
DITA Open Toolkit, version 1.8.5

DITA Open Toolkit | Contents | 3

Contents

Chapter 1: Getting Started with the DITA Open Toolkit.................................... 5
Installing the full-easy-install package...6
Running the demo build... 6
Building your own content using the demo build... 8

Chapter 2: DITA Open Toolkit User Guide..9
Overview of the DITA Open Toolkit.. 10

Release notes...10
DITA 1.2 Specification Support...13
Tested platforms and tools... 13

Installing the DITA Open Toolkit..14
Distribution packages..14
Prerequisite software...15
Installing the full-easy-install package...16
Installing the minimal or standard package on Linux or Mac OSX.. 16
Installing the minimal or standard package on Windows..19

Publishing DITA content..21
DITA-OT transformations.. 21
Publishing DITA content from Ant... 23
Publishing DITA content from the command-line tool... 25

Globalizing DITA content.. 26
Globalization support offered by the DITA-OT.. 26
Supported languages: HTML-based transformations...27
Supported languages: PDF transformations... 29

Error messages and troubleshooting...29
DITA-OT error messages... 29
Other error messages.. 49
Log files.. 50
Accessing help from the command-line tool... 50
Determing the version of the DITA Open Toolkit.. 50
Enabling debug mode... 51
Increasing Java memory allocation.. 51

Reference...51
Ant parameters.. 51
Command-line tool parameters...59
lib/configuration.properties file... 64

Chapter 3: DITA Open Toolkit Developer Reference.. 67
Architecture of the DITA Open Toolkit.. 68

DITA-OT processing structure...68
DITA-OT processing modules... 69
DITA-OT processing order.. 70
Pre-processing modules.. 71
XHTML processing modules... 78
PDF processing modules.. 80
Open Document Format processing modules.. 82

Extending the DITA Open Toolkit.. 83

DITA Open Toolkit | Contents | 4

Installing plug-ins... 83
Removing plug-ins..84
Rebuilding the DITA-OT documentation.. 84

Configuring the DITA Open Toolkit... 84
plugin.properties file... 84

Creating DITA-OT plug-ins... 85
Plug-in configuration file..85
Extending the XML Catalog.. 86
Adding new targets to the Ant build process.. 87
Adding Ant targets to the pre-process pipeline... 87
Integrating a new transform type... 88
Override styles with XSLT.. 89
Modifying or adding generated text...90
Passing parameters to existing XSLT steps... 92
Adding Java libraries to the classpath..93
Adding diagnostic messages...94
Managing plug-in dependencies... 95
Version and support information..95
Creating a new plug-in extension point... 96
Example plugin.xml file... 97

Migrating style sheets and XSLT overrides.. 98
XHTML migration for flagging updates in DITA-OT 1.7.. 98

Customizing PDF output.. 101
Internal Ant properties..103
Implementation dependent features..103
Extended functionality.. 104

Code reference processing..104

Appendix A: DITA Open Toolkit Project Management Guidelines................105
Goals and objectives of the DITA Open Toolkit...106
DITA Open Toolkit development process... 106

Project roles and responsibilities..106
DITA Open Toolkit release management.. 107
Feature requests and defect reports..107

How to participate in the DITA Open Toolkit.. 108
Due diligence for submission of bug fixes and patches from non-committers.................................... 108
DITA Open Toolkit Contribution Policy... 108
DITA-OT Contribution Questionnaire Form 1.2... 110

Appendix B: DITA and DITA-OT resources.. 113
Web-based resources.. 114
developerWorks articles..114

Chapter

1
Getting Started with the DITA Open Toolkit

Topics:

• Installing the full-easy-install
package

• Running the demo build
• Building your own content using

the demo build

The Getting Started Guide is designed to provide a guided exploration of
the DITA Open Toolkit. It is geared for an audience that has little or no
knowledge of build scripts or DITA-OT parameters. It walks the novice user
through installing the full-easy-install version of the toolkit and running a
prompted build.

DITA Open Toolkit | Getting Started with the DITA Open Toolkit | 6

Installing the full-easy-install package
For the simplest installation experience, install the full-easy-install package. This package can be installed on Linux,
Mac OSX, and Windows. It contains everything that you need to run the DITA-OT except for Java.

Before you begin

• Ensure that you have Java JRE or JDK, version or later installed.
• Ensure that you have HTML Help Workshop installed, if you want to generate HTML Help.

Procedure

1. Download the full-easy package from SourceForge.
Operating system File name

Linux or Mac OSX DITA-OT_full_easy_install_bin.tar.gz

Windows DITA-OT_full_easy_install_bin.zip

2. Extract the contents of the package to the directory where you want to install the DITA-OT.
3. Run the startcmd file that is applicable for your operating system.

This defines the necessary environment variables and opens a DOS prompt or terminal window in which you can
invoke the toolkit. You can use the window to run as many builds as you want; if you close the window, you will
need to run the applicable startcmd file again.

Running the demo build
After you install the full-easy-install package, run the demo build to see the type of output that is produced by the
DITA Open Toolkit.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd.sh files are in the directory where you installed the DITA-OT.

2. From the DITA-OT shell, enter the following command:

ant -f build_demo.xml

You receive the following prompt:

[echo] Please enter the filename for the DITA map that you
[echo] want to build including the directory path (if any).
[echo] The filename must have the .ditamap extension.
[echo] Note that relative paths that climb (..) are not supported yet.
[echo] To build the sample, press return without entering anything.
[input] The DITA map filename: [C:\DITA-OT1.6.M5\samples
\hierarchy.ditamap]

3. Press Enter.
You receive the following prompt:

[echo]
[echo] Please enter the name of the output directory or press return
[echo] to accept the default.
[input] The output directory (out): [out]

4. Press Enter.

DITA Open Toolkit | Getting Started with the DITA Open Toolkit | 7

You receive the following prompt:

[echo] Please enter the type of output to generate.
[echo] Options include: eclipse, tocjs, htmlhelp, javahelp, pdf, or web
[echo] Use lowercase letters.
[echo]
[input] The output type: (eclipse, tocjs, htmlhelp, javahelp, pdf, [web],
 docbook)

5. Press Enter to accept the default transformation type: web.
This will build XHTML files from the DITA source.
You receive the following prompt:

[echo] Ready to build C:\DITA-OT1.6.M5\samples\hierarchy.ditamap
[echo] for web in out
[echo]
[input] Continue? (Y, [y], N, n)

6. Press Y or y to start the DITA-OT transformation.
The DITA-OT logs information to the command-prompt or terminal window. At the end, you see the following
information:

prompt.output:
[echo]
[echo] output in the out directory
[echo]
[echo] Before rebuilding, please delete the output or the directory.
BUILD SUCCESSFUL Total time: X minutes X seconds

7. Go to the out/ directory and open the toc.html file in a Web browser.

Figure 1: XHTML output for the sample files

Results
The DITA-OT transformed the hierarchy.ditamap file (located in the samples directory) to XHTML; it wrote
the output to the out/ directory.

DITA Open Toolkit | Getting Started with the DITA Open Toolkit | 8

Building your own content using the demo build
You can use the demo build to generate output for your own DITA content.

Procedure

1. If necessary, run the startcmd file that is applicable for your operating system.
You do not need to run the startcmd file if you already have a command-prompt or terminal window that was
invoked by the startcmd file open.

2. From the DITA-OT shell, enter the following command:

ant -f build_demo.xml

3. When prompted, type the name of a map.
You must specify the path for the DITA map. You either can specify a fully qualified file name, for example,
C:\DITA-OT1.6.M5\doc\userguide.ditamap, or you can specify a relative path, for example, doc
\userguide.ditamap

4. When prompted, type the name of the output directory.
5. When prompted, type the value for the transformation type.

Ouput format Value

Docbook docbook

Eclipse help eclipse

HTML help htmlhelp

PDF pdf

XHTML web

XHTML with a JavaScript frame set tocjs

6. When prompted, press Enter to start the transformation.

Results

The DITA-OT generates output for the specified DITA content. It runs the transformation that you specified, and
writes the output to the directory that you specified.

What to do next

Explore invoking the DITA-OT from either Ant or the command-line tool. This enables you to specify a wider array
of parameters than those supported by the demo build.

Using Ant or the command-line tool, you can perform the following tasks (and more):

• Add a custom CSS file to the transformation
• Generate labels for the sections of task topics
• Specify that draft comments are included in the output
• Turn on "Related link" sections in a PDF file

Chapter

2
DITA Open Toolkit User Guide

Topics:

• Overview of the DITA Open
Toolkit

• Installing the DITA Open Toolkit
• Publishing DITA content
• Globalizing DITA content
• Error messages and

troubleshooting
• Reference

The DITA Open Toolkit User Guide is designed to provide basic information
about the DITA-OT. It is geared for an audience that needs information about
installing, running, and troubleshooting the toolkit. It contains documentation
of the DITA-OT parameters; it also contains release notes and information
about what components have been tested.

DITA Open Toolkit | DITA Open Toolkit User Guide | 10

Overview of the DITA Open Toolkit
The DITA Open Toolkit (DITA-OT) is an open-source implementation of the OASIS DITA specification, which is
developed by the OASIS DITA Technical Committee. The DITA-OT is a set of Java-based, open-source tools and
Ant scripts that transform DITA content (maps and topics) into deliverable formats, including Eclipse Help, HTML
Help, JavaHelp, PDF, and XHTML.

While the DITA standard is owned and developed by OASIS, the DITA-OT project is governed separately; the
DITA-OT is an independent, open-source implementation of the DITA standard. The DITA-OT is available without
charge and is licensed under the CPL 1.0 and Apache 2.0 open-source licenses.

DITA Open Toolkit Release 1.8

General Enhancements and Changes

Preprocessing

Additional validation has been added to check e.g. element ID uniqueness, and xml:lang and URI syntax.

PDF

Bundled FOP has been updated from 1.0 to 1.1.

Migration from previous releases

Stylesheets for the following transtypes have moved to plug-in specific folders:

• eclipsehelp
• htmlhelp
• javahelp
• odt
• xhtml

Preprocessing

The following deprecated Ant properties have been removed:

• dita.script.dir, use ${dita.plugin.id.dir} instead
• dita.resource.dir, use ${dita.plugin.org.dita.base.dir}/resource instead
• dita.empty
• args.message.file

XHTML

XSLT Java extension ImgUtils has been removed from stylesheets and been replaced with preprocessing module
ImageMetadataModule. The old ImgUtils Java classes are still included in the build.

PDF

The following deprecated XSLT stylesheets have been removed:

• artwork-preprocessor.xsl
• otdita2fo_frontend.xsl

The following deprecated XSLT templates have been removed:

• insertVariable.old

The following deprecated XSLT modes have been removed:

DITA Open Toolkit | DITA Open Toolkit User Guide | 11

• layout-masters-processing
• toc-prefix-text, use tocPrefix mode instead
• toc-topic-text, use tocText mode instead

Link generation has been simplified by removing deprecated arguments in favour of args.rellinks. The
following deprecated Ant properties have been removed:

• args.fo.include.rellinks

The following XSLT parameters have been removed:

• antArgsIncludeRelatedLinks
• disableRelatedLinks

A call to a named template pullPrologIndexTerms.end-range has been added to processTopic*
templates to handle topic wide index ranges.

Legacy PDF

The following deprecated XSLT stylesheets have been removed:

• dita2fo-shell_template.xsl
• topic2fo-shell.xsl

ODT

Link generation has been simplified by removing deprecated arguments in favour of args.rellinks. The
following deprecated Ant properties have been removed:

• args.odt.include.rellinks

The following XSLT parameters have been added:

• include.rellinks

The following XSLT parameters have been removed:

• disableRelatedLinks

Issues
The following items are included in DITA Open Toolkit Release 1.8. Issue numbers correspond to the tracking
number in the GitHub issues tracker.

Feature requests

• #1406 Bundle FOP 1.1 (milestone 1)
• #1447 Move stylesheets and resource files to plug-in folder (milestone 1)
• #1449 Add support for Slovenian (milestone 1)
• #1453 Add image metadata filter (milestone 1)
• #1435 Add validation filter to debug-filter step
• #1455 Remove deprecated features
• #1460 "Get String" template should use parameter instead of variable
• #1461 Move file list generation to Ant
• #1465 New doc topic listing non-standard tweaks to preprocessed files
• #1480 Correcting values for the @relcolwidth attribute
• #1492 Line range extension to coderef processing
• #1494 Move integrator configuration to lib/configuration.properties
• #1495 Remove ancient doc directories

https://github.com/dita-ot/dita-ot/issues

DITA Open Toolkit | DITA Open Toolkit User Guide | 12

Bugs

• #1425 XHTML flagging included before imports (milestone 1)
• #1428 Topic level calculated incorrectly for appendices (milestone 1)
• #1427 Fix text overflow issue in lot/lof entries with long titles (milestone 1)
• #1430 PDF transformation: Problems with index in OT 1.7 (milestone 1)
• #1432 startcmd.sh broken in 1.7 (milestone 1)
• #1433 Profiling filter included multiple times (milestone 1)
• #1437 Fatal UTF-8 error in .job.xml (milestone 1)
• #1456 XHTML Build failed when referencing subject scheme in different file path (milestone 1)
• #1080 Index page range issues (milestone 2)
• #1423 Formatting glitch in PDF index (milestone 2)
• #1468 Reference to remote image does not appear in PDF (milestone 2)
• #1469 @outputclass and @class values not passed from <chhead> to <tr> in XHTML output (milestone 2)
• #1472 PDF output: whitespace not preserved in msgblock element (milestone 2)
• #1475 Error received in console does not point correctly to location of published DITA Map (milestone 2)
• #1477 Tables: using percentage in colwidth values [PDF2 plugin] (milestone 2)
• #1464 Flagging a simpletable row throws off @keycol counting bug (milestone 2)
• #1459 Link not created in the XHTML output for a xref/@keyref element
• #1473 Troff output not working in latest build bug troff
• #1498 White space will break tocjs
• #1519 Latest code in develop branch fails to build PDF
• #1528 PDF fails when topic referenced with and without topic ID (maintenance 1)
• #1529 NPE when topichead has @copy-to and @chunk="to-content" (maintenance 1)
• #1535 Specialized class cannot be handled during XML parsing (maintenance 1)
• #1537 Whitespace issue when @conref is preceded by a linefeed in map <title> (maintenance 1)
• #1538 Incorrect handling of topics outside of map path (maintenance 1)
• #1531 CSS link generated with backslash on Windows (maintenance 2)
• #1532 Keyref link generated with backslash and %5C on Windows (maintenance 2)
• #1540 Add missing @class attribute to <navref> in chunking phase (maintenance 2)
• #1547 startPageNumbering missing from some page sequence (maintenance 2)
• #1073 Some elements are not handled correctly in troff transform (maintenance 3)
• #1175 pdf2 plugin: PDF transform produces invalid FO doc with DITAVAL (flag on simpletable) (maintenance

3)
• #1234 pdf2 plugin: Note image path broken for "other" note type (maintenance 3)
• #1373 Cells of a Properties table misaligned in PDF output if Value column is missing (maintenance 3)
• #1563 path2project generated PI is invalid in copy-to file (maintenance 3)
• #1570 pdf2 plugin: 'Body first header' variable does not support 'prodname' parameter (maintenance 3)
• #1571 pdf2 plugin: top level topic titles styled as normal text (maintenance 3)
• #1581 pdf2 plugin: Change bars from DITAVAL crash FOP (maintenance 3)
• #1584 Add basic table support to troff #1073 (maintenance 3)
• #1585 Properties table cell misalligned if no value column #1373 (maintenance 3)
• #1603 XSD schema for Machinery Task does not allow attributes in prelreqs element (maintenance 3)
• #1597 mappull generates DOTX021E and DTX025E for resource only topicrefs to png files (maintenance 4)
• #1604 Failed to read job file: XML document structures must start and end within the same entity. (maintenance

4)
• #1622 Update some XSD fixes that were found by developers from PTC. Also (maintenance 4)
• #1626 DIITA-OT1.8.M2\plugins\org.dita.pdf2\lib\fo.jar does not include the xep directory (maintenance 4)
• #1639 xhtml output replaces backslash in @href with escaped character (DOT 1.8M2) (maintenance 4)
• #1640 ODT publishing doesn't work (DITA OT 1.8M2) (maintenance 4)
• #1641 Legacy PDF doesn't work (DITA OT 1.8M2) (maintenance 4)

DITA Open Toolkit | DITA Open Toolkit User Guide | 13

• #1645 Conversion of File to URL is not properly done in several places (maintenance 4)
• #1647 Illegal file separator used in created URI (DITA OT 1.8M2) (maintenance 4)
• #1103 DITA-OT doesn't rewite lq/@href (maintenance 5)
• #1189 PDF generation does not work with glossentry (maintenance 5)
• #1653 2 invalid URI mappings in "DITA-OT/plugins/org.dita.pdf2/cfg/catalog.xml" (DOT 1.8.4) (maintenance 5)
• #1663 Treat non-DITA links as external (maintenance 5)
• #1665 NullPointerException with incorrect conkeyref (maintenance 5)
• #1675 Image without an @href attribute generates error in XSLT stylesheet for PDF transformation (DOT 1.8)

(maintenance 5)
• #1730 Table border gone in Arabic PDF (maintenance 5)

DITA 1.2 Specification Support
DITA Open Toolkit 1.8.5 supports the DITA 1.2 specification. Initial support for this specification was added in
version 1.5 of the toolkit; versions 1.5.1 and 1.5.2 contain minor modifications to keep up with the latest drafts.
The specification itself was approved at approximately the same time as DITA-OT 1.5.2, which contained the final
versions of the DTD and Schemas. DITA-OT 1.6 updated the DITA 1.2 XSDs to address minor errata in the standard;
the DTDs remain up to date.

Earlier versions of the DITA Open Toolkit contained a subset of the specification material, including descriptions
of each DITA element. This material was shipped in source, CHM and PDF format. This was possible in part
because versions 1.0 and 1.1 of the DITA Specification contained two separate specification documents: one for the
architectural specification, and one for the language specification.

In DITA 1.2, each of these has been considerably expanded, and the two have been combined into a single document.
The overall document is much larger, and including the same set of material would double the size of the DITA-OT
package. Rather than include that material in the package, we’ve provided the links below to the latest specification
material.

Highlights of DITA 1.2 support in the toolkit include:

• Processing support for all new elements and attributes
• Link redirection and text replacement using keyref
• New processing-role attribute in maps to allow references to topics that will not produce output artifacts
• New conref extensions, including the ability to reference a range of elements, to push content into another topic,

and to use keys for resolving a conref attribute.
• The ability to filter content with controlled values and taxonomies, using the new Subject Scheme Map
• Processing support for both default versions of task (original, limited task, and the general task with fewer

constraints on element order)
• Acronym and abbreviation support with the new <abbreviated-form> element
• New link grouping abilities available with headers in relationship tables
• OASIS Subcommittee specializations from the learning and machine industry domains (note that the core toolkit

contains only basic processing support for these, but can be extended to produce related artifacts such as SCORM
modules)

To find detailed information about any of these features, see the specification documents at OASIS. The DITA
Adoption Technical Committee has also produced several papers to describe individual new features. In general, the
white papers are geared more towards DITA users and authors, while the specification is geared more towards tool
implementors, though both may be useful for either audience. The DITA Adoption papers can be found from that
TC’s main web page.

Tested platforms and tools
The DITA Open Toolkit (DITA-OT) has been tested against certain versions of Ant, ICU for Java, JDK, operating
systems, XML parsers, and XSLT processors.

DITA Open Toolkit | DITA Open Toolkit User Guide | 14

Application Tested version

Ant Ant 1.7.1
Ant 1.8.2, 1.8.3, 1.8.4

ICU for Java ICU4J 3.4.4
ICU4J 49.1

JDK IBM 1.6
OpenJDK 1.7
Oracle 1.6

Operating system Mac OS X 10.6
Mac OS X 10.7
SLES 10
Windows XP
Windows 7

XML parser Xerces 2.9.0
Xerces 2.11.0

XSLT processor Saxon 6.5
Saxon 9
Saxon-B 9.1
Saxon-PE/EE 9.3
Xalan-J 2.6
Xalan-J 2.7
Xalan-J 2.7.1

Note: The DITA-OT does not officially require
XSLT 2.0, since some users are reliant on
Xalan.

Installing the DITA Open Toolkit
You can install the DITA Open Toolkit (DITA-OT) on Linux, Mac OSX, and Windows. The process for installing
and setting up the DITA-OT depends on the type of distribution package that you select.

Distribution packages
The DITA Open Toolkit is distributed in three packages: minimal, standard, and full-easy-install. The source code is
available both as a Git repository and a ZIP file.

Minimal package

This package is designed for vendors that embed the toolkit within a product. It contains all of the core processing
code: CSS and XSLT files, Ant build scripts, Java code (dost.jar), resource files, and the OASIS DITA DTDs
and Schemas. Users need to have their own versions of Ant and other libraries; they also need to set up environment
variables for each library. The only external files that are included are the DTDs and Schemas, along with the
following open-source libraries:

• Apache Catalog Resolver, version 1.1
• Apache Commons Codec, version 1.4
• Apache Xerces, version 2.11.0

DITA Open Toolkit | DITA Open Toolkit User Guide | 15

The minimal package has the following file names:

• DITA-OT1.8.5_minimal_bin.zip
• DITA-OT1.8.5_minimal_bin.tar.gz

Standard package

This package is designed for people who want the core toolkit functionality, but who already have locally-installed
copies of Ant and other required tools. It contains everything in the minimal package, plus documentation, demo code
(for example, legacy support for the old bookmap), sample Ant scripts, and sample DITA files. The standard package
includes the following open-source libraries:

• Apache Catalog Resolver, version 1.1
• Apache Commons Codec, version 1.4
• Apache Xerces, version 2.11.0

The standard package has the following file names:

• DITA-OT1.8.5_standard_bin.zip
• DITA-OT1.8.5_standard_bin.tar.gz

Full-easy-install package

his package is designed for users who want the simplest installation experience. In addition to the core DITA-OT
code and the external libraries that are in the minimal and standard packages, it contains Apache Ant and FOP. The
full-easy-install package also contains batch files designed to set up a build environment using those tools, as well as
a scripts for a guided demo of the DITA-OT. The full-easy-install package includes the following external libraries:

• Apache Ant, version 1.8.4
• Apache Catalog Resolver, version 1.1
• Apache Commons Codec, version 1.4
• Apache FOP, version 1.0
• ICU for Java, version 49.1
• Apache Xerces, version 2.11.0
• Saxon, version 9.1

The full-easy-install package has the following file names:

• DITA-OT1.8.5_full_easy_install_bin.zip
• DITA-OT1.8.5_full_easy_install_bin.tar.gz

Prerequisite software
The prerequisite software that the DITA-OT requires depends on the type of distribution package that you intend to
install and the types of transformations that you want to use.

Software required for core DITA-OT processing

The DITA-OT requires the following software applications:

JRE or JDK, version 6 or later Provides the basic environment for the DITA-OT.
You can download the Oracle JRE or JDK from http://
www.oracle.com/technetwork/java/javase/downloads/
index.html. If you opt to use the full-easy-install package,
this is the only prerequisite software that you need to
install.

Ant, version 1.7.1 or later Provides the standard setup and sequencing of
processing steps. You can download Ant from http://
ant.apache.org/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://ant.apache.org/

DITA Open Toolkit | DITA Open Toolkit User Guide | 16

XSLT processor Provides the main transformation services. It must be
compliant with XSLT 1.0. The DITA-OT is tested
with both Saxon and Xalan-J. You can download
Saxon, version 9.1 from http://saxon.sourceforge.net/
and Xalan-J, version 2.7.1 or later from http://
xml.apache.org/xalan-j/downloads.html.

Software required for specific transformations

Depending on the type of output that you want to generate, you might need the following applications:

ICU for Java ICU for Java is a cross-platform, Unicode-based,
globalization library. It includes support for comparing
locale-sensitive strings; formatting dates, times, numbers,
currencies, and messages; detecting text boundaries; and
converting character sets. You can download ICU for
Java from http://www.icu-project.org/download/.

Microsoft Help Workshop Required for generating HTML help. You can
download the Help Workshop from http://
msdn.microsoft.com/en-us/library/windows/desktop/
ms669985%28v=vs.85%29.aspx.

XSL-FO processor Required for generating PDF output. You can
download FOP from http://xmlgraphics.apache.org/
fop/download.html; you also can use Antenna House
Formatter or RenderX.

See Tested platforms and tools for detailed information about versions of the prerequisite applications that have been
tested with the current DITA-OT release.

Installing the full-easy-install package
For the simplest installation experience, install the full-easy-install package. This package can be installed on Linux,
Mac OSX, and Windows. It contains everything that you need to run the DITA-OT except for Java.

Before you begin

• Ensure that you have Java JRE or JDK, version 6 or later installed.
• Ensure that you have HTML Help Workshop installed, if you want to generate HTML Help.

Procedure

1. Download the full-easy package from SourceForge.
Operating system File name

Linux or Mac OSX DITA-OT1.8.5_full_easy_install_bin.tar.gz

Windows DITA-OT1.8.5_full_easy_install_bin.zip

2. Extract the contents of the package to the directory where you want to install the DITA-OT.
3. Run the startcmd file that is applicable for your operating system.

This defines the necessary environment variables and opens a DOS prompt or terminal window in which you can
invoke the toolkit. You can use the window to run as many builds as you want; if you close the window, you will
need to run the applicable startcmd file again.

Installing the minimal or standard package on Linux or Mac OSX
If you already have locally-installed copies of Ant and the other required tools, install either the minimal or standard
package.

http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j/downloads.html
http://xml.apache.org/xalan-j/downloads.html
http://www.icu-project.org/download/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms669985%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms669985%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms669985%28v=vs.85%29.aspx
http://xmlgraphics.apache.org/fop/download.html
http://xmlgraphics.apache.org/fop/download.html
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

DITA Open Toolkit | DITA Open Toolkit User Guide | 17

Before you begin

Ensure that you have the following prerequisite software installed:

• Ant, version 1.7.1 or later
• Java runtime environment or development kit, version 6 or later
• XSLT processor. You can use either Saxon, version 9.1 or later, or Xalan-J, version 2.7.1 or later.

In addition, determine the specific DITA-OT transformations that you intend to support and ensure that you have the
prerequisite software installed for them.

For more information, see Prerequisite software on page 15 and Tested platforms and tools.

Procedure

1. Download the minimal or standard package from SourceForge.
Package File name

Minimal DITA-OT1.8.5_minimal_bin.tar.gz

Standard DITA-OT1.8.5_standard_bin.tar.gz

For production use, we recommend that you use the latest stable release.
2. Extract the contents of the package into an installation directory.

Note: You can extract the files either to your private home directory for your exclusive use or to the /
usr/local/share/ directory, if you want to share the DITA-OT with other users.

