1 |
|
---|
2 | /*============================================================================
|
---|
3 |
|
---|
4 | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
---|
5 | Package, Release 2b.
|
---|
6 |
|
---|
7 | Written by John R. Hauser. This work was made possible in part by the
|
---|
8 | International Computer Science Institute, located at Suite 600, 1947 Center
|
---|
9 | Street, Berkeley, California 94704. Funding was partially provided by the
|
---|
10 | National Science Foundation under grant MIP-9311980. The original version
|
---|
11 | of this code was written as part of a project to build a fixed-point vector
|
---|
12 | processor in collaboration with the University of California at Berkeley,
|
---|
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
---|
14 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
---|
15 | arithmetic/SoftFloat.html'.
|
---|
16 |
|
---|
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
---|
18 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
---|
19 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
---|
20 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
---|
21 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
---|
22 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
---|
23 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
---|
24 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
---|
25 |
|
---|
26 | Derivative works are acceptable, even for commercial purposes, so long as
|
---|
27 | (1) the source code for the derivative work includes prominent notice that
|
---|
28 | the work is derivative, and (2) the source code includes prominent notice with
|
---|
29 | these four paragraphs for those parts of this code that are retained.
|
---|
30 |
|
---|
31 | =============================================================================*/
|
---|
32 |
|
---|
33 | #include "softfloat.h"
|
---|
34 |
|
---|
35 | /*----------------------------------------------------------------------------
|
---|
36 | | Primitive arithmetic functions, including multi-word arithmetic, and
|
---|
37 | | division and square root approximations. (Can be specialized to target if
|
---|
38 | | desired.)
|
---|
39 | *----------------------------------------------------------------------------*/
|
---|
40 | #include "softfloat-macros.h"
|
---|
41 |
|
---|
42 | /*----------------------------------------------------------------------------
|
---|
43 | | Functions and definitions to determine: (1) whether tininess for underflow
|
---|
44 | | is detected before or after rounding by default, (2) what (if anything)
|
---|
45 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
---|
46 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
---|
47 | | are propagated from function inputs to output. These details are target-
|
---|
48 | | specific.
|
---|
49 | *----------------------------------------------------------------------------*/
|
---|
50 | #include "softfloat-specialize.h"
|
---|
51 |
|
---|
52 | void set_float_rounding_mode(int val STATUS_PARAM)
|
---|
53 | {
|
---|
54 | STATUS(float_rounding_mode) = val;
|
---|
55 | }
|
---|
56 |
|
---|
57 | void set_float_exception_flags(int val STATUS_PARAM)
|
---|
58 | {
|
---|
59 | STATUS(float_exception_flags) = val;
|
---|
60 | }
|
---|
61 |
|
---|
62 | #ifdef FLOATX80
|
---|
63 | void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
---|
64 | {
|
---|
65 | STATUS(floatx80_rounding_precision) = val;
|
---|
66 | }
|
---|
67 | #endif
|
---|
68 |
|
---|
69 | /*----------------------------------------------------------------------------
|
---|
70 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
---|
71 | | and 7, and returns the properly rounded 32-bit integer corresponding to the
|
---|
72 | | input. If `zSign' is 1, the input is negated before being converted to an
|
---|
73 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
|
---|
74 | | is simply rounded to an integer, with the inexact exception raised if the
|
---|
75 | | input cannot be represented exactly as an integer. However, if the fixed-
|
---|
76 | | point input is too large, the invalid exception is raised and the largest
|
---|
77 | | positive or negative integer is returned.
|
---|
78 | *----------------------------------------------------------------------------*/
|
---|
79 |
|
---|
80 | static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
|
---|
81 | {
|
---|
82 | int8 roundingMode;
|
---|
83 | flag roundNearestEven;
|
---|
84 | int8 roundIncrement, roundBits;
|
---|
85 | int32 z;
|
---|
86 |
|
---|
87 | roundingMode = STATUS(float_rounding_mode);
|
---|
88 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
89 | roundIncrement = 0x40;
|
---|
90 | if ( ! roundNearestEven ) {
|
---|
91 | if ( roundingMode == float_round_to_zero ) {
|
---|
92 | roundIncrement = 0;
|
---|
93 | }
|
---|
94 | else {
|
---|
95 | roundIncrement = 0x7F;
|
---|
96 | if ( zSign ) {
|
---|
97 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
98 | }
|
---|
99 | else {
|
---|
100 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|
104 | roundBits = absZ & 0x7F;
|
---|
105 | absZ = ( absZ + roundIncrement )>>7;
|
---|
106 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
---|
107 | z = absZ;
|
---|
108 | if ( zSign ) z = - z;
|
---|
109 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
|
---|
110 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
111 | return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
112 | }
|
---|
113 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
114 | return z;
|
---|
115 |
|
---|
116 | }
|
---|
117 |
|
---|
118 | /*----------------------------------------------------------------------------
|
---|
119 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
---|
120 | | `absZ1', with binary point between bits 63 and 64 (between the input words),
|
---|
121 | | and returns the properly rounded 64-bit integer corresponding to the input.
|
---|
122 | | If `zSign' is 1, the input is negated before being converted to an integer.
|
---|
123 | | Ordinarily, the fixed-point input is simply rounded to an integer, with
|
---|
124 | | the inexact exception raised if the input cannot be represented exactly as
|
---|
125 | | an integer. However, if the fixed-point input is too large, the invalid
|
---|
126 | | exception is raised and the largest positive or negative integer is
|
---|
127 | | returned.
|
---|
128 | *----------------------------------------------------------------------------*/
|
---|
129 |
|
---|
130 | static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM)
|
---|
131 | {
|
---|
132 | int8 roundingMode;
|
---|
133 | flag roundNearestEven, increment;
|
---|
134 | int64 z;
|
---|
135 |
|
---|
136 | roundingMode = STATUS(float_rounding_mode);
|
---|
137 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
138 | increment = ( (sbits64) absZ1 < 0 );
|
---|
139 | if ( ! roundNearestEven ) {
|
---|
140 | if ( roundingMode == float_round_to_zero ) {
|
---|
141 | increment = 0;
|
---|
142 | }
|
---|
143 | else {
|
---|
144 | if ( zSign ) {
|
---|
145 | increment = ( roundingMode == float_round_down ) && absZ1;
|
---|
146 | }
|
---|
147 | else {
|
---|
148 | increment = ( roundingMode == float_round_up ) && absZ1;
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 | if ( increment ) {
|
---|
153 | ++absZ0;
|
---|
154 | if ( absZ0 == 0 ) goto overflow;
|
---|
155 | absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
|
---|
156 | }
|
---|
157 | z = absZ0;
|
---|
158 | if ( zSign ) z = - z;
|
---|
159 | if ( z && ( ( z < 0 ) ^ zSign ) ) {
|
---|
160 | overflow:
|
---|
161 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
162 | return
|
---|
163 | zSign ? (sbits64) LIT64( 0x8000000000000000 )
|
---|
164 | : LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
165 | }
|
---|
166 | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
167 | return z;
|
---|
168 |
|
---|
169 | }
|
---|
170 |
|
---|
171 | /*----------------------------------------------------------------------------
|
---|
172 | | Returns the fraction bits of the single-precision floating-point value `a'.
|
---|
173 | *----------------------------------------------------------------------------*/
|
---|
174 |
|
---|
175 | INLINE bits32 extractFloat32Frac( float32 a )
|
---|
176 | {
|
---|
177 |
|
---|
178 | return a & 0x007FFFFF;
|
---|
179 |
|
---|
180 | }
|
---|
181 |
|
---|
182 | /*----------------------------------------------------------------------------
|
---|
183 | | Returns the exponent bits of the single-precision floating-point value `a'.
|
---|
184 | *----------------------------------------------------------------------------*/
|
---|
185 |
|
---|
186 | INLINE int16 extractFloat32Exp( float32 a )
|
---|
187 | {
|
---|
188 |
|
---|
189 | return ( a>>23 ) & 0xFF;
|
---|
190 |
|
---|
191 | }
|
---|
192 |
|
---|
193 | /*----------------------------------------------------------------------------
|
---|
194 | | Returns the sign bit of the single-precision floating-point value `a'.
|
---|
195 | *----------------------------------------------------------------------------*/
|
---|
196 |
|
---|
197 | INLINE flag extractFloat32Sign( float32 a )
|
---|
198 | {
|
---|
199 |
|
---|
200 | return a>>31;
|
---|
201 |
|
---|
202 | }
|
---|
203 |
|
---|
204 | /*----------------------------------------------------------------------------
|
---|
205 | | Normalizes the subnormal single-precision floating-point value represented
|
---|
206 | | by the denormalized significand `aSig'. The normalized exponent and
|
---|
207 | | significand are stored at the locations pointed to by `zExpPtr' and
|
---|
208 | | `zSigPtr', respectively.
|
---|
209 | *----------------------------------------------------------------------------*/
|
---|
210 |
|
---|
211 | static void
|
---|
212 | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
|
---|
213 | {
|
---|
214 | int8 shiftCount;
|
---|
215 |
|
---|
216 | shiftCount = countLeadingZeros32( aSig ) - 8;
|
---|
217 | *zSigPtr = aSig<<shiftCount;
|
---|
218 | *zExpPtr = 1 - shiftCount;
|
---|
219 |
|
---|
220 | }
|
---|
221 |
|
---|
222 | /*----------------------------------------------------------------------------
|
---|
223 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
---|
224 | | single-precision floating-point value, returning the result. After being
|
---|
225 | | shifted into the proper positions, the three fields are simply added
|
---|
226 | | together to form the result. This means that any integer portion of `zSig'
|
---|
227 | | will be added into the exponent. Since a properly normalized significand
|
---|
228 | | will have an integer portion equal to 1, the `zExp' input should be 1 less
|
---|
229 | | than the desired result exponent whenever `zSig' is a complete, normalized
|
---|
230 | | significand.
|
---|
231 | *----------------------------------------------------------------------------*/
|
---|
232 |
|
---|
233 | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
|
---|
234 | {
|
---|
235 |
|
---|
236 | return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
|
---|
237 |
|
---|
238 | }
|
---|
239 |
|
---|
240 | /*----------------------------------------------------------------------------
|
---|
241 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
242 | | and significand `zSig', and returns the proper single-precision floating-
|
---|
243 | | point value corresponding to the abstract input. Ordinarily, the abstract
|
---|
244 | | value is simply rounded and packed into the single-precision format, with
|
---|
245 | | the inexact exception raised if the abstract input cannot be represented
|
---|
246 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
247 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
248 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
249 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
250 | | the abstract input cannot be represented exactly as a subnormal single-
|
---|
251 | | precision floating-point number.
|
---|
252 | | The input significand `zSig' has its binary point between bits 30
|
---|
253 | | and 29, which is 7 bits to the left of the usual location. This shifted
|
---|
254 | | significand must be normalized or smaller. If `zSig' is not normalized,
|
---|
255 | | `zExp' must be 0; in that case, the result returned is a subnormal number,
|
---|
256 | | and it must not require rounding. In the usual case that `zSig' is
|
---|
257 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
---|
258 | | The handling of underflow and overflow follows the IEC/IEEE Standard for
|
---|
259 | | Binary Floating-Point Arithmetic.
|
---|
260 | *----------------------------------------------------------------------------*/
|
---|
261 |
|
---|
262 | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
|
---|
263 | {
|
---|
264 | int8 roundingMode;
|
---|
265 | flag roundNearestEven;
|
---|
266 | int8 roundIncrement, roundBits;
|
---|
267 | flag isTiny;
|
---|
268 |
|
---|
269 | roundingMode = STATUS(float_rounding_mode);
|
---|
270 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
271 | roundIncrement = 0x40;
|
---|
272 | if ( ! roundNearestEven ) {
|
---|
273 | if ( roundingMode == float_round_to_zero ) {
|
---|
274 | roundIncrement = 0;
|
---|
275 | }
|
---|
276 | else {
|
---|
277 | roundIncrement = 0x7F;
|
---|
278 | if ( zSign ) {
|
---|
279 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
280 | }
|
---|
281 | else {
|
---|
282 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 | roundBits = zSig & 0x7F;
|
---|
287 | if ( 0xFD <= (bits16) zExp ) {
|
---|
288 | if ( ( 0xFD < zExp )
|
---|
289 | || ( ( zExp == 0xFD )
|
---|
290 | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
|
---|
291 | ) {
|
---|
292 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
293 | return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
|
---|
294 | }
|
---|
295 | if ( zExp < 0 ) {
|
---|
296 | isTiny =
|
---|
297 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
298 | || ( zExp < -1 )
|
---|
299 | || ( zSig + roundIncrement < 0x80000000 );
|
---|
300 | shift32RightJamming( zSig, - zExp, &zSig );
|
---|
301 | zExp = 0;
|
---|
302 | roundBits = zSig & 0x7F;
|
---|
303 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
304 | }
|
---|
305 | }
|
---|
306 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
307 | zSig = ( zSig + roundIncrement )>>7;
|
---|
308 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
|
---|
309 | if ( zSig == 0 ) zExp = 0;
|
---|
310 | return packFloat32( zSign, zExp, zSig );
|
---|
311 |
|
---|
312 | }
|
---|
313 |
|
---|
314 | /*----------------------------------------------------------------------------
|
---|
315 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
316 | | and significand `zSig', and returns the proper single-precision floating-
|
---|
317 | | point value corresponding to the abstract input. This routine is just like
|
---|
318 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
---|
319 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
---|
320 | | floating-point exponent.
|
---|
321 | *----------------------------------------------------------------------------*/
|
---|
322 |
|
---|
323 | static float32
|
---|
324 | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
|
---|
325 | {
|
---|
326 | int8 shiftCount;
|
---|
327 |
|
---|
328 | shiftCount = countLeadingZeros32( zSig ) - 1;
|
---|
329 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
---|
330 |
|
---|
331 | }
|
---|
332 |
|
---|
333 | /*----------------------------------------------------------------------------
|
---|
334 | | Returns the fraction bits of the double-precision floating-point value `a'.
|
---|
335 | *----------------------------------------------------------------------------*/
|
---|
336 |
|
---|
337 | INLINE bits64 extractFloat64Frac( float64 a )
|
---|
338 | {
|
---|
339 |
|
---|
340 | return a & LIT64( 0x000FFFFFFFFFFFFF );
|
---|
341 |
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*----------------------------------------------------------------------------
|
---|
345 | | Returns the exponent bits of the double-precision floating-point value `a'.
|
---|
346 | *----------------------------------------------------------------------------*/
|
---|
347 |
|
---|
348 | INLINE int16 extractFloat64Exp( float64 a )
|
---|
349 | {
|
---|
350 |
|
---|
351 | return ( a>>52 ) & 0x7FF;
|
---|
352 |
|
---|
353 | }
|
---|
354 |
|
---|
355 | /*----------------------------------------------------------------------------
|
---|
356 | | Returns the sign bit of the double-precision floating-point value `a'.
