | // and (when partial update is enabled) we tell about our progress
|
---|
440 | // to the main thread frequently enough.
|
---|
441 | const size_t chunk_size = 16384;
|
---|
442 | if ((in_filled - thr->in_pos) > chunk_size)
|
---|
443 | in_filled = thr->in_pos + chunk_size;
|
---|
444 |
|
---|
445 | ret = thr->block_decoder.code(
|
---|
446 | thr->block_decoder.coder, thr->allocator,
|
---|
447 | thr->in, &thr->in_pos, in_filled,
|
---|
448 | thr->outbuf->buf, &thr->out_pos,
|
---|
449 | thr->outbuf->allocated, LZMA_RUN);
|
---|
450 |
|
---|
451 | if (ret == LZMA_OK) {
|
---|
452 | if (partial_update != PARTIAL_DISABLED) {
|
---|
453 | // The main thread uses thr->mutex to change from
|
---|
454 | // PARTIAL_DISABLED to PARTIAL_START. The main thread
|
---|
455 | // doesn't care about this variable after that so we
|
---|
456 | // can safely change it here to PARTIAL_ENABLED
|
---|
457 | // without a mutex.
|
---|
458 | thr->partial_update = PARTIAL_ENABLED;
|
---|
459 |
|
---|
460 | // The main thread is reading decompressed data
|
---|
461 | // from thr->outbuf. Tell the main thread about
|
---|
462 | // our progress.
|
---|
463 | //
|
---|
464 | // NOTE: It's possible that we consumed input without
|
---|
465 | // producing any new output so it's possible that
|
---|
466 | // only in_pos has changed. In case of PARTIAL_START
|
---|
467 | // it is possible that neither in_pos nor out_pos has
|
---|
468 | // changed.
|
---|
469 | mythread_sync(thr->coder->mutex) {
|
---|
470 | thr->outbuf->pos = thr->out_pos;
|
---|
471 | thr->outbuf->decoder_in_pos = thr->in_pos;
|
---|
472 | mythread_cond_signal(&thr->coder->cond);
|
---|
473 | }
|
---|
474 | }
|
---|
475 |
|
---|
476 | goto next_loop_lock;
|
---|
477 | }
|
---|
478 |
|
---|
479 | // Either we finished successfully (LZMA_STREAM_END) or an error
|
---|
480 | // occurred. Both cases are handled almost identically. The error
|
---|
481 | // case requires updating thr->coder->thread_error.
|
---|
482 | //
|
---|
483 | // The sizes are in the Block Header and the Block decoder
|
---|
484 | // checks that they match, thus we know these:
|
---|
485 | assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
|
---|
486 | assert(ret != LZMA_STREAM_END
|
---|
487 | || thr->out_pos == thr->block_options.uncompressed_size);
|
---|
488 |
|
---|
489 | // Free the input buffer. Don't update in_size as we need
|
---|
490 | // it later to update thr->coder->mem_in_use.
|
---|
491 | lzma_free(thr->in, thr->allocator);
|
---|
492 | thr->in = NULL;
|
---|
493 |
|
---|
494 | mythread_sync(thr->mutex) {
|
---|
495 | if (thr->state != THR_EXIT)
|
---|
496 | thr->state = THR_IDLE;
|
---|
497 | }
|
---|
498 |
|
---|
499 | mythread_sync(thr->coder->mutex) {
|
---|
500 | // Move our progress info to the main thread.
|
---|
501 | thr->coder->progress_in += thr->in_pos;
|
---|
502 | thr->coder->progress_out += thr->out_pos;
|
---|
503 | thr->progress_in = 0;
|
---|
504 | thr->progress_out = 0;
|
---|
505 |
|
---|
506 | // Mark the outbuf as finished.
|
---|
507 | thr->outbuf->pos = thr->out_pos;
|
---|
508 | thr->outbuf->decoder_in_pos = thr->in_pos;
|
---|
509 | thr->outbuf->finished = true;
|
---|
510 | thr->outbuf->finish_ret = ret;
|
---|
511 | thr->outbuf = NULL;
|
---|
512 |
|
---|
513 | // If an error occurred, tell it to the main thread.
|
---|
514 | if (ret != LZMA_STREAM_END
|
---|
515 | && thr->coder->thread_error == LZMA_OK)
|
---|
516 | thr->coder->thread_error = ret;
|
---|
517 |
|
---|
518 | worker_stop(thr);
|
---|
519 | }
|
---|
520 |
|
---|
521 | goto next_loop_lock;
|
---|
522 | }
|
---|
523 |
|
---|
524 |
|
---|
525 | /// Tells the worker threads to exit and waits for them to terminate.
|
---|
526 | static void
|
---|
527 | threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
|
---|
528 | {
|
---|
529 | for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
---|
530 | mythread_sync(coder->threads[i].mutex) {
|
---|
531 | coder->threads[i].state = THR_EXIT;
|
---|
532 | mythread_cond_signal(&coder->threads[i].cond);
|
---|
533 | }
|
---|
534 | }
|
---|
535 |
|
---|
536 | for (uint32_t i = 0; i < coder->threads_initialized; ++i)
|
---|
537 | mythread_join(coder->threads[i].thread_id);
|
---|
538 |
|
---|
539 | lzma_free(coder->threads, allocator);
|
---|
540 | coder->threads_initialized = 0;
|
---|
541 | coder->threads = NULL;
|
---|
542 | coder->threads_free = NULL;
|
---|
543 |
|
---|
544 | // The threads don't update these when they exit. Do it here.
|
---|
545 | coder->mem_in_use = 0;
|
---|
546 | coder->mem_cached = 0;
|
---|
547 |
|
---|
548 | return;
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | static void
|
---|
553 | threads_stop(struct lzma_stream_coder *coder)
|
---|
554 | {
|
---|
555 | for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
|
---|
556 | mythread_sync(coder->threads[i].mutex) {
|
---|
557 | // The state must be changed conditionally because
|
---|
558 | // THR_IDLE -> THR_STOP is not a valid state change.
|
---|
559 | if (coder->threads[i].state != THR_IDLE) {
|
---|
560 | coder->threads[i].state = THR_STOP;
|
---|
561 | mythread_cond_signal(&coder->threads[i].cond);
|
---|
562 | }
|
---|
563 | }
|
---|
564 | }
|
---|
565 |
|
---|
566 | return;
|
---|
567 | }
|
---|
568 |
|
---|
569 |
|
---|
570 | /// Initialize a new worker_thread structure and create a new thread.
|
---|
571 | static lzma_ret
|
---|
572 | initialize_new_thread(struct lzma_stream_coder *coder,
|
---|
573 | const lzma_allocator *allocator)
|
---|
574 | {
|
---|
575 | // Allocate the coder->threads array if needed. It's done here instead
|
---|
576 | // of when initializing the decoder because we don't need this if we
|
---|
577 | // use the direct mode (we may even free coder->threads in the middle
|
---|
578 | // of the file if we switch from threaded to direct mode).
|
---|
579 | if (coder->threads == NULL) {
|
---|
580 | coder->threads = lzma_alloc(
|
---|
581 | coder->threads_max * sizeof(struct worker_thread),
|
---|
582 | allocator);
|
---|
583 |
|
---|
584 | if (coder->threads == NULL)
|
---|
585 | return LZMA_MEM_ERROR;
|
---|
586 | }
|
---|
587 |
|
---|
588 | // Pick a free structure.
|
---|
589 | assert(coder->threads_initialized < coder->threads_max);
|
---|
590 | struct worker_thread *thr
|
---|
591 | = &coder->threads[coder->threads_initialized];
|
---|
592 |
|
---|
593 | if (mythread_mutex_init(&thr->mutex))
|
---|
594 | goto error_mutex;
|
---|
595 |
|
---|
596 | if (mythread_cond_init(&thr->cond))
|
---|
597 | goto error_cond;
|
---|
598 |
|
---|
599 | thr->state = THR_IDLE;
|
---|
600 | thr->in = NULL;
|
---|
601 | thr->in_size = 0;
|
---|
602 | thr->allocator = allocator;
|
---|
603 | thr->coder = coder;
|
---|
604 | thr->outbuf = NULL;
|
---|
605 | thr->block_decoder = LZMA_NEXT_CODER_INIT;
|
---|
606 | thr->mem_filters = 0;
|
---|
607 |
|
---|
608 | if (mythread_create(&thr->thread_id, worker_decoder, thr))
|
---|
609 | goto error_thread;
|
---|
610 |
|
---|
611 | ++coder->threads_initialized;
|
---|
612 | coder->thr = thr;
|
---|
613 |
|
---|
614 | return LZMA_OK;
|
---|
615 |
|
---|
616 | error_thread:
|
---|
617 | mythread_cond_destroy(&thr->cond);
|
---|
618 |
|
---|
619 | error_cond:
|
---|
620 | mythread_mutex_destroy(&thr->mutex);
|
---|
621 |
|
---|
622 | error_mutex:
|
---|
623 | return LZMA_MEM_ERROR;
|
---|
624 | }
|
---|
625 |
|
---|
626 |
|
---|
627 | static lzma_ret
|
---|
628 | get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
|
---|
629 | {
|
---|
630 | // If there is a free structure on the stack, use it.
|
---|
631 | mythread_sync(coder->mutex) {
|
---|
632 | if (coder->threads_free != NULL) {
|
---|
633 | coder->thr = coder->threads_free;
|
---|
634 | coder->threads_free = coder->threads_free->next;
|
---|
635 |
|
---|
636 | // The thread is no longer in the cache so substract
|
---|
637 | // it from the cached memory usage. Don't add it
|
---|
638 | // to mem_in_use though; the caller will handle it
|
---|
639 | // since it knows how much memory it will actually
|
---|
640 | // use (the filter chain might change).