3. Verify that the JAVA_HOME environment variable is set.

export JAVA_HOME=<JRE_dir>

4. Verify that the ANT_HOME environment variable is been set.

export ANT_HOME=<Ant_dir>

5. Verify that the PATH environment variable includes the Java and Ant executable files.

export PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH

6. Set the DITA_HOME environment variable to point to the DITA-OT installation directory.

export DITA_HOME=<DITA-OT_dir>

7. Set up the CLASSPATH environment variable.

export CLASSPATH=$DITA_HOME/lib/dost.jar:$CLASSPATH
export CLASSPATH=$DITA_HOME/lib:$CLASSPATH
export CLASSPATH=$DITA_HOME/lib/resolver.jar:$CLASSPATH
export CLASSPATH=$DITA_HOME/lib/commons-codec-1.4.jar:$CLASSPATH

8. Optional: If you use Ant, version 1.8 or later, set up the CLASSPATH environment variable to include Apache
Xerces.

export CLASSPATH=<xerces_dir>/xercesImpl.jar:<xerces_dir>/xml-apis.jar:
$CLASSPATH

9. Set up the XSLT processor:

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

DITA Open Toolkit | DITA Open Toolkit User Guide | 18

Processor Action

Saxon Set up the CLASSPATH environment variable to include the Saxon JAR files, for
example:

export CLASSPATH=<saxon_dir>/saxon9.jar:<saxon_dir>/
saxon9-dom.jar:$CLASSPATH

Set up the ANT_OPTS environment variable, for example:

export ANT_OPTS=$ANT_OPTS -
Djavax.xml.transform.TransformerFactory=net.sf.saxon.TransformerFactoryImpl

Xalan Set up the CLASSPATH environment variable to include the Xalan JAR files, for
example:

export CLASSPATH=<xalan_dir>/xalan.jar:$CLASSPATH

10. Optional: For index processing, set up ICU for Java.

export CLASSPATH=<icu4j_dir>/icu4j.jar:$CLASSPATH

11. Optional: For JavaHelp, set the JHHOME environment variable.

export JHHOME=<javahelp_dir>

12. Optional: For PDF output, set up the XSL-FO processor:
Processor Action

FOP Add the FOP installation directory to the local.properties file as the fop.home
property, for example:

fop.home=/usr/share/java/fop

RenderX Add the RenderX installation directory to the local.properties file as the xep.dir
property, for example:

xep.dir=/usr/share/java/xep

Antenna House Add the AH Formatter installation directory to the local.properties file as the
axf.path property, for example:

axf.path=/usr/share/java/AHFormatterV6

13. Test the DITA-OT installation by transforming the sample files.
The samples\ant_sample directory contains Ant scripts designed to build various output formats.

/usr/local/share/DITA-OT1.8.5$ ant -f samples/ant_sample/sample_all.xml

The generated output is written to the DITA-dir\out\samples directory. The following output formats
are generated:

• Docbook
• Eclipse help
• HTML Help
• ODT

DITA Open Toolkit | DITA Open Toolkit User Guide | 19

• JavaHelp
• PDF
• TocJS
• TROFF
• XHTML

Installing the minimal or standard package on Windows
If you already have locally-installed copies of Ant and the other required tools, install either the minimal or standard
package.

Before you begin

Ensure that you have the following prerequisite software installed:

• Ant, version 1.7.1 or later
• Java runtime environment or development kit, version 6 or later
• XSLT processor. You can use either Saxon, version 9.1 or later, or Xalan-J, version 2.7.1 or later.

In addition, determine the specific DITA-OT transformations that you intend to support and ensure that you have the
prerequisite software installed for them.

For more information, see Prerequisite software on page 15 and Tested platforms and tools.

Procedure

1. Download the minimal or standard package from SourceForge.
Package File name

Minimal DITA-OT1.8.5_minimal_bin.zip

Standard DITA-OT1.8.5_standard_bin.zip

For production use, we recommend that you use the latest stable release.
2. Extract the contents of the package into an installation directory.

For example, C:\pkg\DITA-OT1.8.5.
3. Verify that the JAVA_HOME environment variable is set.

set JAVA_HOME=<JRE_dir>

4. Verify that the ANT_HOME environment variable is set.

set ANT_HOME=<Ant_dir>

5. Verify that the PATH environment variable includes the Java and Ant executable files.

set PATH=%JAVA_HOME%\bin;%ANT_HOME%\bin;%PATH%

6. Set the DITA_HOME environment variable to point to the DITA-OT installation directory.

set DITA_HOME=<DITA-OT_dir>

7. Set up the CLASSPATH environment variable.

set CLASSPATH=%DITA_HOME%\lib\dost.jar;%CLASSPATH%
set CLASSPATH=%DITA_HOME%\lib;%CLASSPATH%
set CLASSPATH=%DITA_HOME%\lib\resolver.jar;%CLASSPATH%
set CLASSPATH=%DITA_HOME%\lib\commons-codec-1.4.jar;%CLASSPATH%

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

DITA Open Toolkit | DITA Open Toolkit User Guide | 20

8. Optional: If you use Ant, version 1.8 or later, set up the CLASSPATH environment variable to include Apache
Xerces.

set CLASSPATH=<xerces_dir>\xercesImpl.jar;<xerces_dir>\xml-apis.jar;
%CLASSPATH%

9. Set up the XSLT processor:
Processor Action

Saxon Set up the CLASSPATH environment variable to include the Saxon JAR files, for
example:

set CLASSPATH=<saxon_dir>\saxon9.jar;<saxon_dir>\saxon9-
dom.jar;%CLASSPATH%

Set up the ANT_OPTS environment variable, for example:

set ANT_OPTS=%ANT_OPTS% -
Djavax.xml.transform.TransformerFactory=net.sf.saxon.TransformerFactoryImpl

Xalan Set up the CLASSPATH environment variable to include the Xalan JAR files, for
example:

set CLASSPATH=<xalan_dir>\xalan.jar;%CLASSPATH%

10. Optional: For index processing, set up ICU for Java.

set CLASSPATH=<icu4j_dir>\icu4j.jar;%CLASSPATH%

11. Optional: For JavaHelp, set the JHHOME environment variable.

set JHHOME=<javahelp_dir>

12. Optional: For HTML Help, add the installation directory for the HTML Help Workshop to the
local.properties file as the hhc.dir property.

hhc.dir=C:\\Program Files (x86)\\HTML Help Workshop

13. Optional: For PDF output, set up the XSL-FO processor:
Processor Action

FOP Add the FOP installation directory to the local.properties file as the fop.home
property, for example:

fop.home=C:\\Program Files\\fop

RenderX Add the RenderX installation directory to the local.properties file as the xep.dir
property, for example:

xep.dir=C:\\Program Files\\xep

Antenna House Add the AH Formatter installation directory to the local.properties file as the
axf.path property, for example:

axf.path=C:\\Program Files\\AHFormatterV6

14. Test the DITA-OT installation by transforming the sample files.

DITA Open Toolkit | DITA Open Toolkit User Guide | 21

The samples\ant_sample directory contains Ant scripts designed to build various output formats.

C:\DITA-OT1.8.5>ant -f samples\ant_sample\sample_all.xml

The generated output is written to the DITA-dir\out\samples directory. The following output formats
are generated:

• Docbook
• Eclipse help
• HTML Help
• ODT
• JavaHelp
• PDF
• TocJS
• TROFF
• XHTML

Publishing DITA content
You can use either Ant or the command-line tool to transform DITA content to the various output formats that are
supported by the DITA Open Toolkit (DITA-OT).

DITA-OT transformations
The DITA Open Toolkit (DITA-OT) ships with several core transformations. Each core transformation represents an
implementation of all processing that is defined by OASIS in the DITA specification.

DITA to Docbook
The docbook transformation converts DITA maps and topics into a Docbook output file. Complex DITA markup
might not be supported, but the transformation supports most common DITA structures.

DITA to Eclipse Content
The eclipsecontent transformation generates normalized DITA files and Eclipse control files. It originally was
designed for an Eclipse plug-in that dynamically rendered DITA content, but the output from the transformation can
be used by other applications that work with DITA.

Normalized DITA files have been through the DITA Open Toolkit pre-processing operation. In comparison to the
source DITA files, the normalized DITA file are modified in the following ways:

• Map-based links, such as those generated by map hierarchy and relationship tables, are added to the topics.
• Link text is resolved.
• Any DTD or Schema reference is removed.
• Class attributes that are defaulted in the DTD or Schema are made explicit in the topics.
• Map attributes that cascade are made explicit on child elements.

The normalized DITA files have an extension of .xml.

DITA to Eclipse help
The eclipsehelp transformation generates XHTML output, CSS files, and the control files that are needed for Eclipse
help.

In addition to the XHTML output and CSS files, this transformation returns the following files, where mapname is the
name of the master DITA map.

File name Description

plugin.xml Control file for the Eclipse plug-in

DITA Open Toolkit | DITA Open Toolkit User Guide | 22

File name Description

mapname.xml Table of contents

index.xml Index file

plugin.properties

META-INF/MANIFEST.MF

DITA to HTML Help (CHM)
The htmlhelp transformation generates HTML output, CSS files, and the control files that are needed to produce a
Microsoft HTML Help file.

In addition to the HTML output and CSS files, this transformation returns the following files, where mapname is the
name of the master DITA map.

File name Description

mapname.hhc Table of contents

mapname.hhk Sorted index

mapname.hhp HTML Help project file

mapname.chm Compiled HTML Help

Note: This file is generated only if the HTML Help
Workshop is installed on the build system.

DITA to legacy PDF transformation
The legacypdf transformation produces a PDF using the demo PDF build. This transformation is deprecated.

The first versions of the toolkit came with the demo PDF build, which was replaced by the more robust PDF plug-
in (also known as PDF2) in release 1.4.3. The demo PDF build is no longer maintained by the DITA-OT developers,
although the toolkit includes it in order to support older customizations and build scripts that extended the code.

DITA to Open Document Type
The odt transformation produces output files that use the Open Document format, which is used by tools such as Open
Office.

This transform returns an ODT document, which is a zip file that contains the ODF XML file (content.xml),
referenced images, and default styling (in the file styles.xml).

DITA to PDF (PDF2)
The pdf (or pdf2) transformation generates PDF output.

This transformation was originally created as a plug-in and maintained outside of the main toolkit code. It was created
as a more robust alternative to the demo PDF transformation in the original toolkit, and thus was known as PDF2. The
plug-in was bundled into the default toolkit distribution with release 1.4.3.

DITA to Rich Text Format
The wordrtf transformation produces an RTF file for use by Microsoft Word.

The structure of the generated RTF file is the same as the navigation structure in the DITA map. To avoid losing files
in the final output, make sure the DITA map contains all topics that are referenced from any individual topics.

The wordrtf transformation has the following limitations:

• Flagging, filtering, and revision bars are not supported.
• Style attributes for tables are not supported.
• Tables within list items are not supported.

DITA Open Toolkit | DITA Open Toolkit User Guide | 23

• Output styles supported by other DITA-OT transformations, for example, X and Y, are not supported.

DITA to TocJS
The tocjs transformation generates XHTML output, a frameset, and a JavaScript-based table of contents with
expandable and collapsible entries. The transformation was originally created by Shawn McKenzie as a plug-in and
was added to the default distribution in DITA OT, release 1.5.4.

The tocjs transformation was updated so that it produces XHTML output and uses a default frameset. This
transformation also was added to the build_demo.xml script as a transformation-type option.

DITA to Troff
The troff transformation produces output for use with the Troff viewer on Unix-style platforms, particularly for
programs such as the Man page viewer.

Each DITA topic generally produces one troff output file. The troff transformation supports most common DITA
structures, but it does not support <table> or <simpletable> elements. Most testing of troff output was performed
using the Cygwin Linux emulator.

DITA to XHTML
The xhtml transformation generates XHTML output and a table of contents (TOC) file. This was the first
transformation created for the DITA Open Toolkit, and it is the basis for all the HTML-based transformations.

The XHTML output is always associated with the default DITA-OT CSS file (commonltr.css or
commonrtl.css for right-to-left languages). You can use toolkit parameters to add a custom style sheets to
override the default styles.

To run the XHTML transformation, set the transtype parameter to xhtml. If you are running the demo build, specify
web rather than xhtml.

Publishing DITA content from Ant
You can use Ant to invoke the DITA Open Toolkit (DITA-OT) and generate output. This is the most robust method
of transforming DITA content; you can use the complete set of parameters that are supported by the toolkit.

Ant
Ant is a Java-based, open-source tool that is provided by the Apache Foundation. It can be used to declare a sequence
of build actions. It is well suited for both development and document builds. The full-easy-install version of the
toolkit ships with a copy of Ant.

The DITA-OT uses Ant to manage the XSLT scripts that are used to perform the various transformation; it also uses
Ant to manage intermediate steps that are written in Java.

The most important Ant script is the build.xml file. This script defines and combines common pre-processing and
output transformation routines; it also defines the DITA-OT extension points.

Building output using Ant
You can build output by running the ant command and specifying the DITA-OT parameters at the command prompt.
You also can use an Ant build script to provide the DITA-OT parameters

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd.sh files are in the directory where you installed the DITA-OT.

2. To provide the DITA-OT parameters from the command prompt, issue the following command:

ant -Dargs.input=input-file -Dtranstype=transformation-type -Dparameter-
name=value

where:

• input-file is the DITA map or DITA file that you want to process.

DITA Open Toolkit | DITA Open Toolkit User Guide | 24

• transformation-type is the transformation type.
• parameter-name is the name of an optional parameter.
• value is an applicable value for the optional parameter.

If you do not specify an output directory, by default, the DITA-OT writes the output to the installation-
directory\out directory.

3. If you use a build script, issue the following command:

ant -f build-script target

where:

• build-script is name of the Ant build script.
• target is an optional switch that specifies the name of the Ant target that you want to run. If you do not specify

a target, the value of the @default attribute for the Ant project is used.

Creating an Ant build script
Instead of typing the DITA-OT parameters at the command prompt, you might want to create an Ant build script that
contains all of the parameters.

Procedure

1. Create an XML file that contains the following content:

<?xml version="1.0" encoding="UTF-8" ?>
<project name="@project-name@" default="@default-target@" basedir=".">

 <property name="dita.dir" location="@path-to-DITA-OT@"/>

 <target name="@target-name@">
 <ant antfile="${dita.dir}${file.separator}build.xml">
 <property name="args.input" value="@DITA-input@"/>
 <property name="transtype" value="xhtml"/>
 </ant>
 </target>

</project>

You will replace the placeholder content (indicated by the @ signs) with content applicable to your environment.
2. Specify project information:

a) Set the value of the @name attribute to X.
b) Set the value of the @default attribute to the name of a target in the build script.

If the build script is invoked without specifying a target, this target will be run.
3. Set the value of the dita.dir property to the location of the DITA-OT.

This can be a fully qualified path, or you can specify it relative to the location of the Ant build script that you are
writing.

4. Create the Ant target:
a) Set the value of the @name attribute.
b) Specify the value for the args.input property.
c) Specify the value of the transtype property.

5. Save the build script.

DITA Open Toolkit | DITA Open Toolkit User Guide | 25

Example

The following Ant build script generates CHM and PDF output for the userguide.ditamap
file.

<?xml version="1.0" encoding="UTF-8" ?>
<project name="Toolkit-documentation" default="all" basedir=".">

 <property name="dita.dir" location="C:\DITA-OT1.6.M5"/>

 <target name="all" description="build CHM and PDF"
 depends="chm,pdf"/>

 <target name="chm" description="build CHM">
 <ant antfile="${dita.dir}\build.xml">
 <property name="args.input" value="C:\dita-ot\src
\main\doc\userguide.ditamap"/>
 <property name="args.gen.task.lbl" value="YES"/>
 <property name="output.dir" value="C:\kje\temp\out"/
>
 <property name="transtype" value="htmlhelp"/>
 </ant>
 </target>

 <target name="pdf" description="build PDF">
 <ant antfile="${dita.dir}\build.xml">
 <property name="args.input" value="C:\dita-ot\src
\main\doc\userguide.ditamap"/>
 <property name="args.gen.task.lbl" value="YES"/>
 <property name="args.rellinks" value="nofamily"/>
 <property name="output.dir" value="C:\kje\temp\out"/
>
 <property name="transtype" value="pdf"/>
 </ant>
 </target>

</project>

In addition to the mandatory parameters (args.input and transtype), the chm and pdf targets each
specify some optional parameters:

• The args.gen.task.lbl property is set to YES, which ensures that headings are automatically
generated for the sections of task topics.

• The output.dir property specifies where the DITA OT writes the output of the transformations.

The pdf target also specifies that related links should be generated in the PDF, but only those links
that are created by relationship tables and <link> elements.

Finally, the all target simply specifies that both the chm and pdf target should be run.

What to do next
Another resource for learning about Ant scripts are the files in the samples/ant_samples directory. This
directory contains the Ant build files used by the demo build, as well as templates that you can use to create Ant
scripts.

Publishing DITA content from the command-line tool
The DITA Open Toolkit (DITA-OT) includes a command-line tool designed for users who are unfamiliar with Ant.
You can invoke the DITA-OT from the command-line tool and generate output. This method is less robust than Ant.

DITA Open Toolkit | DITA Open Toolkit User Guide | 26

Command-line tool
The DITA Open Toolkit (DITA-OT) provides a command-line tool for users with little knowledge of Ant. The
command-line tool supports a subset of the parameters that are available to the Ant builds.

The command-line tool is a wrapper around the Ant interface; it takes the simplified parameters as input, converts
them to Ant parameters, and then runs an Ant build. The Ant parameters that are passed to the DITA-OT are saved to
the property.temp file that is written to the output directory.

For individual builds, the additional Java overhead is minimal, but for repeated or server-based builds, the extra
memory usage might become an issue. Applications that embed the toolkit should invoke Ant directly.

Building output using the command-line tool
If you are unfamiliar with Ant, you can invoke the DITA Open Toolkit (DITA-OT) and build output from the
command-line tool.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd.sh files are in the directory where you installed the DITA-OT.

2. From the command prompt, issue the following command:

 java -jar lib/dost.jar /i:input-file /transtype:transformation-type
 /parameter-name:value

where:

• input-file is the DITA map or DITA file that you want to process.
• transformation-type is the transformation type.
• parameter-name is the name of an optional parameter.
• value is an applicable value for the optional parameter.

If you do not specify an output directory, by default, the DITA-OT writes the output to the installation-
directory\out directory.

Example

The following command generates XHTML output for the sequence.ditamap file and
specifies the output is written to the test directory

java -jar lib/dost.jar /i:samples/sequence.ditamap /
outdir:test /transtype:xhtml

Globalizing DITA content
The DITA standard supports content that is written in or translated to any language. In general, the DITA Open
Toolkit (DITA-OT) passes content through to the output format unchanged. The DITA-OT uses the values for the
@xml:lang, @translate, and @dir attributes that are set in the source content to provides globalization support.

Globalization support offered by the DITA-OT
The DITA Open Toolkit (DITA-OT) offers globalization support in the following areas: Generated text, index
sorting, and bi-directional text.

Generated text Generated text is text that is rendered automatically in
the output that is generated by the DITA-OT; this text is
not located in the DITA source files. The following are
examples of generated text:

DITA Open Toolkit | DITA Open Toolkit User Guide | 27

• The word "Chapter in a PDF file.
• The phrases "Related concepts," "Related tasks," and

"Related reference" in XHTML output.

Index sorting The DITA-OT can use only a single language to sort
indexes.

Bi-directional text The DITA-OT contains style sheets (CSS files) that
support both left-to-right (LTR) and right-to-left (RTL)
languages.

When the DITA-OT generates output, it takes the first value for the @xml:lang attribute that it encounters, and then
it uses that value to create generated text, perform index sorting, and determine which default CSS file is used. If no
value for the @xml:lang attribute is found, the toolkit defaults to US English.

Supported languages: HTML-based transformations
The DITA Open Toolkit (DITA-OT) supports over 50 languages and language variants for the HTML- and XHTML-
based transformations, for example, Eclipse Help, HTML Help, and TocJS.

Table 1: Supported languages: HTML- and XHTML-based transformations

Language Language code

Arabic ar or ar-eg

Belarusian be or be-by

Brazilian Portuguese pt-br

Bulgarian bg or bg-bg

Catalan ca-es

Chinese (simplified) zh-cn or zh-hans

Chinese (traditional) zh-tw or zh-hant

Croatian hr or hr-hr

Czech cs or cs-cz

Danish da or da-dk

Dutch nl or nl-nl

Dutch (Belgian) nl-be

English (US) en or en-us

English (British) en-gb

English (Canadian) en-ca

Estonian et or et-ee

Finnish fi or fi-fi

French fr or fr-fr

French (Belgian) fr-be

French (Canadian) fr-ca

French (Swiss) fr-ch

German de or de-de

DITA Open Toolkit | DITA Open Toolkit User Guide | 28

Language Language code

German (Swiss) de-ch

Greek el or el-gr

Hebrew he or he-il

Hindi hi or hi-hi

Hungarian hu or hu-hu

Icelandic is or is-is

Indonesian id or id-id

Italian it or it-it

Italian(Swiss) it-ch

Japanese ja or ja-jp

Kazakh kk or kk-kz

Korean ko or ko-kr

Latvian lv or lv-lv

Lithuanian lt or lt-lt

Macedonian mk or mk-mk

Malay ms or ms-my

Norwegian no or no-no

Polish pl or pl-pl

Portuguese pt or pt-pt

Romanian ro or ro-ro

Russian ru or ru-ru

Serbian (Cyrillic script) sr, sr-rs, or sr-sp

Serbian (Latin script) sr-latn-rs

Slovak sk or sk-sk

Slovenian sl or sl-si

Spanish es or es-es

Spanish (Latin American) es-419

Swedish sv or sv-se

Thai th or th-th

Turkish tr or tr-tr

Ukrainian uk or uk-ua

Urdu ur or ur-pk

DITA Open Toolkit | DITA Open Toolkit User Guide | 29

Supported languages: PDF transformations
The DITA Open Toolkit (DITA-OT) supports a smaller set of languages for the PDF (pdf2) transformation. This
transformation was donated to the DITA-OT project after the project inception, and it uses a different and larger set of
generated text than the HTML-based transformations.

Table 2: Supported languages: PDF transformation

Language Language code

Chinese (simplified) zh-cn or zh-hans

Dutch nl or nl-nl

English (US) en or en-us

Finnish fi or fi-fi

French fr or fr-fr

German de or de-de

Hebrew he or he-il

Italian it or it-it

Japanese ja or ja-jp

Romanian ro or ro-ro

Russian ru or ru-ru

Slovenian sl or sl-SI

Spanish es or es-es

Swedish sv or sv-se

Error messages and troubleshooting
This section contains information about problems that you might encounter and how to resolve them.

DITA-OT error messages
The error messages generated by the DITA Open Toolkit contain a message ID, severity information, and message
text. This topic lists each error message generated by the toolkit and provides additional information that might be
helpful in understanding and resolving the error condition.

Each message ID is composed of a message prefix, a message number, and a letter that indicates the severity (I, W, E,
or F). The toolkit uses the following severity scale:

Informational (I) The toolkit encountered a condition of which you should
be aware. For example, draft comments are enabled and
will be rendered in the output.

Warning (W) The toolkit encountered a problem that should be
corrected. Processing will continue, but the output might
not be as expected.

Error (E) The toolkit encountered a more severe problem, and the
output is affected. For example, some content is missing
or invalid, or the content is not rendered in the output

DITA Open Toolkit | DITA Open Toolkit User Guide | 30

Fatal (F) The toolkit encountered a severe condition, processing
stopped, and no output is generated.

Message ID Severity Message text Additional details

DOTA001F Fatal "%1" is not a recognized transformation
type. Supported transformation
types are docbook, eclipsecontent,
eclipsehelp, htmlhelp, javahelp,
net.sourceforge.dita-ot.html, odt, pdf,
pdf2, tocjs, troff, wordrtf, xhtml.

Default transformation types that
ship with the toolkit include xhtml,
eclipsehelp, pdf (or pdf2), tocjs,
htmlhelp, javahelp, odt, eclipsecontent,
troff, docbook, and wordrtf. Additional
transformation types may be available
if toolkit plug-ins are installed.

DOTA002F Fatal Input file is not specified, or is
specified using the wrong parameter.

The input parameter was not specified,
so there is no DITA or DITAMAP file
to transform. Ensure the parameter
is set properly; see DITA-OT Ant
arguments or DITA-OT Command line
tool arguments if you are unsure how to
specify the input file.

DOTA003F Fatal Cannot find the user specified XSLT
stylesheet '%1'.

An alternate stylesheet was specified to
run in place of the default XSLT output
process, but that stylesheet could not be
loaded. Please correct the parameter to
specify a valid stylesheet.

DOTA004F Fatal Invalid DITA topic extension '%1'.
Supported values are '.dita' and '.xml'.

This optional parameter is used to set
an extension for DITA topic documents
in the temporary processing directory.
Only "dita", ".dita", "xml", or ".xml"
are allowed.

DOTA006W Warning Absolute paths on the local file system
are not supported for the CSSPATH
parameter. Please use a relative path or
full URI instead.

If the CSSPATH uses an absolute
path, it should be one that can still be
accessed after the files are moved to
another system (such as http://
www.example.org/). Absolute
paths on the local file system will be
broken if the content is moved to a new
system.

DOTA007E Error Cannot find the running-footer file
"%1". Please double check the value to
ensure it is specified correctly.

The running footer file, which contains
content to be added to the bottom of
each XHTML output topic, cannot be
located or read. This is usually caused
by a typo in the parameter value. You
should also ensure that the value is not
specified with "file:" as a prefix.

DOTA008E Error Cannot find the running-header file
"%1". Please double check the value to
ensure it is specified correctly.

The running header file, which contains
content to be added to the top of each
XHTML output topic, cannot be
located or read. This is usually caused
by a typo in the parameter value. You
should also ensure that the value is not
specified with "file:" as a prefix.

DITA Open Toolkit | DITA Open Toolkit User Guide | 31

Message ID Severity Message text Additional details

DOTA009E Error Cannot find the specified heading file
"%1". Please double check the value to
ensure it is specified correctly.

The running heading file, which
contains content to be added to the
<head> section of each XHTML output
topic, cannot be located or read. This
is usually caused by a typo in the
parameter value. You should also
ensure that the value is not specified
with "file:" as a prefix.

DOTA010E Error The Apache FOP program cannot be
found in the default location. Please
place FOP into the default directory
demo/fo/fop/ or update the build file to
support your local configuration.

By default, the DITA-OT expects to
find Apache FOP in the fop/ directory
inside of the PDF plug-in. If you
are using an alternate renderer, or if
you have placed FOP in a different
directory, you will need to update your
configuration accordingly.

DOTA011W Warning Argument "%1" is deprecated. This
argument is no longer supported in the
toolkit.

DOTA012W Warning Argument "%1" is deprecated. Please
use the argument "%2" instead.

DOTA066F Fatal Cannot find the user specified XSLT
stylesheet '%1'.

An alternate stylesheet was specified
to run in place of the default XSL-
FO output process, but that stylesheet
could not be loaded. Please correct the
parameter to specify a valid stylesheet.

DOTA067W Warning Ignoring index-see '%1' inside parent
index entry '%2' because the parent
indexterm contains indexterm children.
According to the DITA Specification,
the index-see element should be
ignored if the parent indexterm contains
other indexterm children.

This condition is ignored, as instructed
in the OASIS DITA Standard.

DOTA068W Warning Ignoring index-see-also '%1' inside
parent index entry '%2' because the
parent indexterm contains indexterm
children. According to the DITA
Specification, the index-see-also
element should be ignored if the parent
indexterm contains other indexterm
children.

This condition is ignored, as instructed
in the OASIS DITA Standard.

DOTA069F Fatal Input file '%1' cannot be located or
read. Ensure that file was specified
properly and that you have permission
to access it.

Please ensure that the input file path
and file name were entered correctly.

DOTA069W Warning Target "%1" is deprecated. Remove
references to this target from your
custom XSLT or plug-ins.