|
---|
357 | *----------------------------------------------------------------------------*/
|
---|
358 |
|
---|
359 | INLINE flag extractFloat64Sign( float64 a )
|
---|
360 | {
|
---|
361 |
|
---|
362 | return a>>63;
|
---|
363 |
|
---|
364 | }
|
---|
365 |
|
---|
366 | /*----------------------------------------------------------------------------
|
---|
367 | | Normalizes the subnormal double-precision floating-point value represented
|
---|
368 | | by the denormalized significand `aSig'. The normalized exponent and
|
---|
369 | | significand are stored at the locations pointed to by `zExpPtr' and
|
---|
370 | | `zSigPtr', respectively.
|
---|
371 | *----------------------------------------------------------------------------*/
|
---|
372 |
|
---|
373 | static void
|
---|
374 | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
|
---|
375 | {
|
---|
376 | int8 shiftCount;
|
---|
377 |
|
---|
378 | shiftCount = countLeadingZeros64( aSig ) - 11;
|
---|
379 | *zSigPtr = aSig<<shiftCount;
|
---|
380 | *zExpPtr = 1 - shiftCount;
|
---|
381 |
|
---|
382 | }
|
---|
383 |
|
---|
384 | /*----------------------------------------------------------------------------
|
---|
385 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
|
---|
386 | | double-precision floating-point value, returning the result. After being
|
---|
387 | | shifted into the proper positions, the three fields are simply added
|
---|
388 | | together to form the result. This means that any integer portion of `zSig'
|
---|
389 | | will be added into the exponent. Since a properly normalized significand
|
---|
390 | | will have an integer portion equal to 1, the `zExp' input should be 1 less
|
---|
391 | | than the desired result exponent whenever `zSig' is a complete, normalized
|
---|
392 | | significand.
|
---|
393 | *----------------------------------------------------------------------------*/
|
---|
394 |
|
---|
395 | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
|
---|
396 | {
|
---|
397 |
|
---|
398 | return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
|
---|
399 |
|
---|
400 | }
|
---|
401 |
|
---|
402 | /*----------------------------------------------------------------------------
|
---|
403 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
404 | | and significand `zSig', and returns the proper double-precision floating-
|
---|
405 | | point value corresponding to the abstract input. Ordinarily, the abstract
|
---|
406 | | value is simply rounded and packed into the double-precision format, with
|
---|
407 | | the inexact exception raised if the abstract input cannot be represented
|
---|
408 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
409 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
410 | | returned. If the abstract value is too small, the input value is rounded
|
---|
411 | | to a subnormal number, and the underflow and inexact exceptions are raised
|
---|
412 | | if the abstract input cannot be represented exactly as a subnormal double-
|
---|
413 | | precision floating-point number.
|
---|
414 | | The input significand `zSig' has its binary point between bits 62
|
---|
415 | | and 61, which is 10 bits to the left of the usual location. This shifted
|
---|
416 | | significand must be normalized or smaller. If `zSig' is not normalized,
|
---|
417 | | `zExp' must be 0; in that case, the result returned is a subnormal number,
|
---|
418 | | and it must not require rounding. In the usual case that `zSig' is
|
---|
419 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
---|
420 | | The handling of underflow and overflow follows the IEC/IEEE Standard for
|
---|
421 | | Binary Floating-Point Arithmetic.
|
---|
422 | *----------------------------------------------------------------------------*/
|
---|
423 |
|
---|
424 | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
|
---|
425 | {
|
---|
426 | int8 roundingMode;
|
---|
427 | flag roundNearestEven;
|
---|
428 | int16 roundIncrement, roundBits;
|
---|
429 | flag isTiny;
|
---|
430 |
|
---|
431 | roundingMode = STATUS(float_rounding_mode);
|
---|
432 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
433 | roundIncrement = 0x200;
|
---|
434 | if ( ! roundNearestEven ) {
|
---|
435 | if ( roundingMode == float_round_to_zero ) {
|
---|
436 | roundIncrement = 0;
|
---|
437 | }
|
---|
438 | else {
|
---|
439 | roundIncrement = 0x3FF;
|
---|
440 | if ( zSign ) {
|
---|
441 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
442 | }
|
---|
443 | else {
|
---|
444 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
445 | }
|
---|
446 | }
|
---|
447 | }
|
---|
448 | roundBits = zSig & 0x3FF;
|
---|
449 | if ( 0x7FD <= (bits16) zExp ) {
|
---|
450 | if ( ( 0x7FD < zExp )
|
---|
451 | || ( ( zExp == 0x7FD )
|
---|
452 | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
|
---|
453 | ) {
|
---|
454 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
455 | return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
|
---|
456 | }
|
---|
457 | if ( zExp < 0 ) {
|
---|
458 | isTiny =
|
---|
459 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
460 | || ( zExp < -1 )
|
---|
461 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
|
---|
462 | shift64RightJamming( zSig, - zExp, &zSig );
|
---|
463 | zExp = 0;
|
---|
464 | roundBits = zSig & 0x3FF;
|
---|
465 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
466 | }
|
---|
467 | }
|
---|
468 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
469 | zSig = ( zSig + roundIncrement )>>10;
|
---|
470 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
|
---|
471 | if ( zSig == 0 ) zExp = 0;
|
---|
472 | return packFloat64( zSign, zExp, zSig );
|
---|
473 |
|
---|
474 | }
|
---|
475 |
|
---|
476 | /*----------------------------------------------------------------------------
|
---|
477 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
478 | | and significand `zSig', and returns the proper double-precision floating-
|
---|
479 | | point value corresponding to the abstract input. This routine is just like
|
---|
480 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
|
---|
481 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
---|
482 | | floating-point exponent.
|
---|
483 | *----------------------------------------------------------------------------*/
|
---|
484 |
|
---|
485 | static float64
|
---|
486 | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
|
---|
487 | {
|
---|
488 | int8 shiftCount;
|
---|
489 |
|
---|
490 | shiftCount = countLeadingZeros64( zSig ) - 1;
|
---|
491 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
|
---|
492 |
|
---|
493 | }
|
---|
494 |
|
---|
495 | #ifdef FLOATX80
|
---|
496 |
|
---|
497 | /*----------------------------------------------------------------------------
|
---|
498 | | Returns the fraction bits of the extended double-precision floating-point
|
---|
499 | | value `a'.
|
---|
500 | *----------------------------------------------------------------------------*/
|
---|
501 |
|
---|
502 | INLINE bits64 extractFloatx80Frac( floatx80 a )
|
---|
503 | {
|
---|
504 |
|
---|
505 | return a.low;
|
---|
506 |
|
---|
507 | }
|
---|
508 |
|
---|
509 | /*----------------------------------------------------------------------------
|
---|
510 | | Returns the exponent bits of the extended double-precision floating-point
|
---|
511 | | value `a'.
|
---|
512 | *----------------------------------------------------------------------------*/
|
---|
513 |
|
---|
514 | INLINE int32 extractFloatx80Exp( floatx80 a )
|
---|
515 | {
|
---|
516 |
|
---|
517 | return a.high & 0x7FFF;
|
---|
518 |
|
---|
519 | }
|
---|
520 |
|
---|
521 | /*----------------------------------------------------------------------------
|
---|
522 | | Returns the sign bit of the extended double-precision floating-point value
|
---|
523 | | `a'.
|
---|
524 | *----------------------------------------------------------------------------*/
|
---|
525 |
|
---|
526 | INLINE flag extractFloatx80Sign( floatx80 a )
|
---|
527 | {
|
---|
528 |
|
---|
529 | return a.high>>15;
|
---|
530 |
|
---|
531 | }
|
---|
532 |
|
---|
533 | /*----------------------------------------------------------------------------
|
---|
534 | | Normalizes the subnormal extended double-precision floating-point value
|
---|
535 | | represented by the denormalized significand `aSig'. The normalized exponent
|
---|
536 | | and significand are stored at the locations pointed to by `zExpPtr' and
|
---|
537 | | `zSigPtr', respectively.
|
---|
538 | *----------------------------------------------------------------------------*/
|
---|
539 |
|
---|
540 | static void
|
---|
541 | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
|
---|
542 | {
|
---|
543 | int8 shiftCount;
|
---|
544 |
|
---|
545 | shiftCount = countLeadingZeros64( aSig );
|
---|
546 | *zSigPtr = aSig<<shiftCount;
|
---|
547 | *zExpPtr = 1 - shiftCount;
|
---|
548 |
|
---|
549 | }
|
---|
550 |
|
---|
551 | /*----------------------------------------------------------------------------
|
---|
552 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
---|
553 | | extended double-precision floating-point value, returning the result.
|
---|
554 | *----------------------------------------------------------------------------*/
|
---|
555 |
|
---|
556 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
|
---|
557 | {
|
---|
558 | floatx80 z;
|
---|
559 |
|
---|
560 | z.low = zSig;
|
---|
561 | z.high = ( ( (bits16) zSign )<<15 ) + zExp;
|
---|
562 | return z;
|
---|
563 |
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*----------------------------------------------------------------------------
|
---|
567 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
568 | | and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
---|
569 | | and returns the proper extended double-precision floating-point value
|
---|
570 | | corresponding to the abstract input. Ordinarily, the abstract value is
|
---|
571 | | rounded and packed into the extended double-precision format, with the
|
---|
572 | | inexact exception raised if the abstract input cannot be represented
|
---|
573 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
574 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
575 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
576 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
577 | | the abstract input cannot be represented exactly as a subnormal extended
|
---|
578 | | double-precision floating-point number.
|
---|
579 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
---|
580 | | number of bits as single or double precision, respectively. Otherwise, the
|
---|
581 | | result is rounded to the full precision of the extended double-precision
|
---|
582 | | format.
|
---|
583 | | The input significand must be normalized or smaller. If the input
|
---|
584 | | significand is not normalized, `zExp' must be 0; in that case, the result
|
---|
585 | | returned is a subnormal number, and it must not require rounding. The
|
---|
586 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
---|
587 | | Floating-Point Arithmetic.
|
---|
588 | *----------------------------------------------------------------------------*/
|
---|
589 |
|
---|
590 | static floatx80
|
---|
591 | roundAndPackFloatx80(
|
---|
592 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
|
---|
593 | STATUS_PARAM)
|
---|
594 | {
|
---|
595 | int8 roundingMode;
|
---|
596 | flag roundNearestEven, increment, isTiny;
|
---|
597 | int64 roundIncrement, roundMask, roundBits;
|
---|
598 |
|
---|
599 | roundingMode = STATUS(float_rounding_mode);
|
---|
600 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
601 | if ( roundingPrecision == 80 ) goto precision80;
|
---|
602 | if ( roundingPrecision == 64 ) {
|
---|
603 | roundIncrement = LIT64( 0x0000000000000400 );
|
---|
604 | roundMask = LIT64( 0x00000000000007FF );
|
---|
605 | }
|
---|
606 | else if ( roundingPrecision == 32 ) {
|
---|
607 | roundIncrement = LIT64( 0x0000008000000000 );
|
---|
608 | roundMask = LIT64( 0x000000FFFFFFFFFF );
|
---|
609 | }
|
---|
610 | else {
|
---|
611 | goto precision80;
|
---|
612 | }
|
---|
613 | zSig0 |= ( zSig1 != 0 );
|
---|
614 | if ( ! roundNearestEven ) {
|
---|
615 | if ( roundingMode == float_round_to_zero ) {
|
---|
616 | roundIncrement = 0;
|
---|
617 | }
|
---|
618 | else {
|
---|
619 | roundIncrement = roundMask;
|
---|
620 | if ( zSign ) {
|
---|
621 | if ( roundingMode == float_round_up ) roundIncrement = 0;
|
---|
622 | }
|
---|
623 | else {
|
---|
624 | if ( roundingMode == float_round_down ) roundIncrement = 0;
|
---|
625 | }
|
---|
626 | }
|
---|
627 | }
|
---|
628 | roundBits = zSig0 & roundMask;
|
---|
629 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
|
---|
630 | if ( ( 0x7FFE < zExp )
|
---|
631 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
|
---|
632 | ) {
|
---|
633 | goto overflow;
|
---|
634 | }
|
---|
635 | if ( zExp <= 0 ) {
|
---|
636 | isTiny =
|
---|
637 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
638 | || ( zExp < 0 )
|
---|
639 | || ( zSig0 <= zSig0 + roundIncrement );
|
---|
640 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
|
---|
641 | zExp = 0;
|
---|
642 | roundBits = zSig0 & roundMask;
|
---|
643 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
644 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
645 | zSig0 += roundIncrement;
|
---|
646 | if ( (sbits64) zSig0 < 0 ) zExp = 1;
|
---|
647 | roundIncrement = roundMask + 1;
|
---|
648 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
---|
649 | roundMask |= roundIncrement;
|
---|
650 | }
|
---|
651 | zSig0 &= ~ roundMask;
|
---|
652 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
653 | }
|
---|
654 | }
|
---|
655 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
656 | zSig0 += roundIncrement;
|
---|
657 | if ( zSig0 < roundIncrement ) {
|
---|
658 | ++zExp;
|
---|
659 | zSig0 = LIT64( 0x8000000000000000 );
|
---|
660 | }
|
---|
661 | roundIncrement = roundMask + 1;
|
---|
662 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
|
---|
663 | roundMask |= roundIncrement;
|
---|
664 | }
|
---|
665 | zSig0 &= ~ roundMask;
|
---|
666 | if ( zSig0 == 0 ) zExp = 0;
|
---|
667 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
668 | precision80:
|
---|
669 | increment = ( (sbits64) zSig1 < 0 );
|
---|
670 | if ( ! roundNearestEven ) {
|
---|
671 | if ( roundingMode == float_round_to_zero ) {
|
---|
672 | increment = 0;
|
---|
673 | }
|
---|
674 | else {
|
---|
675 | if ( zSign ) {
|
---|
676 | increment = ( roundingMode == float_round_down ) && zSig1;
|
---|
677 | }
|
---|
678 | else {
|
---|
679 | increment = ( roundingMode == float_round_up ) && zSig1;
|
---|
680 | }
|
---|
681 | }
|
---|
682 | }
|
---|
683 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
|
---|
684 | if ( ( 0x7FFE < zExp )
|
---|
685 | || ( ( zExp == 0x7FFE )
|
---|
686 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
|
---|
687 | && increment
|
---|
688 | )
|
---|
689 | ) {
|
---|
690 | roundMask = 0;
|
---|
691 | overflow:
|
---|
692 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
693 | if ( ( roundingMode == float_round_to_zero )
|
---|
694 | || ( zSign && ( roundingMode == float_round_up ) )
|
---|
695 | || ( ! zSign && ( roundingMode == float_round_down ) )
|
---|
696 | ) {
|
---|
697 | return packFloatx80( zSign, 0x7FFE, ~ roundMask );
|
---|
698 | }
|
---|
699 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
700 | }
|
---|
701 | if ( zExp <= 0 ) {
|
---|
702 | isTiny =
|
---|
703 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
704 | || ( zExp < 0 )
|
---|
705 | || ! increment
|
---|
706 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
|
---|
707 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
|
---|
708 | zExp = 0;
|
---|
709 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
710 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
711 | if ( roundNearestEven ) {
|
---|
712 | increment = ( (sbits64) zSig1 < 0 );
|
---|
713 | }
|
---|
714 | else {
|
---|
715 | if ( zSign ) {
|
---|
716 | increment = ( roundingMode == float_round_down ) && zSig1;
|
---|
717 | }
|
---|
718 | else {
|
---|
719 | increment = ( roundingMode == float_round_up ) && zSig1;
|
---|
720 | }
|
---|
721 | }
|
---|
722 | if ( increment ) {
|
---|
723 | ++zSig0;
|
---|
724 | zSig0 &=
|
---|
725 | ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
---|
726 | if ( (sbits64) zSig0 < 0 ) zExp = 1;
|
---|
727 | }
|
---|
728 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
729 | }
|
---|
730 | }
|
---|
731 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
732 | if ( increment ) {
|
---|
733 | ++zSig0;
|
---|
734 | if ( zSig0 == 0 ) {
|
---|
735 | ++zExp;
|
---|
736 | zSig0 = LIT64( 0x8000000000000000 );
|
---|
737 | }
|
---|
738 | else {
|
---|
739 | zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
|
---|
740 | }
|
---|
741 | }
|
---|
742 | else {
|
---|
743 | if ( zSig0 == 0 ) zExp = 0;
|
---|
744 | }
|
---|
745 | return packFloatx80( zSign, zExp, zSig0 );
|
---|
746 |
|
---|
747 | }
|
---|
748 |
|
---|
749 | /*----------------------------------------------------------------------------
|
---|
750 | | Takes an abstract floating-point value having sign `zSign', exponent
|
---|
751 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
---|
752 | | and returns the proper extended double-precision floating-point value
|
---|
753 | | corresponding to the abstract input. This routine is just like
|
---|
754 | | `roundAndPackFloatx80' except that the input significand does not have to be
|
---|
755 | | normalized.