|
---|
641 | coder->mem_cached -= coder->thr->mem_filters;
|
---|
642 | }
|
---|
643 | }
|
---|
644 |
|
---|
645 | if (coder->thr == NULL) {
|
---|
646 | assert(coder->threads_initialized < coder->threads_max);
|
---|
647 |
|
---|
648 | // Initialize a new thread.
|
---|
649 | return_if_error(initialize_new_thread(coder, allocator));
|
---|
650 | }
|
---|
651 |
|
---|
652 | coder->thr->in_filled = 0;
|
---|
653 | coder->thr->in_pos = 0;
|
---|
654 | coder->thr->out_pos = 0;
|
---|
655 |
|
---|
656 | coder->thr->progress_in = 0;
|
---|
657 | coder->thr->progress_out = 0;
|
---|
658 |
|
---|
659 | coder->thr->partial_update = PARTIAL_DISABLED;
|
---|
660 |
|
---|
661 | return LZMA_OK;
|
---|
662 | }
|
---|
663 |
|
---|
664 |
|
---|
665 | static lzma_ret
|
---|
666 | read_output_and_wait(struct lzma_stream_coder *coder,
|
---|
667 | const lzma_allocator *allocator,
|
---|
668 | uint8_t *restrict out, size_t *restrict out_pos,
|
---|
669 | size_t out_size,
|
---|
670 | bool *input_is_possible,
|
---|
671 | bool waiting_allowed,
|
---|
672 | mythread_condtime *wait_abs, bool *has_blocked)
|
---|
673 | {
|
---|
674 | lzma_ret ret = LZMA_OK;
|
---|
675 |
|
---|
676 | mythread_sync(coder->mutex) {
|
---|
677 | do {
|
---|
678 | // Get as much output from the queue as is possible
|
---|
679 | // without blocking.
|
---|
680 | const size_t out_start = *out_pos;
|
---|
681 | do {
|
---|
682 | ret = lzma_outq_read(&coder->outq, allocator,
|
---|
683 | out, out_pos, out_size,
|
---|
684 | NULL, NULL);
|
---|
685 |
|
---|
686 | // If a Block was finished, tell the worker
|
---|
687 | // thread of the next Block (if it is still
|
---|
688 | // running) to start telling the main thread
|
---|
689 | // when new output is available.
|
---|
690 | if (ret == LZMA_STREAM_END)
|
---|
691 | lzma_outq_enable_partial_output(
|
---|
692 | &coder->outq,
|
---|
693 | &worker_enable_partial_update);
|
---|
694 |
|
---|
695 | // Loop until a Block wasn't finished.
|
---|
696 | // It's important to loop around even if
|
---|
697 | // *out_pos == out_size because there could
|
---|
698 | // be an empty Block that will return
|
---|
699 | // LZMA_STREAM_END without needing any
|
---|
700 | // output space.
|
---|
701 | } while (ret == LZMA_STREAM_END);
|
---|
702 |
|
---|
703 | // Check if lzma_outq_read reported an error from
|
---|
704 | // the Block decoder.
|
---|
705 | if (ret != LZMA_OK)
|
---|
706 | break;
|
---|
707 |
|
---|
708 | // If the output buffer is now full but it wasn't full
|
---|
709 | // when this function was called, set out_was_filled.
|
---|
710 | // This way the next call to stream_decode_mt() knows
|
---|
711 | // that some output was produced and no output space
|
---|
712 | // remained in the previous call to stream_decode_mt().
|
---|
713 | if (*out_pos == out_size && *out_pos != out_start)
|
---|
714 | coder->out_was_filled = true;
|
---|
715 |
|
---|
716 | // Check if any thread has indicated an error.
|
---|
717 | if (coder->thread_error != LZMA_OK) {
|
---|
718 | // If LZMA_FAIL_FAST was used, report errors
|
---|
719 | // from worker threads immediately.
|
---|
720 | if (coder->fail_fast) {
|
---|
721 | ret = coder->thread_error;
|
---|
722 | break;
|
---|
723 | }
|
---|
724 |
|
---|
725 | // Otherwise set pending_error. The value we
|
---|
726 | // set here will not actually get used other
|
---|
727 | // than working as a flag that an error has
|
---|
728 | // occurred. This is because in SEQ_ERROR
|
---|
729 | // all output before the error will be read
|
---|
730 | // first by calling this function, and once we
|
---|
731 | // reach the location of the (first) error the
|
---|
732 | // error code from the above lzma_outq_read()
|
---|
733 | // will be returned to the application.
|
---|
734 | //
|
---|
735 | // Use LZMA_PROG_ERROR since the value should
|
---|
736 | // never leak to the application. It's
|
---|
737 | // possible that pending_error has already
|
---|
738 | // been set but that doesn't matter: if we get
|
---|
739 | // here, pending_error only works as a flag.
|
---|
740 | coder->pending_error = LZMA_PROG_ERROR;
|
---|
741 | }
|
---|
742 |
|
---|
743 | // Check if decoding of the next Block can be started.
|
---|
744 | // The memusage of the active threads must be low
|
---|
745 | // enough, there must be a free buffer slot in the
|
---|
746 | // output queue, and there must be a free thread
|
---|
747 | // (that can be either created or an existing one
|
---|
748 | // reused).
|
---|
749 | //
|
---|
750 | // NOTE: This is checked after reading the output
|
---|
751 | // above because reading the output can free a slot in
|
---|
752 | // the output queue and also reduce active memusage.
|
---|
753 | //
|
---|
754 | // NOTE: If output queue is empty, then input will
|
---|
755 | // always be possible.
|
---|
756 | if (input_is_possible != NULL
|
---|
757 | && coder->memlimit_threading
|
---|
758 | - coder->mem_in_use
|
---|
759 | - coder->outq.mem_in_use
|
---|
760 | >= coder->mem_next_block
|
---|
761 | && lzma_outq_has_buf(&coder->outq)
|
---|
762 | && (coder->threads_initialized
|
---|
763 | < coder->threads_max
|
---|
764 | || coder->threads_free
|
---|
765 | != NULL)) {
|
---|
766 | *input_is_possible = true;
|
---|
767 | break;
|
---|
768 | }
|
---|
769 |
|
---|
770 | // If the caller doesn't want us to block, return now.
|
---|
771 | if (!waiting_allowed)
|
---|
772 | break;
|
---|
773 |
|
---|
774 | // This check is needed only when input_is_possible
|
---|
775 | // is NULL. We must return if we aren't waiting for
|
---|
776 | // input to become possible and there is no more
|
---|
777 | // output coming from the queue.
|
---|
778 | if (lzma_outq_is_empty(&coder->outq)) {
|
---|
779 | assert(input_is_possible == NULL);
|
---|
780 | break;
|
---|
781 | }
|
---|
782 |
|
---|
783 | // If there is more data available from the queue,
|
---|
784 | // our out buffer must be full and we need to return
|
---|
785 | // so that the application can provide more output
|
---|
786 | // space.
|
---|
787 | //
|
---|
788 | // NOTE: In general lzma_outq_is_readable() can return
|
---|
789 | // true also when there are no more bytes available.
|
---|
790 | // This can happen when a Block has finished without
|
---|
791 | // providing any new output. We know that this is not
|
---|
792 | // the case because in the beginning of this loop we
|
---|
793 | // tried to read as much as possible even when we had
|
---|
794 | // no output space left and the mutex has been locked
|
---|
795 | // all the time (so worker threads cannot have changed
|
---|
796 | // anything). Thus there must be actual pending output
|
---|
797 | // in the queue.
|
---|
798 | if (lzma_outq_is_readable(&coder->outq)) {
|
---|
799 | assert(*out_pos == out_size);
|
---|
800 | break;
|
---|
801 | }
|
---|
802 |
|
---|
803 | // If the application stops providing more input
|
---|
804 | // in the middle of a Block, there will eventually
|
---|
805 | // be one worker thread left that is stuck waiting for
|
---|
806 | // more input (that might never arrive) and a matching
|
---|
807 | // outbuf which the worker thread cannot finish due
|
---|
808 | // to lack of input. We must detect this situation,
|
---|
809 | // otherwise we would end up waiting indefinitely
|
---|
810 | // (if no timeout is in use) or keep returning
|
---|
811 | // LZMA_TIMED_OUT while making no progress. Thus, the
|
---|
812 | // application would never get LZMA_BUF_ERROR from
|
---|
813 | // lzma_code() which would tell the application that
|
---|
814 | // no more progress is possible. No LZMA_BUF_ERROR
|
---|
815 | // means that, for example, truncated .xz files could
|
---|
816 | // cause an infinite loop.
|
---|
817 | //
|
---|
818 | // A worker thread doing partial updates will
|
---|
819 | // store not only the output position in outbuf->pos
|
---|
820 | // but also the matching input position in
|
---|
821 | // outbuf->decoder_in_pos. Here we check if that
|
---|
822 | // input position matches the amount of input that
|
---|
823 | // the worker thread has been given (in_filled).
|
---|
824 | // If so, we must return and not wait as no more
|
---|
825 | // output will be coming without first getting more
|
---|
826 | // input to the worker thread. If the application
|
---|
827 | // keeps calling lzma_code() without providing more
|
---|
828 | // input, it will eventually get LZMA_BUF_ERROR.
|
---|
829 | //
|
---|
830 | // NOTE: We can read partial_update and in_filled
|
---|
831 | // without thr->mutex as only the main thread
|
---|
832 | // modifies these variables. decoder_in_pos requires
|
---|
833 | // coder->mutex which we are already holding.
|
---|
834 | if (coder->thr != NULL && coder->thr->partial_update
|
---|
835 | != PARTIAL_DISABLED) {
|
---|
836 | // There is exactly one outbuf in the queue.