DITA Open Toolkit | DITA Open Toolkit User Guide | 32

Message ID Severity Message text Additional details

DOTJ001F Fatal Invalid command line syntax for the
parameter '%1'. Parameters to the
command line tool should use the
syntax /parameter:value.

See Command-line tool parameters
on page 59 for a list of available
parameters and values.

DOTJ002F Fatal Unsupported parameter '%1'. Please
refer to the DITA-OT User Guide for
supported parameters.

See Command-line tool parameters
on page 59 for a list of available
parameters and values.

DOTJ003F Fatal Parameter '%1' was specified without
a value. Parameters to the command
line tool should use the syntax /
parameter:value.

See Command-line tool parameters
on page 59 for a list of available
parameters and values.

DOTJ004F Fatal Cannot create temporary processing
directory '%1'. Please ensure that you
have permission to create the directory
'%1'.

The transform was unable to create
a temporary processing directory;
this is usually caused by account
control settings that prevent creating
a temporary directory in the specified
location. Please verify that you have
permission to write to the default
location, or specify an alternate
temporary directory location. See
DITA-OT Ant arguments or DITA-
OT Command line tool arguments for
details on how to specify the temporary
directory.

DOTJ005F Fatal Failed to create new instance for '%1'.
Please ensure that '%1' exists and that
you have permission to access it.

DOTJ006F Fatal An Ant build file used the following
illegal syntax when calling AntInvoker:
extparam='%1'. Please correct
the call to AntInvoker when
directly calling DITA-OT Java
code from Ant; for example,
extparam="maplinks=XXXX;other=YYYY".

This message occurs when an Ant
build calls a DITA-OT pipeline module
directly instead of using the default
call to that module. Please check that
all parameters are set correctly in your
Ant build. The syntax for extparam is
"name1=value1;name2=value2".

DOTJ007E Error Duplicate condition in filter file for rule
'%1'. The first encountered condition
will be used.

If a condition is defined more than
once (such as setting audience="all" to
include, then resetting it to exclude),
only the first definition will be used.

DOTJ009E Error Cannot overwrite file '%1' with file
'%2'. The modified result may not be
consumed by the following steps in
the transform pipeline. Check to see
whether the file is locked by some other
application during the transformation
process.

The transform was unable to create files
properly during the transform; results
may not be as expected.

DOTJ012F Fatal Failed to parse the input file '%1'. The
XML parser reported the following
error:

This message may indicate an invalid
input file (such as accidentally
specifying a PDF file as input rather
than a DITA map file), an input file
that uses elements which are not

DITA Open Toolkit | DITA Open Toolkit User Guide | 33

Message ID Severity Message text Additional details
allowed, are not part or a DITA file
that has errors and cannot be parsed
as XML. You could also be using a
specialized DITA document type that
needs external plug-ins in order to be
parsed correctly. The message issued
by the XML parser should provide
additional information to help diagnose
the cause.

DOTJ013E Error Failed to parse the referenced file '%1'.
The XML parser reported the following
error:

This message may indicate a reference
to an invalid file (such as accidentally
referencing a PDF or unknown XML
file as if it was DITA), a referenced
file that uses elements which are not
allowed, or a referenced DITA file
that has errors and cannot be parsed
as XML. You could also be using a
specialized DITA document type that
needs external plug-ins in order to be
parsed correctly. The message issued
by the XML parser should provide
additional information to help diagnose
the cause.

DOTJ014W Warning Found an indexterm element with no
content. Setting the term to ***.

An empty <indexterm> element was
found, and will appear in the index
as ***. This index term should be
removed from the source.

DOTJ015F Fatal Log directory cannot be null. Please
specify a valid directory for the build
log.

DOTJ016F Fatal Failed to create log directory '%1'.
Please specify a valid directory for the
build log.

DOTJ017F Fatal No input file was specified; failed to
initialize log name based on input file.

The transform failed because the input
file was not specified; log file names
are based on the name of the input file,
so no log could be generated.

DOTJ018I Informational Log file '%1' was generated
successfully in directory '%2'. Any
messages from the transformation
process are available in the log file;
additional details about each message
are available in the DITA-OT user
guide.

DOTJ020W Warning At least one plug-in in '%1' is required
by plug-in '%2'. Plug-in '%2' cannot
be loaded. Check and see whether all
prerequisite plug-ins are installed in
toolkit.

This will appear when one installed
plug-in requires another in order to
function correctly, but the required
plug-in is not found. The installed plug-
in will be ignored.

DITA Open Toolkit | DITA Open Toolkit User Guide | 34

Message ID Severity Message text Additional details

DOTJ021W Warning File '%1' will not generate output since
it is invalid or all of its content has been
filtered out by the ditaval file. Please
check the file '%1' and the ditaval file to
see if this is the intended result.

This may appear if filter conditions
on the root element of a topic cause
the entire topic to be filtered out. To
remove this message, you could place
any filter conditions on the reference to
this file, which will prevent the build
from accessing this file.

DOTJ022F Fatal Failed to parse the input file '%1'
because all of its content has been
filtered out. This will happen if the
input file has filter conditions on the
root element, and a ditaval excludes all
content based on those conditions.

Either the input file or the ditaval file
should change, otherwise your build is
explicitly excluding all content.

DOTJ023E Error Failed to get the specified image file
'%1', so it will not be included with
your output.

Check whether the image exists in the
source location or already exists in the
output directory.

DOTJ025E Error The input to the "topic merge"
transform process could not be found.
Correct any earlier transform errors and
try the build again, or see the DITA-OT
User Guide for additional causes.

This message should only appear in the
following cases:

• Errors earlier in the transform
prevented this step of the transform
from running; correct any errors and
try the build again.

• An Ant build or plug-in is directly
calling the toolkit's topic merge
module, and is doing so improperly;
in this case the Ant build or plug-in
needs to be fixed.

• In the past, problems have been
encountered when calling this
module with an absolute path; this
should no longer be an issue, but
may be fixed in older releases by
updating the Ant build or plug-in.

DOTJ026E Error The "topic merge" did not generate any
output. Correct any earlier transform
errors and try the build again, or see the
DITA-OT User Guide for additional
causes.

This message should only appear if an
Ant build or plug-in is directly calling
the toolkit's topic merge module, or if
earlier errors resulted in problems with
some of the content. If the topic merge
module is called correctly, then this
indicates a program error that should be
reported to the DITA-OT development
team, at DITA-OT bug and feature
tracker.

DOTJ028E Error No format attribute was found on a
reference to file '%1', which does not
appear to be a DITA file. If this is not
a DITA file, set the format attribute to
an appropriate value, otherwise set the
format attribute to "dita".

When referencing a non-DITA file, the
format attribute should indicate the type
of file referenced (such as "html" for
HTML topics or "pdf" for PDF files).
Otherwise, the transform may attempt
to parse the referenced document as a
DITA topic.

https://github.com/dita-ot/dita-ot/issues
https://github.com/dita-ot/dita-ot/issues

DITA Open Toolkit | DITA Open Toolkit User Guide | 35

Message ID Severity Message text Additional details

DOTJ029I Informational No 'domains' attribute was found
for element '<%1>'. This generally
indicates that your DTD or Schema was
not developed properly according to the
DITA specification.

The domains attribute is used in
specialized DITA documents to help
determine which domain elements are
legal. This message will only appear if
DITA specialization was not defined
properly.

DOTJ030I Informational No 'class' attribute for was found
for element '<%1>'. This generally
indicates that your DTD or Schema was
not developed properly according to the
DITA specification.

All specialized DITA elements must
define a class attribute to provide
ancestry information. This message
will only appear a specialized DITA
element did not define a class attribute.

DOTJ031I Informational No specified rule for '%1' was found in
the ditaval file. This value will use the
default action, or a parent prop action if
specified. To remove this message, you
can specify a rule for '%1' in the ditaval
file.

This informational message is intended
to help you catch filter conditions that
may have been specified improperly; if
the value is correct, no action is needed.

DOTJ033E Error No valid content is found in topicref
'%1' during chunk processing. Please
specify an existing and valid topic for
the topicref.

DOTJ034F Fatal Failed to parse the input file '%1' (the
content of the file is not valid). If
the input file '%1' does not have a
DOCTYPE declaration, please make
sure that all class attributes are present
in the file.

DITA processing is based on class
attributes defined for every element.
Usually these are defaulted in the DTD
or Schema; if no DTD or Schema
is used, the class attributes must be
explicitly included in the map or topic.

DOTJ035F Fatal The file "%1" referenced by "%2" is
outside the scope of the input dita/
map directory. If you want to lower
the severity level, please use the Ant
parameter 'outer.control', and set the
value to "warn" or "quiet". Otherwise,
move the referenced file "%1" into the
input dita/map directory.

This will appear when a topic is outside
the scope of the map; for example, if
the main input map references "../
other-directory/some.dita".
The result would cause an output
file to be created outside of the
output directory. Please see DITA-
OT Ant arguments (outer.control
and generate.copy.outer) or DITA-
OT Command line tool arguments (/
outercontrol and /generateouter) for
more details.

DOTJ036W Warning The file "%1" referenced by "%2" is
outside the scope of the input dita/map
directory. If you do not want to see the
warning message, please use the Ant
parameter 'outer.control', and set the
value to "quiet". Otherwise, move the
referenced file "%1" into the input dita/
map directory.

This will appear when a topic is outside
the scope of the map; for example, if
the main input map references "../
other-directory/some.dita".
The result would cause an output
file to be created outside of the
output directory. Please see DITA-
OT Ant arguments (outer.control
and generate.copy.outer) or DITA-
OT Command line tool arguments (/

DITA Open Toolkit | DITA Open Toolkit User Guide | 36

Message ID Severity Message text Additional details
outercontrol and /generateouter) for
more details.

DOTJ037W Warning The XML schema and DTD validation
function of the parser is turned
off. Please make sure the input is
normalized DITA with class attributes
included, otherwise it will not be
processed correctly.

DITA processing is based on class
attributes defined for every element.
Usually these are defaulted in the DTD
or Schema; if validation against the
DTD or Schema is turned off, the class
attributes must be explicitly included in
the map or topic.

DOTJ038E Error The tag "%1" is specialized from
unrecognized metadata. Please make
sure that tag "%1" is specialized from
an existing metadata tag in the core
DITA vocabulary.

This appears to indicate an error in
creating specialized metadata elements.
Please verify that the document type
you are using is complete and complies
with DITA Specialization rules.

DOTJ039E Error There is no target specified for conref
push action "pushafter". Found in
file="%1", element="%2". Please add
<elementname conref="pushtarget"
conaction="mark"> before current
element.

Please see the topic on Conref Push in
the DITA specification for details on
expected syntax for this function.

DOTJ040E Error An element uses the attribute
conaction="replace", but a conref
attribute is not found in the expected
location. Found in file="%1",
element="%2".

Please see the topic on Conref Push in
the DITA specification for details on
expected syntax for this function.

DOTJ041E Error The attribute conref="%1" uses invalid
syntax. The value should contain
'#' followed by a topic or map ID,
optionally followed by '/elemID' for a
sub-topic element.

The conref attribute must be a URI
reference to a DITA element. Please see
the topic on URI-based addressing in
the DITA specification for details on
the expected syntax.

DOTJ042E Error Two elements both use conref push to
replace the target "%1". Please delete
one of the duplicate "replace" actions.

The conref push function was used
to replace a single element with
two or more alternatives. Only one
element may directly replace another
using conref push. See Conref Push
in the DITA specification for more
information about the conref push
"replace" function.

DOTJ043W Warning The conref push function is trying to
replace an element that does not exist
(element "%1" in file "%2").

The target for a conref push action
does not exist; please make sure that
the syntax is correct and that the target
exists. See the topic on URI-based
addressing in the DITA specification
for details on the expected syntax. If
the syntax is correct, it is possible that
the target was filtered out of your build
using a DITAVAL file.

DOTJ044W Warning There is a redundant conref action
"pushbefore". Found in file="%1",

Please see the topic on Conref Push in
the DITA specification for details on
expected syntax for this function.

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html

DITA Open Toolkit | DITA Open Toolkit User Guide | 37

Message ID Severity Message text Additional details
element="%2". Please make sure that
"mark" and "pushbefore" occur in pairs.

DOTJ045I Informational The key "%1" is defined more than
once in the same map file. The
reference href="%2" is ignored.

No response is needed if the keys
are defined as expected; this is
informational only, to help catch
incorrectly defined keys.

DOTJ046E Error Conkeyref="%1" can not be resolved
because it does not contain a key or the
key is not defined. The build will use
the conref attribute for fallback, if one
exists.

See the conkeyref definition for details
on expected syntax and usage.

DOTJ047I Informational Unable to find key definition for
keyref="%1", href may be used as
fallback if it exists.

This message is intended to help you
locate incorrectly specified keys; if
the key was specified correctly, this
message may be ignored.

DOTJ049W Warning The attribute value %1="%3" on
element "%2" does not comply with the
specified subject scheme. According to
the subject scheme map, the following
values are valid for the %1 attribute:
%4

A DITA Subject Scheme map was used
to limit values that are available to
the specified attribute. Please correct
the attribute so that it uses one of the
allowed values.

DOTJ050W Warning Found an <index-see> or <index-see-
also> reference to the term '%1', but
that term is not defined in the index.

The Eclipse index will contain a value
such as "See also otherEntry", but
otherEntry does not exist in this index.
The index reference will be broken
unless this plug-in is always loaded
into Eclipse with another plug-in that
defines otherEntry as an index term.

DOTJ051E Error Unable to load target for coderef "%1". The target for a coderef element, which
specifies an external text-based file,
could not be located or loaded. Please
verify that the reference is correct.

Note that for security reasons,
references to code samples outside
of the scope of the map directory
are not supported by default, as
this could allow a reference to
access and display any restricted or
hidden file on the system. If you are
certain that the path is valid and the
file should be loaded, the current
workaround is to set a parameter to
allow these references. See DITA-
OT Ant arguments (outer.control
and generate.copy.outer) or DITA-
OT Command line tool arguments (/
outercontrol and /generateouter) for
details.

DOTJ052E Error Code reference charset "%1" not
supported. See the DITA-OT User

The DITA-OT supports a special
syntax on coderef elements to specify

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconkeyrefattribute.html

DITA Open Toolkit | DITA Open Toolkit User Guide | 38

Message ID Severity Message text Additional details
guide for supported charset values on
the format attribute.

the character set of the target document.
See Extended functionality on page
104 for details on the expected
syntax.

DOTJ053W Warning Input file '%1' is not valid DITA file
name. Please check '%1' to see if it is
correct. The extensions ".dita" or ".xml"
are supported for DITA topics.

By default, the DITA-OT supports
the extensions "dita" and "xml" for
DITA topics, as mandated by the DITA
Specification. Please verify that your
topics use one of these extensions, or
configure the toolkit to allow additional
extensions.

DOTJ054E Error Unable to parse invalid %1 attribute
value "%2"

DOTJ055E Error Invalid key name "%1".

DOTJ056E Error Invalid xml:lang "%1".

DOTJ057E Error The id attribute value "%1" is not
unique within the topic that contains it.

DOTX001W Warning No string named '%1' was found
for language '%2'. Using the default
language '%3'. Add a mapping between
default language and desired language
for the string '%1'.

This build uses generated text,
such as the phrase "Related
information" (which is generated above
many link groups). The toolkit was
unable to locate the string %1 for your
specified language, so the string will
appear in the default language. This
generally indicates that the toolkit's
strings needs to be updated to support
your language, or that your language
setting is incorrect.

DOTX002W Warning The title element or attribute in the
ditamap is required for Eclipse output.

The Eclipse help system requires a title
in the project files generated from your
map. Please add a title to your input
map to get valid Eclipse help output.

DOTX003I Informational The anchorref attribute should either
reference another dita map or an
Eclipse XML TOC file. The value '%1'
does not appear to reference either.

Eclipse uses anchor references to
connect with other TOC files. For this
to work in content generated from a
DITA map, the anchorref element must
reference either an existing Eclipse
TOC XML file, or another DITA
map (which will presumably also be
converted to an Eclipse TOC).

DOTX004I Informational Found a navref element that does not
reference anything. The navref element
should either reference another dita
map or an Eclipse XML file.

Eclipse builds use DITA's <navref>
element to pull in other Eclipse TOC
files. The build found a <navref>
element that does not reference any
other file; the element will be ignored.

DOTX005E Error Unable to find navigation title for
reference to '%1'. The build will use

To remove this message, provide a
navigation title for the referenced object
in the map or topic, or ensure that you

DITA Open Toolkit | DITA Open Toolkit User Guide | 39

Message ID Severity Message text Additional details
'%1' as the title in the Eclipse Table of
Contents.

are referencing a valid local DITA
target.

DOTX006E Error Unknown file extension in href="%1".
References to non-DITA resources
should set the format attribute to match
the resource (for example, 'txt', 'pdf', or
'html').

Set the format attribute to identify the
format of the file. If the reference is
to a DITA document, ensure that the
document uses a valid DITA extension
(default supported extensions are "dita"
and "xml").

DOTX007I Informational Only DITA topics, HTML files,
and images may be included in your
compiled CHM file. The reference
to "%1" will be ignored. To remove
this message, you can set the toc="no"
or processing-role="resource-only"
attribute on your topicref.

The HTML Help compiler will only
include some types of information in
the compiled CHM file; the current
reference will not be included.

DOTX008E Error File '%1' does not exist or cannot be
loaded.

Ensure that the file exists and can be
read. Note that the name of the file in
this message may have be changed to
use a standard dita topic file extension
('.dita' or '.xml'), instead of the original
extension used by the file; it may
also include a path to the temporary
directory rather than to the original.

DOTX008W Warning File '%1' cannot be loaded, and no
navigation title is specified for the table
of contents.

To fix the table of contents, specify a
navigation title in your map or ensure
that the referenced file is local and can
be accessed. Note that the name of
the file in this message may have be
changed to use a standard dita topic
file extension ('.dita' or '.xml'), instead
of the original extension used by the
file; it may also include a path to the
temporary directory rather than to the
original.

DOTX009W Warning Could not retrieve a title from '%1'.
Using '%2' instead.

No title was found in the specified
topic, so the table of contents will use
the indicated fallback value for this
topic.

DOTX010E Error Unable to find target for conref="%1". The conref attribute must be a URI
reference to an existing DITA element.
Please see the topic on URI-based
addressing in the DITA specification
for details on the expected syntax. Note
that the name of the file in this message
may have be changed to use a standard
dita topic file extension ('.dita' or
'.xml'), instead of the original extension
used by the file; it may also include a
path to the temporary directory rather
than to the original.

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DITA Open Toolkit | DITA Open Toolkit User Guide | 40

Message ID Severity Message text Additional details
If the target element exists in your
source file, check to make sure it is
not filtered out of the build with a
DITAVAL file (which will remove the
target before conref processing runs).

DOTX011W Warning There is more than one possible target
for the reference conref="%1". Only
the first will be used. Remove the
duplicate id in the referenced file.

When pulling content with a conref
attribute, you may only pull from
a single element, but the target ID
appears twice in the referenced topic.
Note that the name of the file in this
message may have be changed to use
a standard dita topic file extension
('.dita' or '.xml'), instead of the original
extension used by the file; it may
also include a path to the temporary
directory rather than to the original.

DOTX012W Warning When you conref another topic or an
item in another topic, the domains
attribute of the target topic must be
equal to or a subset of the current
topic's domains attribute. Put your
target under an appropriate domain.
You can see the messages guide for
more help.

This message is deprecated and should
no longer appear in any logs.

DOTX013E Error A element with attribute conref="%1"
indirectly includes itself, which results
in an infinite loop.

This may appear if (for example) you
have a <ph> element that references
another phrase, but that phrase itself
contains a reference to the original.
This will result in an infinite loop. The
toolkit will stop following the conref
trail when this is detected; you will
need to correct the reference in your
source files. Note that the name of
the file in this message may have be
changed to use a standard dita topic
file extension ('.dita' or '.xml'), instead
of the original extension used by the
file; it may also include a path to the
temporary directory rather than to the
original.

DOTX014E Error The attribute conref="%1" uses
invalid syntax. Conref references
to a map element should contain
'#' followed by an ID, such as
mymap.ditamap#mytopicrefid.

The conref attribute must be a URI
reference to a DITA element. Please see
the topic on URI-based addressing in
the DITA specification for details on
the expected syntax.

DOTX015E Error The attribute conref="%1" uses invalid
syntax. The value should contain
'#' followed by a topic or map ID,
optionally followed by '/elemID' for a
sub-topic element.

The conref attribute must be a URI
reference to a DITA element. Please see
the topic on URI-based addressing in
the DITA specification for details on
the expected syntax. Note that the name
of the file in this message may have

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DITA Open Toolkit | DITA Open Toolkit User Guide | 41

Message ID Severity Message text Additional details
be changed to use a standard dita topic
file extension ('.dita' or '.xml'), instead
of the original extension used by the
file; it may also include a path to the
temporary directory rather than to the
original.

DOTX016W Warning A reference to "%2" appears to
reference a DITA document, but the
format attribute has inherited a value
of "%1". The document will not be
processed as DITA.

This warning is intended to catch
instances where a non-DITA format
setting unexpectedly cascades to a
DITA topic, which will prevent the
topic from being processed. To remove
this message, set the format attribute
directly on the indicated reference.
Note that the name of the file in this
message may have be changed to use
a standard dita topic file extension
('.dita' or '.xml'), instead of the original
extension used by the file; it may
also include a path to the temporary
directory rather than to the original.

DOTX017E Error Found a link or cross reference with an
empty href attribute (href=""). Remove
the empty href attribute or provide a
value.

Found a value such as <xref
href="">link text</xref>. The empty
href attribute is not serving a purpose
and has caused problems with some
tools in the past; you should remove the
attribute entirely or specify a value.

DOTX018I Informational The type attribute on a topicref was set
to '%1', but the topicref references a
more specific '%2' topic. Note that the
type attribute cascades in maps, so the
value '%1' may come from an ancestor
topicref.

The type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine
the value during processing. In this
case, the type attribute lists a more
general type than what is actually
found. This is not an error but may
result in unexpected sorting for links to
this topic.

DOTX019W Warning The type attribute on a topicref was set
to '%1', but the topicref references a
'%2' topic. This may cause your links
to sort incorrectly in the output. Note
that the type attribute cascades in maps,
so the value '%1' may come from an
ancestor topicref.

The type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine
the value during processing. In this
case, the specified type value does not
match the target, which may cause your
links to sort inappropriately.

DOTX020E Error Missing navtitle attribute or element
for peer topic "%1". References must

The DITA-OT is only able to
dynamically retrieve titles when the

DITA Open Toolkit | DITA Open Toolkit User Guide | 42

Message ID Severity Message text Additional details
provide a local navigation title when
the target is not a local DITA resource.

target is a local (not peer or external)
DITA resource.

DOTX021E Error Missing navtitle attribute or element for
non-DITA resource "%1". References
must provide a local navigation title
when the target is not a local DITA
resource.

The DITA-OT is only able to
dynamically retrieve titles when the
target is a local DITA resource.

DOTX022W Warning Unable to retrieve navtitle from target:
'%1'. Using linktext (specified in
topicmeta) as the navigation title.

The build was unable to get a title
from the referenced topic; instead, a
navigation title will be created based on
the specified <linktext> element inside
of <topicmeta>.

DOTX023W Warning Unable to retrieve navtitle from target:
'%1'.

If the target is a local DITA topic,
ensure the reference is correct and
the topic is available. Otherwise,
provide a navigation title, and ensure
the scope and format attributes are set
appropriately.

DOTX024E Error Missing linktext and navtitle for peer
topic "%1". References must provide a
local navigation title when the target is
not a local DITA resource.

The DITA-OT is only able to
dynamically retrieve titles and link text
when the target is a local (not peer or
external) DITA resource.

DOTX025E Error Missing linktext and navtitle for non-
DITA resource "%1". References must
provide a local navigation title when
the target is not a local DITA resource.

The DITA-OT is only able to
dynamically retrieve titles when the
target is a local DITA resource.

DOTX026W Warning Unable to retrieve linktext from target:
'%1'. Using navigation title as fallback.

The referenc to this document did not
specify any link text for generated map-
based links; the navigation title will be
used as fallback.

DOTX027W Warning Unable to retrieve linktext from target:
'%1'.

The referenced file did not specify any
link text for generated map-based links,
and no fallback text could be located.
Any links generated from this reference
will have incorrect link text.

DOTX028E Error Link or cross reference must contain a
valid href or keyref attribute; no link
target is specified.

The link or cross reference has no target
specified and will not generate a link.

DOTX029I Informational The type attribute on a %1 element was
set to %3, but the reference is to a more
specific %4 %2. This may cause your
links to sort incorrectly in the output.

The type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine
the value during processing. In this
case, the type attribute lists a more
general type than what is actually
found. This is not an error but may

DITA Open Toolkit | DITA Open Toolkit User Guide | 43

Message ID Severity Message text Additional details
result in unexpected sorting for links to
this topic.

DOTX030W Warning The type attribute on a %1 element was
set to %3, but the reference is to a %4
%2. This may cause your links to sort
incorrectly in the output.

The type attribute in DITA is intended
to describe the type of the target; for
example, a reference to a concept topic
may use type="concept". Generally,
this attribute is optional, and the DITA-
OT build will automatically determine
the value during processing. In this
case, the specified type value does not
match the target, which may cause your
links to sort inappropriately.

DOTX031E Error The file %1 is not available to resolve
link information.

The build attempted to access the
specified file in order to retrive a title
or short description, but the file could
not be found. If the file exists, it is
possible that a DITAVAL file was
used to remove the file's contents
from the build. Be aware that the path
information above may not match the
link in your topic.

DOTX032E Error Unable to retrieve link text from target:
'%1'. If the target is not accessible
at build time, or does not have a
title, provide the link text inside the
reference.

When a link or cross reference does not
have content, the build will attempt to
pull the target's title for use as link text.
If the target is unavailable, be sure to
set the scope attribute to an appropriate
value. If the target does not have a title
(such as when linking to a paragraph),
be sure to provide link text inside the
cross reference.

DOTX033E Error Unable to generate link text for a cross
reference to a list item: '%1'

An <xref> element specifies type="li",
which indicates a link to a list item,
but the item number could not be
determined to use as link text. Please
specify link text inside the reference,
or ensure that you are referencing an
available list item.

DOTX034E Error Unable to generate link text for a cross
reference to an undered list item: '%1'

The cross reference goes to a list item
in an unordered list. The process could
not automatically generate link text
because the list item is not numbered.
Please provide link text within the cross
reference.

DOTX035E Error Unable to generate the correct number
for a cross reference to a footnote: '%1'

An <xref> element specifies type="fn",
which indicates a link to a footnote,
but the footnote number could not be
determined to use as link text. Please
specify link text inside the reference,
or ensure that you are referencing an
available footnote.

DITA Open Toolkit | DITA Open Toolkit User Guide | 44

Message ID Severity Message text Additional details

DOTX036E Error Unable to generate link text for a cross
reference to a dlentry (the dlentry or
term could not be found): '%1'

An <xref> element specifies
type="dlentry", which indicates a link
to a definition list entry, but the term
could not be located to use as link
text. Please specify link text inside
the reference, or ensure that you are
referencing an available definition list
entry

DOTX037W Warning No title found for this document; using
"***" in XHTML title bar.