|
---|
756 | *----------------------------------------------------------------------------*/
|
---|
757 |
|
---|
758 | static floatx80
|
---|
759 | normalizeRoundAndPackFloatx80(
|
---|
760 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
|
---|
761 | STATUS_PARAM)
|
---|
762 | {
|
---|
763 | int8 shiftCount;
|
---|
764 |
|
---|
765 | if ( zSig0 == 0 ) {
|
---|
766 | zSig0 = zSig1;
|
---|
767 | zSig1 = 0;
|
---|
768 | zExp -= 64;
|
---|
769 | }
|
---|
770 | shiftCount = countLeadingZeros64( zSig0 );
|
---|
771 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
772 | zExp -= shiftCount;
|
---|
773 | return
|
---|
774 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);
|
---|
775 |
|
---|
776 | }
|
---|
777 |
|
---|
778 | #endif
|
---|
779 |
|
---|
780 | #ifdef FLOAT128
|
---|
781 |
|
---|
782 | /*----------------------------------------------------------------------------
|
---|
783 | | Returns the least-significant 64 fraction bits of the quadruple-precision
|
---|
784 | | floating-point value `a'.
|
---|
785 | *----------------------------------------------------------------------------*/
|
---|
786 |
|
---|
787 | INLINE bits64 extractFloat128Frac1( float128 a )
|
---|
788 | {
|
---|
789 |
|
---|
790 | return a.low;
|
---|
791 |
|
---|
792 | }
|
---|
793 |
|
---|
794 | /*----------------------------------------------------------------------------
|
---|
795 | | Returns the most-significant 48 fraction bits of the quadruple-precision
|
---|
796 | | floating-point value `a'.
|
---|
797 | *----------------------------------------------------------------------------*/
|
---|
798 |
|
---|
799 | INLINE bits64 extractFloat128Frac0( float128 a )
|
---|
800 | {
|
---|
801 |
|
---|
802 | return a.high & LIT64( 0x0000FFFFFFFFFFFF );
|
---|
803 |
|
---|
804 | }
|
---|
805 |
|
---|
806 | /*----------------------------------------------------------------------------
|
---|
807 | | Returns the exponent bits of the quadruple-precision floating-point value
|
---|
808 | | `a'.
|
---|
809 | *----------------------------------------------------------------------------*/
|
---|
810 |
|
---|
811 | INLINE int32 extractFloat128Exp( float128 a )
|
---|
812 | {
|
---|
813 |
|
---|
814 | return ( a.high>>48 ) & 0x7FFF;
|
---|
815 |
|
---|
816 | }
|
---|
817 |
|
---|
818 | /*----------------------------------------------------------------------------
|
---|
819 | | Returns the sign bit of the quadruple-precision floating-point value `a'.
|
---|
820 | *----------------------------------------------------------------------------*/
|
---|
821 |
|
---|
822 | INLINE flag extractFloat128Sign( float128 a )
|
---|
823 | {
|
---|
824 |
|
---|
825 | return a.high>>63;
|
---|
826 |
|
---|
827 | }
|
---|
828 |
|
---|
829 | /*----------------------------------------------------------------------------
|
---|
830 | | Normalizes the subnormal quadruple-precision floating-point value
|
---|
831 | | represented by the denormalized significand formed by the concatenation of
|
---|
832 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location
|
---|
833 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
|
---|
834 | | significand are stored at the location pointed to by `zSig0Ptr', and the
|
---|
835 | | least significant 64 bits of the normalized significand are stored at the
|
---|
836 | | location pointed to by `zSig1Ptr'.
|
---|
837 | *----------------------------------------------------------------------------*/
|
---|
838 |
|
---|
839 | static void
|
---|
840 | normalizeFloat128Subnormal(
|
---|
841 | bits64 aSig0,
|
---|
842 | bits64 aSig1,
|
---|
843 | int32 *zExpPtr,
|
---|
844 | bits64 *zSig0Ptr,
|
---|
845 | bits64 *zSig1Ptr
|
---|
846 | )
|
---|
847 | {
|
---|
848 | int8 shiftCount;
|
---|
849 |
|
---|
850 | if ( aSig0 == 0 ) {
|
---|
851 | shiftCount = countLeadingZeros64( aSig1 ) - 15;
|
---|
852 | if ( shiftCount < 0 ) {
|
---|
853 | *zSig0Ptr = aSig1>>( - shiftCount );
|
---|
854 | *zSig1Ptr = aSig1<<( shiftCount & 63 );
|
---|
855 | }
|
---|
856 | else {
|
---|
857 | *zSig0Ptr = aSig1<<shiftCount;
|
---|
858 | *zSig1Ptr = 0;
|
---|
859 | }
|
---|
860 | *zExpPtr = - shiftCount - 63;
|
---|
861 | }
|
---|
862 | else {
|
---|
863 | shiftCount = countLeadingZeros64( aSig0 ) - 15;
|
---|
864 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
|
---|
865 | *zExpPtr = 1 - shiftCount;
|
---|
866 | }
|
---|
867 |
|
---|
868 | }
|
---|
869 |
|
---|
870 | /*----------------------------------------------------------------------------
|
---|
871 | | Packs the sign `zSign', the exponent `zExp', and the significand formed
|
---|
872 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
|
---|
873 | | floating-point value, returning the result. After being shifted into the
|
---|
874 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
|
---|
875 | | added together to form the most significant 32 bits of the result. This
|
---|
876 | | means that any integer portion of `zSig0' will be added into the exponent.
|
---|
877 | | Since a properly normalized significand will have an integer portion equal
|
---|
878 | | to 1, the `zExp' input should be 1 less than the desired result exponent
|
---|
879 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
|
---|
880 | | significand.
|
---|
881 | *----------------------------------------------------------------------------*/
|
---|
882 |
|
---|
883 | INLINE float128
|
---|
884 | packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
|
---|
885 | {
|
---|
886 | float128 z;
|
---|
887 |
|
---|
888 | z.low = zSig1;
|
---|
889 | z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
|
---|
890 | return z;
|
---|
891 |
|
---|
892 | }
|
---|
893 |
|
---|
894 | /*----------------------------------------------------------------------------
|
---|
895 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
896 | | and extended significand formed by the concatenation of `zSig0', `zSig1',
|
---|
897 | | and `zSig2', and returns the proper quadruple-precision floating-point value
|
---|
898 | | corresponding to the abstract input. Ordinarily, the abstract value is
|
---|
899 | | simply rounded and packed into the quadruple-precision format, with the
|
---|
900 | | inexact exception raised if the abstract input cannot be represented
|
---|
901 | | exactly. However, if the abstract value is too large, the overflow and
|
---|
902 | | inexact exceptions are raised and an infinity or maximal finite value is
|
---|
903 | | returned. If the abstract value is too small, the input value is rounded to
|
---|
904 | | a subnormal number, and the underflow and inexact exceptions are raised if
|
---|
905 | | the abstract input cannot be represented exactly as a subnormal quadruple-
|
---|
906 | | precision floating-point number.
|
---|
907 | | The input significand must be normalized or smaller. If the input
|
---|
908 | | significand is not normalized, `zExp' must be 0; in that case, the result
|
---|
909 | | returned is a subnormal number, and it must not require rounding. In the
|
---|
910 | | usual case that the input significand is normalized, `zExp' must be 1 less
|
---|
911 | | than the ``true'' floating-point exponent. The handling of underflow and
|
---|
912 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
913 | *----------------------------------------------------------------------------*/
|
---|
914 |
|
---|
915 | static float128
|
---|
916 | roundAndPackFloat128(
|
---|
917 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM)
|
---|
918 | {
|
---|
919 | int8 roundingMode;
|
---|
920 | flag roundNearestEven, increment, isTiny;
|
---|
921 |
|
---|
922 | roundingMode = STATUS(float_rounding_mode);
|
---|
923 | roundNearestEven = ( roundingMode == float_round_nearest_even );
|
---|
924 | increment = ( (sbits64) zSig2 < 0 );
|
---|
925 | if ( ! roundNearestEven ) {
|
---|
926 | if ( roundingMode == float_round_to_zero ) {
|
---|
927 | increment = 0;
|
---|
928 | }
|
---|
929 | else {
|
---|
930 | if ( zSign ) {
|
---|
931 | increment = ( roundingMode == float_round_down ) && zSig2;
|
---|
932 | }
|
---|
933 | else {
|
---|
934 | increment = ( roundingMode == float_round_up ) && zSig2;
|
---|
935 | }
|
---|
936 | }
|
---|
937 | }
|
---|
938 | if ( 0x7FFD <= (bits32) zExp ) {
|
---|
939 | if ( ( 0x7FFD < zExp )
|
---|
940 | || ( ( zExp == 0x7FFD )
|
---|
941 | && eq128(
|
---|
942 | LIT64( 0x0001FFFFFFFFFFFF ),
|
---|
943 | LIT64( 0xFFFFFFFFFFFFFFFF ),
|
---|
944 | zSig0,
|
---|
945 | zSig1
|
---|
946 | )
|
---|
947 | && increment
|
---|
948 | )
|
---|
949 | ) {
|
---|
950 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
|
---|
951 | if ( ( roundingMode == float_round_to_zero )
|
---|
952 | || ( zSign && ( roundingMode == float_round_up ) )
|
---|
953 | || ( ! zSign && ( roundingMode == float_round_down ) )
|
---|
954 | ) {
|
---|
955 | return
|
---|
956 | packFloat128(
|
---|
957 | zSign,
|
---|
958 | 0x7FFE,
|
---|
959 | LIT64( 0x0000FFFFFFFFFFFF ),
|
---|
960 | LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
961 | );
|
---|
962 | }
|
---|
963 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
964 | }
|
---|
965 | if ( zExp < 0 ) {
|
---|
966 | isTiny =
|
---|
967 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
|
---|
968 | || ( zExp < -1 )
|
---|
969 | || ! increment
|
---|
970 | || lt128(
|
---|
971 | zSig0,
|
---|
972 | zSig1,
|
---|
973 | LIT64( 0x0001FFFFFFFFFFFF ),
|
---|
974 | LIT64( 0xFFFFFFFFFFFFFFFF )
|
---|
975 | );
|
---|
976 | shift128ExtraRightJamming(
|
---|
977 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
---|
978 | zExp = 0;
|
---|
979 | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
|
---|
980 | if ( roundNearestEven ) {
|
---|
981 | increment = ( (sbits64) zSig2 < 0 );
|
---|
982 | }
|
---|
983 | else {
|
---|
984 | if ( zSign ) {
|
---|
985 | increment = ( roundingMode == float_round_down ) && zSig2;
|
---|
986 | }
|
---|
987 | else {
|
---|
988 | increment = ( roundingMode == float_round_up ) && zSig2;
|
---|
989 | }
|
---|
990 | }
|
---|
991 | }
|
---|
992 | }
|
---|
993 | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
994 | if ( increment ) {
|
---|
995 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
---|
996 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
---|
997 | }
|
---|
998 | else {
|
---|
999 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
---|
1000 | }
|
---|
1001 | return packFloat128( zSign, zExp, zSig0, zSig1 );
|
---|
1002 |
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | /*----------------------------------------------------------------------------
|
---|
1006 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
---|
1007 | | and significand formed by the concatenation of `zSig0' and `zSig1', and
|
---|
1008 | | returns the proper quadruple-precision floating-point value corresponding
|
---|
1009 | | to the abstract input. This routine is just like `roundAndPackFloat128'
|
---|
1010 | | except that the input significand has fewer bits and does not have to be
|
---|
1011 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
---|
1012 | | point exponent.
|
---|
1013 | *----------------------------------------------------------------------------*/
|
---|
1014 |
|
---|
1015 | static float128
|
---|
1016 | normalizeRoundAndPackFloat128(
|
---|
1017 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM)
|
---|
1018 | {
|
---|
1019 | int8 shiftCount;
|
---|
1020 | bits64 zSig2;
|
---|
1021 |
|
---|
1022 | if ( zSig0 == 0 ) {
|
---|
1023 | zSig0 = zSig1;
|
---|
1024 | zSig1 = 0;
|
---|
1025 | zExp -= 64;
|
---|
1026 | }
|
---|
1027 | shiftCount = countLeadingZeros64( zSig0 ) - 15;
|
---|
1028 | if ( 0 <= shiftCount ) {
|
---|
1029 | zSig2 = 0;
|
---|
1030 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
1031 | }
|
---|
1032 | else {
|
---|
1033 | shift128ExtraRightJamming(
|
---|
1034 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
---|
1035 | }
|
---|
1036 | zExp -= shiftCount;
|
---|
1037 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);
|
---|
1038 |
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | #endif
|
---|
1042 |
|
---|
1043 | /*----------------------------------------------------------------------------
|
---|
1044 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1045 | | to the single-precision floating-point format. The conversion is performed
|
---|
1046 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1047 | *----------------------------------------------------------------------------*/
|
---|
1048 |
|
---|
1049 | float32 int32_to_float32( int32 a STATUS_PARAM )
|
---|
1050 | {
|
---|
1051 | flag zSign;
|
---|
1052 |
|
---|
1053 | if ( a == 0 ) return 0;
|
---|
1054 | if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
|
---|
1055 | zSign = ( a < 0 );
|
---|
1056 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );
|
---|
1057 |
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | /*----------------------------------------------------------------------------
|
---|
1061 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1062 | | to the double-precision floating-point format. The conversion is performed
|
---|
1063 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1064 | *----------------------------------------------------------------------------*/
|
---|
1065 |
|
---|
1066 | float64 int32_to_float64( int32 a STATUS_PARAM )
|
---|
1067 | {
|
---|
1068 | flag zSign;
|
---|
1069 | uint32 absA;
|
---|
1070 | int8 shiftCount;
|
---|
1071 | bits64 zSig;
|
---|
1072 |
|
---|
1073 | if ( a == 0 ) return 0;
|
---|
1074 | zSign = ( a < 0 );
|
---|
1075 | absA = zSign ? - a : a;
|
---|
1076 | shiftCount = countLeadingZeros32( absA ) + 21;
|
---|
1077 | zSig = absA;
|
---|
1078 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
|
---|
1079 |
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | #ifdef FLOATX80
|
---|
1083 |
|
---|
1084 | /*----------------------------------------------------------------------------
|
---|
1085 | | Returns the result of converting the 32-bit two's complement integer `a'
|
---|
1086 | | to the extended double-precision floating-point format. The conversion
|
---|
1087 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1088 | | Arithmetic.