|
---|
837 | assert(coder->thr->outbuf == coder->outq.head);
|
---|
838 | assert(coder->thr->outbuf == coder->outq.tail);
|
---|
839 |
|
---|
840 | if (coder->thr->outbuf->decoder_in_pos
|
---|
841 | == coder->thr->in_filled)
|
---|
842 | break;
|
---|
843 | }
|
---|
844 |
|
---|
845 | // Wait for input or output to become possible.
|
---|
846 | if (coder->timeout != 0) {
|
---|
847 | // See the comment in stream_encoder_mt.c
|
---|
848 | // about why mythread_condtime_set() is used
|
---|
849 | // like this.
|
---|
850 | //
|
---|
851 | // FIXME?
|
---|
852 | // In contrast to the encoder, this calls
|
---|
853 | // _condtime_set while the mutex is locked.
|
---|
854 | if (!*has_blocked) {
|
---|
855 | *has_blocked = true;
|
---|
856 | mythread_condtime_set(wait_abs,
|
---|
857 | &coder->cond,
|
---|
858 | coder->timeout);
|
---|
859 | }
|
---|
860 |
|
---|
861 | if (mythread_cond_timedwait(&coder->cond,
|
---|
862 | &coder->mutex,
|
---|
863 | wait_abs) != 0) {
|
---|
864 | ret = LZMA_TIMED_OUT;
|
---|
865 | break;
|
---|
866 | }
|
---|
867 | } else {
|
---|
868 | mythread_cond_wait(&coder->cond,
|
---|
869 | &coder->mutex);
|
---|
870 | }
|
---|
871 | } while (ret == LZMA_OK);
|
---|
872 | }
|
---|
873 |
|
---|
874 | // If we are returning an error, then the application cannot get
|
---|
875 | // more output from us and thus keeping the threads running is
|
---|
876 | // useless and waste of CPU time.
|
---|
877 | if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
|
---|
878 | threads_stop(coder);
|
---|
879 |
|
---|
880 | return ret;
|
---|
881 | }
|
---|
882 |
|
---|
883 |
|
---|
884 | static lzma_ret
|
---|
885 | decode_block_header(struct lzma_stream_coder *coder,
|
---|
886 | const lzma_allocator *allocator, const uint8_t *restrict in,
|
---|
887 | size_t *restrict in_pos, size_t in_size)
|
---|
888 | {
|
---|
889 | if (*in_pos >= in_size)
|
---|
890 | return LZMA_OK;
|
---|
891 |
|
---|
892 | if (coder->pos == 0) {
|
---|
893 | // Detect if it's Index.
|
---|
894 | if (in[*in_pos] == INDEX_INDICATOR)
|
---|
895 | return LZMA_INDEX_DETECTED;
|
---|
896 |
|
---|
897 | // Calculate the size of the Block Header. Note that
|
---|
898 | // Block Header decoder wants to see this byte too
|
---|
899 | // so don't advance *in_pos.
|
---|
900 | coder->block_options.header_size
|
---|
901 | = lzma_block_header_size_decode(
|
---|
902 | in[*in_pos]);
|
---|
903 | }
|
---|
904 |
|
---|
905 | // Copy the Block Header to the internal buffer.
|
---|
906 | lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
|
---|
907 | coder->block_options.header_size);
|
---|
908 |
|
---|
909 | // Return if we didn't get the whole Block Header yet.
|
---|
910 | if (coder->pos < coder->block_options.header_size)
|
---|
911 | return LZMA_OK;
|
---|
912 |
|
---|
913 | coder->pos = 0;
|
---|
914 |
|
---|
915 | // Version 1 is needed to support the .ignore_check option.
|
---|
916 | coder->block_options.version = 1;
|
---|
917 |
|
---|
918 | // Block Header decoder will initialize all members of this array
|
---|
919 | // so we don't need to do it here.
|
---|
920 | coder->block_options.filters = coder->filters;
|
---|
921 |
|
---|
922 | // Decode the Block Header.
|
---|
923 | return_if_error(lzma_block_header_decode(&coder->block_options,
|
---|
924 | allocator, coder->buffer));
|
---|
925 |
|
---|
926 | // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
|
---|
927 | // It has to be set after lzma_block_header_decode() because
|
---|
928 | // it always resets this to false.
|
---|
929 | coder->block_options.ignore_check = coder->ignore_check;
|
---|
930 |
|
---|
931 | // coder->block_options is ready now.
|
---|
932 | return LZMA_STREAM_END;
|
---|
933 | }
|
---|
934 |
|
---|
935 |
|
---|
936 | /// Get the size of the Compressed Data + Block Padding + Check.
|
---|
937 | static size_t
|
---|
938 | comp_blk_size(const struct lzma_stream_coder *coder)
|
---|
939 | {
|
---|
940 | return vli_ceil4(coder->block_options.compressed_size)
|
---|
941 | + lzma_check_size(coder->stream_flags.check);
|
---|
942 | }
|
---|
943 |
|
---|
944 |
|
---|
945 | /// Returns true if the size (compressed or uncompressed) is such that
|
---|
946 | /// threaded decompression cannot be used. Sizes that are too big compared
|
---|
947 | /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
|
---|
948 | /// when lzma_vli is assigned to a size_t.
|
---|
949 | static bool
|
---|
950 | is_direct_mode_needed(lzma_vli size)
|
---|
951 | {
|
---|
952 | return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
|
---|
953 | }
|
---|
954 |
|
---|
955 |
|
---|
956 | static lzma_ret
|
---|
957 | stream_decoder_reset(struct lzma_stream_coder *coder,
|
---|
958 | const lzma_allocator *allocator)
|
---|
959 | {
|
---|
960 | // Initialize the Index hash used to verify the Index.
|
---|
961 | coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
|
---|
962 | if (coder->index_hash == NULL)
|
---|
963 | return LZMA_MEM_ERROR;
|
---|
964 |
|
---|
965 | // Reset the rest of the variables.
|
---|
966 | coder->sequence = SEQ_STREAM_HEADER;
|
---|
967 | coder->pos = 0;
|
---|
968 |
|
---|
969 | return LZMA_OK;
|
---|
970 | }
|
---|
971 |
|
---|
972 |
|
---|
973 | static lzma_ret
|
---|
974 | stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
|
---|
975 | const uint8_t *restrict in, size_t *restrict in_pos,
|
---|
976 | size_t in_size,
|
---|
977 | uint8_t *restrict out, size_t *restrict out_pos,
|
---|
978 | size_t out_size, lzma_action action)
|
---|
979 | {
|
---|
980 | struct lzma_stream_coder *coder = coder_ptr;
|
---|
981 |
|
---|
982 | mythread_condtime wait_abs;
|
---|
983 | bool has_blocked = false;
|
---|
984 |
|
---|
985 | // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
|
---|
986 | // tell read_output_and_wait() to wait until it can fill the output
|
---|
987 | // buffer (or a timeout occurs). Two conditions must be met:
|
---|
988 | //
|
---|
989 | // (1) If the caller provided no new input. The reason for this
|
---|
990 | // can be, for example, the end of the file or that there is
|
---|
991 | // a pause in the input stream and more input is available
|
---|
992 | // a little later. In this situation we should wait for output
|
---|
993 | // because otherwise we would end up in a busy-waiting loop where
|
---|
994 | // we make no progress and the application just calls us again
|
---|
995 | // without providing any new input. This would then result in
|
---|
996 | // LZMA_BUF_ERROR even though more output would be available
|
---|
997 | // once the worker threads decode more data.
|
---|
998 | //
|
---|
999 | // (2) Even if (1) is true, we will not wait if the previous call to
|
---|
1000 | // this function managed to produce some output and the output
|
---|
1001 | // buffer became full. This is for compatibility with applications
|
---|
1002 | // that call lzma_code() in such a way that new input is provided
|
---|
1003 | // only when the output buffer didn't become full. Without this
|
---|
1004 | // trick such applications would have bad performance (bad
|
---|
1005 | // parallelization due to decoder not getting input fast enough).
|
---|
1006 | //
|
---|
1007 | // NOTE: Such loops might require that timeout is disabled (0)
|
---|
1008 | // if they assume that output-not-full implies that all input has
|
---|
1009 | // been consumed. If and only if timeout is enabled, we may return
|
---|
1010 | // when output isn't full *and* not all input has been consumed.
|
---|
1011 | //
|
---|
1012 | // However, if LZMA_FINISH is used, the above is ignored and we always
|
---|
1013 | // wait (timeout can still cause us to return) because we know that
|
---|
1014 | // we won't get any more input. This matters if the input file is
|
---|
1015 | // truncated and we are doing single-shot decoding, that is,
|
---|
1016 | // timeout = 0 and LZMA_FINISH is used on the first call to
|
---|
1017 | // lzma_code() and the output buffer is known to be big enough
|
---|
1018 | // to hold all uncompressed data:
|
---|
1019 | //
|
---|
1020 | // - If LZMA_FINISH wasn't handled specially, we could return
|
---|
1021 | // LZMA_OK before providing all output that is possible with the
|
---|
1022 | // truncated input. The rest would be available if lzma_code() was
|
---|
1023 | // called again but then it's not single-shot decoding anymore.
|
---|
1024 | //
|
---|
1025 | // - By handling LZMA_FINISH specially here, the first call will
|
---|
1026 | // produce all the output, matching the behavior of the
|
---|
1027 | // single-threaded decoder.
|
---|
1028 | //
|
---|
1029 | // So it's a very specific corner case but also easy to avoid. Note
|
---|
1030 | // that this special handling of LZMA_FINISH has no effect for
|
---|
1031 | // single-shot decoding when the input file is valid (not truncated);
|
---|
1032 | // premature LZMA_OK wouldn't be possible as long as timeout = 0.
|
---|
1033 | const bool waiting_allowed = action == LZMA_FINISH
|
---|
1034 | || (*in_pos == in_size && !coder->out_was_filled);
|
---|
1035 | coder->out_was_filled = false;
|
---|
1036 |
|
---|
1037 | while (true)
|
---|
1038 | switch (coder->sequence) {
|
---|
1039 | case SEQ_STREAM_HEADER: {
|
---|
1040 | // Copy the Stream Header to the internal buffer.