No title was found for the current
document, so the XHTML output file
will set the <title> to "***". This value
generally appears in the title bar at the
top of a browser.

DOTX038I Informational The longdescref attribute on tag '%1'
will be ignored. Accessibility for object
elements needs to be handled another
way.

The <object> element in XHTML
does not support using longdescref
for accessibility. To make the object
accessible, you may need to add text
before or after the element. You may
also be able to handle it with a <param>
element inside the object.

DOTX039W Warning Required cleanup area found. To
remove this message and hide the
content, build your content without
using the DRAFT parameter.

This message is generated when
creating draft output in order to help
you locate all topics that need to be
cleaned up; the cleanup items will
appear in your output with styling that
makes it stand out. The content will be
hidden when the draft parameter is not
active.

DOTX040I Informational Draft comment area found. To remove
this message and hide the comments,
build your content without using the
DRAFT parameter.

This message is generated when
creating draft output in order to help
you locate all topics that have draft
comments. Each comment will appear
in your XHTML output; the comments
will be hidden when the draft parameter
is not active.

DOTX041W Warning Found more than one title element in
a section. Using the first one for the
section's title.

Because of the way XML and DITA
are defined, it is generally not possible
to prohibit adding a second title to
a section during editing (or to force
that title to come first). However, the
DITA specification states that only one
title should be used in a section. When
multiple titles are found, only the first
one will appear in the output.

DOTX042I Informational DITAVAL based flagging is not
currently supported for inline phrases
in XHTML; ignoring flag value on '%1'
attribute.

If it is important to flag this piece
of information, try placing a flag
on the block element that contains
your phrase. If you just want to have
an image next to the phrase, you

DITA Open Toolkit | DITA Open Toolkit User Guide | 45

Message ID Severity Message text Additional details
may place an image directly into the
document.

DOTX043I Informational The link to '%1' may appear more than
once in '%2'.

The DITA-OT is able to remove
duplicate links in most cases. However,
if two links to the same resource use
different attributes or link text, it is
possible for them to appear together.
For example, if the same link shows
up with role="next" and again with no
specified role, it may show up as both
the "Next topic" link and as a related
link. Note that links generated from a
<reltable> in a DITA Map will have the
role attribute set to "friend".

DOTX044E Error The area element in an image map does
not specify a link target. Please add an
xref element with a link target to the
area element.

The <area> element in an image map
must provide a link target for the
specified area. Please add an <xref>
element as a child of <area> and ensure
that it specifies a link target.

DOTX045W Warning The area element in an image map
should specify link text for greater
accessibility. Link text should be
specified directly when the target is not
a local DITA resource.

Cross reference text inside the <area>
element is used to provide accessibility
for screen readers that can identify
different areas of an image map. If
text cannot be retrieved automatically
by referencing a DITA element, it
should be specified directly in the cross
reference.

DOTX046W Warning Area shape should be: default, rect,
circle, poly, or blank (no value). The
value '%1' is not recognized.

The specified value was passed as-
is through to the area element in the
XHTML.

DOTX047W Warning Area coordinates are blank. Coordinate
points for the shape need to be
specified.

The area element is intended to define
a region in an image map; coordinates
must be specified in order to define that
region.

DOTX048I Informational In order to include peer or external
topic '%1' in your help file, you may
need to recompile the CHM file after
making the file available.

The build will not look for peer or
external topics before compiling your
CHM file, so they may not be included.
If you are referencing an actual HTML
file that will not be available, it cannot
be included in the project, and you
should set the toc attribute to "no"
on your topicref element. Otherwise,
check to be sure your HTML file was
included in the CHM; if it was not,
you will need to place it in the correct
location with your other output files
and recompile.

DOTX049I Informational References to non-dita files will be
ignored by the PDF, ODT, and RTF
output transforms.

The PDF, ODT, and RTF output
processes cannot automatically convert
non-DITA content into DITA in

DITA Open Toolkit | DITA Open Toolkit User Guide | 46

Message ID Severity Message text Additional details
order to merge it with the rest of your
content. The referenced items are
ignored.

DOTX050W Warning Default id "org.sample.help.doc" is
used for Eclipse plug-in. If you want to
use your own plug-in id, please specify
it using the id attribute on your map.

Eclipse requires that an ID be specified
when creating an Eclipse Help project;
the toolkit expects to locate that ID on
the root element of your input map.

DOTX052W Warning No string named '%1' was found when
creating generated text; using the value
'%1' in your output file.

The toolkit is attempting to add
generated text, such as the string
"Related information" that appears
above links. The requested string
could not be found in any language.
Your output may contain a meaningful
string, or it may contain a code that was
intended to map to a string. This likely
indicates an error in a plug-in or XSL
override; either the string was requested
incorrectly, or you will need to provide
a mapping for the string in all of the
languages you require.

DOTX053E Error A element that references another map
indirectly includes itself, which results
in an infinite loop. The original map
reference is to '%1'.

This will occur if a map references
another map, and then that second
map (or another further nested map)
references the original map. The result
is an infinite nesting of maps; please
correct the chain of map references to
remove circular reference.

DOTX054W Warning Conflict text style is applied on the
current element based on DITAVAL
flagging rules. Please check ditaval
and dita source to make sure there is
no style conflict on the element which
needs to be flagged.

This will occur when a DITAVAL
file contains multiple styling rules that
apply to the same element.

DOTX055W Warning Customized stylesheet uses deprecated
template "flagit". Conditional
processing is no longer supported
using this template. Please update your
stylesheet to use template "start-flagit"
instead of deprecated template "flagit".

The "flagit" named template was
deprecated in DITA-OT version 1.4,
when the OASIS standard formalized
the DITAVAL syntax. The template is
removed in DITA-OT 1.6. Stylesheets
that used this template need to be
updated.

DOTX056W Warning The file '%1' is not available to resolve
link information.

The build attempted to access the
specified file in order to retrive a title
or short description, but the file could
not be found. If the file exists, it is
possible that a DITAVAL file was used
to remove the file's contents from the
build. Another possibility is that the
file is located outside of the scope of
the main input directory, and was not
available because the onlytopic.in.map
or /onlytopicinmap parameter was

DITA Open Toolkit | DITA Open Toolkit User Guide | 47

Message ID Severity Message text Additional details
specified. Be aware that the path
information above may not match the
link in your topic.

DOTX057W Warning The link or cross reference target '%1'
cannot be found, which may cause
errors creating links or cross references
in your output file.

The link appears to use valid syntax
to reference a DITA element, but that
element cannot be found. Please verify
that the element exists, and is not
removed from the build by DITAVAL
based filtering.

DOTX058W Warning No glossary entry was found associated
with key '%1' on %2 element. The
build will try to determine the best
display text and hover text for terms
and abbreviations.

Processing for terms, acronyms, or
abbreviated forms will associate the
key from the element's keyref attribute
with a glossentry (glossary entry) topic.
This message will appear if the key was
defined, but was not associated with a
glossentry topic. The process will try to
use the best available fallback (usually
the title of the referenced topic).

DOTX060W Warning Key '%1' was used in an abbreviated-
form element, but the key is not
associated with a glossary entry.
Abbreviated-form should ONLY be
used to reference to a glossary entry.

Processing for abbreviated form
elements will associate the key from
the element's keyref attribute with a
glossentry (glossary entry) topic. This
message will appear if the key was
defined, but was not associated with a
glossentry topic. This element is only
supported with keys that are associated
with glossary topics; the element will
not generate any output. Please correct
the reference, or use a different element
to reference your topic.

DOTX061W Warning ID '%1' was used in topicref tag but did
not reference a topic element. The href
attribute on a topicref element should
only reference topic level elements.

According to the DITA Specification,
references from maps should either go
to DITA Maps, DITA Topics, or any
non-DITA resource. References below
the topic level should only be made
from cross references (using <xref> or
similar) inside of a topic. For details,
see the href attribute description in
the OASIS standard's definition of the
topicref element.

DOTX062I Informational It appears that this document uses
constraints, but the conref processor
cannot validate that the target of a
conref is valid. To enable constraint
checking, please upgrade to an XSLT
2.0 processor.

DOTX063W Warning The dita document '%1' is linked to
from your content, but is not referenced
by a topicref tag in the ditamap file.
Include the topic in your map to avoid a
broken link.

This will appear when generating PDF
or ODT output that includes a link
to a local topic, but the referenced
topic is not part of the map itself.
This will result in a broken link. You

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/topicref.html

DITA Open Toolkit | DITA Open Toolkit User Guide | 48

Message ID Severity Message text Additional details
should include the topic in your map or
remove the link from the build.

DOTX064W Warning The copy-to attribute [copy-to="%1"]
uses the name of a file that already
exists, so this attribute is ignored.

The copy-to attribute is used to copy
a topic over a document that already
exists. Please make sure that any copy-
to attributes use a unique name so that
the copy will not overwrite existing
content.

DOTX065W Warning Two unique source files each specify
copy-to="%2", which results in a
collision. The value associated with
href="%1" is ignored.

Two different topics are copied to
the same location using copy-to; as
a result, one of these files would be
over-written. Only the first instance of
this copy-to value will be recognized.
Please correct the use of copy-to
attributes.

DOTX066W Warning Template "%1" is deprecated. Remove
references to this template from your
custom XSLT or plug-ins.

This message indicates that your
custom XSLT or plug-ins rely on
templates that will be removed in
an upcoming release. Typically this
occurs when a named template has
been converted to a mode template; any
code that uses the deprecated template
should be updated.

DOTX067E Error No string named '%1' was found for
language '%2'. Add a mapping for the
string '%1'.

This PDF build uses generated
text, such as the phrase "Related
information" (which is generated above
many link groups). The toolkit was
unable to locate the string %1 for your
specified language, so the string will
appear in the default language. This
generally indicates that the toolkit's
strings needs to be updated to support
your language, or that your language
setting is incorrect.

DOTX068W Warning A topicref element that references a
map contains child topicref elements.
Child topicref elements are ignored.

PDFJ001E Error Index entry '%1' is dropped, because
corresponding group is not found.

PDFJ002E Error Build stopped. Problems occured
during Index preprocess task. Please
check the messages above.

PDFX001W Warning There is no index entry found which
closing range for ID="%1".

PDFX002W Warning There are multiple index entry found
which is opening range for ID="%1"
but there is only one which close it or
ranges are overlapping.

DITA Open Toolkit | DITA Open Toolkit User Guide | 49

Message ID Severity Message text Additional details

PDFX003W Warning There are multiple index entry found
which closing range for ID="%1".

PDFX004F Fatal Empty href was specified for some
topic reference. Please correct your
ditamap or bookmap file.

PDFX005F Fatal Topic reference (href : %1) not found.
Reference may be incorrect. Please
correct your ditamap or bookmap file.

PDFX006E Error Number of columns must be specified.

PDFX007W Warning There is no index entry found which
opening range for ID="%1".

PDFX008W Warning Font definition not found for the logical
name or alias '%1'.

PDFX009E Error Attribute set reflection can't handle
XSLT element %1.

PDFX010W Warning Index generation is not supported in
FOP.

PDFX011E Error Both index-see and %1 defined for
index entry '%2'. Recovering by
treating the index-see as an index-see-
also.

Other error messages
In addition to error messages generated by the DITA Open Toolkit, you might also encounter error messages
generated by Java or other tools.

Out of Memory error

In some cases, you might receive a message stating the build has failed due to an Out of Memory error. Try the
following approaches to resolve the problem:

1. (For custom-configured environments, not the DITA-OT Full Easy Install) If you use Xalan as the default XSLT
processor, switch to Saxon.

2. Increase the memory available to Java; see Increasing Java memory allocation on page 51.
3. Reduce memory consumption by setting the generate-debug-attributes option to false. This option is set in the

lib/configuration.properties file. This will disable debug attribute generation (used to trace DITA-
OT error messages back to source files) and will reduce memory consumption.

4. Set dita.preprocess.reloadstylesheet Ant property to true. This will allow the XSLT processor to
release memory when converting multiple files.

5. Run the transformation again.

java.io.IOException: Can't store Document

After running a JavaHelp transformation, you may receive a java.io.IOException: Can't store
Document message.

This problem occurs when HTML files unrelated to the current transformation are found in the output directory.
Delete the content of the output directory and run the transformation again.

DITA Open Toolkit | DITA Open Toolkit User Guide | 50

Stack Overflow error

If you receive an error about a stack memory overflow, increase the JVM and run the transformation again. See
Increasing Java memory allocation on page 51.

Log files
When you run the DITA-OT, key information is logged on the screen. This information also is written to a log file.
If you encounter a problem, you can analyze this information to determine the source of the problem and then take
action to resolve it.

The logging behavior varies depending on whether you use the DITA-OT command-line tool or Ant to invoke a
toolkit build.

Ant By default, status information is written to the screen.
If you issue the -l parameter, the build runs silently
and the information is written to a log file with the
name and location that you specified. (You also can use
other Ant loggers; see the Ant documentation for more
information.)

Command-line tool Status information is written to the screen and the log
file. The log file name contains the input file name and
transformation type; by default, it is located in the output
directory. If you issue the /logdir parameter, you can
specify a different location for where the log file is
written.

Accessing help from the command-line tool
You can access a list of supported parameters for the command-line tool by issuing the -help parameter.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd.sh files are in the directory where you installed the DITA-OT.

2. From the command prompt, issue the following command:

 java -jar lib/dost.jar -help

Results

You can see the brief description of the supported parameters in the command-line window.

Determing the version of the DITA Open Toolkit
You can use the command-line tool to determine the version of the DITA OT.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd.sh files are in the directory where you installed the DITA-OT.

2. From the command prompt, issue the following command:

java -jar lib/dost.jar -version

DITA Open Toolkit | DITA Open Toolkit User Guide | 51

Enabling debug mode
When the debug mode is enabled, additional diagnostic information is written to the log file. This information, which
includes environment variables and stack trace data, can help you determine the root cause of a problem.

Procedure

From the command prompt, add the following parameters:
Application Parameters

Ant -v -Dargs.debug=yes

Command-line tool /d or -debug

You also can add a <property> element to an Ant target in your build file, for example:

<property name="args.debug" value="yes"/>

Increasing Java memory allocation
If you are working with large documents with extensive metadata or key references, you will need to increase the
memory allocation for the Java process. You can do this from the command-line prompt for a specific session, or you
can increase the value of the ANT_OPTS environmental variable.

Procedure

• To change the value for an specific session, from the command prompt, issue the following command:
Platform Command

Windows set ANT_OPTS=%ANT_OPTS% -Xmx1024M

Linux/OS X export ANT_OPTS=$ANT_OPTS -Xmx1024M

This increases the JVM memory allocation to 1024 megabytes. The amount of memory which can be allocated is
limited by available system memory and the operating system.

• To persistently change the value, change the value allocated to the ANT_OPTS environment variable on your
system. If you use the startcmd file from the Full Easy Install to set up a toolkit session, edit that file to change
the value.

Reference
This section is designed to help users to locate information easily and quickly. It includes documentation for the
DITA Open Toolkit (DITA-OT) parameters and configuration properties.

Ant parameters
Certain parameters apply to all DITA-OT transformations. Other parameters are common to the HTML-based
transformations. Finally, some parameters apply only to the specific transformation types.

Ant parameters: All transformations
Certain parameters apply to all transformations that are supported by the DITA Open Toolkit.

Table 3: Ant parameters: All transformations

Parameters Description

args.debug Specifies whether debugging information is included in the log. The allowed values
are yes and no; the default value is no.

DITA Open Toolkit | DITA Open Toolkit User Guide | 52

Parameters Description

args.draft Specifies whether the content of <draft-comment> and <required-cleanup>
elements is included in the output. The allowed values are yes and no; the default
value is no. Corresponds to XSLT parameter DRAFT in most XSLT modules.

Tip: For PDF output, setting the args.draft parameter to yes causes the
contents of the <titlealts> element to be rendered below the title.

args.figurelink.style Specifies how cross references to figures are styled in output. The allowed values
are NUMBER and TITLE. Specifying NUMBER results in "Figure 5"; specifying
TITLE results in the title of the figure. Corresponds to the XSLT parameter
FIGURELINK.

Note: This parameter is not available for the PDF transformation.

args.filter Specifies a filter file to be used to include, exclude, or flag content. Filter files must
have a .ditaval or .DITAVAL extension.

args.grammar.cache Specifies whether the grammar-caching feature of the XML parser is used. The
allowed values are yes and no; the default value is no.

Note: This option dramatically speeds up processing time. However, there
is a known problem with using this feature for documents that use XML
entities. If your build fails with parser errors about entity resolution, set
this parameter to no.

args.input Specifies the master file for your documentation project. Typically this is a DITA
map, however it also can be a DITA topic if you want to transform a single DITA
file. The path can be absolute, relative to args.input.dir, or relative to the directory
where your project's ant build script resides if args.input.dir is not defined.

args.input.dir Specifies the base directory for your documentation project. The default value is the
parent directory of the file specified by args.input.

args.logdir Specifies the location where the DITA-OT places log files for your project.

args.tablelink.style Specifies how cross references to tables are styled. Specifying NUMBER results
in "Table 5"; specifying TITLE results in the title of the table. Corresponds to the
XSLT parameter TABLELINK.

Note: This parameter is not available for the PDF transformation.

clean.temp Specifies whether the DITA-OT deletes the files in the temporary directory after it
finishes a build. The allowed values are yes and no; the default value is yes.

dita.dir Specifies where the DITA-OT is installed.

dita.ext Specifies an extension to use for DITA topics; All DITA topics will use this single
extension in the temp directory. The default value is .xml. Corresponds to XSLT
parameter DITAEXT.

dita.extname Specifies the file extension that the DITA-OT uses for files in the temporary
directory. The allowed values are xml and dita; the default value is xml.

Note: This parameter is deprecated in favor of the dita.ext parameter.

DITA Open Toolkit | DITA Open Toolkit User Guide | 53

Parameters Description

dita.temp.dir Specifies the location of the temporary directory. The temporary directory is where
the DITA-OT writes temporary files that are generated during the transformation
process.

dita.input.valfile Specifies a filter file to be used to include, exclude, or flag content. Filter files must
have a .ditaval or .DITAVAL extension.

Notice: Deprecated in favor of the args.filter parameter.

generate.copy.outer Specifies whether to generate output files for content that is not located in or
beneath the directory containing the DITA map file. The following values are
supported:

• 1 (default) – Do not generate output for content that is located outside the DITA
map directory..

• 2 – Generate output for the content that is located outside the DITA map
directory.

• 3 – Shift the output directory so that it contains all output for the publication.

See generate.outer.copy parameter on page 55 for more information.

outer.control Specifies how the DITA OT handles content files that are located in or below the
directory containing the master DITA map. The following values are supported:

• fail – Fail quickly if files are going to be generated or copied outside of the
directory

• warn (default) – Complete the operation if files will be generated or copied
outside of the directory, but log a warning

• quiet – Quietly finish with only those files; do not generate warnings or errors.

The gen-list-without-flagging Ant task generates a harmless warning for content
that is located outside the map directory; you can suppress these warnings by setting
the property to quiet.

Warning: Microsoft HTML Help Compiler cannot produce HTML Help
for documentation projects that use outer content. The content files must
reside in or below the directory containing the master DITA map file,
and the map file cannot specify ".." at the start of the @href attributes for
<topicref> elements.

output.dir Specifies the name and location of the output directory. By default, the output is
written to DITA-dir\out.

transtype Specifies the output format. You can create plug-ins to add new values for this
parameter; by default, the following values are available:

• docbook
• eclipsehelp
• eclipsecontent
• htmlhelp
• javahelp
• legacypdf
• odt
• pdf
• wordrtf
• troff

DITA Open Toolkit | DITA Open Toolkit User Guide | 54

Parameters Description
• xhtml

validate Specifies whether the DITA-OT validates the content. The allowed values are true
and false; the default value is true.

Ant parameters: Common HTML-based transformations
Certain parameters apply to all the HTML-based transformation types: Eclipse content, Eclipse help, HTML Help,
JavaHelp, TocJS, and XHTML.

Table 4: Ant parameters: HTML-based transformations

Parameters Description

args.artlbl Specifies whether to generate a label for each image; the label will contain the
image file name. The allowed values are yes and no; the default value is no.

args.breadcrumbs Specifies whether to generate breadcrumb links. The allowed values are yes and no;
the default value is no. Corresponds to the XSLT parameter BREADCRUMBS.

args.copycss Specifies whether to copy the custom .css file to the output directory.

args.css Specifies the name of a custom .css file.

args.csspath Specifies the location of a copied .css file relative to the output directory.
Corresponds to XSLT parameter CSSPATH.

args.cssroot Specifies the directory that contains the custom .css file. DITA-OT will copy the
file from this location.

args.dita.locale Specifies the language locale file to use for sorting index entries.

Note: This parameter is not available for the XHTML transformation.

args.ftr Specifies an XML file that contains content for a running footer. Corresponds to
XSLT parameter FTR.

Note: The XML file must contain valid XML. A common practice is to
place all content into a <div> element.

args.gen.default.meta Specifies whether to generate extra metadata that targets parental control scanners,
meta elements with name="security" and name="Robots". The allowed values
are yes and no; the default value is no. Corresponds to the XSLT parameter
genDefMeta.

args.gen.task.lbl Specifies whether to generate headings for sections within task topics. The allowed
values are YES and NO; the default value is NO. Corresponds to the XSLT
parameter GENERATE-TASK-LABELS.

args.hdf Specifies an XML file that contains content to be placed in the document head.

args.hdr Specifies an XML file that contains content for a running header. Corresponds to
the XSLT parameter HDR.

Note: The XML file must contain valid XML. A common practice is to
place all content into a <div> element.

DITA Open Toolkit | DITA Open Toolkit User Guide | 55

Parameters Description

args.hide.parent.link Specifies whether to hide links to parent topics in the HTML or XHTML output.
The allowed values are yes and no; the default value is no. Corresponds to the
XSLT parameter NOPARENTLINK.

Notice: This parameter is deprecated in favor of the args.rellinks
parameter.

args.rellinks Specifies which links to include in the output. The following values are supported:

• none – No links are included.
• all – All links are included.
• nofamily – Parent, child, next, and previous links are not included.

Default value depends on the transformation type.

args.indexshow Specifies whether the content of <indexterm> elements are rendered in the output.
The allowed values are yes and no; the default value is no.

args.outext Specifies the file extension for HTML or XHTML output. The default value is html.
Corresponds to XSLT parameter OUTEXT.

args.xhtml.classattr Specifies whether to include the DITA class ancestry inside the XHTML
elements .For example, the <prereq> element (which is specialized from section)
would generate class="section prereq. The allowed values are yes and no;
the default value is yes. Corresponds to the XSLT parameter PRESERVE-DITA-
CLASS.

Note: Beginning with DITA OT release 1.5.2, the default value is yes. For
release 1.5 and 1.5.1, the default value was no.

args.xsl Specifies a custom XSL file to be used instead of the default XSL transformation
(xsl\dita2xhtml.xsl). The parameter must specify a fully qualified file
name.

onlytopic.in.map Specifies whether files that are linked to, or referenced with a @conref attribute,
generate output. If set to yes, only files that are referenced directly from the map
will generate output.

generate.outer.copy parameter
Elaboration on how the generate.outer.copy parameter functions.

Background

This is an issue in the following situations:

• The DITA map is in a directory that is a peer to directories that contain referenced objects.
• The DITA map is in a directory that is below the directories that contain the referenced objects.

Let's assume that the directory structure for the DITA content looks like the following:

maps
topics
images

The DITA map is in the maps directory, the topics are in the topics directory, and the images are in the images
directory.

DITA Open Toolkit | DITA Open Toolkit User Guide | 56

Setting the generate.outer.copy parameter to 1

Let's assume that you run the XHTML transformation and specify an output directory of C:\A-test. By default,
The DITA-OT uses the generate.outer.copy parameter with a value of 1. Output is not built for the topics. You receive
only the following output:

A-test
--- dita.list
--- dita.xml.properties
--- index.html
--- commonltr.css
--- commonrtl.css

The index.html file contains the navigation structure, but all the links are broken, since no XHTML files were
built for the topics.

How do you fix this? By specifying a value of 2 or 3 for the generate.outer.copy parameter.

Setting the generate.outer.copy parameter to 2

Let's assume that you run the XHTML transformation again and specify the following parameters:

• The generate.outer.copy parameter is set to 2.
• The output.dir parameter is set to C:\A-test.

This is what your output looks like:

C:\A-test
--- dita.list
--- dita.xml.properties
--- index.html
--- commonltr.css
--- commonrtl.css
...
C:\images
...
C:\topics

The links in the output all work properly. However, depending on how many other directories are located at the same
level of your build system as the output directory, it might not be easy gather all the output together if you need to
copy it elsewhere.

Setting the generate.outer.copy parameter to 3

Now your output directory structure looks like this:

C:\A-test
--- images\
--- maps\
--- topics\

The index.html file is in the maps directory, and the CSS and other files are located in the output directory, C:\A-
test. Copying the output directory is simplified.

Ant parameters: Eclipse content transformation
Certain parameters are specific to the Eclipse content transformation.

Table 5: Ant parameters: Eclipse content transformation

Parameters Description

args.eclipsecontent.toc Specifies the name of the TOC file

DITA Open Toolkit | DITA Open Toolkit User Guide | 57

Ant parameters: Eclipse help transformation
Certain parameters are specific to the Eclipse help transformation.

Table 6: Ant parameters: Eclipse help transformation

Parameters Description

args.eclipsehelp.toc Specifies the name of the TOC file.

args.eclipse.country Specifies the region for the language that is specified by the args.eclipse.language
parameter. For example, us, ca, and gb would clarify a value of en set for the
args.eclipse.language parameter. The content will be moved into the appropriate
directory structure for an Eclipse fragment.

args.eclipse.language Specifies the base language for translated content, such as en for English. This
parameter is a prerequisite for the args.eclipse.country parameter. The content will
be moved into the appropriate directory structure for an Eclipse fragment.

args.eclipse.provider Specifies the name of the person or organization that provides the Eclipse help. The
default value is DITA.

Tip: The toolkit ignores the value of this parameter when it processes an
Eclipse map.

args.eclipse.version Specifies the version number to include in the output. The default value is 0.0.0.

Tip: The toolkit ignores the value of this parameter when it processes an
Eclipse map.

args.eclipse.symbolic.name Specifies the symbolic name (aka plugin ID) in the output for an Eclipse Help
project. The @id value from the DITA map or the Eclipse map collection (Eclipse
help specialization) is the symbolic name for the plugin in Eclipse. The default
value is org.sample.help.doc.

Tip: The toolkit ignores the value of this parameter when it processes an
Eclipse map.

Ant parameters: HTML Help transformation
Certain parameters are specific to the HTML Help transformation.

Table 7: Ant parameters: HTML Help transformation

Parameters Description

args.htmlhelp.includefile Specifies the name of a file that you want included in the HTML Help.

Ant parameters: JavaHelp transformation
Certain parameters are specific to the JavaHelp transformation.

Table 8: Ant parameters: JavaHelp transformation

Parameters Description

args.javahelp.map Specifies the name of the ditamap file for a JavaHelp project.

args.javahelp.toc Specifies the name of the file containing the TOC in your JavaHelp output. Default
value is the name of the ditamap file for your project.

DITA Open Toolkit | DITA Open Toolkit User Guide | 58

Ant parameters: Legacy PDF transformation
Certain parameters are specific to the legacy PDF transformation.