|
---|
1089 | *----------------------------------------------------------------------------*/
|
---|
1090 |
|
---|
1091 | floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
|
---|
1092 | {
|
---|
1093 | flag zSign;
|
---|
1094 | uint32 absA;
|
---|
1095 | int8 shiftCount;
|
---|
1096 | bits64 zSig;
|
---|
1097 |
|
---|
1098 | if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
1099 | zSign = ( a < 0 );
|
---|
1100 | absA = zSign ? - a : a;
|
---|
1101 | shiftCount = countLeadingZeros32( absA ) + 32;
|
---|
1102 | zSig = absA;
|
---|
1103 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
|
---|
1104 |
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | #endif
|
---|
1108 |
|
---|
1109 | #ifdef FLOAT128
|
---|
1110 |
|
---|
1111 | /*----------------------------------------------------------------------------
|
---|
1112 | | Returns the result of converting the 32-bit two's complement integer `a' to
|
---|
1113 | | the quadruple-precision floating-point format. The conversion is performed
|
---|
1114 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1115 | *----------------------------------------------------------------------------*/
|
---|
1116 |
|
---|
1117 | float128 int32_to_float128( int32 a STATUS_PARAM )
|
---|
1118 | {
|
---|
1119 | flag zSign;
|
---|
1120 | uint32 absA;
|
---|
1121 | int8 shiftCount;
|
---|
1122 | bits64 zSig0;
|
---|
1123 |
|
---|
1124 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
1125 | zSign = ( a < 0 );
|
---|
1126 | absA = zSign ? - a : a;
|
---|
1127 | shiftCount = countLeadingZeros32( absA ) + 17;
|
---|
1128 | zSig0 = absA;
|
---|
1129 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
|
---|
1130 |
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | #endif
|
---|
1134 |
|
---|
1135 | /*----------------------------------------------------------------------------
|
---|
1136 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1137 | | to the single-precision floating-point format. The conversion is performed
|
---|
1138 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1139 | *----------------------------------------------------------------------------*/
|
---|
1140 |
|
---|
1141 | float32 int64_to_float32( int64 a STATUS_PARAM )
|
---|
1142 | {
|
---|
1143 | flag zSign;
|
---|
1144 | uint64 absA;
|
---|
1145 | int8 shiftCount;
|
---|
1146 |
|
---|
1147 | if ( a == 0 ) return 0;
|
---|
1148 | zSign = ( a < 0 );
|
---|
1149 | absA = zSign ? - a : a;
|
---|
1150 | shiftCount = countLeadingZeros64( absA ) - 40;
|
---|
1151 | if ( 0 <= shiftCount ) {
|
---|
1152 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
|
---|
1153 | }
|
---|
1154 | else {
|
---|
1155 | shiftCount += 7;
|
---|
1156 | if ( shiftCount < 0 ) {
|
---|
1157 | shift64RightJamming( absA, - shiftCount, &absA );
|
---|
1158 | }
|
---|
1159 | else {
|
---|
1160 | absA <<= shiftCount;
|
---|
1161 | }
|
---|
1162 | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | }
|
---|
1166 |
|
---|
1167 | /*----------------------------------------------------------------------------
|
---|
1168 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1169 | | to the double-precision floating-point format. The conversion is performed
|
---|
1170 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1171 | *----------------------------------------------------------------------------*/
|
---|
1172 |
|
---|
1173 | float64 int64_to_float64( int64 a STATUS_PARAM )
|
---|
1174 | {
|
---|
1175 | flag zSign;
|
---|
1176 |
|
---|
1177 | if ( a == 0 ) return 0;
|
---|
1178 | if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
|
---|
1179 | return packFloat64( 1, 0x43E, 0 );
|
---|
1180 | }
|
---|
1181 | zSign = ( a < 0 );
|
---|
1182 | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );
|
---|
1183 |
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | #ifdef FLOATX80
|
---|
1187 |
|
---|
1188 | /*----------------------------------------------------------------------------
|
---|
1189 | | Returns the result of converting the 64-bit two's complement integer `a'
|
---|
1190 | | to the extended double-precision floating-point format. The conversion
|
---|
1191 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1192 | | Arithmetic.
|
---|
1193 | *----------------------------------------------------------------------------*/
|
---|
1194 |
|
---|
1195 | floatx80 int64_to_floatx80( int64 a STATUS_PARAM )
|
---|
1196 | {
|
---|
1197 | flag zSign;
|
---|
1198 | uint64 absA;
|
---|
1199 | int8 shiftCount;
|
---|
1200 |
|
---|
1201 | if ( a == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
1202 | zSign = ( a < 0 );
|
---|
1203 | absA = zSign ? - a : a;
|
---|
1204 | shiftCount = countLeadingZeros64( absA );
|
---|
1205 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
|
---|
1206 |
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | #endif
|
---|
1210 |
|
---|
1211 | #ifdef FLOAT128
|
---|
1212 |
|
---|
1213 | /*----------------------------------------------------------------------------
|
---|
1214 | | Returns the result of converting the 64-bit two's complement integer `a' to
|
---|
1215 | | the quadruple-precision floating-point format. The conversion is performed
|
---|
1216 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1217 | *----------------------------------------------------------------------------*/
|
---|
1218 |
|
---|
1219 | float128 int64_to_float128( int64 a STATUS_PARAM )
|
---|
1220 | {
|
---|
1221 | flag zSign;
|
---|
1222 | uint64 absA;
|
---|
1223 | int8 shiftCount;
|
---|
1224 | int32 zExp;
|
---|
1225 | bits64 zSig0, zSig1;
|
---|
1226 |
|
---|
1227 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
1228 | zSign = ( a < 0 );
|
---|
1229 | absA = zSign ? - a : a;
|
---|
1230 | shiftCount = countLeadingZeros64( absA ) + 49;
|
---|
1231 | zExp = 0x406E - shiftCount;
|
---|
1232 | if ( 64 <= shiftCount ) {
|
---|
1233 | zSig1 = 0;
|
---|
1234 | zSig0 = absA;
|
---|
1235 | shiftCount -= 64;
|
---|
1236 | }
|
---|
1237 | else {
|
---|
1238 | zSig1 = absA;
|
---|
1239 | zSig0 = 0;
|
---|
1240 | }
|
---|
1241 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
---|
1242 | return packFloat128( zSign, zExp, zSig0, zSig1 );
|
---|
1243 |
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | #endif
|
---|
1247 |
|
---|
1248 | /*----------------------------------------------------------------------------
|
---|
1249 | | Returns the result of converting the single-precision floating-point value
|
---|
1250 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
1251 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1252 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
1253 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
1254 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
1255 | | largest integer with the same sign as `a' is returned.
|
---|
1256 | *----------------------------------------------------------------------------*/
|
---|
1257 |
|
---|
1258 | int32 float32_to_int32( float32 a STATUS_PARAM )
|
---|
1259 | {
|
---|
1260 | flag aSign;
|
---|
1261 | int16 aExp, shiftCount;
|
---|
1262 | bits32 aSig;
|
---|
1263 | bits64 aSig64;
|
---|
1264 |
|
---|
1265 | aSig = extractFloat32Frac( a );
|
---|
1266 | aExp = extractFloat32Exp( a );
|
---|
1267 | aSign = extractFloat32Sign( a );
|
---|
1268 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
|
---|
1269 | if ( aExp ) aSig |= 0x00800000;
|
---|
1270 | shiftCount = 0xAF - aExp;
|
---|
1271 | aSig64 = aSig;
|
---|
1272 | aSig64 <<= 32;
|
---|
1273 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
|
---|
1274 | return roundAndPackInt32( aSign, aSig64 STATUS_VAR );
|
---|
1275 |
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | /*----------------------------------------------------------------------------
|
---|
1279 | | Returns the result of converting the single-precision floating-point value
|
---|
1280 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
1281 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1282 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
1283 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
1284 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
1285 | | returned.
|
---|
1286 | *----------------------------------------------------------------------------*/
|
---|
1287 |
|
---|
1288 | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
|
---|
1289 | {
|
---|
1290 | flag aSign;
|
---|
1291 | int16 aExp, shiftCount;
|
---|
1292 | bits32 aSig;
|
---|
1293 | int32 z;
|
---|
1294 |
|
---|
1295 | aSig = extractFloat32Frac( a );
|
---|
1296 | aExp = extractFloat32Exp( a );
|
---|
1297 | aSign = extractFloat32Sign( a );
|
---|
1298 | shiftCount = aExp - 0x9E;
|
---|
1299 | if ( 0 <= shiftCount ) {
|
---|
1300 | if ( a != 0xCF000000 ) {
|
---|
1301 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1302 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
|
---|
1303 | }
|
---|
1304 | return (sbits32) 0x80000000;
|
---|
1305 | }
|
---|
1306 | else if ( aExp <= 0x7E ) {
|
---|
1307 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1308 | return 0;
|
---|
1309 | }
|
---|
1310 | aSig = ( aSig | 0x00800000 )<<8;
|
---|
1311 | z = aSig>>( - shiftCount );
|
---|
1312 | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
|
---|
1313 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1314 | }
|
---|
1315 | if ( aSign ) z = - z;
|
---|
1316 | return z;
|
---|
1317 |
|
---|
1318 | }
|
---|
1319 |
|
---|
1320 | /*----------------------------------------------------------------------------
|
---|
1321 | | Returns the result of converting the single-precision floating-point value
|
---|
1322 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
1323 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1324 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
1325 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
1326 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
1327 | | largest integer with the same sign as `a' is returned.
|
---|
1328 | *----------------------------------------------------------------------------*/
|
---|
1329 |
|
---|
1330 | int64 float32_to_int64( float32 a STATUS_PARAM )
|
---|
1331 | {
|
---|
1332 | flag aSign;
|
---|
1333 | int16 aExp, shiftCount;
|
---|
1334 | bits32 aSig;
|
---|
1335 | bits64 aSig64, aSigExtra;
|
---|
1336 |
|
---|
1337 | aSig = extractFloat32Frac( a );
|
---|
1338 | aExp = extractFloat32Exp( a );
|
---|
1339 | aSign = extractFloat32Sign( a );
|
---|
1340 | shiftCount = 0xBE - aExp;
|
---|
1341 | if ( shiftCount < 0 ) {
|
---|
1342 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1343 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
---|
1344 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
1345 | }
|
---|
1346 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
1347 | }
|
---|
1348 | if ( aExp ) aSig |= 0x00800000;
|
---|
1349 | aSig64 = aSig;
|
---|
1350 | aSig64 <<= 40;
|
---|
1351 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
|
---|
1352 | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );
|
---|
1353 |
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /*----------------------------------------------------------------------------
|
---|
1357 | | Returns the result of converting the single-precision floating-point value
|
---|
1358 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
1359 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1360 | | Arithmetic, except that the conversion is always rounded toward zero. If
|
---|
1361 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
---|
1362 | | conversion overflows, the largest integer with the same sign as `a' is
|
---|
1363 | | returned.
|
---|
1364 | *----------------------------------------------------------------------------*/
|
---|
1365 |
|
---|
1366 | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
|
---|
1367 | {
|
---|
1368 | flag aSign;
|
---|
1369 | int16 aExp, shiftCount;
|
---|
1370 | bits32 aSig;
|
---|
1371 | bits64 aSig64;
|
---|
1372 | int64 z;
|
---|
1373 |
|
---|
1374 | aSig = extractFloat32Frac( a );
|
---|
1375 | aExp = extractFloat32Exp( a );
|
---|
1376 | aSign = extractFloat32Sign( a );
|
---|
1377 | shiftCount = aExp - 0xBE;
|
---|
1378 | if ( 0 <= shiftCount ) {
|
---|
1379 | if ( a != 0xDF000000 ) {
|
---|
1380 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1381 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
|
---|
1382 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
1383 | }
|
---|
1384 | }
|
---|
1385 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
1386 | }
|
---|
1387 | else if ( aExp <= 0x7E ) {
|
---|
1388 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1389 | return 0;
|
---|
1390 | }
|
---|
1391 | aSig64 = aSig | 0x00800000;
|
---|
1392 | aSig64 <<= 40;
|
---|
1393 | z = aSig64>>( - shiftCount );
|
---|
1394 | if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
|
---|
1395 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1396 | }
|
---|
1397 | if ( aSign ) z = - z;
|
---|
1398 | return z;
|
---|
1399 |
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | /*----------------------------------------------------------------------------
|
---|
1403 | | Returns the result of converting the single-precision floating-point value
|
---|
1404 | | `a' to the double-precision floating-point format. The conversion is
|
---|
1405 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1406 | | Arithmetic.
|
---|
1407 | *----------------------------------------------------------------------------*/
|
---|
1408 |
|
---|
1409 | float64 float32_to_float64( float32 a STATUS_PARAM )
|
---|
1410 | {
|
---|
1411 | flag aSign;
|
---|
1412 | int16 aExp;
|
---|
1413 | bits32 aSig;
|
---|
1414 |
|
---|
1415 | aSig = extractFloat32Frac( a );
|
---|
1416 | aExp = extractFloat32Exp( a );
|
---|
1417 | aSign = extractFloat32Sign( a );
|
---|
1418 | if ( aExp == 0xFF ) {
|
---|
1419 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ));
|
---|
1420 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
1421 | }
|
---|
1422 | if ( aExp == 0 ) {
|
---|
1423 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
|
---|
1424 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1425 | --aExp;
|
---|
1426 | }
|
---|
1427 | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
|
---|
1428 |
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | #ifdef FLOATX80
|
---|
1432 |
|
---|
1433 | /*----------------------------------------------------------------------------
|
---|
1434 | | Returns the result of converting the single-precision floating-point value
|
---|
1435 | | `a' to the extended double-precision floating-point format. The conversion
|
---|
1436 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1437 | | Arithmetic.
|
---|
1438 | *----------------------------------------------------------------------------*/
|
---|
1439 |
|
---|
1440 | floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
|
---|
1441 | {
|
---|
1442 | flag aSign;
|
---|
1443 | int16 aExp;
|
---|
1444 | bits32 aSig;
|
---|
1445 |
|
---|
1446 | aSig = extractFloat32Frac( a );
|
---|
1447 | aExp = extractFloat32Exp( a );
|
---|
1448 | aSign = extractFloat32Sign( a );
|
---|
1449 | if ( aExp == 0xFF ) {
|
---|
1450 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) );
|
---|
1451 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
1452 | }
|
---|
1453 | if ( aExp == 0 ) {
|
---|
1454 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
1455 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1456 | }
|
---|
1457 | aSig |= 0x00800000;
|
---|
1458 | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
|
---|
1459 |
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | #endif
|
---|
1463 |
|
---|
1464 | #ifdef FLOAT128
|
---|
1465 |
|
---|
1466 | /*----------------------------------------------------------------------------
|
---|
1467 | | Returns the result of converting the single-precision floating-point value
|
---|
1468 | | `a' to the double-precision floating-point format. The conversion is
|
---|
1469 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
1470 | | Arithmetic.