|
---|
1041 | const size_t in_old = *in_pos;
|
---|
1042 | lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
|
---|
1043 | LZMA_STREAM_HEADER_SIZE);
|
---|
1044 | coder->progress_in += *in_pos - in_old;
|
---|
1045 |
|
---|
1046 | // Return if we didn't get the whole Stream Header yet.
|
---|
1047 | if (coder->pos < LZMA_STREAM_HEADER_SIZE)
|
---|
1048 | return LZMA_OK;
|
---|
1049 |
|
---|
1050 | coder->pos = 0;
|
---|
1051 |
|
---|
1052 | // Decode the Stream Header.
|
---|
1053 | const lzma_ret ret = lzma_stream_header_decode(
|
---|
1054 | &coder->stream_flags, coder->buffer);
|
---|
1055 | if (ret != LZMA_OK)
|
---|
1056 | return ret == LZMA_FORMAT_ERROR && !coder->first_stream
|
---|
1057 | ? LZMA_DATA_ERROR : ret;
|
---|
1058 |
|
---|
1059 | // If we are decoding concatenated Streams, and the later
|
---|
1060 | // Streams have invalid Header Magic Bytes, we give
|
---|
1061 | // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
|
---|
1062 | coder->first_stream = false;
|
---|
1063 |
|
---|
1064 | // Copy the type of the Check so that Block Header and Block
|
---|
1065 | // decoders see it.
|
---|
1066 | coder->block_options.check = coder->stream_flags.check;
|
---|
1067 |
|
---|
1068 | // Even if we return LZMA_*_CHECK below, we want
|
---|
1069 | // to continue from Block Header decoding.
|
---|
1070 | coder->sequence = SEQ_BLOCK_HEADER;
|
---|
1071 |
|
---|
1072 | // Detect if there's no integrity check or if it is
|
---|
1073 | // unsupported if those were requested by the application.
|
---|
1074 | if (coder->tell_no_check && coder->stream_flags.check
|
---|
1075 | == LZMA_CHECK_NONE)
|
---|
1076 | return LZMA_NO_CHECK;
|
---|
1077 |
|
---|
1078 | if (coder->tell_unsupported_check
|
---|
1079 | && !lzma_check_is_supported(
|
---|
1080 | coder->stream_flags.check))
|
---|
1081 | return LZMA_UNSUPPORTED_CHECK;
|
---|
1082 |
|
---|
1083 | if (coder->tell_any_check)
|
---|
1084 | return LZMA_GET_CHECK;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | // Fall through
|
---|
1088 |
|
---|
1089 | case SEQ_BLOCK_HEADER: {
|
---|
1090 | const size_t in_old = *in_pos;
|
---|
1091 | const lzma_ret ret = decode_block_header(coder, allocator,
|
---|
1092 | in, in_pos, in_size);
|
---|
1093 | coder->progress_in += *in_pos - in_old;
|
---|
1094 |
|
---|
1095 | if (ret == LZMA_OK) {
|
---|
1096 | // We didn't decode the whole Block Header yet.
|
---|
1097 | //
|
---|
1098 | // Read output from the queue before returning. This
|
---|
1099 | // is important because it is possible that the
|
---|
1100 | // application doesn't have any new input available
|
---|
1101 | // immediately. If we didn't try to copy output from
|
---|
1102 | // the output queue here, lzma_code() could end up
|
---|
1103 | // returning LZMA_BUF_ERROR even though queued output
|
---|
1104 | // is available.
|
---|
1105 | //
|
---|
1106 | // If the lzma_code() call provided at least one input
|
---|
1107 | // byte, only copy as much data from the output queue
|
---|
1108 | // as is available immediately. This way the
|
---|
1109 | // application will be able to provide more input
|
---|
1110 | // without a delay.
|
---|
1111 | //
|
---|
1112 | // On the other hand, if lzma_code() was called with
|
---|
1113 | // an empty input buffer(*), treat it specially: try
|
---|
1114 | // to fill the output buffer even if it requires
|
---|
1115 | // waiting for the worker threads to provide output
|
---|
1116 | // (timeout, if specified, can still cause us to
|
---|
1117 | // return).
|
---|
1118 | //
|
---|
1119 | // - This way the application will be able to get all
|
---|
1120 | // data that can be decoded from the input provided
|
---|
1121 | // so far.
|
---|
1122 | //
|
---|
1123 | // - We avoid both premature LZMA_BUF_ERROR and
|
---|
1124 | // busy-waiting where the application repeatedly
|
---|
1125 | // calls lzma_code() which immediately returns
|
---|
1126 | // LZMA_OK without providing new data.
|
---|
1127 | //
|
---|
1128 | // - If the queue becomes empty, we won't wait
|
---|
1129 | // anything and will return LZMA_OK immediately
|
---|
1130 | // (coder->timeout is completely ignored).
|
---|
1131 | //
|
---|
1132 | // (*) See the comment at the beginning of this
|
---|
1133 | // function how waiting_allowed is determined
|
---|
1134 | // and why there is an exception to the rule
|
---|
1135 | // of "called with an empty input buffer".
|
---|
1136 | assert(*in_pos == in_size);
|
---|
1137 |
|
---|
1138 | // If LZMA_FINISH was used we know that we won't get
|
---|
1139 | // more input, so the file must be truncated if we
|
---|
1140 | // get here. If worker threads don't detect any
|
---|
1141 | // errors, eventually there will be no more output
|
---|
1142 | // while we keep returning LZMA_OK which gets
|
---|
1143 | // converted to LZMA_BUF_ERROR in lzma_code().
|
---|
1144 | //
|
---|
1145 | // If fail-fast is enabled then we will return
|
---|
1146 | // immediately using LZMA_DATA_ERROR instead of
|
---|
1147 | // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
|
---|
1148 | // error code:
|
---|
1149 | //
|
---|
1150 | // - Worker threads may have a large amount of
|
---|
1151 | // not-yet-decoded input data and we don't
|
---|
1152 | // know for sure if all data is valid. Bad
|
---|
1153 | // data there would result in LZMA_DATA_ERROR
|
---|
1154 | // when fail-fast isn't used.
|
---|
1155 | //
|
---|
1156 | // - Immediate LZMA_BUF_ERROR would be a bit weird
|
---|
1157 | // considering the older liblzma code. lzma_code()
|
---|
1158 | // even has an assertion to prevent coders from
|
---|
1159 | // returning LZMA_BUF_ERROR directly.
|
---|
1160 | //
|
---|
1161 | // The downside of this is that with fail-fast apps
|
---|
1162 | // cannot always distinguish between corrupt and
|
---|
1163 | // truncated files.
|
---|
1164 | if (action == LZMA_FINISH && coder->fail_fast) {
|
---|
1165 | // We won't produce any more output. Stop
|
---|
1166 | // the unfinished worker threads so they
|
---|
1167 | // won't waste CPU time.
|
---|
1168 | threads_stop(coder);
|
---|
1169 | return LZMA_DATA_ERROR;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | // read_output_and_wait() will call threads_stop()
|
---|
1173 | // if needed so with that we can use return_if_error.
|
---|
1174 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1175 | out, out_pos, out_size,
|
---|
1176 | NULL, waiting_allowed,
|
---|
1177 | &wait_abs, &has_blocked));
|
---|
1178 |
|
---|
1179 | if (coder->pending_error != LZMA_OK) {
|
---|
1180 | coder->sequence = SEQ_ERROR;
|
---|
1181 | break;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | return LZMA_OK;
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | if (ret == LZMA_INDEX_DETECTED) {
|
---|
1188 | coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
|
---|
1189 | break;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | // See if an error occurred.
|
---|
1193 | if (ret != LZMA_STREAM_END) {
|
---|
1194 | // NOTE: Here and in all other places where
|
---|
1195 | // pending_error is set, it may overwrite the value
|
---|
1196 | // (LZMA_PROG_ERROR) set by read_output_and_wait().
|
---|
1197 | // That function might overwrite value set here too.
|
---|
1198 | // These are fine because when read_output_and_wait()
|
---|
1199 | // sets pending_error, it actually works as a flag
|
---|
1200 | // variable only ("some error has occurred") and the
|
---|
1201 | // actual value of pending_error is not used in
|
---|
1202 | // SEQ_ERROR. In such cases SEQ_ERROR will eventually
|
---|
1203 | // get the correct error code from the return value of
|
---|
1204 | // a later read_output_and_wait() call.
|
---|
1205 | coder->pending_error = ret;
|
---|
1206 | coder->sequence = SEQ_ERROR;
|
---|
1207 | break;
|
---|
1208 | }
|
---|
1209 |
|
---|
1210 | // Calculate the memory usage of the filters / Block decoder.
|
---|
1211 | coder->mem_next_filters = lzma_raw_decoder_memusage(
|
---|
1212 | coder->filters);
|
---|
1213 |
|
---|
1214 | if (coder->mem_next_filters == UINT64_MAX) {
|
---|
1215 | // One or more unknown Filter IDs.
|
---|
1216 | coder->pending_error = LZMA_OPTIONS_ERROR;
|
---|
1217 | coder->sequence = SEQ_ERROR;
|
---|
1218 | break;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 | coder->sequence = SEQ_BLOCK_INIT;
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | // Fall through
|
---|
1225 |
|
---|
1226 | case SEQ_BLOCK_INIT: {
|
---|
1227 | // Check if decoding is possible at all with the current
|
---|
1228 | // memlimit_stop which we must never exceed.
|
---|
1229 | //
|
---|
1230 | // This needs to be the first thing in SEQ_BLOCK_INIT
|
---|
1231 | // to make it possible to restart decoding after increasing
|
---|
1232 | // memlimit_stop with lzma_memlimit_set().