Table 9: Ant parameters: Legacy PDF transformation

Parameters Description

args.fo.output.rel.links Specifies whether to render related links in the output. The allowed values are yes
and no; the default value is no. If the args.fo.include.rellinks parameter is specified,
this parameter is ignored.

args.fo.userconfig Specifies the user configuration file for FOP.

Ant parameters: ODT transformation
Certain parameters are specific to the ODT transformation.

Table 10: Ant parameters: ODT transformation

Parameters Description

args.odt.img.embed Determines whether images are embedded as binary objects within the ODT file.

Ant parameters: Other

Table 11: Ant parameters: Other

Parameter Description

dita.preprocess.reloadstylesheet

dita.preprocess.reloadstylesheet.conref

dita.preprocess.reloadstylesheet.mapref

dita.preprocess.reloadstylesheet.mappull

dita.preprocess.reloadstylesheet.maplink

dita.preprocess.reloadstylesheet.topicpull

Specifies whether the DITA-OT reloads the XSL style sheets that are used for the
transformation. The allowed values are true and false; the default value is false.

Tip: Set the parameter to true if you want to use more than one set
of style sheets to process a collection of topics. The parameter also is
useful for large projects that generate Java out-of-memory errors during
transformation. Alternatively, you can adjust the size of your Java memory
heap if setting dita.preprocess.reloadstylesheet for this
reason.

Ant parameters: PDF transformation
Certain parameters are specific to the PDF2 transformation.

Table 12: Ant parameters: PDF transformation

Parameters Description

args.bookmap-order Specifies if the frontmatter and backmatter content order is retained in bookmap.
The allowed values are retain and discard; the default value is discard.

args.fo.userconfig Specifies the user configuration file for FOP.

args.gen.task.lbl Specifies whether to generate headings for sections within task topics. The allowed
values are YES and NO; the default value is NO. Corresponds to the XSLT
parameter GENERATE-TASK-LABELS.

args.rellinks Specifies which links to include in the output. The following values are supported:

• none – No links are included.
• all – All links are included.
• nofamily – Parent, child, next, and previous links are not included.

DITA Open Toolkit | DITA Open Toolkit User Guide | 59

Parameters Description
Default value depends on the transformation type.

args.xsl.pdf Specifies an XSL file that is used to override the default XSL transformation
(plugins\org.dita.pdf2\xsl\fo\topic2fo_shell.xsl). You must
specify the fully qualified file name.

custom.xep.config Specifies the user configuration file for RenderX.

customization.dir Specifies the customization directory.

pdf.formatter Specifies the XSL processor. The following values are supported:

• ah – Antenna House Formatter
• fop (default) – Apache FOP
• xep – RenderX XEP Engine

The full-easy-install package comes with Apache FOP; other XSL processors must
be separately installed.

publish.required.cleanup Specifies whether draft-comment and required-cleanup elements are included in
the output. The allowed values are yes and no; the default value is the value of the
args.draft parameter. Corresponds to XSLT parameter publishRequiredCleanup.

Notice: This parameter is deprecated in favor of the args.draft parameter.

retain.topic.fo Specifies whether to retain the generated FO file. The allowed values are yes and
no; the default value is no. If the configuration property org.dita.pdf2.use-out-temp
is set to false, this parameter is ignored.

Ant parameters: XHTML transformation
Certain parameters are specific to the XHTML transformation.

Table 13: Ant parameters: XHTML transformation

Parameters Description

args.xhtml.contenttarget Specifies the value of the @target attribute on the <base> element in the TOC file.
The default value is contentwin.

args.xhtml.toc Specifies the base name of the TOC file. The default value is index.

args.xhtml.toc.class Specifies the value of the @class attribute on the <body> element in the TOC file.
Found in map2htmltoc.xsl.

Command-line tool parameters
Certain parameters apply to all DITA-OT transformations. Other parameters are common to the HTML-based
transformations. Finally, some parameters apply only to the specific transformation types.

You must supply the parameters to the command-line tool using the following syntax:

/parameter:value

Command-line tool parameters: All transformations
Certain parameters apply to all transformations that are supported by the DITA Open Toolkit.

DITA Open Toolkit | DITA Open Toolkit User Guide | 60

Table 14: Command-line tool parameters: All transformations

Parameters Description

basedir The directory where your project's ant build script resides. The DITA-OT will look
for your .dita files relative to this directory. DITA-OT's default build script sets this
as an attribute of the project, but you can also define it as a project property.

cleantemp Specifies whether the DITA-OT deletes the files in the temporary directory after it
finishes a build. The allowed values are yes and no; the default value is yes.

debug Specifies whether debugging information is included in the log. The allowed values
are yes and no; the default value is no.

ditadir Specifies where the DITA-OT is installed.

ditaext Specifies the file extension that the DITA-OT uses for files in the temporary
directory. The allowed values are xml and dita; the default value is xml.

Note: This parameter is deprecated in favor of the dita.ext parameter.

ditalocale Specifies the language locale file to use for sorting index entries.

Note: This parameter is not available for the XHTML transformation.

draft Specifies whether the content of <draft-comment> and <required-cleanup>
elements is included in the output. The allowed values are yes and no; the default
value is no. Corresponds to XSLT parameter DRAFT in most XSLT modules.

Tip: For PDF output, setting the args.draft parameter to yes causes the
contents of the <titlealts> element to be rendered below the title.

filter Specifies a filter file to be used to include, exclude, or flag content. Filter files must
have a .ditaval or .DITAVAL extension.

Notice: Deprecated in favor of the args.filter parameter.

grammarcache Specifies whether the grammar-caching feature of the XML parser is used. The
allowed values are yes and no; the default value is no.

Note: This option dramatically speeds up processing time. However, there
is a known problem with using this feature for documents that use XML
entities. If your build fails with parser errors about entity resolution, set
this parameter to no.

i Specifies the master file for your documentation project. Typically this is a DITA
map, however it also can be a DITA topic if you want to transform a single DITA
file. The path can be absolute, relative to args.input.dir, or relative to the directory
where your project's ant build script resides if args.input.dir is not defined.

logdir Specifies the location where the DITA-OT places log files for your project.

outdir Specifies the name and location of the output directory. By default, the output is
written to DITA-dir\out.

outext Specifies an extension to use for DITA topics; All DITA topics will use this single
extension in the temp directory. The default value is .xml. Corresponds to XSLT
parameter DITAEXT.

DITA Open Toolkit | DITA Open Toolkit User Guide | 61

Parameters Description

tempdir Specifies the location of the temporary directory. The temporary directory is where
the DITA-OT writes temporary files that are generated during the transformation
process.

transtype Specifies the output format. You can create plug-ins to add new values for this
parameter; by default, the following values are available:

• docbook
• eclipsehelp
• eclipsecontent
• htmlhelp
• javahelp
• legacypdf
• odt
• pdf
• wordrtf
• troff
• xhtml

validate Specifies whether the DITA-OT validates the content. The allowed values are true
and false; the default value is true.

Command-line tool parameters: All HTML-based transformations
Certain parameters apply to all the HTML-based transformation types: Eclipse content, Eclipse help, HTML Help,
JavaHelp, TocJS, and XHTML.

Note: You must specify an absolute path as the value for the following parameters:

• ftr
• hdr
• hdf

Table 15: Command-line tool parameters: All HTML-based transformations

Parameters Description

args.css Specifies the name of a custom .css file.

artlbl Specifies whether to generate a label for each image; the label will contain the
image file name. The allowed values are yes and no; the default value is no.

copycss Specifies whether to copy the custom .css file to the output directory.

csspath Specifies the location of a copied .css file relative to the output directory.
Corresponds to XSLT parameter CSSPATH.

cssroot Specifies the directory that contains the custom .css file. DITA-OT will copy the
file from this location.

ftr Specifies an XML file that contains content for a running footer. Corresponds to
XSLT parameter FTR.

Note: The XML file must contain valid XML. A common practice is to
place all content into a <div> element.

DITA Open Toolkit | DITA Open Toolkit User Guide | 62

Parameters Description

generateouter Specifies whether to generate output files for content that is not located in or
beneath the directory containing the DITA map file. The following values are
supported:

• 1 (default) – Do not generate output for content that is located outside the DITA
map directory..

• 2 – Generate output for the content that is located outside the DITA map
directory.

• 3 – Shift the output directory so that it contains all output for the publication.

See generate.outer.copy parameter on page 55 for more information.

hdf Specifies an XML file that contains content to be placed in the document head.

hdr Specifies an XML file that contains content for a running header. Corresponds to
the XSLT parameter HDR.

Note: The XML file must contain valid XML. A common practice is to
place all content into a <div> element.

indexshow Specifies whether the content of <indexterm> elements are rendered in the output.
The allowed values are yes and no; the default value is no.

onlytopicinmap Specifies whether files that are linked to, or referenced with a @conref attribute,
generate output. If set to yes, only files that are referenced directly from the map
will generate output.

outercontrol Specifies how the DITA OT handles content files that are located in or below the
directory containing the master DITA map. The following values are supported:

• fail – Fail quickly if files are going to be generated or copied outside of the
directory

• warn (default) – Complete the operation if files will be generated or copied
outside of the directory, but log a warning

• quiet – Quietly finish with only those files; do not generate warnings or errors.

The gen-list-without-flagging Ant task generates a harmless warning for content
that is located outside the map directory; you can suppress these warnings by setting
the property to quiet.

Warning: Microsoft HTML Help Compiler cannot produce HTML Help
for documentation projects that use outer content. The content files must
reside in or below the directory containing the master DITA map file,
and the map file cannot specify ".." at the start of the @href attributes for
<topicref> elements.

usetasklabels Specifies whether to generate headings for sections within task topics. The allowed
values are YES and NO; the default value is NO. Corresponds to the XSLT
parameter GENERATE-TASK-LABELS.

xhtmlclass Specifies whether to include the DITA class ancestry inside the XHTML
elements .For example, the <prereq> element (which is specialized from section)
would generate class="section prereq. The allowed values are yes and no;
the default value is yes. Corresponds to the XSLT parameter PRESERVE-DITA-
CLASS.

Note: Beginning with DITA OT release 1.5.2, the default value is yes. For
release 1.5 and 1.5.1, the default value was no.

DITA Open Toolkit | DITA Open Toolkit User Guide | 63

Parameters Description

xsl Specifies a custom XSL file to be used instead of the default XSL transformation
(xsl\dita2xhtml.xsl). The parameter must specify a fully qualified file
name.

Command-line tool parameters: Eclipse content transformation
Certain parameters are specific to the Eclipse content transformation.

Table 16: Command-line tool parameters: Eclipse content transformation

Parameters Description

eclipsecontenttoc Specifies the name of the TOC file

Command-line tool parameters: Eclipse help transformation
Certain parameters are specific to the Eclipse help transformation.

Table 17: Command-line tool parameters: Eclipse help transformation

Parameters Description

eclipsehelptoc Specifies the name of the TOC file.

provider Specifies the name of the person or organization that provides the Eclipse help. The
default value is DITA.

Tip: The toolkit ignores the value of this parameter when it processes an
Eclipse map.

version Specifies the version number to include in the output. The default value is 0.0.0.

Tip: The toolkit ignores the value of this parameter when it processes an
Eclipse map.

Command-line tool parameters: HTML help transformation
Certain parameters are specific to the HTML help transformation.

Table 18: Command-line tool parameters: HTML help transformation

Parameters Description

htmlhelpincludefile Specifies the name of a file that you want included in the HTML Help.

Command-line tool parameters: JavaHelp transformation
Certain parameters are specific to the JavaHelp transformation.

Table 19: Command-line tool parameters: JavaHelp transformation

Parameters Description

javahelpmap Specifies the name of the ditamap file for a JavaHelp project.

javahelptoc Specifies the name of the file containing the TOC in your JavaHelp output. Default
value is the name of the ditamap file for your project.

Command-line tool parameters: ODT transformation
Certain parameters are specific to the ODT transformation.

DITA Open Toolkit | DITA Open Toolkit User Guide | 64

Table 20: Command-line tool parameters: ODT transformation

Parameters Description

odtimgembed Determines whether images are embedded as binary objects within the ODT file.

Command-line tool parameters: PDF transformation
Certain parameters are specific to the PDF2 transformation.

Table 21: Command-line tool parameters: PDF transformation

Parameters Description

fooutputrellinks Specifies whether to render related links in the output. The allowed values are yes
and no; the default value is no. If the args.fo.include.rellinks parameter is specified,
this parameter is ignored.

fouserconfig Specifies the user configuration file for FOP.

retaintopicfo Specifies whether to retain the generated FO file. The allowed values are yes and
no; the default value is no. If the configuration property org.dita.pdf2.use-out-temp
is set to false, this parameter is ignored.

xslpdf Specifies an XSL file that is used to override the default XSL transformation
(plugins\org.dita.pdf2\xsl\fo\topic2fo_shell.xsl). You must
specify the fully qualified file name.

Command-line tool parameters: XHTML transformation
Certain parameters are specific to the XHTML transformation.

Table 22: Command-line tool parameters: XTML transformation

Parameters Description

xhtmltoc Specifies the base name of the TOC file. The default value is index.

lib/configuration.properties file
The lib/configuration.properties file controls certain common properties, as well as some properties that
control PDF processing.

Table 23: Properties set in the lib/configuration.properties file

Property Description

default.language Specifies the language that is used if the input file does not have the @xml:lang
attribute set on the root element. By default, this is set to en. The allowed values are
those that are defined in IETF BCP 47, Tags for the Identification of Languages.

generate-debug-attributes Specifies whether the @xtrf and @xtrc debugging attributes are generated in the
temporary files. The following values are allowed:

• true (default) — Enables generation of debugging attributes
• false —Disables generation of debugging attributes

Note: Disabling debugging attributes reduces the size of temporary files
and thus reduces memory consumption. However, the log messages no
longer have the source information available and thus the ability to debug
problems might deteriorate.

https://tools.ietf.org/html/bcp47

DITA Open Toolkit | DITA Open Toolkit User Guide | 65

Property Description

processing-mode Specifies how the DITA-OT handles errors and error recovery. The following
values are allowed:

• strict — When an error is encountered, the DITA-OT stops processing.
• lax (default) — When an error is encountered, the DITA-OT attempts to recover

from it.
• skip — When an error is encountered, the DITA continues processing but does

not attempt error recovery.

org.dita.pdf2.index.frame-
markup

(PDF transformation only) Specifies how the DITA-OT handles legacy
FrameMaker syntax for <indexterm> elements. The following values are allowed:

• true— Enables special processing of legacy FrameMaker syntax for
<indexterm> elements. Standard DITA <indexterm> elements are processed
also.

• false (default) — Disables special processing of legacy FrameMaker syntax for
<indexterm> elements.

Note: Setting the org.dita.pdf2.index.frame-markup parameter to yes only
affects how index entries are generated in PDF output. For example, an
<indexterm>files:topic</index> element will generate an
index entry of "files:topic" in a CHM file.

org.dita.pdf2.i18n.enabled (PDF transformation only) Enables I18N font processing. The following values are
allowed:

• true (default) — Enables I18N processing
• false — Disables I18N processing

org.dita.pdf2.use-out-temp (PDF transformation only) Specifies whether the XSL-FO processing writes the
intermediate files (for example, the topic.fo file) to the output directory. The
following values are allowed:

• true — Write intermediate files to the output directory
• false (default) — Write intermediate files to the temporary directory

plugindirs A semicolon-separated list of directory paths that the DITA-OT searches for plug-
ins to integrate; any relative paths are resolved against the DITA-OT base directory.
Any immediate subdirectory that contains a plugin.xml file is integrated

plugin.ignores A semicolon-separated list of directory names to be ignored during plug-in
integration; any relative paths are resolved against the DITA-OT base directory.

Chapter

3
DITA Open Toolkit Developer Reference

Topics:

• Architecture of the DITA Open
Toolkit

• Extending the DITA Open
Toolkit

• Configuring the DITA Open
Toolkit

• Creating DITA-OT plug-ins
• Migrating style sheets and

XSLT overrides
• Customizing PDF output
• Internal Ant properties
• Implementation dependent

features
• Extended functionality

The DITA Open Toolkit Developer Reference is designed to provide more
advanced information about the DITA OT. It is geared to an audience
that needs information about the DITA-OT architecture, configuring and
extending the DITA-OT, and creating DITA-OT plug-ins.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 68

Architecture of the DITA Open Toolkit
The DITA Open Toolkit (DITA-OT) is an open-source implementation of the OASIS specification for the Darwin
Information Typing Architecture (DITA). The toolkit uses ANT, XSLT, and Java to implement transforming DITA
content (maps and topics) into different deliverable formats.

DITA-OT processing structure
The DITA-OT implements a multi-stage, map-driven architecture to process DITA content. Each stage in the process
examines some or all of the content; some stages result in temporary files that are used by later steps, while others
stages result in updated copies of the DITA content. Most of the processing takes place in a temporary working
directory; the source files themselves are never modified.

The DITA-OT is designed as a pipeline. Most of the pipeline is common to all output formats; it is known as the
pre-processing stage. In general, any DITA process begins with this common set of pre-processing routines. Once
the pre-processing is completed, the pipeline diverges based on the requested output format. Some processing is
still common to multiple output formats; for example, Eclipse Help and HTML Help both use the same routines to
generate XHTML topics, after which the two pipelines branch to create different sets of navigation files.

The following image illustrates how the pipeline works for some common output types: Docbook, PDF, Eclipse Help,
XHTML, JavaHelp, and HTML Help.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 69

DITA-OT processing modules
The DITA-OT processing pipeline is implemented using Ant. Individual modules within the Ant script are
implemented in either Java or XSLT, depending on such factors as performance or requirements for customization.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 70

Virtually all Ant and XSLT modules can be extended by adding a plug-in to the toolkit; new Ant targets may be
inserted before or after common processing, and new rules may be imported into common XSLT modules to override
default processing.

XSLT modules

The XSLT modules use shell files. Typically, each shell file begins by importing common rules that apply to all
topics. This set of common processing rules may in turn import additional common modules, such as those used for
reporting errors or determining the document locale. After the common rules are imported, additional imports can be
included in order to support processing for DITA specializations.

For example, XHTML processing is controlled by the xsl\dita2xhtml.xsl file. The shell begins by importing
common rules that are applicable to all general topics: xslhtml\dita2htmlImpl.xsl. After that, additional
XSLT overrides are imported for specializations that require modified processing. For example, an override for
reference topics is imported in order to add default headers to property tables. Additional modules are imported for
tasks, for the highlighting domain, and for several other standard specializations. After the standard XSLT overrides
occur, plug-ins may add in additional processing rules for local styles or for additional specializations.

Java modules

Java modules are typically used when XSLT is a poor fit, such as for processes that make use of standard Java
libraries (like those used for index sorting). Java modules are also used in many cases where a step involves copying
files, such as the initial process where source files are parsed and copied to a temporary processing directory.

DITA-OT processing order
The order of processing is often significant when evaluating DITA content. Although the DITA specification does
not mandate a specific order for processing, the DITA-OT has determined that performing filtering before conref
resolution best meets user expectations. Switching the order of processing, while legal, may give different results.

The DITA-OT project has found that filtering first provides several benefits. Consider the following sample that
contains a <note> element that both uses conref and contains a @product attribute:

<note conref="documentA.dita#doc/note" product="MyProd"/>

If the @conref attribute is evaluated first, then documentA must be parsed in order to retrieve the note content. That
content is then stored in the current document (or in a representation of that document in memory). However, if all
content with product="MyProd" is filtered out, then that work is all discarded later in the build.

If the filtering is done first (as in the DITA-OT), this element is discarded immediately, and documentA is never
examined. This provides several important benefits:

• Time is saved by discarding unused content as early as possible; all future steps can load the document without
this extra content.

• Additional time is saved case by not evaluating the @conref attribute; in fact, documentA does not even need to
be parsed.

• Any user reproducing this build does not need documentA. If the content is sent to a translation team, that team
can reproduce an error-free build without documentA; this means documentA can be kept back from translation,
preventing accidental translation and increased costs.

If the order of these two steps is reversed, so that conref is evaluated first, it is possible that results will differ. For
example, in the code sample above, the @product attribute will override the product setting on the referencing note.
Assume that the <note> elements in documentA is defined as follows:

<note id="note" product="SomeOtherProduct">This is an important note!</note>

A process that filters out product="SomeOtherProduct" will remove the target of the original conref before that conref
is ever evaluated, which will result in a broken reference. Evaluating conref first would resolve the reference, and
only later filter out the target of the conref. While some use cases can be found where this is the desired behavior,
benefits such as those described above resulted in the current processing order used by the DITA-OT..

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 71

Pre-processing modules
The pre-processing operation is a set of steps that typically runs at the beginning of every DITA-OT transformation.
Each step or stage corresponds to an Ant target in the build pipeline; the preprocess target calls the entire set of steps.

Generate lists (gen-list)
The gen-list step examines the input files and creates lists of topics, images, document properties, or other
content. These lists are used by later steps in the pipeline. For example, one list includes all topics that make use of
the conref attribute; only those files are processed during the conref stage of the build. This step is implemented in
Ant and Java.

The result of this list is a set of several list files in the temporary directory, including dita.list and
dita.xml.properties.

List file property List file List property Usage

canditopicsfile canditopics.list canditopicslist

chunkedditamapfile chunkedditamap.list chunkedditamaplist

chunkedtopicfile chunkedtopic.list chunkedtopiclist

codereffile coderef.list codereflist topics with coderef

conreffile conref.list conreflist Documents that contains
conref attribute that need to
be resolved in preprocess.

conrefpushfile conrefpush.list conrefpushlist

conreftargetsfile conreftargets.list conreftargetslist

copytosourcefile copytosource.list copytosourcelist

copytotarget2sourcemapfile copytotarget2sourcemap.listcopytotarget2sourcemaplist

flagimagefile flagimage.list flagimagelist

fullditamapandtopicfile fullditamapandtopic.listfullditamapandtopiclist All of the ditamap
and topic files that are
referenced during the
transformation. These may
be referenced by href or
conref attributes.

fullditamapfile fullditamap.list fullditamaplist All of the ditamap files in
dita.list

fullditatopicfile fullditatopic.list fullditatopiclist All of the topic files in
dita.list

hrefditatopicfile hrefditatopic.list hrefditatopiclist All of the topic files that
are referenced with an href
attribute

hreftargetsfile hreftargets.list hreftargetslist link targets

htmlfile html.list htmllist resource files

imagefile image.list imagelist Images files that are
referenced in the content

keyreffile keyref.list keyreflist Topics and maps which
have key references.

outditafilesfile outditafiles.list outditafileslist

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 72

List file property List file List property Usage

relflagimagefile relflagimage.list relflagimagelist

resourceonlyfile resourceonly.list resourceonlylist

skipchunkfile skipchunk.list skipchunklist

subjectschemefile subjectscheme.list subjectschemelist

subtargetsfile subtargets.list subtargetslist

tempdirToinputmapdir.relative.value

uplevels

user.input.dir Absolute input directory
path

user.input.file.listfile Input file list file

user.input.file Input file path, relative to
input directory

Debug and filter (debug-filter)
The debug-filter step processes all referenced DITA content and creates copies in a temporary directory. As
the DITA content is copied, filtering is performed, debugging information is inserted, and table column names are
adjusted. This step is implemented in Java.

The following modifications are made to the DITA source:

• If a DITAVAL file is specified, the DITA source is filtered according to the entries in the DITAVAL file.
• Debug information is inserted into each element using the @xtrf and @xtrc attributes. The values of these

attributes enable messages later in the build to reliably indicate the original source of the error. For example, a
message might trace back to the fifth <ph> element in a specific DITA topic. Without these attributes, that count
might no longer be available due to filtering and other processing.

• The table column names are adjusted to use a common naming scheme. This is done only to simplify later conref
processing. For example, if a table row is pulled into another table, this ensures that a reference to "column 5
properties" will continue to work in the fifth column of the new table.

Copy related files (copy-files)
The copy-files step copies non-DITA resources to the output directory, such as HTML files that are referenced in
a map or images that are referenced by a DITAVAL file.

Conref push (conrefpush)
The conrefpush step resolves "conref push" references. This step only processes documents that use conref push
or that are updated due to the push action. This step is implemented in Java.

Conref (conref)
The conref step resolves conref attributes, processing only the DITA maps or topics that use the @conref attribute.
This step is implemented in XSLT.

The values of the @id attribute on referenced content are changed as the elements are pulled into the new locations.
This ensures that the values of the @id attribute within the referencing topic remain unique.

If an element is pulled into a new context along with a cross reference that references the target, both the values of the
@id and @xref attributes are updated so that they remain valid in the new location. For example, a referenced topic
might include a section as in the following example:

<topic id="referenced_topic">
 <title>...</title>
 <body>
 <section id="sect"><title>Sample section</title>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 73

 <p>Figure <xref href="#referenced_topic/fig"/> contains an code sample
 that demonstrates</p>
 <fig id="fig"><title>Code sample</title>
 <codeblock>....</codeblock>
 </fig>
 </section>
 </body>
</topic>

Figure 2: Referenced topic that contains a section and cross reference

When the section is referenced using a @conref attribute, the value of the @id attribute on the <fig> element is
modified to ensure that it remains unique in the new context. At the same time, the <xref> element is also modified so
that it remains valid as a local reference. For example, if the referencing topic has an @id set to "new_topic", then the
conrefed <section> element may look like this in the intermediate document.

<section id="sect"><title>Sample section</title>
 <p>Figure <xref href="#new_topic/d1e25"/> contains an code sample that
 demonstrates</p>
 <fig id="d1e25"><title>Code sample</title>
 <codeblock>....</codeblock>
 </fig>
</section>

Figure 3: Resolved conrefed <section> element after the conref step

In this case, the value of the @id attribute on the <fig> element has been changed to a generated value of "d1e25". At
the same time, the <xref> element has been updated to use that new generated ID, so that the cross reference remains
valid.

Move metadata (move-meta-entries)
The move-meta-entries step pushes metadata back and forth between maps and topics. For example, index
entries and copyrights in the map are pushed into affected topics, so that the topics can be processed later in isolation
while retaining all relevant metadata. This step is implemented in Java.

Resolve keyref (keyref)
The keyref step examines all the keys that are defined in the DITA source and resolved the key references. Links
that make use of keys are updated so that any @href value is replaced by the appropriate target; key-based text
replacement is also performed. This step is implemented in Java.

Resolve code references (codref)
The coderef step resolves references made with the <coderef> element. This step is implemented in Java.

The <coderef> is used to reference code stored externally in non-XML documents. During the pre-processing step,
the referenced content is pulled into the containing <codeblock> element.

Resolve map references (mapref)
The mapref step resolves references from one DITA map to another. This step is implemented in XSLT.

Maps reference other maps by using the following sorts of markup:

<topicref href="other.ditamap" format="ditamap"/>
...
<mapref href="other.ditamap"/>

As a result of the mapref step, the element that references another map is replaced by the topic references from
the other map. Relationship tables are pulled into the referencing map as a child of the root element (<map> or a
specialization of <map>).

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 74

Pull content into maps (mappull)
The mappull step pulls content from referenced topics into maps, and then cascades data within maps. This step is
implemented in XSLT.

The mappull step makes the following changes to the DITA map:

• Titles are pulled from referenced DITA topics. Unless the @locktitle attribute is set to "yes", the pulled titles
replace the navigation titles specified on the <topicref> elements.