|
---|
1471 | *----------------------------------------------------------------------------*/
|
---|
1472 |
|
---|
1473 | float128 float32_to_float128( float32 a STATUS_PARAM )
|
---|
1474 | {
|
---|
1475 | flag aSign;
|
---|
1476 | int16 aExp;
|
---|
1477 | bits32 aSig;
|
---|
1478 |
|
---|
1479 | aSig = extractFloat32Frac( a );
|
---|
1480 | aExp = extractFloat32Exp( a );
|
---|
1481 | aSign = extractFloat32Sign( a );
|
---|
1482 | if ( aExp == 0xFF ) {
|
---|
1483 | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) );
|
---|
1484 | return packFloat128( aSign, 0x7FFF, 0, 0 );
|
---|
1485 | }
|
---|
1486 | if ( aExp == 0 ) {
|
---|
1487 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
---|
1488 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1489 | --aExp;
|
---|
1490 | }
|
---|
1491 | return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
|
---|
1492 |
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 | #endif
|
---|
1496 |
|
---|
1497 | /*----------------------------------------------------------------------------
|
---|
1498 | | Rounds the single-precision floating-point value `a' to an integer, and
|
---|
1499 | | returns the result as a single-precision floating-point value. The
|
---|
1500 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
1501 | | Floating-Point Arithmetic.
|
---|
1502 | *----------------------------------------------------------------------------*/
|
---|
1503 |
|
---|
1504 | float32 float32_round_to_int( float32 a STATUS_PARAM)
|
---|
1505 | {
|
---|
1506 | flag aSign;
|
---|
1507 | int16 aExp;
|
---|
1508 | bits32 lastBitMask, roundBitsMask;
|
---|
1509 | int8 roundingMode;
|
---|
1510 | float32 z;
|
---|
1511 |
|
---|
1512 | aExp = extractFloat32Exp( a );
|
---|
1513 | if ( 0x96 <= aExp ) {
|
---|
1514 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
|
---|
1515 | return propagateFloat32NaN( a, a STATUS_VAR );
|
---|
1516 | }
|
---|
1517 | return a;
|
---|
1518 | }
|
---|
1519 | if ( aExp <= 0x7E ) {
|
---|
1520 | if ( (bits32) ( a<<1 ) == 0 ) return a;
|
---|
1521 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1522 | aSign = extractFloat32Sign( a );
|
---|
1523 | switch ( STATUS(float_rounding_mode) ) {
|
---|
1524 | case float_round_nearest_even:
|
---|
1525 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
|
---|
1526 | return packFloat32( aSign, 0x7F, 0 );
|
---|
1527 | }
|
---|
1528 | break;
|
---|
1529 | case float_round_down:
|
---|
1530 | return aSign ? 0xBF800000 : 0;
|
---|
1531 | case float_round_up:
|
---|
1532 | return aSign ? 0x80000000 : 0x3F800000;
|
---|
1533 | }
|
---|
1534 | return packFloat32( aSign, 0, 0 );
|
---|
1535 | }
|
---|
1536 | lastBitMask = 1;
|
---|
1537 | lastBitMask <<= 0x96 - aExp;
|
---|
1538 | roundBitsMask = lastBitMask - 1;
|
---|
1539 | z = a;
|
---|
1540 | roundingMode = STATUS(float_rounding_mode);
|
---|
1541 | if ( roundingMode == float_round_nearest_even ) {
|
---|
1542 | z += lastBitMask>>1;
|
---|
1543 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
---|
1544 | }
|
---|
1545 | else if ( roundingMode != float_round_to_zero ) {
|
---|
1546 | if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
---|
1547 | z += roundBitsMask;
|
---|
1548 | }
|
---|
1549 | }
|
---|
1550 | z &= ~ roundBitsMask;
|
---|
1551 | if ( z != a ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
1552 | return z;
|
---|
1553 |
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | /*----------------------------------------------------------------------------
|
---|
1557 | | Returns the result of adding the absolute values of the single-precision
|
---|
1558 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
1559 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
1560 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
1561 | | Floating-Point Arithmetic.
|
---|
1562 | *----------------------------------------------------------------------------*/
|
---|
1563 |
|
---|
1564 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
---|
1565 | {
|
---|
1566 | int16 aExp, bExp, zExp;
|
---|
1567 | bits32 aSig, bSig, zSig;
|
---|
1568 | int16 expDiff;
|
---|
1569 |
|
---|
1570 | aSig = extractFloat32Frac( a );
|
---|
1571 | aExp = extractFloat32Exp( a );
|
---|
1572 | bSig = extractFloat32Frac( b );
|
---|
1573 | bExp = extractFloat32Exp( b );
|
---|
1574 | expDiff = aExp - bExp;
|
---|
1575 | aSig <<= 6;
|
---|
1576 | bSig <<= 6;
|
---|
1577 | if ( 0 < expDiff ) {
|
---|
1578 | if ( aExp == 0xFF ) {
|
---|
1579 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1580 | return a;
|
---|
1581 | }
|
---|
1582 | if ( bExp == 0 ) {
|
---|
1583 | --expDiff;
|
---|
1584 | }
|
---|
1585 | else {
|
---|
1586 | bSig |= 0x20000000;
|
---|
1587 | }
|
---|
1588 | shift32RightJamming( bSig, expDiff, &bSig );
|
---|
1589 | zExp = aExp;
|
---|
1590 | }
|
---|
1591 | else if ( expDiff < 0 ) {
|
---|
1592 | if ( bExp == 0xFF ) {
|
---|
1593 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1594 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1595 | }
|
---|
1596 | if ( aExp == 0 ) {
|
---|
1597 | ++expDiff;
|
---|
1598 | }
|
---|
1599 | else {
|
---|
1600 | aSig |= 0x20000000;
|
---|
1601 | }
|
---|
1602 | shift32RightJamming( aSig, - expDiff, &aSig );
|
---|
1603 | zExp = bExp;
|
---|
1604 | }
|
---|
1605 | else {
|
---|
1606 | if ( aExp == 0xFF ) {
|
---|
1607 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1608 | return a;
|
---|
1609 | }
|
---|
1610 | if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
---|
1611 | zSig = 0x40000000 + aSig + bSig;
|
---|
1612 | zExp = aExp;
|
---|
1613 | goto roundAndPack;
|
---|
1614 | }
|
---|
1615 | aSig |= 0x20000000;
|
---|
1616 | zSig = ( aSig + bSig )<<1;
|
---|
1617 | --zExp;
|
---|
1618 | if ( (sbits32) zSig < 0 ) {
|
---|
1619 | zSig = aSig + bSig;
|
---|
1620 | ++zExp;
|
---|
1621 | }
|
---|
1622 | roundAndPack:
|
---|
1623 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1624 |
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 | /*----------------------------------------------------------------------------
|
---|
1628 | | Returns the result of subtracting the absolute values of the single-
|
---|
1629 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
1630 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
1631 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
1632 | | Standard for Binary Floating-Point Arithmetic.
|
---|
1633 | *----------------------------------------------------------------------------*/
|
---|
1634 |
|
---|
1635 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
|
---|
1636 | {
|
---|
1637 | int16 aExp, bExp, zExp;
|
---|
1638 | bits32 aSig, bSig, zSig;
|
---|
1639 | int16 expDiff;
|
---|
1640 |
|
---|
1641 | aSig = extractFloat32Frac( a );
|
---|
1642 | aExp = extractFloat32Exp( a );
|
---|
1643 | bSig = extractFloat32Frac( b );
|
---|
1644 | bExp = extractFloat32Exp( b );
|
---|
1645 | expDiff = aExp - bExp;
|
---|
1646 | aSig <<= 7;
|
---|
1647 | bSig <<= 7;
|
---|
1648 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
1649 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
1650 | if ( aExp == 0xFF ) {
|
---|
1651 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1652 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1653 | return float32_default_nan;
|
---|
1654 | }
|
---|
1655 | if ( aExp == 0 ) {
|
---|
1656 | aExp = 1;
|
---|
1657 | bExp = 1;
|
---|
1658 | }
|
---|
1659 | if ( bSig < aSig ) goto aBigger;
|
---|
1660 | if ( aSig < bSig ) goto bBigger;
|
---|
1661 | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
1662 | bExpBigger:
|
---|
1663 | if ( bExp == 0xFF ) {
|
---|
1664 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1665 | return packFloat32( zSign ^ 1, 0xFF, 0 );
|
---|
1666 | }
|
---|
1667 | if ( aExp == 0 ) {
|
---|
1668 | ++expDiff;
|
---|
1669 | }
|
---|
1670 | else {
|
---|
1671 | aSig |= 0x40000000;
|
---|
1672 | }
|
---|
1673 | shift32RightJamming( aSig, - expDiff, &aSig );
|
---|
1674 | bSig |= 0x40000000;
|
---|
1675 | bBigger:
|
---|
1676 | zSig = bSig - aSig;
|
---|
1677 | zExp = bExp;
|
---|
1678 | zSign ^= 1;
|
---|
1679 | goto normalizeRoundAndPack;
|
---|
1680 | aExpBigger:
|
---|
1681 | if ( aExp == 0xFF ) {
|
---|
1682 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1683 | return a;
|
---|
1684 | }
|
---|
1685 | if ( bExp == 0 ) {
|
---|
1686 | --expDiff;
|
---|
1687 | }
|
---|
1688 | else {
|
---|
1689 | bSig |= 0x40000000;
|
---|
1690 | }
|
---|
1691 | shift32RightJamming( bSig, expDiff, &bSig );
|
---|
1692 | aSig |= 0x40000000;
|
---|
1693 | aBigger:
|
---|
1694 | zSig = aSig - bSig;
|
---|
1695 | zExp = aExp;
|
---|
1696 | normalizeRoundAndPack:
|
---|
1697 | --zExp;
|
---|
1698 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1699 |
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /*----------------------------------------------------------------------------
|
---|
1703 | | Returns the result of adding the single-precision floating-point values `a'
|
---|
1704 | | and `b'. The operation is performed according to the IEC/IEEE Standard for
|
---|
1705 | | Binary Floating-Point Arithmetic.
|
---|
1706 | *----------------------------------------------------------------------------*/
|
---|
1707 |
|
---|
1708 | float32 float32_add( float32 a, float32 b STATUS_PARAM )
|
---|
1709 | {
|
---|
1710 | flag aSign, bSign;
|
---|
1711 |
|
---|
1712 | aSign = extractFloat32Sign( a );
|
---|
1713 | bSign = extractFloat32Sign( b );
|
---|
1714 | if ( aSign == bSign ) {
|
---|
1715 | return addFloat32Sigs( a, b, aSign STATUS_VAR);
|
---|
1716 | }
|
---|
1717 | else {
|
---|
1718 | return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 | /*----------------------------------------------------------------------------
|
---|
1724 | | Returns the result of subtracting the single-precision floating-point values
|
---|
1725 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
1726 | | for Binary Floating-Point Arithmetic.
|
---|
1727 | *----------------------------------------------------------------------------*/
|
---|
1728 |
|
---|
1729 | float32 float32_sub( float32 a, float32 b STATUS_PARAM )
|
---|
1730 | {
|
---|
1731 | flag aSign, bSign;
|
---|
1732 |
|
---|
1733 | aSign = extractFloat32Sign( a );
|
---|
1734 | bSign = extractFloat32Sign( b );
|
---|
1735 | if ( aSign == bSign ) {
|
---|
1736 | return subFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1737 | }
|
---|
1738 | else {
|
---|
1739 | return addFloat32Sigs( a, b, aSign STATUS_VAR );
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | }
|
---|
1743 |
|
---|
1744 | /*----------------------------------------------------------------------------
|
---|
1745 | | Returns the result of multiplying the single-precision floating-point values
|
---|
1746 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
1747 | | for Binary Floating-Point Arithmetic.