|
---|
1233 | if (coder->mem_next_filters > coder->memlimit_stop) {
|
---|
1234 | // Flush pending output before returning
|
---|
1235 | // LZMA_MEMLIMIT_ERROR. If the application doesn't
|
---|
1236 | // want to increase the limit, at least it will get
|
---|
1237 | // all the output possible so far.
|
---|
1238 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1239 | out, out_pos, out_size,
|
---|
1240 | NULL, true, &wait_abs, &has_blocked));
|
---|
1241 |
|
---|
1242 | if (!lzma_outq_is_empty(&coder->outq))
|
---|
1243 | return LZMA_OK;
|
---|
1244 |
|
---|
1245 | return LZMA_MEMLIMIT_ERROR;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | // Check if the size information is available in Block Header.
|
---|
1249 | // If it is, check if the sizes are small enough that we don't
|
---|
1250 | // need to worry *too* much about integer overflows later in
|
---|
1251 | // the code. If these conditions are not met, we must use the
|
---|
1252 | // single-threaded direct mode.
|
---|
1253 | if (is_direct_mode_needed(coder->block_options.compressed_size)
|
---|
1254 | || is_direct_mode_needed(
|
---|
1255 | coder->block_options.uncompressed_size)) {
|
---|
1256 | coder->sequence = SEQ_BLOCK_DIRECT_INIT;
|
---|
1257 | break;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | // Calculate the amount of memory needed for the input and
|
---|
1261 | // output buffers in threaded mode.
|
---|
1262 | //
|
---|
1263 | // These cannot overflow because we already checked that
|
---|
1264 | // the sizes are small enough using is_direct_mode_needed().
|
---|
1265 | coder->mem_next_in = comp_blk_size(coder);
|
---|
1266 | const uint64_t mem_buffers = coder->mem_next_in
|
---|
1267 | + lzma_outq_outbuf_memusage(
|
---|
1268 | coder->block_options.uncompressed_size);
|
---|
1269 |
|
---|
1270 | // Add the amount needed by the filters.
|
---|
1271 | // Avoid integer overflows.
|
---|
1272 | if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
|
---|
1273 | // Use direct mode if the memusage would overflow.
|
---|
1274 | // This is a theoretical case that shouldn't happen
|
---|
1275 | // in practice unless the input file is weird (broken
|
---|
1276 | // or malicious).
|
---|
1277 | coder->sequence = SEQ_BLOCK_DIRECT_INIT;
|
---|
1278 | break;
|
---|
1279 | }
|
---|
1280 |
|
---|
1281 | // Amount of memory needed to decode this Block in
|
---|
1282 | // threaded mode:
|
---|
1283 | coder->mem_next_block = coder->mem_next_filters + mem_buffers;
|
---|
1284 |
|
---|
1285 | // If this alone would exceed memlimit_threading, then we must
|
---|
1286 | // use the single-threaded direct mode.
|
---|
1287 | if (coder->mem_next_block > coder->memlimit_threading) {
|
---|
1288 | coder->sequence = SEQ_BLOCK_DIRECT_INIT;
|
---|
1289 | break;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | // Use the threaded mode. Free the direct mode decoder in
|
---|
1293 | // case it has been initialized.
|
---|
1294 | lzma_next_end(&coder->block_decoder, allocator);
|
---|
1295 | coder->mem_direct_mode = 0;
|
---|
1296 |
|
---|
1297 | // Since we already know what the sizes are supposed to be,
|
---|
1298 | // we can already add them to the Index hash. The Block
|
---|
1299 | // decoder will verify the values while decoding.
|
---|
1300 | const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
|
---|
1301 | lzma_block_unpadded_size(
|
---|
1302 | &coder->block_options),
|
---|
1303 | coder->block_options.uncompressed_size);
|
---|
1304 | if (ret != LZMA_OK) {
|
---|
1305 | coder->pending_error = ret;
|
---|
1306 | coder->sequence = SEQ_ERROR;
|
---|
1307 | break;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | coder->sequence = SEQ_BLOCK_THR_INIT;
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | // Fall through
|
---|
1314 |
|
---|
1315 | case SEQ_BLOCK_THR_INIT: {
|
---|
1316 | // We need to wait for a multiple conditions to become true
|
---|
1317 | // until we can initialize the Block decoder and let a worker
|
---|
1318 | // thread decode it:
|
---|
1319 | //
|
---|
1320 | // - Wait for the memory usage of the active threads to drop
|
---|
1321 | // so that starting the decoding of this Block won't make
|
---|
1322 | // us go over memlimit_threading.
|
---|
1323 | //
|
---|
1324 | // - Wait for at least one free output queue slot.
|
---|
1325 | //
|
---|
1326 | // - Wait for a free worker thread.
|
---|
1327 | //
|
---|
1328 | // While we wait, we must copy decompressed data to the out
|
---|
1329 | // buffer and catch possible decoder errors.
|
---|
1330 | //
|
---|
1331 | // read_output_and_wait() does all the above.
|
---|
1332 | bool block_can_start = false;
|
---|
1333 |
|
---|
1334 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1335 | out, out_pos, out_size,
|
---|
1336 | &block_can_start, true,
|
---|
1337 | &wait_abs, &has_blocked));
|
---|
1338 |
|
---|
1339 | if (coder->pending_error != LZMA_OK) {
|
---|
1340 | coder->sequence = SEQ_ERROR;
|
---|
1341 | break;
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 | if (!block_can_start) {
|
---|
1345 | // It's not a timeout because return_if_error handles
|
---|
1346 | // it already. Output queue cannot be empty either
|
---|
1347 | // because in that case block_can_start would have
|
---|
1348 | // been true. Thus the output buffer must be full and
|
---|
1349 | // the queue isn't empty.
|
---|
1350 | assert(*out_pos == out_size);
|
---|
1351 | assert(!lzma_outq_is_empty(&coder->outq));
|
---|
1352 | return LZMA_OK;
|
---|
1353 | }
|
---|
1354 |
|
---|
1355 | // We know that we can start decoding this Block without
|
---|
1356 | // exceeding memlimit_threading. However, to stay below
|
---|
1357 | // memlimit_threading may require freeing some of the
|
---|
1358 | // cached memory.
|
---|
1359 | //
|
---|
1360 | // Get a local copy of variables that require locking the
|
---|
1361 | // mutex. It is fine if the worker threads modify the real
|
---|
1362 | // values after we read these as those changes can only be
|
---|
1363 | // towards more favorable conditions (less memory in use,
|
---|
1364 | // more in cache).
|
---|
1365 | #ifndef VBOX
|
---|
1366 | uint64_t mem_in_use;
|
---|
1367 | uint64_t mem_cached;
|
---|
1368 | #else
|
---|
1369 | uint64_t mem_in_use = 0; /* Shut up msc who can't grok the mythread_sync construct below. */
|
---|
1370 | uint64_t mem_cached = 0;
|
---|
1371 | #endif
|
---|
1372 | struct worker_thread *thr = NULL; // Init to silence warning.
|
---|
1373 |
|
---|
1374 | mythread_sync(coder->mutex) {
|
---|
1375 | mem_in_use = coder->mem_in_use;
|
---|
1376 | mem_cached = coder->mem_cached;
|
---|
1377 | thr = coder->threads_free;
|
---|
1378 | }
|
---|
1379 |
|
---|
1380 | // The maximum amount of memory that can be held by other
|
---|
1381 | // threads and cached buffers while allowing us to start
|
---|
1382 | // decoding the next Block.
|
---|
1383 | const uint64_t mem_max = coder->memlimit_threading
|
---|
1384 | - coder->mem_next_block;
|
---|
1385 |
|
---|
1386 | // If the existing allocations are so large that starting
|
---|
1387 | // to decode this Block might exceed memlimit_threads,
|
---|
1388 | // try to free memory from the output queue cache first.
|
---|
1389 | //
|
---|
1390 | // NOTE: This math assumes the worst case. It's possible
|
---|
1391 | // that the limit wouldn't be exceeded if the existing cached
|
---|
1392 | // allocations are reused.
|
---|
1393 | if (mem_in_use + mem_cached + coder->outq.mem_allocated
|
---|
1394 | > mem_max) {
|
---|
1395 | // Clear the outq cache except leave one buffer in
|
---|
1396 | // the cache if its size is correct. That way we
|
---|
1397 | // don't free and almost immediately reallocate
|
---|
1398 | // an identical buffer.
|
---|
1399 | lzma_outq_clear_cache2(&coder->outq, allocator,
|
---|
1400 | coder->block_options.uncompressed_size);
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 | // If there is at least one worker_thread in the cache and
|
---|
1404 | // the existing allocations are so large that starting to
|
---|
1405 | // decode this Block might exceed memlimit_threads, free
|
---|
1406 | // memory by freeing cached Block decoders.
|
---|
1407 | //
|
---|
1408 | // NOTE: The comparison is different here than above.
|
---|
1409 | // Here we don't care about cached buffers in outq anymore
|
---|
1410 | // and only look at memory actually in use. This is because
|
---|
1411 | // if there is something in outq cache, it's a single buffer
|
---|
1412 | // that can be used as is. We ensured this in the above
|
---|
1413 | // if-block.
|
---|
1414 | uint64_t mem_freed = 0;
|
---|
1415 | if (thr != NULL && mem_in_use + mem_cached
|
---|
1416 | + coder->outq.mem_in_use > mem_max) {
|
---|
1417 | // Don't free the first Block decoder if its memory
|
---|
1418 | // usage isn't greater than what this Block will need.
|
---|
1419 | // Typically the same filter chain is used for all
|
---|
1420 | // Blocks so this way the allocations can be reused
|
---|
1421 | // when get_thread() picks the first worker_thread
|
---|
1422 | // from the cache.