• The <linktext> element is set based on the title of the referenced topic, unless it is already specified locally.
• The <shortdesc> element is set based on the short description of the referenced topic, unless it is already specified

locally.
• The @type attribute is set on <topicref> elements that reference local DITA topics. The value of the @type

attribute is set to value of the root element of the topic; for example, a <topicref> element that references a task
topic is given a @type attribute set to "task"".

• Attributes that cascade, such as @toc and print, are made explicit on any child <topicref >elements. This allows
future steps to work with the attributes directly, without reevaluating the cascading behavior.

Chunk topics (chunk)
The chunk step breaks apart and assembles referenced DITA content based on the @chunk attribute in maps. This
step is implemented in Java.

The DITA-OT has implemented processing for the following values of the @chunk attribute:

• select-topic
• select-document
• select-branch
• by-topic
• by-document
• to-content
• to-navigation

Map based linking (maplink and move-links)
These two steps work together to create links based on a map and move those links into the referenced topics. The
links are created based on hierarchy in the DITA map, the @collection-type attribute, and relationship tables. This
step is implemented in XSLT and Java.

The maplink module runs an XSLT program that evaluates the map; it places all the generated links into a single
file in the temporary directory. The move-links module then runs a Java program that pushes the generated links
into the applicable topics.

Pull content into topics (topicpull)
The topicpull step pulls content into <xref> and <link> elements. This step is implemented in XSLT.

If an <xref> element does not contain link text, the target is examined and the link text is pulled. For example, a
reference to a topic pulls the title of the topic; a reference to a list item pulls the number of the item. If the <xref>
element references a topic that has a short description, and the <xref> element does not already contain a child <desc>
element, a <desc> element is created that contains the text from the topic short description.

The process is similar for <link> elements. If the <link> element does not have a child <linktext> element, one is
created with the appropriate link text. Similarly, if the <link> element does not have a child <desc> element, and the
short description of the target can be determined, a <desc> element is created that contains the text from the topic
short description.

Flagging in the toolkit
Beginning with DITA-OT 1.7, flagging support is implemented as a common preprocess module. The module
evaluates the DITAVAL against all flagging attributes, and adds DITA-OT specific hints in to the topic when flags
are active. Any extended transform type may use these hints to support flagging without adding logic to interpret the
DITAVAL.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 75

Evaluating the DITAVAL flags

Flagging is implemented as a reusable module during the preprocess stage. If a DITAVAL file is not used with a
build, this step is skipped with no change to the file.

When a flag is active, relevant sections of the DITAVAL itself are copied into the topic as a sub-element of the
current topic. The active flags are enclosed in a pseudo-specialization of the <foreign> element (referred to as
a pseudo-specialization because it is used only under the covers, with all topic types; it is not integrated into any
shipped document types).

<ditaval-startprop> When any flag is active on an element, a <ditaval-
startprop> element will be created as the first child
of the flagged element:

<ditaval-startprop class="+ topic/
foreign ditaot-d/ditaval-startprop
 ">

The <ditaval-startprop> element will contain the
following:

• If the active flags should create a new style, that
style is included using standard CSS markup on the
@outputclass attribute. Output types that make use of
CSS, such as XHTML, can use this value as-is.

• If styles conflict, and a <style-conflict>
element exists in the DITAVAL, it will be copied as a
child of <ditaval-startprop>.

• Any <prop> or <revprop> elements that
define active flags will be copied in as children
of the <ditaval-startprop> element. Any
<startflag> children of the properties will be
included, but <endflag> children will not.

<ditaval-endprop> When any flag is active on an element, a <ditaval-
endprop> element will be created as the last child of
the flagged element:

<ditaval-endprop class="+ topic/
foreign ditaot-d/ditaval-endprop ">

CSS values and <styleconflict> elements are not
included on this element.

Any <prop> or <revprop> elements that define
active flags will be copied in as children of <ditaval-
prop>. Any <endflag> children of the properties will
be included, but <startflag> children will not.

Supporting flags in overrides or custom transform types

For most transform types, the <foreign> element should be ignored by default, because arbitrary non-DITA
content may not mix well unless coded for ahead of time. If the <foreign> element is ignored by default, or if
a rule is added to specifically ignore <ditaval-startprop> and <ditaval-endprop>, then the added
elements will have no impact on a transform. If desired, flagging support may be integrated at any time in the future.

The processing described above runs as part of the common preprocess, so any transform that uses the default
preprocess will get the topic updates. To support generating flags as images, XSLT based transforms can use default
fallthrough processing in most cases. For example, if a paragraph is flagged, the first child of <p> will contain the

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 76

start flag information; adding a rule to handle images in <ditaval-startprop> will cause the image to appear at
the start of the paragraph content.

In some cases fallthrough processing will not result in valid output; for those cases, the flags must be explicitly
processed. This is done in the XHTML transform for elements like , because fallthrough processing would place
images in between and . To handle this, the code processes <ditaval-startprop> before starting
the element, and <ditaval-endprop> at the end. Fallthrough processing is then disabled for those elements as
children of .

Example DITAVAL

Assume the following DITAVAL file is in use during a build. This DITAVAL will be used for each
of the following content examples.

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <!-- Define what happens in the case of conflicting styles -->
 <style-conflict background-conflict-color="red"/>

 <!-- Define two flagging properties that give styles (no
 image) -->
 <prop action="flag" att="audience" style="underline"
 val="user" backcolor="green"/>
 <prop action="flag" att="platform" style="overline" val="win"
 backcolor="blue"/>

 <!-- Define a property that includes start and end image flags
 -->
 <prop action="flag" att="platform" val="linux"
 style="overline" backcolor="blue">
 <startflag imageref="startlin.png"><alt-text>Start linux</
alt-text></startflag>
 <endflag imageref="endlin.png"><alt-text>End linux</alt-
text></endflag>
 </prop>

 <!-- Define a revision that includes start and end image flags
 -->
 <revprop action="flag" style="double-underline" val="rev2">
 <startflag imageref="start_rev.gif"><alt-
text>ssssssssssstart</alt-text></startflag>
 <endflag imageref="end_rev.gif"><alt-text>eeeeeeeeeeeeeend</
alt-text></endflag>
 </revprop>
</val>

Content example 1: adding style

Now assume the following paragraph exists in a topic. Class attributes are included, as they would
normally be in the middle of the preprocess routine; @xtrf and @xtrc are left off for clarity.

<p audience="user">Simple user; includes style but no images</p>

Based on the DITAVAL above, audience="user" results in a style with underlining and with a green
background. The interpreted CSS value is added to @outputclass on <ditaval-startprop>,
and the actual property definition is included at the start and end of the element. The output from
the flagging step looks like this (with newlines added for clarity, and class attributes added as they
would appear in the temporary file):

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 77

The resulting file after the flagging step looks like this; for clarity, newlines are added, while @xtrf
and @xtrc are removed:

<p audience="user" class="- topic/p ">
 <ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-
startprop "
 outputclass="background-color:green;text-
decoration:underline;">
 <prop action="flag" att="audience" style="underline"
 val="user" backcolor="green"/>
 </ditaval-startprop>
 Simple user; includes style but no images
 <ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-
endprop ">
 <prop action="flag" att="audience" style="underline"
 val="user" backcolor="green"/>
 </ditaval-endprop>
</p>

Content example 2: conflicting styles

This example includes a paragraph with conflicting styles. When the audience and platform
attributes are both evaluated, the DITAVAL indicates that the background color is both green and
blue. In this situation, the <style-conflict> element is evaluated to determine how to style
the content.

<p audience="user" platform="win">Conflicting styles (still no
 images)</p>

The <style-conflict> element results in a background color of red, so this value is added
to @outputclass on <ditaval-startprop>. As above, active properties are copied into the
generated elements; the <style-conflict> element itself is also copied into the generated
<ditaval-startprop> element.

The resulting file after the flagging step looks like this; for clarity, newlines are added, while @xtrf
and @xtrc are removed:

<p audience="user" platform="win" class="- topic/p ">
 <ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-
startprop "
 outputclass="background-color:red;">
 <style-conflict background-conflict-color="red"/>
 <prop action="flag" att="audience" style="underline"
 val="user" backcolor="green"/>
 <prop action="flag" att="platform" style="overline"
 val="win" backcolor="blue"/>
 </ditaval-startprop>
 Conflicting styles (still no images)
 <ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-
endprop ">
 <prop action="flag" att="platform" style="overline"
 val="win" backcolor="blue"/>
 <prop action="flag" att="audience" style="underline"
 val="user" backcolor="green"/>
 </ditaval-endprop>
</p>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 78

Content example 3: adding image flags

This example includes image flags for both @platform and @rev, which are defined in DITAVAL
<prop> and <revprop> elements.

<ol platform="linux" rev="rev2">
 Generate images for platform="linux" and rev="2"

As above, the <ditaval-startprop> and <ditaval-endprop> nest the active property
definitions, with the calculated CSS value on @outputclass. The <ditaval-startprop> drops
the ending image, and <ditaval-endprop> drops the starting image. To make document-order
processing more consistent, property flags are always included before revisions in <ditaval-
startprop>, and the order is reversed for <ditaval-endprop>.

The resulting file after the flagging step looks like this; for clarity, newlines are added, while @xtrf
and @xtrc are removed:

<ol platform="linux" rev="rev2" class="- topic/ol ">
 <ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-
startprop "
 outputclass="background-color:blue;text-
decoration:underline;text-decoration:overline;">
 <prop action="flag" att="platform" val="linux"
 style="overline" backcolor="blue">
 <startflag imageref="startlin.png"><alt-text>Start linux</
alt-text></startflag>
 </prop>
 <revprop action="flag" style="double-underline" val="rev2">
 <startflag imageref="start_rev.gif"><alt-
text>ssssssssssstart</alt-text></startflag>
 </revprop>
 </ditaval-startprop>
 <li class="- topic/li ">Generate images for platform="linux"
 and rev="2"
 <ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-
endprop ">
 <revprop action="flag" style="double-underline" val="rev2">
 <endflag imageref="end_rev.gif"><alt-
text>eeeeeeeeeeeeeend</alt-text></endflag>
 </revprop>
 <prop action="flag" att="platform" val="linux"
 style="overline" backcolor="blue">
 <endflag imageref="endlin.png"><alt-text>End linux</alt-
text></endflag>
 </prop>
 </ditaval-endprop>

XHTML processing modules
The DITA-OT ships with several varieties of XHTML output, each of which follows roughly the same path through
the processing pipeline. All XHTML-based transformation begin with the same call to the pre-processing module,
after which they generate XHTML files and then branch to create the transformation-specific navigation files.

Common XHTML processing
After the pre-processing operation runs, XHTML-based builds each run a common series of Ant targets to generate
XHTML file. Navigation may be created before or after this set of common routines.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 79

After the pre-processing is completed, the following targets are run for all of the XHTML-based builds:

• If the arg.css parameter is passed to the build to add a CSS file, the copy-css target copies the CSS file from its
source location to the relative location in the output directory.

• If a DITAVAL file is used, the copy-revflag target copies the default start- and end-revision flags into the
output directory.

• The DITA topics are converted to XHTML files. Unless the @chunk attribute was specified, each DITA
topic in the temporary directory now corresponds to one XHTML file. Thedita.inner.topics.xhtml
target is used to process documents that are in the map directory (or subdirectories of the map directory). The
dita.outer.topics.xhtml target is used to process documents that are outside of the scope of the map,
and thus might end up outside of the designated output directory. Various DITA-OT parameters control how
documents processed by the dita.outer.topics.xhtml target are handled.

Default XHTML processing
After the XHTML files are generated by the common routine, the dita.map.xhtml target is called by the xhtml
transformation. This target generates a TOC file called index.html, which can be loaded into a frameset.

Eclipse help processing
The eclipsehelp transformation generates XHTML-based output and files that are needing to create an Eclipse Help
system plug-in. Once the normal XHTML process has run, the dita.map.eclipse target is used to create a set of
control files and navigation files.

Eclipse use multiple files to control the plug-in behavior. Some of these control files are generated by the build, while
others might be created manually. The following Ant targets control the Eclipse help processing:

dita.map.eclipse.init Sets up various default properties

dita.map.eclipse.toc Creates the XML file that defines an Eclipse table of
contents

dita.map.eclipse.index Creates the sorted XML file that defines an Eclipse index

dita.map.eclipse.plugin Creates the plugin.xml file that controls the behavior
of an Eclipse plug-in

dita.map.eclipse.plugin.properties Creates a Java properties file that sets properties for the
plug-in, such as name and version information

dita.map.eclipse.manifest.file Creates a MANIFEST.MF file that contains additional
information used by Eclipse

copy-plugin-files Checks for the presence of certain control files in the
source directory, and copies those found to the output
directory

dita.map.eclipse.fragment.language.init Works in conjunction with the
dita.map.eclipse.fragment.language.country.init
and dita.map.eclipse.fragment.error
targets to control Eclipse fragment files, which are used
for versions of a plug-in created for a new language or
locale

Several of the targets listed above have matching templates for processing content that is located outside of the scope
of the map directory, such as dita.out.map.eclipse.toc.

TocJS processing
The tocjs transformation was originally created as a plug-in that distributed outside of the toolkit, but it now ships
bundled in the default packages. This XHTML-based output type creates a JavaScript based frameset with TOC
entries that expand and collapse.

The following Ant targets control most of the TocJS processing:

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 80

tocjsInit Sets up default properties. This target detects whether
builds have already specified a name for JavaScript
control file; if not, the default name toctree.js is
used.

map2tocjs Calls the dita.map.tocjs target, which generates
the contents frame for TocJS output.

tocjsDefaultOutput Ensures that the XHTML processing module is run.
If scripts are missing required information, such as a
name for the default frameset, this target copies default
style and control files. This target was add to the DITA-
OT in version 1.5.4; earlier versions of the TocJS
transformation created only the JavaScript control file by
default.

HTML Help processing
The htmlhelp transformation created HTML Help control files. If the build runs on a system that has the HTML Help
compiler installed, the control files are compiled into a CHM file.

Once the pre-processing and XHTML processes are completed, most of the HTML Help processing is handled by the
following targets:

dita.map.htmlhelp Create the HHP, HHC, and HHK files. The HHK file is
sorted based on the language of the map.

dita.htmlhelp.convertlang Ensures that the content can be processed correctly by
the compiler, and that the appropriate code pages and
languages are used.

compile.HTML.Help Attempts to detect the HTML Help compiler. If the
compiler is found, the full project is compiled into a
single CHM file.

JavaHelp processing
The javahelp transformation runs several additional Ant targets after the XHTML processing is completed in order to
create control files for the JavaHelp output.

There are two primary Ant targets:

dita.map.javahelp Creates all of the files that are needed to compile
JavaHelp, including a table of contents, sorted index, and
help map file.

compile.Java.Help Searches for a JavaHelp compiler on the system. If a
compiler is found, the help project is compiled.

PDF processing modules
The PDF (formerly known as PDF2) transformation process runs the pre-processing routine and follows it by a series
of additional targets. These steps work together to create a merged set of content, convert the merged content to XSL-
FO, and then format the XSL-FO file to PDF.

The PDF process includes many Ant targets. During a typical conversion from map to PDF, the following targets are
most significant.

map2pdf2 Creates a merged file by calling a common Java merge
module. It then calls the publish.map.pdf target to
do the remainder of the work.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 81

publish.map.pdf Performs some initialization and then calls the
transform.topic2pdf target to do the remainder of
processing.

transform.topic2pdf Converts the merged file to XSL-FO, generates the PDF,
and deletes the topic.fo file, unless instructed to keep
it. Uses the following targets to perform those tasks:

transform.topic2fo Convert the merged file
to an XSL-FO file. This
process is composed of
several Ant targets.

Ant target Description

transform.topic2fo.indexRuns
a Java
process
to set up
index
processing,
based
on the
document
language.
This step
generates
the file
stage1.xml
in the
temporary
processing
directory.

transform.topic2fo.flaggingSets up
preprocessing
for flagging
based on a
DITAVAL
file. This
step
generates
the file
stage1a.xml
in the
temporary
processing
directory.

transform.topic2fo.mainDoes the
bulk of the
conversion
from DITA
to XSL-
FO. It runs
the XSLT
based
process

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 82

Ant target Description
that creates
stage2.fo
in the
temporary
processing
directory

transform.topic2fo.i18nDoes
additional
localization
processing
on the
FO file; it
runs a Java
process that
converts
stage2.fo
into
stage3.fo,
followed
by an
XSLT
process that
converts
stage3.fo
into
topic.fo.

transform.fo2pdf Converts the topic.fo
file into PDF using the
specified FO processor
(Antenna House, XEP, or
Apache FOP).

delete.fo2pdf.topic.fo Deletes the topic.fo
file, unless otherwise
specified by setting an Ant
property or command-line
option.

Open Document Format processing modules
The odt transformation creates a binary file using the OASIS Open Document Format.

The odt transformation begins with pre-processing. It then runs either the dita.odt.package.topic or
dita.odt.package.map target, depending on whether the input to the transformation is a DITA topic or a DITA
map. The following description focuses on the map process, which is made up of the following targets:

dita.map.odt Converts the map into a merged XML file using the
Java-based topicmerge module. Then an XSLT
process converts the merged file into the content.xml
file.

dita.map.odt.stylesfile Reads the input DITA map, and then uses XSLT to
create a styles.xml file in the temporary directory.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 83

dita.out.odt.manifest.file Creates the manifest.xml file

Once these targets have run, the generated files are zipped up together with other required files to create the output
ODT file.

Extending the DITA Open Toolkit
There are several methods that can be used to extend the toolkit; not all of them are recommended or supported. The
best way to create most extensions is with a plug-in; extended documentation for creating plug-ins is provided in the
next section.

• Creating a plug-in can be very simple to very complex, and is generally the best method for changing or extending
the toolkit. Plug-ins can be used to accomplish almost any modification that is needed for toolkit processing, from
minor style tweaks to extensive, complicated new output formats.

• The PDF process was initially developed independently of the toolkit, and created its own extension mechanism
using customization directories. Many (but not quite all) of the capabilities available through PDF customization
directories are now available through plug-ins.

• Using a single XSL file as an override by passing it in as a parameter. For example, when building XHTML
content, the XSL parameter allows users to specify a single local XSL file (inside or outside of the toolkit) that
is called in place of the default XHTML code. Typically, this code imports the default processing code, and
overrides a couple of processing routines. This approach is best when the override is very minimal, or when the
style varies from build to build. However, any extension made with this sort of override is also possible with a
plug-in.

• Editing DITA-OT code directly may work in some cases, but is not advised. Modifying the code directly
significantly increases the work and risk involved with future upgrades. It is also likely that such modifications
will break plug-ins provided by others, limiting the function available to the toolkit.

Installing plug-ins
Plug-ins are generally distributed as zip files. There are two steps to installing a plug-in: unzipping and integrating.

About this task

It is possible to define a plug-in so that it may be installed anywhere, although most expect to be placed in
plugins/ directory inside of the DITA-OT. Most plug-ins do not require a specific install directory and can go in
either of the default locations, but some may come with instructions for a particular install directory.

Procedure

1. The unzip the plug-in file to plugins subdirectory.
The plug-in directory should be named after plug-in ID and version, for example plugins/
com.example.xhtml_1.0.0.

2. Run plug-in integration process.

• From the toolkit directory, run the following command to integrate all installed plug-ins:

ant -f integrator.xml

• Any build that uses the Java command line interface automatically runs the integrator before processing
begins.

• Ant based builds may import the integrator.xml file, and add integrate to the start of the
dependency chain for the build.

Note: The integration process in considered part of the installation process and running it before each
conversion will incur a performance penalty.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 84

The integration process has two modes, lax and strict. In the strict mode the integration process will immediately
fail if it encounters errors in plug-in configurations or installation process. In the lax mode, the integration process
will continue to finish regardless of errors; the lax mode does not imply error recovery and may leave the DITA-
OT installation into a broken state. The default mode is lax due to backwards compatibility, to run the integration
in strict mode:

ant -f integrator.xml strict

To get more information about the integration process, run Ant in verbose mode:

ant -f integrator.xml -verbose strict

Removing plug-ins
Plug-ins can be installed by removing the plug-in and running integration process.

Procedure

1. Remove plug-in installation directory.
2. Run integration process.

ant -f integrator.xml

Rebuilding the DITA-OT documentation
The DITA-OT ships with Ant scripts that enable you to rebuild the toolkit documentation. This is especially helpful if
your environment contains plug-ins that integrate additional messages into the toolkit.

Procedure

1. Change to the doc directory.
2. Run the following command:

ant -f build.xml target

The target parameter is optional and specifies a specific transformation type. It takes the following values:

• build-html
• build-htmlhelp
• build-pdf

If you do not specify an Ant target, all three output formats (XHTML, HTML help, and PDF) are generated.

Configuring the DITA Open Toolkit
The DITA OT uses .properties files that store configuration settings for the DITA OT and its plug-ins. The
configuration properties are available to both Ant and Java processes, but unlike argument properties, they cannot be
set at run time.

plugin.properties file
The plugin.properties file is used to store configuration properties that are set by the integration process.
The file is located in the lib\org.dita.dost.platform directory; it is regenerated each time the integration
process is run and so should not be edited manually.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 85

Creating DITA-OT plug-ins
The DITA Open Toolkit comes with a built in mechanism for adding in extensions through plug-ins. These plug-
ins may do a wide variety of things, such as adding support for specialized DITA DTDs or Schemas, integrating
processing overrides, or even providing entirely new output transforms. Plug-ins are the best way to extend the toolkit
in a way that is consistent, easily sharable, and easy to preserve through toolkit upgrades.

A plug-in consists of a directory, typically stored directly within the plugins/ directory inside of the DITA-OT.
Every plug-in is controlled by a file named plugin.xml, located in the plug-in's root directory.

Benefits of extending the toolkit through plug-ins include:

• Plug-ins are easily sharable with other users, teams, or companies; typically, all that is needed is to unzip and run a
single integration step. With many builds, even that integration step is automatic.

• Allows overrides or customizations to grow from simple to complex over time, with no increased complexity to
the extension mechanism.

• Plug-ins can be moved from version to version with an upgraded toolkit simply by unzipping again, or by copying
the directory from one install to another; there is no need to re-integrate code based on updates to the core
processing.

• Plug-ins can build upon each other. If you like a plug-in provided by one user, simply install that plug-in, and then
create your own that builds on that extension. The two plug-ins can then be distributed to your team as a unit, or
you can even share your own extensions with the original provider.

Plug-in configuration file
The plugin.xml controls all aspects of a plug-in, making each extension visible to the rest of the toolkit. The file
uses pre-defined extension points to locate changes, and integrates those changes into the core code.

The root element of the plugin.xml file is <plugin>, and must specify an id attribute. The id attribute is used to
identify the plug-in, as well as to identify whether pre-requisite plug-ins are available. The id attribute should follow
the syntax rules:

id ::= token('.'token)*
token ::= ([0..9] | [a..zA..Z] | ’_’ | ’-’)+

The <plugin> element supports the following child elements:

• <feature> defines an extension to contribute to a defined extension point. The following attributes are
supported:

Attribute Description Required

extension extension point identifier yes

value comma separated string value of the
extension

either value or file

file file path value of the extension,
relative to plugin.xml

either value or file

type type of the value attribute no

• extension-point defines new a extension point that can be used by other plug-ins. The following attributes
are supported:

Attribute Description Required

id extension point identifier yes

name extension point name no

• <require> defines plug-in dependencies. The following attributes are supported:

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 86

Attribute Description Required

plugin vertical bar separated list of plug-
ins that are required

yes

importance flag whether plug-in is required or
optional

no

• <template> defines files that should be treated as templates. The following attributes are supported:

Attribute Description Required

file file path to the template, relative to
plugin.xml

yes

• <meta> defines metadata. The following attributes are supported:

Attribute Description Required

type metadata name yes

value metadata value yes

Any extension that is not recognized by the DITA-OT is ignored; all elements other than <plugin> are optional.
Since version 1.5.3 multiple extension definitions within a plug-in configuration file are combined; in older versions
only the last extension definition is used.

Extending the XML Catalog
The XML Catalogs extension point is used to update the XML Catalogs used to resolve DTD or Schema document
types, or to add URI mappings. This is required in order to support DITA specializations or new DITA document type
shells.

To do this, first create a catalog with only your new values, using the OASIS Catalog format, and place that in your
plug-in. Local file references in the catalog should be relative to the location of the catalog. The following extension
points are available to work with catalogs.

dita.specialization.catalog.relative

dita.specialization.catalog
Adds the content of the catalog file defined in file
attribute to main DITA-OT catalog file.

Remember: The
dita.specialization.catalog
extension is deprecated. Use
dita.specialization.catalog.relative
instead.

org.dita.pdf2.catalog.relative Adds the content of the catalog file defined in file
attribute to main PDF plug-in catalog file.

Example

This example assumes that "catalog-dita.xml" contains an OASIS catalog for any DTDs or
Schemas inside this plug-in. The catalog entries inside of catalog-dita.xml are relative to the
catalog itself; when the plug-in is integrated, they will be added to the core DITA-OT catalog (with
the correct path).

<plugin id="com.example.catalog">
 <feature extension="dita.specialization.catalog.relative"
 file="catalog-dita.xml"/>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 87

</plugin>

Adding new targets to the Ant build process
The Ant conductor extension point is used to make new targets available to the Ant processing pipeline. This may be
done as part of creating a new transform, extending pre-processing, or simply to provide Ant targets for the use of
other plug-ins.

dita.conductor.target.relative

dita.conductor.target
Add Ant import to main Ant build file.

Remember: The
dita.conductor.target
extension is deprecated. Use
dita.conductor.target.relative
instead.

Example

To extend And processing, first place your extensions in an Ant project file within your plug-in,
such as myAntStuff.xml. Next, create a small wrapper file myAntStuffWrapper.xml in
the same directory:

<dummy> <import file="myAntStuff.xml"/> </dummy>

Then create the following feature:

<plugin id="com.example.ant">
 <feature extension="dita.conductor.target.relative"
 file="myAntStuffWrapper.xml"/>
</plugin>

When the plug-in is integrated, the imports from myAntStuffWrapper.xml will be copied into
build.xml (using the correct path). This makes targets in myAntStuff.xml available to any
other processing.

Adding Ant targets to the pre-process pipeline
Every step in the pre-process pipeline defines an extension point before and after the step, to allow plug-ins to
integrate additional processing. This allows a plug-in to insert a new step before any pre-processing step, as well as
before or after the entire preprocess pipeline.

The group of preprocessing steps defines extension points before and after the full preprocessing chain.

depend.preprocess.pre Preprocessing pre-target; extending this target runs your
Ant target before the full preprocess routine begins.

depend.preprocess.post Preprocessing post-target; extending this target runs your
Ant target after the full preprocess routine completes.

In addition, there are extension points to execute an Ant target before individual preprocessing steps.

depend.preprocess.clean-temp.pre Clean temp pre-target

depend.preprocess.gen-list.pre Generate list pre-target

depend.preprocess.debug-filter.pre Debug and filter pre-target

depend.preprocess.conrefpush.pre Content reference push pre-target

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 88

depend.preprocess.move-meta-
entries.pre

Move meta entries pre-target

depend.preprocess.conref.pre Content reference pre-target

depend.preprocess.coderef.pre Code reference pre-target

depend.preprocess.mapref.pre Map reference pre-target

depend.preprocess.keyref.pre Resolve key reference pre-target

depend.preprocess.mappull.pre Map pull pre-target

depend.preprocess.chunk.pre Chunking pre-target

depend.preprocess.maplink.pre Map link pre-target

depend.preprocess.move-links.pre Move links pre-target

depend.preprocess.topicpull.pre Topic pull pre-target

depend.preprocess.copy-files.pre Copy files pre-target

depend.preprocess.copy-image.pre Copy images pre-target

depend.preprocess.copy-html.pre Copy HTML pre-target

depend.preprocess.copy-flag.pre Copy flag pre-target

depend.preprocess.copy-subsidiary.pre Copy subsidiary pre-target

depend.preprocess.copy-generated-
files.pre

Copy generated files pre-target

Example

The following feature adds "myAntTargetBeforeChunk" Ant target to be executed before the chunk
step in preprocessing. It assumes that an Ant file defining that target has already been integrated.