|
---|
1748 | *----------------------------------------------------------------------------*/
|
---|
1749 |
|
---|
1750 | float32 float32_mul( float32 a, float32 b STATUS_PARAM )
|
---|
1751 | {
|
---|
1752 | flag aSign, bSign, zSign;
|
---|
1753 | int16 aExp, bExp, zExp;
|
---|
1754 | bits32 aSig, bSig;
|
---|
1755 | bits64 zSig64;
|
---|
1756 | bits32 zSig;
|
---|
1757 |
|
---|
1758 | aSig = extractFloat32Frac( a );
|
---|
1759 | aExp = extractFloat32Exp( a );
|
---|
1760 | aSign = extractFloat32Sign( a );
|
---|
1761 | bSig = extractFloat32Frac( b );
|
---|
1762 | bExp = extractFloat32Exp( b );
|
---|
1763 | bSign = extractFloat32Sign( b );
|
---|
1764 | zSign = aSign ^ bSign;
|
---|
1765 | if ( aExp == 0xFF ) {
|
---|
1766 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
---|
1767 | return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1768 | }
|
---|
1769 | if ( ( bExp | bSig ) == 0 ) {
|
---|
1770 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1771 | return float32_default_nan;
|
---|
1772 | }
|
---|
1773 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1774 | }
|
---|
1775 | if ( bExp == 0xFF ) {
|
---|
1776 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1777 | if ( ( aExp | aSig ) == 0 ) {
|
---|
1778 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1779 | return float32_default_nan;
|
---|
1780 | }
|
---|
1781 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1782 | }
|
---|
1783 | if ( aExp == 0 ) {
|
---|
1784 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1785 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1786 | }
|
---|
1787 | if ( bExp == 0 ) {
|
---|
1788 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1789 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1790 | }
|
---|
1791 | zExp = aExp + bExp - 0x7F;
|
---|
1792 | aSig = ( aSig | 0x00800000 )<<7;
|
---|
1793 | bSig = ( bSig | 0x00800000 )<<8;
|
---|
1794 | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
|
---|
1795 | zSig = zSig64;
|
---|
1796 | if ( 0 <= (sbits32) ( zSig<<1 ) ) {
|
---|
1797 | zSig <<= 1;
|
---|
1798 | --zExp;
|
---|
1799 | }
|
---|
1800 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1801 |
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | /*----------------------------------------------------------------------------
|
---|
1805 | | Returns the result of dividing the single-precision floating-point value `a'
|
---|
1806 | | by the corresponding value `b'. The operation is performed according to the
|
---|
1807 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1808 | *----------------------------------------------------------------------------*/
|
---|
1809 |
|
---|
1810 | float32 float32_div( float32 a, float32 b STATUS_PARAM )
|
---|
1811 | {
|
---|
1812 | flag aSign, bSign, zSign;
|
---|
1813 | int16 aExp, bExp, zExp;
|
---|
1814 | bits32 aSig, bSig, zSig;
|
---|
1815 |
|
---|
1816 | aSig = extractFloat32Frac( a );
|
---|
1817 | aExp = extractFloat32Exp( a );
|
---|
1818 | aSign = extractFloat32Sign( a );
|
---|
1819 | bSig = extractFloat32Frac( b );
|
---|
1820 | bExp = extractFloat32Exp( b );
|
---|
1821 | bSign = extractFloat32Sign( b );
|
---|
1822 | zSign = aSign ^ bSign;
|
---|
1823 | if ( aExp == 0xFF ) {
|
---|
1824 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1825 | if ( bExp == 0xFF ) {
|
---|
1826 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1827 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1828 | return float32_default_nan;
|
---|
1829 | }
|
---|
1830 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1831 | }
|
---|
1832 | if ( bExp == 0xFF ) {
|
---|
1833 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1834 | return packFloat32( zSign, 0, 0 );
|
---|
1835 | }
|
---|
1836 | if ( bExp == 0 ) {
|
---|
1837 | if ( bSig == 0 ) {
|
---|
1838 | if ( ( aExp | aSig ) == 0 ) {
|
---|
1839 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1840 | return float32_default_nan;
|
---|
1841 | }
|
---|
1842 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
1843 | return packFloat32( zSign, 0xFF, 0 );
|
---|
1844 | }
|
---|
1845 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1846 | }
|
---|
1847 | if ( aExp == 0 ) {
|
---|
1848 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
---|
1849 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1850 | }
|
---|
1851 | zExp = aExp - bExp + 0x7D;
|
---|
1852 | aSig = ( aSig | 0x00800000 )<<7;
|
---|
1853 | bSig = ( bSig | 0x00800000 )<<8;
|
---|
1854 | if ( bSig <= ( aSig + aSig ) ) {
|
---|
1855 | aSig >>= 1;
|
---|
1856 | ++zExp;
|
---|
1857 | }
|
---|
1858 | zSig = ( ( (bits64) aSig )<<32 ) / bSig;
|
---|
1859 | if ( ( zSig & 0x3F ) == 0 ) {
|
---|
1860 | zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
|
---|
1861 | }
|
---|
1862 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
|
---|
1863 |
|
---|
1864 | }
|
---|
1865 |
|
---|
1866 | /*----------------------------------------------------------------------------
|
---|
1867 | | Returns the remainder of the single-precision floating-point value `a'
|
---|
1868 | | with respect to the corresponding value `b'. The operation is performed
|
---|
1869 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
1870 | *----------------------------------------------------------------------------*/
|
---|
1871 |
|
---|
1872 | float32 float32_rem( float32 a, float32 b STATUS_PARAM )
|
---|
1873 | {
|
---|
1874 | flag aSign, bSign, zSign;
|
---|
1875 | int16 aExp, bExp, expDiff;
|
---|
1876 | bits32 aSig, bSig;
|
---|
1877 | bits32 q;
|
---|
1878 | bits64 aSig64, bSig64, q64;
|
---|
1879 | bits32 alternateASig;
|
---|
1880 | sbits32 sigMean;
|
---|
1881 |
|
---|
1882 | aSig = extractFloat32Frac( a );
|
---|
1883 | aExp = extractFloat32Exp( a );
|
---|
1884 | aSign = extractFloat32Sign( a );
|
---|
1885 | bSig = extractFloat32Frac( b );
|
---|
1886 | bExp = extractFloat32Exp( b );
|
---|
1887 | bSign = extractFloat32Sign( b );
|
---|
1888 | if ( aExp == 0xFF ) {
|
---|
1889 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
|
---|
1890 | return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1891 | }
|
---|
1892 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1893 | return float32_default_nan;
|
---|
1894 | }
|
---|
1895 | if ( bExp == 0xFF ) {
|
---|
1896 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
|
---|
1897 | return a;
|
---|
1898 | }
|
---|
1899 | if ( bExp == 0 ) {
|
---|
1900 | if ( bSig == 0 ) {
|
---|
1901 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1902 | return float32_default_nan;
|
---|
1903 | }
|
---|
1904 | normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
---|
1905 | }
|
---|
1906 | if ( aExp == 0 ) {
|
---|
1907 | if ( aSig == 0 ) return a;
|
---|
1908 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1909 | }
|
---|
1910 | expDiff = aExp - bExp;
|
---|
1911 | aSig |= 0x00800000;
|
---|
1912 | bSig |= 0x00800000;
|
---|
1913 | if ( expDiff < 32 ) {
|
---|
1914 | aSig <<= 8;
|
---|
1915 | bSig <<= 8;
|
---|
1916 | if ( expDiff < 0 ) {
|
---|
1917 | if ( expDiff < -1 ) return a;
|
---|
1918 | aSig >>= 1;
|
---|
1919 | }
|
---|
1920 | q = ( bSig <= aSig );
|
---|
1921 | if ( q ) aSig -= bSig;
|
---|
1922 | if ( 0 < expDiff ) {
|
---|
1923 | q = ( ( (bits64) aSig )<<32 ) / bSig;
|
---|
1924 | q >>= 32 - expDiff;
|
---|
1925 | bSig >>= 2;
|
---|
1926 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
1927 | }
|
---|
1928 | else {
|
---|
1929 | aSig >>= 2;
|
---|
1930 | bSig >>= 2;
|
---|
1931 | }
|
---|
1932 | }
|
---|
1933 | else {
|
---|
1934 | if ( bSig <= aSig ) aSig -= bSig;
|
---|
1935 | aSig64 = ( (bits64) aSig )<<40;
|
---|
1936 | bSig64 = ( (bits64) bSig )<<40;
|
---|
1937 | expDiff -= 64;
|
---|
1938 | while ( 0 < expDiff ) {
|
---|
1939 | q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
---|
1940 | q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
---|
1941 | aSig64 = - ( ( bSig * q64 )<<38 );
|
---|
1942 | expDiff -= 62;
|
---|
1943 | }
|
---|
1944 | expDiff += 64;
|
---|
1945 | q64 = estimateDiv128To64( aSig64, 0, bSig64 );
|
---|
1946 | q64 = ( 2 < q64 ) ? q64 - 2 : 0;
|
---|
1947 | q = q64>>( 64 - expDiff );
|
---|
1948 | bSig <<= 6;
|
---|
1949 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
1950 | }
|
---|
1951 | do {
|
---|
1952 | alternateASig = aSig;
|
---|
1953 | ++q;
|
---|
1954 | aSig -= bSig;
|
---|
1955 | } while ( 0 <= (sbits32) aSig );
|
---|
1956 | sigMean = aSig + alternateASig;
|
---|
1957 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
---|
1958 | aSig = alternateASig;
|
---|
1959 | }
|
---|
1960 | zSign = ( (sbits32) aSig < 0 );
|
---|
1961 | if ( zSign ) aSig = - aSig;
|
---|
1962 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
---|
1963 |
|
---|
1964 | }
|
---|
1965 |
|
---|
1966 | /*----------------------------------------------------------------------------
|
---|
1967 | | Returns the square root of the single-precision floating-point value `a'.
|
---|
1968 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
1969 | | Floating-Point Arithmetic.
|
---|
1970 | *----------------------------------------------------------------------------*/
|
---|
1971 |
|
---|
1972 | float32 float32_sqrt( float32 a STATUS_PARAM )
|
---|
1973 | {
|
---|
1974 | flag aSign;
|
---|
1975 | int16 aExp, zExp;
|
---|
1976 | bits32 aSig, zSig;
|
---|
1977 | bits64 rem, term;
|
---|
1978 |
|
---|
1979 | aSig = extractFloat32Frac( a );
|
---|
1980 | aExp = extractFloat32Exp( a );
|
---|
1981 | aSign = extractFloat32Sign( a );
|
---|
1982 | if ( aExp == 0xFF ) {
|
---|
1983 | if ( aSig ) return propagateFloat32NaN( a, 0 STATUS_VAR );
|
---|
1984 | if ( ! aSign ) return a;
|
---|
1985 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1986 | return float32_default_nan;
|
---|
1987 | }
|
---|
1988 | if ( aSign ) {
|
---|
1989 | if ( ( aExp | aSig ) == 0 ) return a;
|
---|
1990 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
1991 | return float32_default_nan;
|
---|
1992 | }
|
---|
1993 | if ( aExp == 0 ) {
|
---|
1994 | if ( aSig == 0 ) return 0;
|
---|
1995 | normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
---|
1996 | }
|
---|
1997 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
|
---|
1998 | aSig = ( aSig | 0x00800000 )<<8;
|
---|
1999 | zSig = estimateSqrt32( aExp, aSig ) + 2;
|
---|
2000 | if ( ( zSig & 0x7F ) <= 5 ) {
|
---|
2001 | if ( zSig < 2 ) {
|
---|
2002 | zSig = 0x7FFFFFFF;
|
---|
2003 | goto roundAndPack;
|
---|
2004 | }
|
---|
2005 | aSig >>= aExp & 1;
|
---|
2006 | term = ( (bits64) zSig ) * zSig;
|
---|
2007 | rem = ( ( (bits64) aSig )<<32 ) - term;
|
---|
2008 | while ( (sbits64) rem < 0 ) {
|
---|
2009 | --zSig;
|
---|
2010 | rem += ( ( (bits64) zSig )<<1 ) | 1;
|
---|
2011 | }
|
---|
2012 | zSig |= ( rem != 0 );
|
---|
2013 | }
|
---|
2014 | shift32RightJamming( zSig, 1, &zSig );
|
---|
2015 | roundAndPack:
|
---|
2016 | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );
|
---|
2017 |
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 | /*----------------------------------------------------------------------------
|
---|
2021 | | Returns 1 if the single-precision floating-point value `a' is equal to
|
---|
2022 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2023 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2024 | *----------------------------------------------------------------------------*/
|
---|
2025 |
|
---|
2026 | int float32_eq( float32 a, float32 b STATUS_PARAM )
|
---|
2027 | {
|
---|
2028 |
|
---|
2029 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2030 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2031 | ) {
|
---|
2032 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2033 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2034 | }
|
---|
2035 | return 0;
|
---|
2036 | }
|
---|
2037 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
---|
2038 |
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | /*----------------------------------------------------------------------------
|
---|
2042 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2043 | | or equal to the corresponding value `b', and 0 otherwise. The comparison
|
---|
2044 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2045 | | Arithmetic.
|
---|
2046 | *----------------------------------------------------------------------------*/
|
---|
2047 |
|
---|
2048 | int float32_le( float32 a, float32 b STATUS_PARAM )
|
---|
2049 | {
|
---|
2050 | flag aSign, bSign;
|
---|
2051 |
|
---|
2052 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2053 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2054 | ) {
|
---|
2055 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2056 | return 0;
|
---|
2057 | }
|
---|
2058 | aSign = extractFloat32Sign( a );
|
---|
2059 | bSign = extractFloat32Sign( b );
|
---|
2060 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
---|
2061 | return ( a == b ) || ( aSign ^ ( a < b ) );
|
---|
2062 |
|
---|
2063 | }
|
---|
2064 |
|
---|
2065 | /*----------------------------------------------------------------------------
|
---|
2066 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2067 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2068 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2069 | *----------------------------------------------------------------------------*/
|
---|
2070 |
|
---|
2071 | int float32_lt( float32 a, float32 b STATUS_PARAM )
|
---|
2072 | {
|
---|
2073 | flag aSign, bSign;
|
---|
2074 |
|
---|
2075 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2076 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2077 | ) {
|
---|
2078 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2079 | return 0;
|
---|
2080 | }
|
---|
2081 | aSign = extractFloat32Sign( a );
|
---|
2082 | bSign = extractFloat32Sign( b );
|
---|
2083 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
---|
2084 | return ( a != b ) && ( aSign ^ ( a < b ) );
|
---|
2085 |
|
---|
2086 | }
|
---|
2087 |
|
---|
2088 | /*----------------------------------------------------------------------------
|
---|
2089 | | Returns 1 if the single-precision floating-point value `a' is equal to
|
---|
2090 | | the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
2091 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
2092 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2093 | *----------------------------------------------------------------------------*/
|
---|
2094 |
|
---|
2095 | int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
|
---|
2096 | {
|
---|
2097 |
|
---|
2098 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2099 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2100 | ) {
|
---|
2101 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2102 | return 0;
|
---|
2103 | }
|
---|
2104 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
---|
2105 |
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 | /*----------------------------------------------------------------------------
|
---|
2109 | | Returns 1 if the single-precision floating-point value `a' is less than or
|
---|
2110 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
2111 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
2112 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2113 | *----------------------------------------------------------------------------*/
|
---|
2114 |
|
---|
2115 | int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
|
---|
2116 | {
|
---|
2117 | flag aSign, bSign;
|
---|
2118 |
|
---|
2119 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2120 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2121 | ) {
|
---|
2122 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2123 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2124 | }
|
---|
2125 | return 0;
|
---|
2126 | }
|
---|
2127 | aSign = extractFloat32Sign( a );
|
---|
2128 | bSign = extractFloat32Sign( b );
|
---|
2129 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
|
---|
2130 | return ( a == b ) || ( aSign ^ ( a < b ) );
|
---|
2131 |
|
---|
2132 | }
|
---|
2133 |
|
---|
2134 | /*----------------------------------------------------------------------------
|
---|
2135 | | Returns 1 if the single-precision floating-point value `a' is less than
|
---|
2136 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
2137 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
2138 | | Standard for Binary Floating-Point Arithmetic.
|
---|
2139 | *----------------------------------------------------------------------------*/
|
---|
2140 |
|
---|
2141 | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
|
---|
2142 | {
|
---|
2143 | flag aSign, bSign;
|
---|
2144 |
|
---|
2145 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|
---|
2146 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
|
---|
2147 | ) {
|
---|
2148 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
|
---|
2149 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2150 | }
|
---|
2151 | return 0;
|
---|
2152 | }
|
---|
2153 | aSign = extractFloat32Sign( a );
|
---|
2154 | bSign = extractFloat32Sign( b );
|
---|
2155 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
|
---|
2156 | return ( a != b ) && ( aSign ^ ( a < b ) );
|
---|
2157 |
|
---|
2158 | }
|
---|
2159 |
|
---|
2160 | /*----------------------------------------------------------------------------
|
---|
2161 | | Returns the result of converting the double-precision floating-point value
|
---|
2162 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
2163 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2164 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
2165 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
2166 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
2167 | | largest integer with the same sign as `a' is returned.
|
---|
2168 | *----------------------------------------------------------------------------*/
|
---|
2169 |
|
---|
2170 | int32 float64_to_int32( float64 a STATUS_PARAM )
|
---|
2171 | {
|
---|
2172 | flag aSign;
|
---|
2173 | int16 aExp, shiftCount;
|
---|
2174 | bits64 aSig;
|
---|
2175 |
|
---|
2176 | aSig = extractFloat64Frac( a );
|
---|
2177 | aExp = extractFloat64Exp( a );
|
---|
2178 | aSign = extractFloat64Sign( a );
|
---|
2179 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
---|
2180 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2181 | shiftCount = 0x42C - aExp;
|
---|
2182 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
|
---|
2183 | return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
---|
2184 |
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | /*----------------------------------------------------------------------------
|
---|
2188 | | Returns the result of converting the double-precision floating-point value
|
---|
2189 | | `a' to the 32-bit two's complement integer format. The conversion is
|
---|
2190 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2191 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
2192 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
2193 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
2194 | | returned.