|
---|
1423 | if (thr->mem_filters <= coder->mem_next_filters)
|
---|
1424 | thr = thr->next;
|
---|
1425 |
|
---|
1426 | while (thr != NULL) {
|
---|
1427 | lzma_next_end(&thr->block_decoder, allocator);
|
---|
1428 | mem_freed += thr->mem_filters;
|
---|
1429 | thr->mem_filters = 0;
|
---|
1430 | thr = thr->next;
|
---|
1431 | }
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | // Update the memory usage counters. Note that coder->mem_*
|
---|
1435 | // may have changed since we read them so we must substract
|
---|
1436 | // or add the changes.
|
---|
1437 | mythread_sync(coder->mutex) {
|
---|
1438 | coder->mem_cached -= mem_freed;
|
---|
1439 |
|
---|
1440 | // Memory needed for the filters and the input buffer.
|
---|
1441 | // The output queue takes care of its own counter so
|
---|
1442 | // we don't touch it here.
|
---|
1443 | //
|
---|
1444 | // NOTE: After this, coder->mem_in_use +
|
---|
1445 | // coder->mem_cached might count the same thing twice.
|
---|
1446 | // If so, this will get corrected in get_thread() when
|
---|
1447 | // a worker_thread is picked from coder->free_threads
|
---|
1448 | // and its memory usage is substracted from mem_cached.
|
---|
1449 | coder->mem_in_use += coder->mem_next_in
|
---|
1450 | + coder->mem_next_filters;
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | // Allocate memory for the output buffer in the output queue.
|
---|
1454 | lzma_ret ret = lzma_outq_prealloc_buf(
|
---|
1455 | &coder->outq, allocator,
|
---|
1456 | coder->block_options.uncompressed_size);
|
---|
1457 | if (ret != LZMA_OK) {
|
---|
1458 | threads_stop(coder);
|
---|
1459 | return ret;
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | // Set up coder->thr.
|
---|
1463 | ret = get_thread(coder, allocator);
|
---|
1464 | if (ret != LZMA_OK) {
|
---|
1465 | threads_stop(coder);
|
---|
1466 | return ret;
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | // The new Block decoder memory usage is already counted in
|
---|
1470 | // coder->mem_in_use. Store it in the thread too.
|
---|
1471 | coder->thr->mem_filters = coder->mem_next_filters;
|
---|
1472 |
|
---|
1473 | // Initialize the Block decoder.
|
---|
1474 | coder->thr->block_options = coder->block_options;
|
---|
1475 | ret = lzma_block_decoder_init(
|
---|
1476 | &coder->thr->block_decoder, allocator,
|
---|
1477 | &coder->thr->block_options);
|
---|
1478 |
|
---|
1479 | // Free the allocated filter options since they are needed
|
---|
1480 | // only to initialize the Block decoder.
|
---|
1481 | lzma_filters_free(coder->filters, allocator);
|
---|
1482 | coder->thr->block_options.filters = NULL;
|
---|
1483 |
|
---|
1484 | // Check if memory usage calculation and Block encoder
|
---|
1485 | // initialization succeeded.
|
---|
1486 | if (ret != LZMA_OK) {
|
---|
1487 | coder->pending_error = ret;
|
---|
1488 | coder->sequence = SEQ_ERROR;
|
---|
1489 | break;
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | // Allocate the input buffer.
|
---|
1493 | coder->thr->in_size = coder->mem_next_in;
|
---|
1494 | coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
|
---|
1495 | if (coder->thr->in == NULL) {
|
---|
1496 | threads_stop(coder);
|
---|
1497 | return LZMA_MEM_ERROR;
|
---|
1498 | }
|
---|
1499 |
|
---|
1500 | // Get the preallocated output buffer.
|
---|
1501 | coder->thr->outbuf = lzma_outq_get_buf(
|
---|
1502 | &coder->outq, coder->thr);
|
---|
1503 |
|
---|
1504 | // Start the decoder.
|
---|
1505 | mythread_sync(coder->thr->mutex) {
|
---|
1506 | assert(coder->thr->state == THR_IDLE);
|
---|
1507 | coder->thr->state = THR_RUN;
|
---|
1508 | mythread_cond_signal(&coder->thr->cond);
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 | // Enable output from the thread that holds the oldest output
|
---|
1512 | // buffer in the output queue (if such a thread exists).
|
---|
1513 | mythread_sync(coder->mutex) {
|
---|
1514 | lzma_outq_enable_partial_output(&coder->outq,
|
---|
1515 | &worker_enable_partial_update);
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | coder->sequence = SEQ_BLOCK_THR_RUN;
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | // Fall through
|
---|
1522 |
|
---|
1523 | case SEQ_BLOCK_THR_RUN: {
|
---|
1524 | if (action == LZMA_FINISH && coder->fail_fast) {
|
---|
1525 | // We know that we won't get more input and that
|
---|
1526 | // the caller wants fail-fast behavior. If we see
|
---|
1527 | // that we don't have enough input to finish this
|
---|
1528 | // Block, return LZMA_DATA_ERROR immediately.
|
---|
1529 | // See SEQ_BLOCK_HEADER for the error code rationale.
|
---|
1530 | const size_t in_avail = in_size - *in_pos;
|
---|
1531 | const size_t in_needed = coder->thr->in_size
|
---|
1532 | - coder->thr->in_filled;
|
---|
1533 | if (in_avail < in_needed) {
|
---|
1534 | threads_stop(coder);
|
---|
1535 | return LZMA_DATA_ERROR;
|
---|
1536 | }
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | // Copy input to the worker thread.
|
---|
1540 | size_t cur_in_filled = coder->thr->in_filled;
|
---|
1541 | lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
|
---|
1542 | &cur_in_filled, coder->thr->in_size);
|
---|
1543 |
|
---|
1544 | // Tell the thread how much we copied.
|
---|
1545 | mythread_sync(coder->thr->mutex) {
|
---|
1546 | coder->thr->in_filled = cur_in_filled;
|
---|
1547 |
|
---|
1548 | // NOTE: Most of the time we are copying input faster
|
---|
1549 | // than the thread can decode so most of the time
|
---|
1550 | // calling mythread_cond_signal() is useless but
|
---|
1551 | // we cannot make it conditional because thr->in_pos
|
---|
1552 | // is updated without a mutex. And the overhead should
|
---|
1553 | // be very much negligible anyway.
|
---|
1554 | mythread_cond_signal(&coder->thr->cond);
|
---|
1555 | }
|
---|
1556 |
|
---|
1557 | // Read output from the output queue. Just like in
|
---|
1558 | // SEQ_BLOCK_HEADER, we wait to fill the output buffer
|
---|
1559 | // only if waiting_allowed was set to true in the beginning
|
---|
1560 | // of this function (see the comment there).
|
---|
1561 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1562 | out, out_pos, out_size,
|
---|
1563 | NULL, waiting_allowed,
|
---|
1564 | &wait_abs, &has_blocked));
|
---|
1565 |
|
---|
1566 | if (coder->pending_error != LZMA_OK) {
|
---|
1567 | coder->sequence = SEQ_ERROR;
|
---|
1568 | break;
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 | // Return if the input didn't contain the whole Block.
|
---|
1572 | if (coder->thr->in_filled < coder->thr->in_size) {
|
---|
1573 | assert(*in_pos == in_size);
|
---|
1574 | return LZMA_OK;
|
---|
1575 | }
|
---|
1576 |
|
---|
1577 | // The whole Block has been copied to the thread-specific
|
---|
1578 | // buffer. Continue from the next Block Header or Index.
|
---|
1579 | coder->thr = NULL;
|
---|
1580 | coder->sequence = SEQ_BLOCK_HEADER;
|
---|
1581 | break;
|
---|
1582 | }
|
---|
1583 |
|
---|
1584 | case SEQ_BLOCK_DIRECT_INIT: {
|
---|
1585 | // Wait for the threads to finish and that all decoded data
|
---|
1586 | // has been copied to the output. That is, wait until the
|
---|
1587 | // output queue becomes empty.
|
---|
1588 | //
|
---|
1589 | // NOTE: No need to check for coder->pending_error as
|
---|
1590 | // we aren't consuming any input until the queue is empty
|
---|
1591 | // and if there is a pending error, read_output_and_wait()
|
---|
1592 | // will eventually return it before the queue is empty.
|
---|
1593 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1594 | out, out_pos, out_size,
|
---|
1595 | NULL, true, &wait_abs, &has_blocked));
|
---|
1596 | if (!lzma_outq_is_empty(&coder->outq))
|
---|
1597 | return LZMA_OK;
|
---|
1598 |
|
---|
1599 | // Free the cached output buffers.
|
---|
1600 | lzma_outq_clear_cache(&coder->outq, allocator);
|
---|
1601 |
|
---|
1602 | // Get rid of the worker threads, including the coder->threads
|
---|
1603 | // array.
|
---|
1604 | threads_end(coder, allocator);
|
---|
1605 |
|
---|
1606 | // Initialize the Block decoder.
|
---|
1607 | const lzma_ret ret = lzma_block_decoder_init(
|
---|
1608 | &coder->block_decoder, allocator,
|
---|
1609 | &coder->block_options);
|
---|
1610 |
|
---|
1611 | // Free the allocated filter options since they are needed
|
---|
1612 | // only to initialize the Block decoder.
|
---|
1613 | lzma_filters_free(coder->filters, allocator);
|
---|
1614 | coder->block_options.filters = NULL;
|
---|
1615 |
|
---|
1616 | // Check if Block decoder initialization succeeded.
|
---|
1617 | if (ret != LZMA_OK)
|
---|
1618 | return ret;
|
---|
1619 |
|
---|
1620 | // Make the memory usage visible to _memconfig().