<plugin id="com.example.extendchunk">
 <feature extension="depend.preprocess.chunk.pre"
 value="myAntTargetBeforeChunk"/>
</plugin>

When integrated, the Ant target "myAntTargetBeforeChunk" will be added to the Ant dependency
list so that it always runs immediately before the Chunk step.

Integrating a new transform type
Plug-ins may integrate an entire new transform type. The new transform type can be very simple, such as an XHTML
build that creates an additional control file; it can also be very complex, adding any number of new processing steps.

The transtype extension point is used to define a new "transtype", or transform type, which makes use of targets in
your Ant extensions. When a transform type is defined, the build expects Ant code to be integrated to define the
transform process. The Ant code must define a target based on the name of the transform type; if the transform type is
"mystuff", the Ant code must define a target named dita2mystuff.

dita.conductor.transtype.check Add new value to list of valid transformation type names.

dita.transtype.print Declare transtype as a print type.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 89

Example

The following feature defines a transform type of "newtext" and declares it as a print type; using
this transform type will cause the build to look for a target dita2newtext, defined in a related
Ant extension from the third feature:

<plugin id="com.example.newtext">
 <feature extension="dita.conductor.transtype.check"
 value="newtext"/>
 <feature extension="dita.transtype.print" value="newtext"/>
 <feature extension="dita.conductor.target.relative"
 file="antWrapper.xml"/>
</plugin>

Override styles with XSLT
The XSLT import extension points are used to override various steps of XSLT processing. For this, the extension
attribute indicates the step that the override applies to; the file attribute is a relative path to the override within
the current plugin. The plugin installer will add an XSL import statement to the default code so that your override
becomes a part of the normal build.

The following XSLT steps are available to override in the core toolkit:

dita.xsl.xhtml Overrides default (X)HTML output (including HTML
Help and Eclipse Help). The referenced file is integrated
directly into the XSLT step that generates XHTML.

dita.xsl.xslfo Overrides default PDF output (formerly known as
PDF2). The referenced file is integrated directly into the
XSLT step that generates XSL-FO for PDF.

dita.xsl.docbook Overrides default DocBook output.

dita.xsl.rtf Overrides default RTF output.

dita.xsl.eclipse.plugin Overrides the step that generates plugin.xml for Eclipse.

dita.xsl.conref Overrides the preprocess step that resolves conref.

dita.xsl.topicpull Overrides the preprocess step "topicpull" (the step that
pulls text into <xref> elements, among other things).

dita.xsl.mapref Overrides the preprocess step "mapref" (the step that
resolves references to other maps).

dita.xsl.mappull Overrides the preprocess step "mappull" (the step
that updates navtitles in maps and causes attributes to
cascade).

dita.xsl.maplink Overrides the preprocess step "maplink" (the step that
generates map-based links).

dita.xsl.fo Override the (now deprecated) original PDF output,
which is still available with the transform type
"legacypdf".

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 90

Example

The following two files represent a complete, simple style plug-in. The plugin.xml file declares
an XSLT file that extends XHTML processing; the XSLT file overrides default header processing
to provide a (theoretical) banner.

plugin.xml:
<?xml version="1.0" encoding="UTF-8"?>
<plugin id="com.example.brandheader">
 <feature extension="dita.xsl.xhtml" file="xsl/header.xsl"/>
</plugin>

xsl/header.xsl:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:template name="gen-user-header">
 <div><img src="http://www.example.com/company_banner.jpg"
 alt="Example Company Banner"/></div>
 </xsl:template>
</xsl:stylesheet>

Modifying or adding generated text
Generated text is the term for strings that are automatically added by the build, such as "Note" before the contents of a
<note> element.

The generated text extension point is used to add new strings to the default set of generated text. There are several
reasons you may want to use this:

• It can be used to add new text for your own processing extensions; for example, it could be used to add localized
versions of the string "User response" to aid in rendering troubleshooting information.

• It can be used to override the default strings in the toolkit; for example, it could be used to reset the English string
"Figure" to "Fig".

• It can be used to add support for new languages (for non-PDF transforms only; PDF requires more complicated
localization support). For example, it could be used to add support for Vietnamese or Gaelic; it could also be used
to support a new variant of a previously supported language, such as Australian English.

dita.xsl.strings Add new strings to generated text file.

Example: adding new strings

First copy the file xsl/common/strings.xml to your plug-in, and edit it to contain the
languages that you are providing translations for ("en-us" must be present). For this sample,
copy the file into your plug-in as xsl/my-new-strings.xml. The new strings file will look
something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Provide strings for my plug-in; this plug-in supports
 English, Icelandic, and Russian. -->
<langlist>
 <lang xml:lang="en" filename="mystring-en-us.xml"/>
 <lang xml:lang="en-us" filename="mystring-en-us.xml"/>
 <lang xml:lang="is" filename="mystring-is-is.xml"/>
 <lang xml:lang="is-is" filename="mystring-is-is.xml"/>
 <lang xml:lang="ru" filename="mystring-ru-ru.xml"/>
 <lang xml:lang="ru-ru" filename="mystring-ru-ru.xml"/>
</langlist>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 91

Next, copy the file xsl/common/strings-en-us.xml to your plug-in, and replace the
content with your own strings (be sure to give them unique name attributes). Do the same for each
language that you are providing a translation for. For example, the file mystring-en-us.xml
might contain:

<?xml version="1.0" encoding="utf-8"?>
<strings xml:lang="en-us">
 <str name="String1">English generated text</str>
 <str name="Another String">Another String in English</str>
</strings>

Use the following extension code to include your strings in the set of generated text:

<plugin id="com.example.strings">
 <feature extension="dita.xsl.strings" file="xsl/my-new-
strings.xml"/>
</plugin>

The string is now available to the "getString" template used in many DITA-OT XSLT files. For
example, if processing in a context where the xml:lang value is "en-us", the following call would
return "Another String in English":

<xsl:call-template name="getString">
 <xsl:with-param name="stringName" select="'Another String'"/>
</xsl:call-template>

Note: If two plug-ins define the same string, the results will be non-deterministic,
so multiple plug-ins should not try to create the same generated text string. One
common way to avoid this problem is to ensure the name attributes used to look up
the string value are related to the ID or purpose of your plug-in.

Example: modifying existing strings

The process for modifying existing generated text is exactly the same as for adding new text, except
that the strings you provide override values that already exist. To begin, set up the xsl/my-new-
strings.xml file in your plug-in as in the previous example.

Next, copy the file xsl/common/strings-en-us.xml to your plug-in, and choose the strings
you wish to change (be sure to leave the name attribute unchanged, because this is the key used to
look up the string). Create a strings file for each language that needs to modify existing strings. For
example, the new file mystring-en-us.xml might contain:

<?xml version="1.0" encoding="utf-8"?>
<strings xml:lang="en-us">
 <str name="Figure">Fig</str>
 <str name="Draft comment">ADDRESS THIS DRAFT COMMENT</str>
</strings>

To integrate the new strings, use the same method as above to add these strings to your
plugin.xml file. Once this plug-in is integrated, where XHTML output previously generated the
term "Figure", it will now generate "Fig"; where it previously generated "Draft comment", it will
now generate "ADDRESS THIS DRAFT COMMENT". The same strings in other languages will
not be modified unless you also provide new versions for those languages.

Note: If two plug-ins override the same string in the same language, the results
will be non-deterministic (either string may be used under different conditions).
Multiple plug-ins should not override the same generated text string for a single
language.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 92

Example: adding a new language

The process for adding a new language is exactly the same as for adding new text, except you
are effectively just translating an existing strings file. To begin, set up the xsl/my-new-
strings.xml file in your plug-in as in the previous examples. In this case, the only difference is
that you are adding a mapping to new languages; for example, the following file would be used to
set up support for Vietnamese:

<?xml version="1.0" encoding="utf-8"?>
<!-- Map languages with xml:lang="vi" or xml:lang="vi-vn"
 to the translations in this plug-in. -->
<langlist>
 <lang xml:lang="vi" filename="strings-vi.xml"/>
 <lang xml:lang="vi-vn" filename="strings-vi.xml"/>
</langlist>

Next, copy the file xsl/common/strings-en-us.xml to your plug-in, and rename it to
match the language you wish to add. For example, to support Vietnamese strings you may want
to pick a name like strings-vi.xml. In that file, change the xml:lang attribute on the root
element to match your new language.

Once the file is ready, translate the contents of each <str> element (be sure to leave the name
attribute unchanged). Repeat this process for each new language you wish to add.

To integrate the new languages, use the same method as above to add these strings to your
plugin.xml file. Once this plug-in is integrated, non-PDF builds will include support
for Vietnamese; instead of generating the English word "Caution", the element <note
type="caution" xml:lang="vi"> may generate something like "chú ý".

Note: If two plug-ins add support for the same language using different values,
the results will be non-deterministic (translations from either plug-in may be
picked up under different conditions).

Passing parameters to existing XSLT steps
Plug-ins can define new parameters to be passed from the Ant build into existing XSLT pipeline stages, usually to
have those parameters available as global <xsl:param> values within XSLT overrides.

To create new parameters, create a file insertParameters.xml which contains one or more Ant <param>
elements. It also needs a <dummy> wrapper element around the parameters. For example, the following parameter
will be passed in to the XSLT file with a value of ${antProperty}, but only if that parameter is defined:

<dummy>
 <!-- Any Ant code allowed in xslt task is possible. Common example: -->
 <param name="paramNameinXSLT" expression="${antProperty}"
 if="antProperty"/>
</dummy>

Pass the value using the following extensions:

dita.conductor.html.param Pass parameters to HTML and HTML Help XSLT

dita.conductor.xhtml.param Pass parameters to XHTML and Eclipse Help XSLT

dita.conductor.xhtml.toc.param Pass parameters to XHTML TOC XSLT

dita.conductor.eclipse.toc.param Pass parameters to Eclipse Help TOC XSLT

dita.preprocess.conref.param Pass parameters to conref XSLT

dita.preprocess.mapref.param Pass parameters to mapref XSLT

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 93

dita.preprocess.mappull.param Pass parameters to mappull XSLT

dita.preprocess.maplink.param Pass parameters to maplink XSLT

dita.preprocess.topicpull.param Pass parameters to topicpull XSLT

dita.conductor.pdf2.param Pass parameters to PDF2 XSLT

Example

The following plug-in will pass the parameters defined inside of insertParameter.xml
as input to the XHTML process. Generally, an additional XSLT override will make use of the
parameter to do something new with the generated content.

<plugin id="com.example.newparam">
 <feature extension="dita.conductor.xhtml.param"
 file="insertParameters.xml"/>
</plugin>

Adding Java libraries to the classpath
If your Ant or XSLT extensions require additional Java libraries in the classpath, you can add them to the global
DITA-OT classpath with the following feature.

dita.conductor.lib.import Add Java libraries to DITA-OT classpath.

Example

The following plug-in adds the compiled Java code from myJavaLibrary.jar into the global
DITA-OT classpath. XSLT or Ant code can then make use of the added code.

<plugin id="com.example.addjar">
 <feature extension="dita.conductor.lib.import"
 file="myJavaLibrary.jar"/>
</plugin>

Now assume that in this case myJavaLibrary.jar performs some validation step in the middle of
processing, and you always want it to run immediately before the conref step. In that case you need
to make use of several features in this plug-in

• The JAR file must be added to the classpath.
• An Ant target must be created that uses this class, and the Ant wrapper integrated into the code.
• The Ant target must be added to the dependency chain for conref.

In this extended example, the files might look something like this.

plugin.xml:
<?xml version="1.0" encoding="UTF-8"?>
<plugin id="com.example.samplejava">
 <!-- Add the JAR file to the DITA-OT CLASSPATH -->
 <feature extension="dita.conductor.lib.import"
 file="com.example.sampleValidation.jar"/>
 <!-- Integrate the Ant code -->
 <feature extension="dita.conductor.target.relative"
 file="antWrapper.xml"/>
 <!-- Define the Ant target that is called, and the location
 (before conref) -->
 <feature extension="depend.preprocess.conref.pre"
 value="validateWithJava"/>
</plugin>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 94

antWrapper.xml imports the new Ant code:
<?xml version="1.0" encoding="UTF-8"?>
<dummy>
 <import file="calljava-antcode.xml"/>
</dummy>

calljava-antcode.xml:
<?xml version="1.0" encoding="UTF-8"?>
<project default="validateWithJava">
 <target name="validateWithJava">
 <java classname="com.example.sampleValidation">
 <!-- The class was added to dost.class.path (the DITA-OT
 classpath) -->
 <classpath refid="dost.class.path"/>
 </java>
 </target>
</project>

Adding diagnostic messages
Plug-in specific warning and error messages can be added to the set of messages supplied by the DITA-OT. These
messages can then be used by any XSLT override.

dita.xsl.messages Add new messages to diagnostic message file.

Example

To add your own messages, create the new messages in an XML file such as myMessages.xml:

<dummy>
 <!-- See resource/messages.xml for the details. -->
 <message id="DOTXmy-msg-numW" type="WARN">
 <reason>Message text</reason>
 <response>How to resolve</response>
 </message>
</dummy>

There are three components to the message ID:

1. The prefix DOTX is used by all DITA-OT XSLT transforms, and must be part of the ID.
2. This is followed by the message number ("my-msg-num" in the sample above). By convention,

this should be a three digit integer.
3. Finally, a letter corresponds to the severity. This should be one of:

• I = Informational, used with type="INFO"
• W = Warning, used with type="WARN"
• E = Error, used with type="ERROR"
• F = Fatal, used with type="FATAL"

Once the message file is defined, it is incorporated with this extension:

<plugin id="com.example.newmsg">
 <feature extension="dita.xsl.messages" file="myMessages.xml"/>
</plugin>

XSLT modules can then generate the message using the following call:

<xsl:call-template name="output-message">
 <xsl:with-param name="msgnum">my-msg-num</xsl:with-param>
 <xsl:with-param name="msgsev">W</xsl:with-param>

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 95

</xsl:call-template>

Managing plug-in dependencies
The <require> element in a plugin.xml file is used to create a dependency on another plug-in. The
<require> element requires the plugin attribute in order to reference the dependency.

If the current plug-in requires a plug-in with id="plugin-id" before it can be installed, it would include the
following:

<require plugin="plugin-id">

Prerequisite plug-ins are integrated before the current plug-in is integrated. This does the right thing with respect to
XSLT overrides. If your plug-in is a specialization of a specialization, it should <require> its base plug-ins, in
order from general to specific.

If a prerequisite plug-in is missing, a warning will be printed during integration. To suppress this, but keep the
integration order if both plug-ins are present, add importance="optional" to the <require> element.

If your plug-in can depend on any one of several optional plug-ins, separate the plug-in ids with a vertical bar. This is
most useful when combined with importance="optional":

Example

The following plug-in will only be installed if the plug-in with id="com.example.primary" is
available. If that one is not available, a warning will be generated during the integration process.

<plugin id="com.example.builds-on-primary">
 <!-- ...extensions here -->
 <require plugin="com.example.primary"/>
</plugin>

The following plug-in will only be installed if either the plug-in with id="pluginA" or the plug-in
with id="pluginB" are available. If neither of those are installed, the current plug-in will be ignored.

<plugin id="pluginC">
 <!-- ...extensions here -->
 <require plugin="pluginA|pluginB" importance="optional"/>
</plugin>

Version and support information
The following extension points are used by convention to define version and support info within a plug-in.

• package.support.name
• package.support.email
• package.version

Note:

The toolkit does not currently do anything with these values, but may do so in the future.

The package.version value should follow the syntax rules:

version ::= major ('.' minor ('.' micro ('.' qualifier)?)?)?

major ::= number
minor ::= number
micro ::= number

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 96

qualifier ::= ([0..9] | [a..zA..Z] | ’_’ | '-')+

The default value is 0.0.0.

Example

<plugin id="com.example.WithSupportInfo">
 <feature extension="package.support.name" value="Joe the
 Author"/>
 <feature extension="package.support.email"
 value="joe@example.com"/>
 <feature extension="package.version" value="1.2.3"/>
</plugin>

Creating a new plug-in extension point
If your plug-in needs to define its own extension point in an XML file, add the string "_template" to the filename
before the file suffix. During integration, this file will be processed like the built-in DITA-OT templates.

Template files are used to integrate most DITA-OT extensions. For example, the file
dita2xhtml_template.xsl contains all of the default rules for converting DITA topics to XHTML, along
with an integration point for plug-in extensions. When the integrator runs, the file dita2xhtml.xsl is recreated, and the
integration point is replaced with references to all appropriate plug-ins.

To mark a new file as a template file, use the <template> element.

The template extension namespace has the URI http://dita-ot.sourceforge.net. It is used to identify
elements and attributes that have a special meaning in template processing. This documentation uses a prefix of
 dita: for referring to elements in the template extension namespace. However, template files are free to use
any prefix, provided that there is a namespace declaration that binds the prefix to the URI of the template extension
namespace.

dita:extension element

The dita:extension elements are used to insert generated content during integration process. There are two
required attributes:

• The id attribute defines the extension point ID which provides the argument data.
• The behaviour attribute defines which processing action is used.

Supported values for behavior attribute:

org.dita.dost.platform.CheckTranstypeActionCreate Ant condition elements to check if
${transtype} property value equals a supported
transtype value.

org.dita.dost.platform.ImportAntLibActionCreate Ant pathelement elements for library
imported extension point. The id attribute is used to
define the extension point ID.

org.dita.dost.platform.ImportPluginCatalogActionInclude plug-in metadata catalog content.

org.dita.dost.platform.ImportPluginInfoActionCreate plug-in metadata Ant properties.

org.dita.dost.platform.ImportStringsActionInclude plug-in string file content base on generated text
extension point. The id attribute is used to define the
extension point ID.

org.dita.dost.platform.ImportXSLAction Create xsl:import elements based on XSLT import
extension point. The id attribute is used to define the
extension point ID.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 97

org.dita.dost.platform.InsertAction Include plug-in conductor content based on Ant import
extension point. The id attribute is used to define the
extension point ID.

org.dita.dost.platform.InsertAntActionRelativeInclude plug-in conductor content based on relative Ant
import extension point. The id attribute is used to define
the extension point ID.

org.dita.dost.platform.InsertCatalogActionRelativeInclude plug-in catalog content based on catalog import
extension point. The id attribute is used to define the
extension point ID.

org.dita.dost.platform.ListTranstypeActionCreate a pipe delimited list of supported transtypes.

dita:extension attribute

The dita:extension attribute is used to process attributes in elements which are not in template extension
namespace. The value of the attribute is a space delimited tuple, where the first item is the name of the attribute to
process and the second item is the action ID.

Supported values:

depends
org.dita.dost.platform.InsertDependsAction

Ant target dependency list is processed to replace all
target names which start with an open curly bracket and
end with a close curly bracket. The value of the extension
point is the ID between the curly brackets.

Example

The following plug-in defines myBuildFile_template.xml as a new template for extensions,
and two new extension points.

<plugin id="com.example.new-extensions">
 <extension-point id="com.example.new-extensions.pre"
 name="Custom target preprocess"/>
 <extension-point id="com.example.new-extensions.content"
 name="Custom target content"/>
 <template file="myBuildFile_template.xml"/>
</plugin>

When the integrator runs, this will be used to recreate myBuildFile.xml, replacing Ant file
content based on extension point use.

<project xmlns:dita="http://dita-ot.sourceforge.net">
 <target name="dita2custom"
 depends="dita2custom.init,
 {com.example.new-extensions.pre},
 dita2xhtml"
 dita:extension="depends
 org.dita.dost.platform.InsertDependsAction">
 <dita:extension id="com.example.new-extensions.content"

 behaviour="org.dita.dost.platform.InsertAction"/>
 <target>
</project>

Example plugin.xml file
The following is a sample of a plugin.xml file. This file adds support for a new set of specialized DTDs, and
includes an override for the XHTML output processor.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 98

This plugin.xml file would go into a directory such as DITA-OT\plugins\music\ and referenced supporting
files would also exist in that directory. A more extensive sample using these values is available in the actual music
plug-in, available at the DITA-OT download page at SourceForge

<plugin id="org.metadita.specialization.music">
 <feature extension="dita.specialization.catalog.relative"
 file="catalog-dita.xml">
 <feature extension="dita.xsl.xhtml" file="xsl/
music2xhtml.xsl"/>
</plugin>

Migrating style sheets and XSLT overrides

XHTML migration for flagging updates in DITA-OT 1.7
This topic is primarily of interest to developers with XHTML transform overrides written prior to DITA-OT 1.7. Due
to significant changes in the flagging process with the 1.7 release, some changes may be needed to make overrides
work properly with DITAVAL based flagging. The new design is significantly simpler than the old design; in many
cases, migration will consist of deleting old code that is no longer needed.

Which XHTML overrides need to migrate?

If your override does not contain any code related to DITAVAL flagging, then there is nothing to migrate.

If your builds do not make use of DITAVAL based flagging, but calls the deprecated flagging templates, then you
should override but there is little urgency. You will not see any difference in the output, but those templates will be
removed in a future release.

If you do make use of DITAVAL based flagging, try using your override with 1.7. Check the elements you override:

1. In some cases flags may be doubled. This will be the case if you call routines such as "start-flagit".
2. In some cases flags may be removed. This will be the case if you call shortcut routines such as "revtext" or

"revblock".
3. In other cases, flags may still appear properly, in which case migration is less urgent

For any migration that needs migration, please see the instructions that follow.

Deprecated templates in DITA-OT 1.7

All of the old DITAVAL based templates are deprecated in DITA-OT 1.7. If your overrides include any of the
following templates, they should be migrated for the new release; in many cases the templates below will not have
any effect on your output, but all instances should be migrated.

• The "gen-style" template used to add CSS styling
• The "start-flagit" and "end-flagit" templates used to generate image flags based on property

attributes like @audience
• The "start-revflag" and "end-revflag" templates, used to generate images for active revisions
• Shortcut templates that group these templates into a single call, such as:

• "start-flags-and-rev" and "end-flags-and-rev", used to combine flags and revisions into one
call

• "revblock" and "revtext", both used to output start revisions, element content, and end revisions
• The modes "outputContentsWithFlags" and "outputContentsWithFlagsAndStyle", both

used to combine processing for property/revision flags with content processing
• All other templates that make use of the $flagrules variable, which is no longer used in any of the DITA-OT

1.7 code

http://sourceforge.net/projects/dita-ot/files/

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 99

• All templates within flag.xsl that were called from the templates listed above
• Element processing handled with mode="elementname-fmt", such as mode="ul-fmt" for processing unordered

lists and mode="section-fmt" for sections.

What replaces the templates?

The new flagging design described in the preprocess design section now adds literal copies of relevant DITAVAL
elements, along with CSS based flagging information, into the relevant section of the topic. This allows most flags to
be processed in document order; in addition, there is never a need to read the DITAVAL, interpret CSS, or evaluate
flagging logic. The htmlflag.xsl file contains a few rules to match and process the start/end flags; in most cases,
all code to explicitly process flags can be deleted.

For example, the common logic for most element rules before DITA-OT 1.7 could be boiled down to the following:

Match element
Create "flagrules" variable by reading DITAVAL for active flags
Output start tag such as <div> or
Call "commonattributes" and ID processing
Call "gen-style" with $flagrules, to create DITAVAL based CSS
Call "start-flagit" with $flagrules, to create start flag images
Call "start-revflag" with $flagrules, to create start revision images
Output contents
Call "end-revflag" with $flagrules, to create end revision images
Call "end-flagit" with $flagrules, to create end flag images
Output end tag such as </div> or

In DITA-OT 1.7, style and images are typically handled with XSLT fallthrough processing. This removes virtually
all special flag coding from element rules, because flags are already part of the document and processed in document
order. The sample above is reduced to:

Match element
Output start tag such as <div> or
Call "commonattributes" and ID processing
Output contents
Output end tag such as </div> or

Migrating "gen-style" named template

Calls to the "gen-style" template should be deleted. There is no need to replace this call for most elements.

The "gen-style" template was designed to read a DITAVAL file, find active style-based flagging (such as
colored or bold text), and add it to the generated @style attribute in HTML.

With DITA-OT 1.7, the style is calculated in the pre-process flagging module. The result is created as @outputclass
on a <ditaval-startprop> sub-element. The "commonattributes" template now includes a line to
process that value; the result is that for every element that calls "commonattributes", DITAVAL style will
be processed when needed. Because virtually every element includes a call to this common template, there is little
chance that your override needs to explicitly process the style. The new line in "commonattributes" that
handles the style is:

<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-startprop
 ')]/@outputclass" mode="add-ditaval-style"/>

Migrating "start-flagit", "start-revflag", "end-flagit", and "end-flagit" named
templates

Calls to these templates fall into two general groups.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 100

If the flow of your element rule is to create a start tag like <div>, "start-flagit"/"start-revflag",
process contents, "end-revflag"/"end-flagit", end tag - you just need to delete the calls to these templates.
Flags will be generated simply by processing the element contents in document order.

If the flow of your element rule processes flags outside of the normal document-order. There are generally two
reasons this is done. The first case is for elements like , where flags must appear before the in order to
create valid XHTML. The second is for elements like <section>, where start flags are created, followed by the title
or some generated text, element contents, and finally end flags. In either of these cases, support for processing flags in
document order is disabled, so they must be explicitly processed out-of-line. This is done with the following two lines
(one for start flag/revision, one for end flag/revision):

Create starting flag and revision images:
<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-startprop
 ')]" mode="out-of-line"/>

Create ending flag and revision images:
<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-endprop
 ')]" mode="out-of-line"/>

For example, the following lines are used in DITA-OT 1.7 to process the element (replacing the 29 lines used
in DITA-OT 1.6):

<xsl:template match="*[contains(@class,' topic/ul ')]">
 <xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-
startprop ')]" mode="out-of-line"/>
 <xsl:call-template name="setaname"/>

 <xsl:call-template name="commonattributes"/>
 <xsl:apply-templates select="@compact"/>
 <xsl:call-template name="setid"/>
 <xsl:apply-templates/>

 <xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-endprop
 ')]" mode="out-of-line"/>
 <xsl:value-of select="$newline"/>
</xsl:template>

Migrating "start-flags-and-rev" and "end-flags-and-rev"

• "start-flags-and-rev" is equivalent to calling "start-flagit" followed by "start-revflag";
it should be migrated as in the previous section.

• "end-flags-and-rev" is equivalent to calling "end-revflag" followed by "end-flagit"; it should
be migrated as in the previous section.

Migrating "revblock" and "revtext"

Calls to these two templates can be replaced with a simple call to <xsl:apply-templates/>.

Migrating modes "outputContentsWithFlags" and "outputContentsWithFlagsAndStyle"

Processing an element with either of these modes can be replaced with a simple call to <xsl:apply-
templates/>.