|
---|
2195 | *----------------------------------------------------------------------------*/
|
---|
2196 |
|
---|
2197 | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
|
---|
2198 | {
|
---|
2199 | flag aSign;
|
---|
2200 | int16 aExp, shiftCount;
|
---|
2201 | bits64 aSig, savedASig;
|
---|
2202 | int32 z;
|
---|
2203 |
|
---|
2204 | aSig = extractFloat64Frac( a );
|
---|
2205 | aExp = extractFloat64Exp( a );
|
---|
2206 | aSign = extractFloat64Sign( a );
|
---|
2207 | if ( 0x41E < aExp ) {
|
---|
2208 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
|
---|
2209 | goto invalid;
|
---|
2210 | }
|
---|
2211 | else if ( aExp < 0x3FF ) {
|
---|
2212 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2213 | return 0;
|
---|
2214 | }
|
---|
2215 | aSig |= LIT64( 0x0010000000000000 );
|
---|
2216 | shiftCount = 0x433 - aExp;
|
---|
2217 | savedASig = aSig;
|
---|
2218 | aSig >>= shiftCount;
|
---|
2219 | z = aSig;
|
---|
2220 | if ( aSign ) z = - z;
|
---|
2221 | if ( ( z < 0 ) ^ aSign ) {
|
---|
2222 | invalid:
|
---|
2223 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2224 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
2225 | }
|
---|
2226 | if ( ( aSig<<shiftCount ) != savedASig ) {
|
---|
2227 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2228 | }
|
---|
2229 | return z;
|
---|
2230 |
|
---|
2231 | }
|
---|
2232 |
|
---|
2233 | /*----------------------------------------------------------------------------
|
---|
2234 | | Returns the result of converting the double-precision floating-point value
|
---|
2235 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
2236 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2237 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
2238 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
2239 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
2240 | | largest integer with the same sign as `a' is returned.
|
---|
2241 | *----------------------------------------------------------------------------*/
|
---|
2242 |
|
---|
2243 | int64 float64_to_int64( float64 a STATUS_PARAM )
|
---|
2244 | {
|
---|
2245 | flag aSign;
|
---|
2246 | int16 aExp, shiftCount;
|
---|
2247 | bits64 aSig, aSigExtra;
|
---|
2248 |
|
---|
2249 | aSig = extractFloat64Frac( a );
|
---|
2250 | aExp = extractFloat64Exp( a );
|
---|
2251 | aSign = extractFloat64Sign( a );
|
---|
2252 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2253 | shiftCount = 0x433 - aExp;
|
---|
2254 | if ( shiftCount <= 0 ) {
|
---|
2255 | if ( 0x43E < aExp ) {
|
---|
2256 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2257 | if ( ! aSign
|
---|
2258 | || ( ( aExp == 0x7FF )
|
---|
2259 | && ( aSig != LIT64( 0x0010000000000000 ) ) )
|
---|
2260 | ) {
|
---|
2261 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
2262 | }
|
---|
2263 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
2264 | }
|
---|
2265 | aSigExtra = 0;
|
---|
2266 | aSig <<= - shiftCount;
|
---|
2267 | }
|
---|
2268 | else {
|
---|
2269 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
---|
2270 | }
|
---|
2271 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
---|
2272 |
|
---|
2273 | }
|
---|
2274 |
|
---|
2275 | /*----------------------------------------------------------------------------
|
---|
2276 | | Returns the result of converting the double-precision floating-point value
|
---|
2277 | | `a' to the 64-bit two's complement integer format. The conversion is
|
---|
2278 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2279 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
2280 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
2281 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
2282 | | returned.
|
---|
2283 | *----------------------------------------------------------------------------*/
|
---|
2284 |
|
---|
2285 | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
|
---|
2286 | {
|
---|
2287 | flag aSign;
|
---|
2288 | int16 aExp, shiftCount;
|
---|
2289 | bits64 aSig;
|
---|
2290 | int64 z;
|
---|
2291 |
|
---|
2292 | aSig = extractFloat64Frac( a );
|
---|
2293 | aExp = extractFloat64Exp( a );
|
---|
2294 | aSign = extractFloat64Sign( a );
|
---|
2295 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
|
---|
2296 | shiftCount = aExp - 0x433;
|
---|
2297 | if ( 0 <= shiftCount ) {
|
---|
2298 | if ( 0x43E <= aExp ) {
|
---|
2299 | if ( a != LIT64( 0xC3E0000000000000 ) ) {
|
---|
2300 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2301 | if ( ! aSign
|
---|
2302 | || ( ( aExp == 0x7FF )
|
---|
2303 | && ( aSig != LIT64( 0x0010000000000000 ) ) )
|
---|
2304 | ) {
|
---|
2305 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
2306 | }
|
---|
2307 | }
|
---|
2308 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
2309 | }
|
---|
2310 | z = aSig<<shiftCount;
|
---|
2311 | }
|
---|
2312 | else {
|
---|
2313 | if ( aExp < 0x3FE ) {
|
---|
2314 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2315 | return 0;
|
---|
2316 | }
|
---|
2317 | z = aSig>>( - shiftCount );
|
---|
2318 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
|
---|
2319 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2320 | }
|
---|
2321 | }
|
---|
2322 | if ( aSign ) z = - z;
|
---|
2323 | return z;
|
---|
2324 |
|
---|
2325 | }
|
---|
2326 |
|
---|
2327 | /*----------------------------------------------------------------------------
|
---|
2328 | | Returns the result of converting the double-precision floating-point value
|
---|
2329 | | `a' to the single-precision floating-point format. The conversion is
|
---|
2330 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2331 | | Arithmetic.
|
---|
2332 | *----------------------------------------------------------------------------*/
|
---|
2333 |
|
---|
2334 | float32 float64_to_float32( float64 a STATUS_PARAM )
|
---|
2335 | {
|
---|
2336 | flag aSign;
|
---|
2337 | int16 aExp;
|
---|
2338 | bits64 aSig;
|
---|
2339 | bits32 zSig;
|
---|
2340 |
|
---|
2341 | aSig = extractFloat64Frac( a );
|
---|
2342 | aExp = extractFloat64Exp( a );
|
---|
2343 | aSign = extractFloat64Sign( a );
|
---|
2344 | if ( aExp == 0x7FF ) {
|
---|
2345 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2346 | return packFloat32( aSign, 0xFF, 0 );
|
---|
2347 | }
|
---|
2348 | shift64RightJamming( aSig, 22, &aSig );
|
---|
2349 | zSig = aSig;
|
---|
2350 | if ( aExp || zSig ) {
|
---|
2351 | zSig |= 0x40000000;
|
---|
2352 | aExp -= 0x381;
|
---|
2353 | }
|
---|
2354 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
---|
2355 |
|
---|
2356 | }
|
---|
2357 |
|
---|
2358 | #ifdef FLOATX80
|
---|
2359 |
|
---|
2360 | /*----------------------------------------------------------------------------
|
---|
2361 | | Returns the result of converting the double-precision floating-point value
|
---|
2362 | | `a' to the extended double-precision floating-point format. The conversion
|
---|
2363 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2364 | | Arithmetic.
|
---|
2365 | *----------------------------------------------------------------------------*/
|
---|
2366 |
|
---|
2367 | floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
|
---|
2368 | {
|
---|
2369 | flag aSign;
|
---|
2370 | int16 aExp;
|
---|
2371 | bits64 aSig;
|
---|
2372 |
|
---|
2373 | aSig = extractFloat64Frac( a );
|
---|
2374 | aExp = extractFloat64Exp( a );
|
---|
2375 | aSign = extractFloat64Sign( a );
|
---|
2376 | if ( aExp == 0x7FF ) {
|
---|
2377 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2378 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
2379 | }
|
---|
2380 | if ( aExp == 0 ) {
|
---|
2381 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
2382 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2383 | }
|
---|
2384 | return
|
---|
2385 | packFloatx80(
|
---|
2386 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
|
---|
2387 |
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 | #endif
|
---|
2391 |
|
---|
2392 | #ifdef FLOAT128
|
---|
2393 |
|
---|
2394 | /*----------------------------------------------------------------------------
|
---|
2395 | | Returns the result of converting the double-precision floating-point value
|
---|
2396 | | `a' to the quadruple-precision floating-point format. The conversion is
|
---|
2397 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2398 | | Arithmetic.
|
---|
2399 | *----------------------------------------------------------------------------*/
|
---|
2400 |
|
---|
2401 | float128 float64_to_float128( float64 a STATUS_PARAM )
|
---|
2402 | {
|
---|
2403 | flag aSign;
|
---|
2404 | int16 aExp;
|
---|
2405 | bits64 aSig, zSig0, zSig1;
|
---|
2406 |
|
---|
2407 | aSig = extractFloat64Frac( a );
|
---|
2408 | aExp = extractFloat64Exp( a );
|
---|
2409 | aSign = extractFloat64Sign( a );
|
---|
2410 | if ( aExp == 0x7FF ) {
|
---|
2411 | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) );
|
---|
2412 | return packFloat128( aSign, 0x7FFF, 0, 0 );
|
---|
2413 | }
|
---|
2414 | if ( aExp == 0 ) {
|
---|
2415 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
|
---|
2416 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2417 | --aExp;
|
---|
2418 | }
|
---|
2419 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
|
---|
2420 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
|
---|
2421 |
|
---|
2422 | }
|
---|
2423 |
|
---|
2424 | #endif
|
---|
2425 |
|
---|
2426 | /*----------------------------------------------------------------------------
|
---|
2427 | | Rounds the double-precision floating-point value `a' to an integer, and
|
---|
2428 | | returns the result as a double-precision floating-point value. The
|
---|
2429 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
2430 | | Floating-Point Arithmetic.
|
---|
2431 | *----------------------------------------------------------------------------*/
|
---|
2432 |
|
---|
2433 | float64 float64_round_to_int( float64 a STATUS_PARAM )
|
---|
2434 | {
|
---|
2435 | flag aSign;
|
---|
2436 | int16 aExp;
|
---|
2437 | bits64 lastBitMask, roundBitsMask;
|
---|
2438 | int8 roundingMode;
|
---|
2439 | float64 z;
|
---|
2440 |
|
---|
2441 | aExp = extractFloat64Exp( a );
|
---|
2442 | if ( 0x433 <= aExp ) {
|
---|
2443 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
|
---|
2444 | return propagateFloat64NaN( a, a STATUS_VAR );
|
---|
2445 | }
|
---|
2446 | return a;
|
---|
2447 | }
|
---|
2448 | if ( aExp < 0x3FF ) {
|
---|
2449 | if ( (bits64) ( a<<1 ) == 0 ) return a;
|
---|
2450 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2451 | aSign = extractFloat64Sign( a );
|
---|
2452 | switch ( STATUS(float_rounding_mode) ) {
|
---|
2453 | case float_round_nearest_even:
|
---|
2454 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
|
---|
2455 | return packFloat64( aSign, 0x3FF, 0 );
|
---|
2456 | }
|
---|
2457 | break;
|
---|
2458 | case float_round_down:
|
---|
2459 | return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
|
---|
2460 | case float_round_up:
|
---|
2461 | return
|
---|
2462 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
|
---|
2463 | }
|
---|
2464 | return packFloat64( aSign, 0, 0 );
|
---|
2465 | }
|
---|
2466 | lastBitMask = 1;
|
---|
2467 | lastBitMask <<= 0x433 - aExp;
|
---|
2468 | roundBitsMask = lastBitMask - 1;
|
---|
2469 | z = a;
|
---|
2470 | roundingMode = STATUS(float_rounding_mode);
|
---|
2471 | if ( roundingMode == float_round_nearest_even ) {
|
---|
2472 | z += lastBitMask>>1;
|
---|
2473 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
|
---|
2474 | }
|
---|
2475 | else if ( roundingMode != float_round_to_zero ) {
|
---|
2476 | if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
---|
2477 | z += roundBitsMask;
|
---|
2478 | }
|
---|
2479 | }
|
---|
2480 | z &= ~ roundBitsMask;
|
---|
2481 | if ( z != a ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
2482 | return z;
|
---|
2483 |
|
---|
2484 | }
|
---|
2485 |
|
---|
2486 | float64 float64_trunc_to_int( float64 a STATUS_PARAM)
|
---|
2487 | {
|
---|
2488 | int oldmode;
|
---|
2489 | float64 res;
|
---|
2490 | oldmode = STATUS(float_rounding_mode);
|
---|
2491 | STATUS(float_rounding_mode) = float_round_to_zero;
|
---|
2492 | res = float64_round_to_int(a STATUS_VAR);
|
---|
2493 | STATUS(float_rounding_mode) = oldmode;
|
---|
2494 | return res;
|
---|
2495 | }
|
---|
2496 |
|
---|
2497 | /*----------------------------------------------------------------------------
|
---|
2498 | | Returns the result of adding the absolute values of the double-precision
|
---|
2499 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
2500 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
2501 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
2502 | | Floating-Point Arithmetic.
|
---|
2503 | *----------------------------------------------------------------------------*/
|
---|
2504 |
|
---|
2505 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
---|
2506 | {
|
---|
2507 | int16 aExp, bExp, zExp;
|
---|
2508 | bits64 aSig, bSig, zSig;
|
---|
2509 | int16 expDiff;
|
---|
2510 |
|
---|
2511 | aSig = extractFloat64Frac( a );
|
---|
2512 | aExp = extractFloat64Exp( a );
|
---|
2513 | bSig = extractFloat64Frac( b );
|
---|
2514 | bExp = extractFloat64Exp( b );
|
---|
2515 | expDiff = aExp - bExp;
|
---|
2516 | aSig <<= 9;
|
---|
2517 | bSig <<= 9;
|
---|
2518 | if ( 0 < expDiff ) {
|
---|
2519 | if ( aExp == 0x7FF ) {
|
---|
2520 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2521 | return a;
|
---|
2522 | }
|
---|
2523 | if ( bExp == 0 ) {
|
---|
2524 | --expDiff;
|
---|
2525 | }
|
---|
2526 | else {
|
---|
2527 | bSig |= LIT64( 0x2000000000000000 );
|
---|
2528 | }
|
---|
2529 | shift64RightJamming( bSig, expDiff, &bSig );
|
---|
2530 | zExp = aExp;
|
---|
2531 | }
|
---|
2532 | else if ( expDiff < 0 ) {
|
---|
2533 | if ( bExp == 0x7FF ) {
|
---|
2534 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2535 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2536 | }
|
---|
2537 | if ( aExp == 0 ) {
|
---|
2538 | ++expDiff;
|
---|
2539 | }
|
---|
2540 | else {
|
---|
2541 | aSig |= LIT64( 0x2000000000000000 );
|
---|
2542 | }
|
---|
2543 | shift64RightJamming( aSig, - expDiff, &aSig );
|
---|
2544 | zExp = bExp;
|
---|
2545 | }
|
---|
2546 | else {
|
---|
2547 | if ( aExp == 0x7FF ) {
|
---|
2548 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2549 | return a;
|
---|
2550 | }
|
---|
2551 | if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
|
---|
2552 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
|
---|
2553 | zExp = aExp;
|
---|
2554 | goto roundAndPack;
|
---|
2555 | }
|
---|
2556 | aSig |= LIT64( 0x2000000000000000 );
|
---|
2557 | zSig = ( aSig + bSig )<<1;
|
---|
2558 | --zExp;
|
---|
2559 | if ( (sbits64) zSig < 0 ) {
|
---|
2560 | zSig = aSig + bSig;
|
---|
2561 | ++zExp;
|
---|
2562 | }
|
---|
2563 | roundAndPack:
|
---|
2564 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2565 |
|
---|
2566 | }
|
---|
2567 |
|
---|
2568 | /*----------------------------------------------------------------------------
|
---|
2569 | | Returns the result of subtracting the absolute values of the double-
|
---|
2570 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
2571 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
2572 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
2573 | | Standard for Binary Floating-Point Arithmetic.