|
---|
1621 | coder->mem_direct_mode = coder->mem_next_filters;
|
---|
1622 |
|
---|
1623 | coder->sequence = SEQ_BLOCK_DIRECT_RUN;
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | // Fall through
|
---|
1627 |
|
---|
1628 | case SEQ_BLOCK_DIRECT_RUN: {
|
---|
1629 | const size_t in_old = *in_pos;
|
---|
1630 | const size_t out_old = *out_pos;
|
---|
1631 | const lzma_ret ret = coder->block_decoder.code(
|
---|
1632 | coder->block_decoder.coder, allocator,
|
---|
1633 | in, in_pos, in_size, out, out_pos, out_size,
|
---|
1634 | action);
|
---|
1635 | coder->progress_in += *in_pos - in_old;
|
---|
1636 | coder->progress_out += *out_pos - out_old;
|
---|
1637 |
|
---|
1638 | if (ret != LZMA_STREAM_END)
|
---|
1639 | return ret;
|
---|
1640 |
|
---|
1641 | // Block decoded successfully. Add the new size pair to
|
---|
1642 | // the Index hash.
|
---|
1643 | return_if_error(lzma_index_hash_append(coder->index_hash,
|
---|
1644 | lzma_block_unpadded_size(
|
---|
1645 | &coder->block_options),
|
---|
1646 | coder->block_options.uncompressed_size));
|
---|
1647 |
|
---|
1648 | coder->sequence = SEQ_BLOCK_HEADER;
|
---|
1649 | break;
|
---|
1650 | }
|
---|
1651 |
|
---|
1652 | case SEQ_INDEX_WAIT_OUTPUT:
|
---|
1653 | // Flush the output from all worker threads so that we can
|
---|
1654 | // decode the Index without thinking about threading.
|
---|
1655 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1656 | out, out_pos, out_size,
|
---|
1657 | NULL, true, &wait_abs, &has_blocked));
|
---|
1658 |
|
---|
1659 | if (!lzma_outq_is_empty(&coder->outq))
|
---|
1660 | return LZMA_OK;
|
---|
1661 |
|
---|
1662 | coder->sequence = SEQ_INDEX_DECODE;
|
---|
1663 |
|
---|
1664 | // Fall through
|
---|
1665 |
|
---|
1666 | case SEQ_INDEX_DECODE: {
|
---|
1667 | // If we don't have any input, don't call
|
---|
1668 | // lzma_index_hash_decode() since it would return
|
---|
1669 | // LZMA_BUF_ERROR, which we must not do here.
|
---|
1670 | if (*in_pos >= in_size)
|
---|
1671 | return LZMA_OK;
|
---|
1672 |
|
---|
1673 | // Decode the Index and compare it to the hash calculated
|
---|
1674 | // from the sizes of the Blocks (if any).
|
---|
1675 | const size_t in_old = *in_pos;
|
---|
1676 | const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
|
---|
1677 | in, in_pos, in_size);
|
---|
1678 | coder->progress_in += *in_pos - in_old;
|
---|
1679 | if (ret != LZMA_STREAM_END)
|
---|
1680 | return ret;
|
---|
1681 |
|
---|
1682 | coder->sequence = SEQ_STREAM_FOOTER;
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | // Fall through
|
---|
1686 |
|
---|
1687 | case SEQ_STREAM_FOOTER: {
|
---|
1688 | // Copy the Stream Footer to the internal buffer.
|
---|
1689 | const size_t in_old = *in_pos;
|
---|
1690 | lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
|
---|
1691 | LZMA_STREAM_HEADER_SIZE);
|
---|
1692 | coder->progress_in += *in_pos - in_old;
|
---|
1693 |
|
---|
1694 | // Return if we didn't get the whole Stream Footer yet.
|
---|
1695 | if (coder->pos < LZMA_STREAM_HEADER_SIZE)
|
---|
1696 | return LZMA_OK;
|
---|
1697 |
|
---|
1698 | coder->pos = 0;
|
---|
1699 |
|
---|
1700 | // Decode the Stream Footer. The decoder gives
|
---|
1701 | // LZMA_FORMAT_ERROR if the magic bytes don't match,
|
---|
1702 | // so convert that return code to LZMA_DATA_ERROR.
|
---|
1703 | lzma_stream_flags footer_flags;
|
---|
1704 | const lzma_ret ret = lzma_stream_footer_decode(
|
---|
1705 | &footer_flags, coder->buffer);
|
---|
1706 | if (ret != LZMA_OK)
|
---|
1707 | return ret == LZMA_FORMAT_ERROR
|
---|
1708 | ? LZMA_DATA_ERROR : ret;
|
---|
1709 |
|
---|
1710 | // Check that Index Size stored in the Stream Footer matches
|
---|
1711 | // the real size of the Index field.
|
---|
1712 | if (lzma_index_hash_size(coder->index_hash)
|
---|
1713 | != footer_flags.backward_size)
|
---|
1714 | return LZMA_DATA_ERROR;
|
---|
1715 |
|
---|
1716 | // Compare that the Stream Flags fields are identical in
|
---|
1717 | // both Stream Header and Stream Footer.
|
---|
1718 | return_if_error(lzma_stream_flags_compare(
|
---|
1719 | &coder->stream_flags, &footer_flags));
|
---|
1720 |
|
---|
1721 | if (!coder->concatenated)
|
---|
1722 | return LZMA_STREAM_END;
|
---|
1723 |
|
---|
1724 | coder->sequence = SEQ_STREAM_PADDING;
|
---|
1725 | }
|
---|
1726 |
|
---|
1727 | // Fall through
|
---|
1728 |
|
---|
1729 | case SEQ_STREAM_PADDING:
|
---|
1730 | assert(coder->concatenated);
|
---|
1731 |
|
---|
1732 | // Skip over possible Stream Padding.
|
---|
1733 | while (true) {
|
---|
1734 | if (*in_pos >= in_size) {
|
---|
1735 | // Unless LZMA_FINISH was used, we cannot
|
---|
1736 | // know if there's more input coming later.
|
---|
1737 | if (action != LZMA_FINISH)
|
---|
1738 | return LZMA_OK;
|
---|
1739 |
|
---|
1740 | // Stream Padding must be a multiple of
|
---|
1741 | // four bytes.
|
---|
1742 | return coder->pos == 0
|
---|
1743 | ? LZMA_STREAM_END
|
---|
1744 | : LZMA_DATA_ERROR;
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 | // If the byte is not zero, it probably indicates
|
---|
1748 | // beginning of a new Stream (or the file is corrupt).
|
---|
1749 | if (in[*in_pos] != 0x00)
|
---|
1750 | break;
|
---|
1751 |
|
---|
1752 | ++*in_pos;
|
---|
1753 | ++coder->progress_in;
|
---|
1754 | coder->pos = (coder->pos + 1) & 3;
|
---|
1755 | }
|
---|
1756 |
|
---|
1757 | // Stream Padding must be a multiple of four bytes (empty
|
---|
1758 | // Stream Padding is OK).
|
---|
1759 | if (coder->pos != 0) {
|
---|
1760 | ++*in_pos;
|
---|
1761 | ++coder->progress_in;
|
---|
1762 | return LZMA_DATA_ERROR;
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 | // Prepare to decode the next Stream.
|
---|
1766 | return_if_error(stream_decoder_reset(coder, allocator));
|
---|
1767 | break;
|
---|
1768 |
|
---|
1769 | case SEQ_ERROR:
|
---|
1770 | if (!coder->fail_fast) {
|
---|
1771 | // Let the application get all data before the point
|
---|
1772 | // where the error was detected. This matches the
|
---|
1773 | // behavior of single-threaded use.
|
---|
1774 | //
|
---|
1775 | // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
|
---|
1776 | // they are returned immediately. Thus in rare cases
|
---|
1777 | // the output will be less than in the single-threaded
|
---|
1778 | // mode. Maybe this doesn't matter much in practice.
|
---|
1779 | return_if_error(read_output_and_wait(coder, allocator,
|
---|
1780 | out, out_pos, out_size,
|
---|
1781 | NULL, true, &wait_abs, &has_blocked));
|
---|
1782 |
|
---|
1783 | // We get here only if the error happened in the main
|
---|
1784 | // thread, for example, unsupported Block Header.
|
---|
1785 | if (!lzma_outq_is_empty(&coder->outq))
|
---|
1786 | return LZMA_OK;
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 | // We only get here if no errors were detected by the worker
|
---|
1790 | // threads. Errors from worker threads would have already been
|
---|
1791 | // returned by the call to read_output_and_wait() above.
|
---|
1792 | return coder->pending_error;
|
---|
1793 |
|
---|
1794 | default:
|
---|
1795 | assert(0);
|
---|
1796 | return LZMA_PROG_ERROR;
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 | // Never reached
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 |
|
---|
1803 | static void
|
---|
1804 | stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
|
---|
1805 | {
|
---|
1806 | struct lzma_stream_coder *coder = coder_ptr;
|
---|
1807 |
|
---|
1808 | threads_end(coder, allocator);
|
---|
1809 | lzma_outq_end(&coder->outq, allocator);
|
---|
1810 |
|
---|
1811 | lzma_next_end(&coder->block_decoder, allocator);
|
---|
1812 | lzma_filters_free(coder->filters, allocator);
|
---|
1813 | lzma_index_hash_end(coder->index_hash, allocator);
|
---|
1814 |
|
---|
1815 | lzma_free(coder, allocator);
|
---|
1816 | return;
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 |
|
---|
1820 | static lzma_check
|
---|
1821 | stream_decoder_mt_get_check(const void *coder_ptr)
|
---|
1822 | {
|
---|
1823 | const struct lzma_stream_coder *coder = coder_ptr;
|
---|
1824 | return coder->stream_flags.check;
|
---|
1825 | }
|
---|
1826 |
|
---|
1827 |
|
---|
1828 | static lzma_ret
|
---|
1829 | stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
|
---|
1830 | uint64_t *old_memlimit, uint64_t new_memlimit)
|
---|
1831 | {
|
---|
1832 | // NOTE: This function gets/sets memlimit_stop. For now,
|
---|
1833 | // memlimit_threading cannot be modified after initialization.