Migrating mode="elementname-fmt"

Prior to DITA-OT 1.7, many elements were processed with the following logic:

Match element
 Set variable to determine if revisions are active and $DRAFT is on
 If active

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 101

 create division with rev style
 process element with mode="elementname-fmt"
 end division
 Else
 process element with mode="elementname-fmt"

Match element with mode="elementname-fmt"
 Process as needed

Beginning with DITA-OT 1.7, styling from revisions is handled automatically with the "commonattributes"
template. This means there is no need for the extra testing, or the indirection to mode="elementname-fmt".
These templates are deprecated, and element processing will move into the main element rule. Overrides that include
this indirection may remove it; overrides should also be sure to match the default rule, rather than matching with
mode="elementname-fmt".

Customizing PDF output
Example of PDF output customization with a custom transformation type.

Procedure

1. Create a new plug-in directory com.example.print-pdf into DITA-OT plugins directory.
2. Create a plug-in configuration file plugin.xml, declare the new transformation type print-pdf and

dependencies.

<?xml version='1.0' encoding='UTF-8'?>
<plugin id="com.example.print-pdf">
 <require plugin="org.dita.pdf2"/>
 <feature extension="dita.conductor.transtype.check" value="print-pdf"/>
 <feature extension="dita.transtype.print" value="print-pdf"/>
 <feature extension="dita.conductor.target.relative"
 file="integrator.xml"/>
</plugin>

3. Add an Ant script integrator.xml to define the transformation type.

<?xml version='1.0' encoding='UTF-8'?>
<project name="com.example.print-pdf">
 <target name="dita2print-pdf.init">
 <property name="customization.dir"
 location="${dita.plugin.com.example.print-pdf.dir}/cfg"/>
 </target>
 <target name="dita2print-pdf" depends="dita2print-pdf.init, dita2pdf2"/>
</project>

4. Add a cfg/catalog.xml file to take custom XSLT stylesheets into use.

<?xml version="1.0" encoding="UTF-8"?>
<catalog prefer="system"
 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <uri name="cfg:fo/attrs/custom.xsl" uri="fo/attrs/custom.xsl"/>
 <uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>
</catalog>

5. Add attribute and variable overrides to cfg/fo/attrs/custom.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <!-- Change page size to A4 -->

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 102

 <xsl:variable name="page-width">210mm</xsl:variable>
 <xsl:variable name="page-height">297mm</xsl:variable>
</xsl:stylesheet>

6. Add XSLT overrides to cfg/fo/xsl/custom.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="2.0">
 <!-- Move figure title to top and description to bottom -->
 <xsl:template match="*[contains(@class,' topic/fig ')]">
 <fo:block xsl:use-attribute-sets="fig">
 <xsl:call-template name="commonattributes"/>
 <xsl:if test="not(@id)">
 <xsl:attribute name="id">
 <xsl:call-template name="get-id"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates select="*[contains(@class,' topic/title ')]"/>
 <xsl:apply-templates select="*[not(contains(@class,' topic/title ')
 or contains(@class,' topic/desc '))]"/>
 <xsl:apply-templates select="*[contains(@class,' topic/desc ')]"/>
 </fo:block>
 </xsl:template>
</xsl:stylesheet>

7. Add variable definition file cfg/common/vars/en.xml for English to override generated text.

<?xml version="1.0" encoding="UTF-8"?>
<vars xmlns="http://www.idiominc.com/opentopic/vars">
 <!-- Remove dot from list number -->
 <variable id="Ordered List Number"><param ref-name="number"/></variable>
 <!-- Change unordered list bullet to an em dash -->
 <variable id="Unordered List bullet">—</variable>
</vars>

Results

The plug-in directory should have the layout and files:

com.example.print-pdf/
 cfg/
 common/
 vars/
 en.xml
 fo/
 attrs/
 custom.xsl
 xsl/
 custom.xsl
 catalog.xml
 integrator.xml
 plugin.xml

What to do next

Run integration process to install the plug-in and take the print-pdf transformation type into use.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 103

Internal Ant properties
Reference list of Ant properties used by DITA-OT internally.

include.rellinks

Space separated list of link roles to be output; value token #default denotes default role value.
Property default value depends on transformation type. Defined by args.rellinks, but may be
overridden directly.

Implementation dependent features

Chunking

Supported chunking methods:

• select-topic
• select-document
• select-branch
• by-topic
• by-document
• to-content
• to-navigation.

When no chunk attribute values are given, no chunking is performed.

Note: In effect, for HTML based transformation types this is equivalent to select-document and by-document
defaults.

Error recovery:

• When two tokens from the same category are used, no error or warning is thrown.
• When an unrecognized chunking method is used, no error or warning is thrown.

Filtering

Error recovery:

• When there are multiple revprop elements with the same val attribute, no error or warning is thrown
• When multiple prop elements define a duplicate attribute and value combination, attribute default, or fall-back

behaviour, DOTJ007E error is thrown.

Debug attributes

The debug attributes are populated as follows:

xtrf absolute system path of the source document

xtrc element counter that uses the format

element-name ":" integer-counter ";"
 line-number ":" column-number

Image scaling

If both height and width attributes are given, image is scaled non-uniformly.

If scale attribute is not an unsigned integer, no error or warning is thrown during preprocessing.

DITA Open Toolkit | DITA Open Toolkit Developer Reference | 104

Map processing

When a topicref element that references a map contains child topicref elements, DOTX068W error is thrown
and the child topicref elements are ignored.

Link processing

When the value of href attribute is not a valid URI reference, DOTJ054E error is thrown. Depending on error
recover mode, error recover may be attempted.

Copy-to processing

When the copy-to attribute is specified on a topicref, the content of the shortdesc element is not used to
override the short description of the topic.

Extended functionality

Code reference processing

Charset definition

DITA-OT supports defining the code reference target file encoding using the format attribute. The supported format
is:

format (";" space* "charset=" charset)?

If charset is not defined system default charset will be used. If charset is not recognized or supported, DOTJ052E
error is thrown and system default charset is used as a fall-back.

<coderef href="unicode.txt" format="txt; charset=UTF-8"/>

Line range extraction

Code reference can extract only a given line ranges with line-range pointer in the URI fragment. The format is:

uri ("#line-range(" start ("," end)? ")")?

Start and end line numbers start from 1 and are inclusive. If end range is omitted, range ends in last line of the file.

<coderef href="Parser.scala#line-range(5, 10)" format="scala"/>

Only lines from 5 to 10 will be included in the output.

Appendix

A
DITA Open Toolkit Project Management Guidelines

Topics:

• Goals and objectives of the
DITA Open Toolkit

• DITA Open Toolkit development
process

• How to participate in the DITA
Open Toolkit

The DITA Open Toolkit Project Management Guidelines are designed to
provide information about how the project is managed. These guidelines are
geared to an audience that needs information about how to participate in the
development of the DITA-OT.

The project is managed similarly to commercial software-development
projects; it uses requirements gathering, plan validation with stakeholders
and contributors, scheduled activities, tests, reviews, and builds. Quality is
strongly emphasized.

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 106

Goals and objectives of the DITA Open Toolkit
The goal of the DITA Open Toolkit (DITA-OT) is to provide a high-quality implementation for production-level
output of DITA content, built in a professionally-managed project environment by vetted contributors, and tested
thoroughly for each release.

The DITA-OT is designed to meet the needs of users who want to publish DITA content, from individual users
running the toolkit in a stand-alone mode to vendors who incorporate the toolkit into their software products. The
different distribution packages are designed to meet the needs of these different audiences.

The DITA-OT project keeps up to date with the latest DTD and Schema updates from the OASIS DITA Technical
Committee (TC), which develops and maintains the DITA standard. As the DITA TC produces drafts of future
versions, the DITA-OT works to create early support for new features and helps to test the new draft versions of the
standard.

The project agrees with the open-source motto of “Release early and often” and seeks to develop wide consensus on
issues.

DITA Open Toolkit development process
The DITA Open Toolkit (DITA-OT) development process is modeled after development processes for other popular
and successful open-source projects, most notably Eclipse.

Version 1.0 was released February 27, 2005. Version 2.0 was released June 29, 2012.

Project roles and responsibilities
The DITA Open Toolkit (DITA-OT) project has the following roles: Project manager, committer, and contributor.
Each role has different rights and obligations.

Project manager (PM) The project manager is responsible for managing the
project. The PM provides leadership to guide the overall
direction of the project and removes obstacles, solves
problems, and resolves conflicts. The PM works to
ensure that the following goals are met:

• The project operates effectively.
• All project plans, technical documents, and reports

are publicly available.
• The project operates using the open-source rules of

engagement, which stress meritocracy, transparency,
and open participation.

Committer Committers oversee the quality and originality of all
contributions. Committers influences the development
of the project and have write access to the source-code
repository. This position reflects a track record of high-
quality contributions to the project.

Contributor Contributors contribute code, documentation, fixes,
tests, or other work to the project. Contributors do not
have write access to the source-code repository. There
is no limit to the scope of such contributions, though
contributors who expect to donate a large amount of
new function to the project are encouraged to work with
committers in advance.

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 107

DITA Open Toolkit release management
The DITA-OT project works with an agile development process; it releases test (milestone) builds approximately
every month, and it encourages feedback on the test builds while function is being developed. Stable releases are
typically issued approximately every six months.

Each iteration begins with a meeting of project contributors. The meeting minutes are stored on the project Wiki
and are available to the public. Active contributors are directly invited to these meetings, but anybody interested in
the DITA-OT development is welcome to attend. If you are interested in attending these meetings, join the dita-ot-
developer mailing list and send a note to the list or list owners.

Each iteration kick-off meeting covers the following topics:

• Issues from the previous iteration
• Plans from each contributor for the upcoming iteration or for new work that will span multiple iterations
• Design discussion for any significant planned features or fixes
• Longer-term plans for contributions to the current or following release
• (As needed) Other project issues or hot topics, such as changes to the test and build process, interest from new

contributors, etc.

The kick-off meeting for the final iteration before a stable build covers the following topics:

• Evaluation of what is allowed in the iteration; the final iteration typically has no major changes in order to assure
quality in the stable build.

• Assessment of whether all release notes and other artifacts are up-to-date and ready for a final build.

When an iteration is complete, the build is uploaded to SourceForge. Test builds are placed in the Latest Test
Build folder. At the end of a release cycle, the builds are loaded to the Stable Release folder, and the project
information is updated to reflect the latest release.

Feature requests and defect reports
Feature requests and defect reports can be submitted at any time through the project page at GitHub.

The core project contributors track and address bugs reported against the project; they issue patches based on urgency.
The core contributors also will provide feedback on requests for new features or design changes, but they might not
be able to provide development assistance.

All new bug reports or feature requests should be submitted through github: DITA-OT bug and feature tracker.

Feature requests

The project committers periodically review new feature requests with contributors and interested parties; when
possible, they make plans to implement the new features.

If an existing project contributor is interested in a new request, the item is assigned to the contributor and
implemented based on the contributor's schedule. Otherwise, if the request is valid and in line with project goals, it
is left open for an interested party to pick up and implement. Some requests are best implemented as a plug-in rather
than in the core DITA-OT code; in those cases, project committers suggest alternatives and close the request.

Defect reports

The project committers determine the owner of the relevant components and assign the defect to the component
owner for validation and disposition. Responses, fixes, and workarounds are issued faster if the defect report includes
sample files and clear instructions for reproducing the issue.

If bugs are found in the OASIS DITA DTDs or Schemas, they are fixed in the toolkit and reported to the OASIS
DITA Technical Committee.

https://github.com/dita-ot/dita-ot/issues

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 108

How to participate in the DITA Open Toolkit
Any individual or any organization can contribute to the project; contributions must adhere to the existing toolkit
license(s) and should fit in with the general goals of the project. All major contributors will get appropriate
recognition in release announcements and on the project home page.

Contributors can submit new features, patches, and bug fixes using existing github facilities (this is done by creating
a "pull request" within github). The Committer(s) who owns the relevant components will first do due diligence to
check code originality and licensing according to the DITA Open Toolkit Contribution Policy on page 108. After
due diligence, the Committer(s) will use his/her own judgment on whether to accept the code into the original code
base, request updates to the code, or suggest that the code be maintained as an external patch or plug-in.

Contributions are always encouraged, and generally fall into one of two groups, as determined by project Committers:

• Bug fixes and minor patches are accepted with little overhead.
• Major contributions require the contributor to sign a form stating that the submitter is free to commit the code

(individually or on behalf of an employer), and that the code complies with the current toolkit license terms.

Due diligence for submission of bug fixes and patches from non-committers
Any organization or individual may submit bug fixes using a github "pull request", generally tied to a specific report
in the project's issue tracker.

Before committing code from a bug fix or patch provided by a third party who has not signed a current contribution
form for the project, Committers should ask the following questions and follow up as appropriate in order to ensure
that the code can be contributed to the project:

• What is your name and who is your employer?
• Did you write the code that you wish to contribute to the DITA Open Toolkit project? (If the contributor says

no, the code should not become a “Contribution” to the project. The contributor may be asked to identify the
complete details of the code’s source and of any licenses or restrictions applicable to the code, but the work should
be conspicuously marked as “Submitted on behalf of a third-party: [name of contributor]”.)

• Do you have the right to grant the copyright and patent licenses for the contribution that are set forth in the CPL
version 1.0 license and Apache License version 2.0?

• Does your employer have any rights to code that you have written, for example, through your contract for
employment? If so, has your employer given you permission to contribute the code on its behalf or waived its
rights in the code?

• Are you aware of any third-party licenses or other restrictions (such as related patents or trademarks) that could
apply to your contribution? If so, what are they?

DITA Open Toolkit Contribution Policy
The purpose of the DITA Open Toolkit Contribution Policy is to set forth the general principles under which the
DITA Open Toolkit project shall accept contributions, license contributions, license materials owned by this project,
and manage other intellectual property matters.

Overview

The Common Public License (CPL) and Apache License 2.0, which are incorporated herein by reference, will serve
as the primary licenses under which the Committer will accept contributions of software, documentation, information
(including, but not limited to, ideas, concepts, know-how and techniques) and/or other materials (collectively
"Content") to the project from Contributors. A copy of the CPL and Apache License 2.0 can be found at the root
directory of the DITA Open Toolkit deliverable package.

This Contribution Policy should at all times be interpreted in a manner that is consistent with the Purposes of the this
project as set forth in the DITA Open Toolkit Development Process goals and objectives. This Contribution Policy
shall serve as the basis for how non-Committers interact with this project through participation in this project, web-
sites owned, controlled, published and/or managed under the auspices of the this project, or otherwise.

http://www.opensource.org/licenses/cpl1.0.php
http://www.apache.org/licenses/LICENSE-2.0

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 109

The Common Public License and Apache License 2.0 shall serve as the primary licenses under which the
Committer(s) shall accept software, documentation, information (including, but not limited to, ideas, concepts, know-
how and techniques) and/or other materials (collectively "Content") from contributors including, but not limited to,
Contributors and Committers.

The DITA Open Toolkit project provides a process for accepting bug fixes and contributions from parties who have
not accepted the license to be Contributors. See Due Diligence for Submission of Bug Fixes and Patches from Non-
Committers

DUE DILIGENCE AND RECORD KEEPING

The Committer(s), shall be responsible for scrutinizing all Content contributed to the DITA Open Toolkit project and
help ensure that the Contribution Policy licensing requirements set forth above are met. Except as set forth below,
the applicable Committer shall conduct the following activities prior to uploading any Content into the repository or
otherwise making the Content available for distribution:

1. Contact the potential contributor of the Content through an appropriate channel of communication and collect/
confirm the following:

• Contributor's name, current address, phone number and e-mail address;
• Name and contact information of the contributor's current employer, if any;
• If the contributor is not self-employed, the Committer must request and receive a signed consent form (to be

provided by the Committer) from the contributor's employer confirming that the employer does not object to
the employee contributing the Content.

• Determine if the Content can be contributed under the terms of the CPL and Apache License 2.0 or the
alternative terms and conditions supplied by the Contributor. This can be done by asking the contributor
questions such as;

1. Did you develop all of the Content from scratch;
2. If not, what materials did you use to develop the Content?
3. Did you reference any confidential information of any third party?
4. If you referenced third party materials, under what terms did you receive such materials?

• If it is determined by the Committer that the Content is not the original work of the Contributor, collect the
contact information of the copyright holder of the original or underlying work. The copyright holder of the
Content or the underlying work may then need to be contacted to collect additional information.

2. The Contributor(s) shall document all information requested in (1) above and fill in Contribution Questionnaire (to
be provided by the Committer) and provide the completed Contribution Questionnaire to the Committer.

3. The Committer shall also be responsible for running a scan tool to help ensure that the Content does not include
any code not identified by the contributor.

4. Based on the information collected, the Committer shall use his/her reasonable judgment to determine if the
Content can be contributed under terms and conditions that are consistent with the licensing requirements of this
IP Policy.

If the applicable Committer has any doubts about the ability to distribute the Content under terms and conditions that
are consistent with the CPL and Apache License 2.0 or the proposed alternative terms and conditions, the Committer
may not upload the code to the repository or otherwise distribute the Content. The Committer(s) shall be responsible
for filing/maintaining the information collected for future reference as needed.

The above record keeping requirements shall not apply to

• Minor modifications to Content previously contributed to and accepted by the Committer(s).
• Articles and White Papers
• Information or minor Content modifications provided through bug reports, mailing lists and news groups

While the record keeping requirements do not apply to the items listed above, Committers must conduct reasonable
due diligence to satisfy themselves that proposed Contributions can be licensed under the terms of the CPL and
Apache License 2.0.

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 110

DITA-OT Contribution Questionnaire Form 1.2

The Contribution Questionnaire is the first step in initiating the due diligence and approval process by the Project
Manager (PM) for any significant contribution of content to be committed to the project. Prior to completing this
Questionnaire, the Committer should have technical agreement from the PM that the new code is required. Once the
PM has approved, the Committer, with the assistance of one or more of the contributors, may begin the due diligence
and approval process by completing and submitting this questionnaire.

What is meant by a significant contribution?

Any initial code contribution used to kick off a new project. By definition, this code has been written elsewhere and it
needs to be reviewed.

or

Any contribution authored by someone other than a committer which is adding new functionality to the codebase. In
most cases, bug fixes do not add new functionality although it's not impossible.

or

Any contribution containing third-party code maintained by another open source project, individual, group, or
organization. In addition to reviewing the contribution, if the license is not the Common Public License (CPL) or
Apache License 2.0, the PM will need to review and approve the third-party license for compatibility with the CPL or
Apache License 2.0.

How to send PM this form?

Please fill in this form and sign your name and get your employer's authorized signature, such as your manager's.
then send a scanned copy to Project Manager Robert D Anderson. The scanned copy may be sent to rdanderson at
users.sourceforge.net.

NOTE: A questionnaire and approval is not required for bug fixes or minor enhancements. If you have any questions,
please send an email to the Project Manager.

Your Info

Please provide your contact details:

Name:

Organization:

Address:

Phone Number:

E-mail:

Committer

Please provide contact details for the committer who will be incorporating this contribution into the code base. If this
is the same as above, just put "same" in the Name field.

Name:

Organization:

Address:

Phone Number:

E-mail:

PM Approval

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 111

PM Approval is required for all significant contributions. Please provide the contact info of the PM who has given
approval for this contribution:

Name:

Phone Number:

E-mail:

Contribution

Please provide details about the contribution:

Component/Module (if
known):

Contribution Name:

Contribution Version:

Contribution Size (in lines
of code):

Contribution Description:

Does this contribution
require any packages
maintained by a 3rd party?

Please list all pkgs required
by the contribution which
are maintained by a 3rd
party: (Please list one
package per line e.g 3rd
party package name v1.0)

Supporting Information:

Do you agree to distribute
the Contribution under
Common Public License
1.0?

Do you agree to distribute
the Contribution under
Apache License 2.0?

Provide any additional
information you may have
regarding intellectual
property rights (patents,
trademarks, etc.) related
to the Contribution. If
there is more than one
committer who worked on
this contribution, please
list their name and email
addresses.

Contributor

DITA Open Toolkit | DITA Open Toolkit Project Management Guidelines | 112

Note: All of the contributors should ensure that they possess the necessary rights to make the contribution under the
terms and conditions set out in the Contribution Policy.

Please provide contact details for the contributor or the primary contributor if there is more than one:

Name:

Organization:

Phone Number:

E-mail:

% of content authored in
the contribution:

If there are other contributors, please provide names, organizations, e-mail, and percentage of content authored in the
contribution:

Other Contributors:

Cryptography

If the contribution deals in any way with cryptography, please provide details:

Details:

Identify the Cryptography
algorithm used:

Contributor's signature

Name (Type or Print)

Title

Signature

Date

Contributor employer's signature

Name (Type or Print)

Title

Signature

Date

Appendix

B
DITA and DITA-OT resources

Topics:

• Web-based resources
• developerWorks articles

In addition to the DITA-OT documentation, there are other resources about
DITA and the DITA-OT that you might find helpful.

DITA Open Toolkit | DITA and DITA-OT resources | 114

Web-based resources
There are many vital DITA resources online, including the Yahoo! dita-users group and the DITA-OT project page at
dita.xml.org.

DITA-OT project page at dita.xml.org The DITA-OT project page at dita.xml.org provides
news about the latest toolkit builds, plans for the
next milestone release, and other rapidly-changing
information. It also contains release notes for all past and
upcoming releases.

Yahoo! dita-users group The DITA-OT project page at dita.xml.org provides
news about the latest toolkit builds, plans for the
next milestone release, and other rapidly-changing
information. It also contains release notes for all past and
upcoming releases.

Home page for the OASIS DITA Technical Committee The OASIS DITA Technical Committee develops the
DITA standard.

developerWorks articles
Between 2001 and 2005, IBM DITA experts published an important collection of articles on the developerWorks
Web site.

• Introduction to the Darwin Information Typing Architecture
• Specializing topic types in DITA
• Specializing domains in DITA
• Frequently Asked Questions about the Darwin Information Typing Architecture
• Why use DITA to produce HTML deliverables?
• Design patterns for information architecture with DITA map domains
• Migrating HTML to DITA, Part 1: Simple steps to move from HTML to DITA
• Migrating HTML to DITA, Part 2: Extend the migration for more robust results
• Transform Eclipse navigation files to DITA navigation files

http://dita.xml.org/wiki/the-dita-open-toolkit
http://groups.yahoo.com/group/dita-users/
http://www.oasis-open.org/committees/dita/
http://www-128.ibm.com/developerworks/xml/library/x-dita1/
http://www-128.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita5/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita3/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita6/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita7/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita8a/
http://www-128.ibm.com/developerworks/xml/library/x-dita8b/
http://www-128.ibm.com/developerworks/xml/library/x-ecldita/

	Contents
	Getting Started with the DITA Open Toolkit
	Installing the full-easy-install package
	Running the demo build
	Building your own content using the demo build

	DITA Open Toolkit User Guide
	Overview of the DITA Open Toolkit
	Release notes
	General Enhancements and Changes
	Migration from previous releases
	Issues

	DITA 1.2 Specification Support
	Tested platforms and tools

	Installing the DITA Open Toolkit
	Distribution packages
	Prerequisite software
	Installing the full-easy-install package
	Installing the minimal or standard package on Linux or Mac OSX
	Installing the minimal or standard package on Windows

	Publishing DITA content
	DITA-OT transformations
	DITA to Docbook
	DITA to Eclipse Content
	DITA to Eclipse help
	DITA to HTML Help (CHM)
	DITA to legacy PDF transformation
	DITA to Open Document Type
	DITA to PDF (PDF2)
	DITA to Rich Text Format
	DITA to TocJS
	DITA to Troff
	DITA to XHTML

	Publishing DITA content from Ant
	Ant
	Building output using Ant
	Creating an Ant build script

	Publishing DITA content from the command-line tool
	Command-line tool
	Building output using the command-line tool

	Globalizing DITA content
	Globalization support offered by the DITA-OT
	Supported languages: HTML-based transformations
	Supported languages: PDF transformations

	Error messages and troubleshooting
	DITA-OT error messages
	Other error messages
	Log files
	Accessing help from the command-line tool
	Determing the version of the DITA Open Toolkit
	Enabling debug mode
	Increasing Java memory allocation

	Reference
	Ant parameters
	Ant parameters: All transformations
	Ant parameters: Common HTML-based transformations
	Ant parameters: Eclipse content transformation
	Ant parameters: Eclipse help transformation
	Ant parameters: HTML Help transformation
	Ant parameters: JavaHelp transformation
	Ant parameters: Legacy PDF transformation
	Ant parameters: ODT transformation
	Ant parameters: Other
	Ant parameters: PDF transformation
	Ant parameters: XHTML transformation

	Command-line tool parameters
	Command-line tool parameters: All transformations
	Command-line tool parameters: All HTML-based transformations
	Command-line tool parameters: Eclipse content transformation
	Command-line tool parameters: Eclipse help transformation
	Command-line tool parameters: HTML help transformation
	Command-line tool parameters: JavaHelp transformation
	Command-line tool parameters: ODT transformation
	Command-line tool parameters: PDF transformation
	Command-line tool parameters: XHTML transformation

	lib/configuration.properties file

	DITA Open Toolkit Developer Reference
	Architecture of the DITA Open Toolkit
	DITA-OT processing structure
	DITA-OT processing modules
	DITA-OT processing order
	Pre-processing modules
	Generate lists (gen-list)
	Debug and filter (debug-filter)
	Copy related files (copy-files)
	Conref push (conrefpush)
	Conref (conref)
	Move metadata (move-meta-entries)
	Resolve keyref (keyref)
	Resolve code references (codref)
	Resolve map references (mapref)
	Pull content into maps (mappull)
	Chunk topics (chunk)
	Map based linking (maplink and move-links)
	Pull content into topics (topicpull)
	Flagging in the toolkit

	XHTML processing modules
	Common XHTML processing
	Default XHTML processing
	Eclipse help processing
	TocJS processing
	HTML Help processing
	JavaHelp processing

	PDF processing modules
	Open Document Format processing modules

	Extending the DITA Open Toolkit
	Installing plug-ins
	Removing plug-ins
	Rebuilding the DITA-OT documentation

	Configuring the DITA Open Toolkit
	plugin.properties file

	Creating DITA-OT plug-ins
	Plug-in configuration file
	Extending the XML Catalog
	Adding new targets to the Ant build process
	Adding Ant targets to the pre-process pipeline
	Integrating a new transform type
	Override styles with XSLT
	Modifying or adding generated text
	Passing parameters to existing XSLT steps
	Adding Java libraries to the classpath
	Adding diagnostic messages
	Managing plug-in dependencies
	Version and support information
	Creating a new plug-in extension point
	Example plugin.xml file

	Migrating style sheets and XSLT overrides
	XHTML migration for flagging updates in DITA-OT 1.7

	Customizing PDF output
	Internal Ant properties
	Implementation dependent features
	Extended functionality
	Code reference processing

	DITA Open Toolkit Project Management Guidelines
	Goals and objectives of the DITA Open Toolkit
	DITA Open Toolkit development process
	Project roles and responsibilities
	DITA Open Toolkit release management
	Feature requests and defect reports

	How to participate in the DITA Open Toolkit
	Due diligence for submission of bug fixes and patches from non-committers
	DITA Open Toolkit Contribution Policy
	DITA-OT Contribution Questionnaire Form 1.2

	DITA and DITA-OT resources
	Web-based resources
	developerWorks articles