|
---|
1834 | //
|
---|
1835 | // *memusage will include cached memory too. Excluding cached memory
|
---|
1836 | // would be misleading and it wouldn't help the applications to
|
---|
1837 | // know how much memory is actually needed to decompress the file
|
---|
1838 | // because the higher the number of threads and the memlimits are
|
---|
1839 | // the more memory the decoder may use.
|
---|
1840 | //
|
---|
1841 | // Setting a new limit includes the cached memory too and too low
|
---|
1842 | // limits will be rejected. Alternative could be to free the cached
|
---|
1843 | // memory immediately if that helps to bring the limit down but
|
---|
1844 | // the current way is the simplest. It's unlikely that limit needs
|
---|
1845 | // to be lowered in the middle of a file anyway; the typical reason
|
---|
1846 | // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
|
---|
1847 | // and even such use isn't common.
|
---|
1848 | struct lzma_stream_coder *coder = coder_ptr;
|
---|
1849 |
|
---|
1850 | mythread_sync(coder->mutex) {
|
---|
1851 | *memusage = coder->mem_direct_mode
|
---|
1852 | + coder->mem_in_use
|
---|
1853 | + coder->mem_cached
|
---|
1854 | + coder->outq.mem_allocated;
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 | // If no filter chains are allocated, *memusage may be zero.
|
---|
1858 | // Always return at least LZMA_MEMUSAGE_BASE.
|
---|
1859 | if (*memusage < LZMA_MEMUSAGE_BASE)
|
---|
1860 | *memusage = LZMA_MEMUSAGE_BASE;
|
---|
1861 |
|
---|
1862 | *old_memlimit = coder->memlimit_stop;
|
---|
1863 |
|
---|
1864 | if (new_memlimit != 0) {
|
---|
1865 | if (new_memlimit < *memusage)
|
---|
1866 | return LZMA_MEMLIMIT_ERROR;
|
---|
1867 |
|
---|
1868 | coder->memlimit_stop = new_memlimit;
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 | return LZMA_OK;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 |
|
---|
1875 | static void
|
---|
1876 | stream_decoder_mt_get_progress(void *coder_ptr,
|
---|
1877 | uint64_t *progress_in, uint64_t *progress_out)
|
---|
1878 | {
|
---|
1879 | struct lzma_stream_coder *coder = coder_ptr;
|
---|
1880 |
|
---|
1881 | // Lock coder->mutex to prevent finishing threads from moving their
|
---|
1882 | // progress info from the worker_thread structure to lzma_stream_coder.
|
---|
1883 | mythread_sync(coder->mutex) {
|
---|
1884 | *progress_in = coder->progress_in;
|
---|
1885 | *progress_out = coder->progress_out;
|
---|
1886 |
|
---|
1887 | for (size_t i = 0; i < coder->threads_initialized; ++i) {
|
---|
1888 | mythread_sync(coder->threads[i].mutex) {
|
---|
1889 | *progress_in += coder->threads[i].progress_in;
|
---|
1890 | *progress_out += coder->threads[i]
|
---|
1891 | .progress_out;
|
---|
1892 | }
|
---|
1893 | }
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | return;
|
---|
1897 | }
|
---|
1898 |
|
---|
1899 |
|
---|
1900 | static lzma_ret
|
---|
1901 | stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
---|
1902 | const lzma_mt *options)
|
---|
1903 | {
|
---|
1904 | struct lzma_stream_coder *coder;
|
---|
1905 |
|
---|
1906 | if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
|
---|
1907 | return LZMA_OPTIONS_ERROR;
|
---|
1908 |
|
---|
1909 | if (options->flags & ~LZMA_SUPPORTED_FLAGS)
|
---|
1910 | return LZMA_OPTIONS_ERROR;
|
---|
1911 |
|
---|
1912 | lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
|
---|
1913 |
|
---|
1914 | coder = next->coder;
|
---|
1915 | if (!coder) {
|
---|
1916 | coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
|
---|
1917 | if (coder == NULL)
|
---|
1918 | return LZMA_MEM_ERROR;
|
---|
1919 |
|
---|
1920 | next->coder = coder;
|
---|
1921 |
|
---|
1922 | if (mythread_mutex_init(&coder->mutex)) {
|
---|
1923 | lzma_free(coder, allocator);
|
---|
1924 | return LZMA_MEM_ERROR;
|
---|
1925 | }
|
---|
1926 |
|
---|
1927 | if (mythread_cond_init(&coder->cond)) {
|
---|
1928 | mythread_mutex_destroy(&coder->mutex);
|
---|
1929 | lzma_free(coder, allocator);
|
---|
1930 | return LZMA_MEM_ERROR;
|
---|
1931 | }
|
---|
1932 |
|
---|
1933 | next->code = &stream_decode_mt;
|
---|
1934 | next->end = &stream_decoder_mt_end;
|
---|
1935 | next->get_check = &stream_decoder_mt_get_check;
|
---|
1936 | next->memconfig = &stream_decoder_mt_memconfig;
|
---|
1937 | next->get_progress = &stream_decoder_mt_get_progress;
|
---|
1938 |
|
---|
1939 | coder->filters[0].id = LZMA_VLI_UNKNOWN;
|
---|
1940 | memzero(&coder->outq, sizeof(coder->outq));
|
---|
1941 |
|
---|
1942 | coder->block_decoder = LZMA_NEXT_CODER_INIT;
|
---|
1943 | coder->mem_direct_mode = 0;
|
---|
1944 |
|
---|
1945 | coder->index_hash = NULL;
|
---|
1946 | coder->threads = NULL;
|
---|
1947 | coder->threads_free = NULL;
|
---|
1948 | coder->threads_initialized = 0;
|
---|
1949 | }
|
---|
1950 |
|
---|
1951 | // Cleanup old filter chain if one remains after unfinished decoding
|
---|
1952 | // of a previous Stream.
|
---|
1953 | lzma_filters_free(coder->filters, allocator);
|
---|
1954 |
|
---|
1955 | // By allocating threads from scratch we can start memory-usage
|
---|
1956 | // accounting from scratch, too. Changes in filter and block sizes may
|
---|
1957 | // affect number of threads.
|
---|
1958 | //
|
---|
1959 | // FIXME? Reusing should be easy but unlike the single-threaded
|
---|
1960 | // decoder, with some types of input file combinations reusing
|
---|
1961 | // could leave quite a lot of memory allocated but unused (first
|
---|
1962 | // file could allocate a lot, the next files could use fewer
|
---|
1963 | // threads and some of the allocations from the first file would not
|
---|
1964 | // get freed unless memlimit_threading forces us to clear caches).
|
---|
1965 | //
|
---|
1966 | // NOTE: The direct mode decoder isn't freed here if one exists.
|
---|
1967 | // It will be reused or freed as needed in the main loop.
|
---|
1968 | threads_end(coder, allocator);
|
---|
1969 |
|
---|
1970 | // All memusage counters start at 0 (including mem_direct_mode).
|
---|
1971 | // The little extra that is needed for the structs in this file
|
---|
1972 | // get accounted well enough by the filter chain memory usage
|
---|
1973 | // which adds LZMA_MEMUSAGE_BASE for each chain. However,
|
---|
1974 | // stream_decoder_mt_memconfig() has to handle this specially so that
|
---|
1975 | // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
|
---|
1976 | coder->mem_in_use = 0;
|
---|
1977 | coder->mem_cached = 0;
|
---|
1978 | coder->mem_next_block = 0;
|
---|
1979 |
|
---|
1980 | coder->progress_in = 0;
|
---|
1981 | coder->progress_out = 0;
|
---|
1982 |
|
---|
1983 | coder->sequence = SEQ_STREAM_HEADER;
|
---|
1984 | coder->thread_error = LZMA_OK;
|
---|
1985 | coder->pending_error = LZMA_OK;
|
---|
1986 | coder->thr = NULL;
|
---|
1987 |
|
---|
1988 | coder->timeout = options->timeout;
|
---|
1989 |
|
---|
1990 | coder->memlimit_threading = my_max(1, options->memlimit_threading);
|
---|
1991 | coder->memlimit_stop = my_max(1, options->memlimit_stop);
|
---|
1992 | if (coder->memlimit_threading > coder->memlimit_stop)
|
---|
1993 | coder->memlimit_threading = coder->memlimit_stop;
|
---|
1994 |
|
---|
1995 | coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
|
---|
1996 | coder->tell_unsupported_check
|
---|
1997 | = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
|
---|
1998 | coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
|
---|
1999 | coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
|
---|
2000 | coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
|
---|
2001 | coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
|
---|
2002 |
|
---|
2003 | coder->first_stream = true;
|
---|
2004 | coder->out_was_filled = false;
|
---|
2005 | coder->pos = 0;
|
---|
2006 |
|
---|
2007 | coder->threads_max = options->threads;
|
---|
2008 |
|
---|
2009 | return_if_error(lzma_outq_init(&coder->outq, allocator,
|
---|
2010 | coder->threads_max));
|
---|
2011 |
|
---|
2012 | return stream_decoder_reset(coder, allocator);
|
---|
2013 | }
|
---|
2014 |
|
---|
2015 |
|
---|
2016 | extern LZMA_API(lzma_ret)
|
---|
2017 | lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
|
---|
2018 | {
|
---|
2019 | lzma_next_strm_init(stream_decoder_mt_init, strm, options);
|
---|
2020 |
|
---|
2021 | strm->internal->supported_actions[LZMA_RUN] = true;
|
---|
2022 | strm->internal->supported_actions[LZMA_FINISH] = true;
|
---|
2023 |
|
---|
2024 | return LZMA_OK;
|
---|
2025 | }
|
---|