|
---|
2574 | *----------------------------------------------------------------------------*/
|
---|
2575 |
|
---|
2576 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
|
---|
2577 | {
|
---|
2578 | int16 aExp, bExp, zExp;
|
---|
2579 | bits64 aSig, bSig, zSig;
|
---|
2580 | int16 expDiff;
|
---|
2581 |
|
---|
2582 | aSig = extractFloat64Frac( a );
|
---|
2583 | aExp = extractFloat64Exp( a );
|
---|
2584 | bSig = extractFloat64Frac( b );
|
---|
2585 | bExp = extractFloat64Exp( b );
|
---|
2586 | expDiff = aExp - bExp;
|
---|
2587 | aSig <<= 10;
|
---|
2588 | bSig <<= 10;
|
---|
2589 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
2590 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
2591 | if ( aExp == 0x7FF ) {
|
---|
2592 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2593 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2594 | return float64_default_nan;
|
---|
2595 | }
|
---|
2596 | if ( aExp == 0 ) {
|
---|
2597 | aExp = 1;
|
---|
2598 | bExp = 1;
|
---|
2599 | }
|
---|
2600 | if ( bSig < aSig ) goto aBigger;
|
---|
2601 | if ( aSig < bSig ) goto bBigger;
|
---|
2602 | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
2603 | bExpBigger:
|
---|
2604 | if ( bExp == 0x7FF ) {
|
---|
2605 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2606 | return packFloat64( zSign ^ 1, 0x7FF, 0 );
|
---|
2607 | }
|
---|
2608 | if ( aExp == 0 ) {
|
---|
2609 | ++expDiff;
|
---|
2610 | }
|
---|
2611 | else {
|
---|
2612 | aSig |= LIT64( 0x4000000000000000 );
|
---|
2613 | }
|
---|
2614 | shift64RightJamming( aSig, - expDiff, &aSig );
|
---|
2615 | bSig |= LIT64( 0x4000000000000000 );
|
---|
2616 | bBigger:
|
---|
2617 | zSig = bSig - aSig;
|
---|
2618 | zExp = bExp;
|
---|
2619 | zSign ^= 1;
|
---|
2620 | goto normalizeRoundAndPack;
|
---|
2621 | aExpBigger:
|
---|
2622 | if ( aExp == 0x7FF ) {
|
---|
2623 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2624 | return a;
|
---|
2625 | }
|
---|
2626 | if ( bExp == 0 ) {
|
---|
2627 | --expDiff;
|
---|
2628 | }
|
---|
2629 | else {
|
---|
2630 | bSig |= LIT64( 0x4000000000000000 );
|
---|
2631 | }
|
---|
2632 | shift64RightJamming( bSig, expDiff, &bSig );
|
---|
2633 | aSig |= LIT64( 0x4000000000000000 );
|
---|
2634 | aBigger:
|
---|
2635 | zSig = aSig - bSig;
|
---|
2636 | zExp = aExp;
|
---|
2637 | normalizeRoundAndPack:
|
---|
2638 | --zExp;
|
---|
2639 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2640 |
|
---|
2641 | }
|
---|
2642 |
|
---|
2643 | /*----------------------------------------------------------------------------
|
---|
2644 | | Returns the result of adding the double-precision floating-point values `a'
|
---|
2645 | | and `b'. The operation is performed according to the IEC/IEEE Standard for
|
---|
2646 | | Binary Floating-Point Arithmetic.
|
---|
2647 | *----------------------------------------------------------------------------*/
|
---|
2648 |
|
---|
2649 | float64 float64_add( float64 a, float64 b STATUS_PARAM )
|
---|
2650 | {
|
---|
2651 | flag aSign, bSign;
|
---|
2652 |
|
---|
2653 | aSign = extractFloat64Sign( a );
|
---|
2654 | bSign = extractFloat64Sign( b );
|
---|
2655 | if ( aSign == bSign ) {
|
---|
2656 | return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2657 | }
|
---|
2658 | else {
|
---|
2659 | return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 | }
|
---|
2663 |
|
---|
2664 | /*----------------------------------------------------------------------------
|
---|
2665 | | Returns the result of subtracting the double-precision floating-point values
|
---|
2666 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
2667 | | for Binary Floating-Point Arithmetic.
|
---|
2668 | *----------------------------------------------------------------------------*/
|
---|
2669 |
|
---|
2670 | float64 float64_sub( float64 a, float64 b STATUS_PARAM )
|
---|
2671 | {
|
---|
2672 | flag aSign, bSign;
|
---|
2673 |
|
---|
2674 | aSign = extractFloat64Sign( a );
|
---|
2675 | bSign = extractFloat64Sign( b );
|
---|
2676 | if ( aSign == bSign ) {
|
---|
2677 | return subFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2678 | }
|
---|
2679 | else {
|
---|
2680 | return addFloat64Sigs( a, b, aSign STATUS_VAR );
|
---|
2681 | }
|
---|
2682 |
|
---|
2683 | }
|
---|
2684 |
|
---|
2685 | /*----------------------------------------------------------------------------
|
---|
2686 | | Returns the result of multiplying the double-precision floating-point values
|
---|
2687 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
2688 | | for Binary Floating-Point Arithmetic.
|
---|
2689 | *----------------------------------------------------------------------------*/
|
---|
2690 |
|
---|
2691 | float64 float64_mul( float64 a, float64 b STATUS_PARAM )
|
---|
2692 | {
|
---|
2693 | flag aSign, bSign, zSign;
|
---|
2694 | int16 aExp, bExp, zExp;
|
---|
2695 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
2696 |
|
---|
2697 | aSig = extractFloat64Frac( a );
|
---|
2698 | aExp = extractFloat64Exp( a );
|
---|
2699 | aSign = extractFloat64Sign( a );
|
---|
2700 | bSig = extractFloat64Frac( b );
|
---|
2701 | bExp = extractFloat64Exp( b );
|
---|
2702 | bSign = extractFloat64Sign( b );
|
---|
2703 | zSign = aSign ^ bSign;
|
---|
2704 | if ( aExp == 0x7FF ) {
|
---|
2705 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
---|
2706 | return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2707 | }
|
---|
2708 | if ( ( bExp | bSig ) == 0 ) {
|
---|
2709 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2710 | return float64_default_nan;
|
---|
2711 | }
|
---|
2712 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2713 | }
|
---|
2714 | if ( bExp == 0x7FF ) {
|
---|
2715 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2716 | if ( ( aExp | aSig ) == 0 ) {
|
---|
2717 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2718 | return float64_default_nan;
|
---|
2719 | }
|
---|
2720 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2721 | }
|
---|
2722 | if ( aExp == 0 ) {
|
---|
2723 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2724 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2725 | }
|
---|
2726 | if ( bExp == 0 ) {
|
---|
2727 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2728 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2729 | }
|
---|
2730 | zExp = aExp + bExp - 0x3FF;
|
---|
2731 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
---|
2732 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2733 | mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
---|
2734 | zSig0 |= ( zSig1 != 0 );
|
---|
2735 | if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
|
---|
2736 | zSig0 <<= 1;
|
---|
2737 | --zExp;
|
---|
2738 | }
|
---|
2739 | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );
|
---|
2740 |
|
---|
2741 | }
|
---|
2742 |
|
---|
2743 | /*----------------------------------------------------------------------------
|
---|
2744 | | Returns the result of dividing the double-precision floating-point value `a'
|
---|
2745 | | by the corresponding value `b'. The operation is performed according to
|
---|
2746 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2747 | *----------------------------------------------------------------------------*/
|
---|
2748 |
|
---|
2749 | float64 float64_div( float64 a, float64 b STATUS_PARAM )
|
---|
2750 | {
|
---|
2751 | flag aSign, bSign, zSign;
|
---|
2752 | int16 aExp, bExp, zExp;
|
---|
2753 | bits64 aSig, bSig, zSig;
|
---|
2754 | bits64 rem0, rem1;
|
---|
2755 | bits64 term0, term1;
|
---|
2756 |
|
---|
2757 | aSig = extractFloat64Frac( a );
|
---|
2758 | aExp = extractFloat64Exp( a );
|
---|
2759 | aSign = extractFloat64Sign( a );
|
---|
2760 | bSig = extractFloat64Frac( b );
|
---|
2761 | bExp = extractFloat64Exp( b );
|
---|
2762 | bSign = extractFloat64Sign( b );
|
---|
2763 | zSign = aSign ^ bSign;
|
---|
2764 | if ( aExp == 0x7FF ) {
|
---|
2765 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2766 | if ( bExp == 0x7FF ) {
|
---|
2767 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2768 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2769 | return float64_default_nan;
|
---|
2770 | }
|
---|
2771 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2772 | }
|
---|
2773 | if ( bExp == 0x7FF ) {
|
---|
2774 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2775 | return packFloat64( zSign, 0, 0 );
|
---|
2776 | }
|
---|
2777 | if ( bExp == 0 ) {
|
---|
2778 | if ( bSig == 0 ) {
|
---|
2779 | if ( ( aExp | aSig ) == 0 ) {
|
---|
2780 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2781 | return float64_default_nan;
|
---|
2782 | }
|
---|
2783 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
2784 | return packFloat64( zSign, 0x7FF, 0 );
|
---|
2785 | }
|
---|
2786 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2787 | }
|
---|
2788 | if ( aExp == 0 ) {
|
---|
2789 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
---|
2790 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2791 | }
|
---|
2792 | zExp = aExp - bExp + 0x3FD;
|
---|
2793 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
---|
2794 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2795 | if ( bSig <= ( aSig + aSig ) ) {
|
---|
2796 | aSig >>= 1;
|
---|
2797 | ++zExp;
|
---|
2798 | }
|
---|
2799 | zSig = estimateDiv128To64( aSig, 0, bSig );
|
---|
2800 | if ( ( zSig & 0x1FF ) <= 2 ) {
|
---|
2801 | mul64To128( bSig, zSig, &term0, &term1 );
|
---|
2802 | sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
---|
2803 | while ( (sbits64) rem0 < 0 ) {
|
---|
2804 | --zSig;
|
---|
2805 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
---|
2806 | }
|
---|
2807 | zSig |= ( rem1 != 0 );
|
---|
2808 | }
|
---|
2809 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
|
---|
2810 |
|
---|
2811 | }
|
---|
2812 |
|
---|
2813 | /*----------------------------------------------------------------------------
|
---|
2814 | | Returns the remainder of the double-precision floating-point value `a'
|
---|
2815 | | with respect to the corresponding value `b'. The operation is performed
|
---|
2816 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2817 | *----------------------------------------------------------------------------*/
|
---|
2818 |
|
---|
2819 | float64 float64_rem( float64 a, float64 b STATUS_PARAM )
|
---|
2820 | {
|
---|
2821 | flag aSign, bSign, zSign;
|
---|
2822 | int16 aExp, bExp, expDiff;
|
---|
2823 | bits64 aSig, bSig;
|
---|
2824 | bits64 q, alternateASig;
|
---|
2825 | sbits64 sigMean;
|
---|
2826 |
|
---|
2827 | aSig = extractFloat64Frac( a );
|
---|
2828 | aExp = extractFloat64Exp( a );
|
---|
2829 | aSign = extractFloat64Sign( a );
|
---|
2830 | bSig = extractFloat64Frac( b );
|
---|
2831 | bExp = extractFloat64Exp( b );
|
---|
2832 | bSign = extractFloat64Sign( b );
|
---|
2833 | if ( aExp == 0x7FF ) {
|
---|
2834 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
|
---|
2835 | return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2836 | }
|
---|
2837 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2838 | return float64_default_nan;
|
---|
2839 | }
|
---|
2840 | if ( bExp == 0x7FF ) {
|
---|
2841 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
|
---|
2842 | return a;
|
---|
2843 | }
|
---|
2844 | if ( bExp == 0 ) {
|
---|
2845 | if ( bSig == 0 ) {
|
---|
2846 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2847 | return float64_default_nan;
|
---|
2848 | }
|
---|
2849 | normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
---|
2850 | }
|
---|
2851 | if ( aExp == 0 ) {
|
---|
2852 | if ( aSig == 0 ) return a;
|
---|
2853 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2854 | }
|
---|
2855 | expDiff = aExp - bExp;
|
---|
2856 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2857 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
---|
2858 | if ( expDiff < 0 ) {
|
---|
2859 | if ( expDiff < -1 ) return a;
|
---|
2860 | aSig >>= 1;
|
---|
2861 | }
|
---|
2862 | q = ( bSig <= aSig );
|
---|
2863 | if ( q ) aSig -= bSig;
|
---|
2864 | expDiff -= 64;
|
---|
2865 | while ( 0 < expDiff ) {
|
---|
2866 | q = estimateDiv128To64( aSig, 0, bSig );
|
---|
2867 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
2868 | aSig = - ( ( bSig>>2 ) * q );
|
---|
2869 | expDiff -= 62;
|
---|
2870 | }
|
---|
2871 | expDiff += 64;
|
---|
2872 | if ( 0 < expDiff ) {
|
---|
2873 | q = estimateDiv128To64( aSig, 0, bSig );
|
---|
2874 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
2875 | q >>= 64 - expDiff;
|
---|
2876 | bSig >>= 2;
|
---|
2877 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
|
---|
2878 | }
|
---|
2879 | else {
|
---|
2880 | aSig >>= 2;
|
---|
2881 | bSig >>= 2;
|
---|
2882 | }
|
---|
2883 | do {
|
---|
2884 | alternateASig = aSig;
|
---|
2885 | ++q;
|
---|
2886 | aSig -= bSig;
|
---|
2887 | } while ( 0 <= (sbits64) aSig );
|
---|
2888 | sigMean = aSig + alternateASig;
|
---|
2889 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
|
---|
2890 | aSig = alternateASig;
|
---|
2891 | }
|
---|
2892 | zSign = ( (sbits64) aSig < 0 );
|
---|
2893 | if ( zSign ) aSig = - aSig;
|
---|
2894 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );
|
---|
2895 |
|
---|
2896 | }
|
---|
2897 |
|
---|
2898 | /*----------------------------------------------------------------------------
|
---|
2899 | | Returns the square root of the double-precision floating-point value `a'.
|
---|
2900 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
2901 | | Floating-Point Arithmetic.
|
---|
2902 | *----------------------------------------------------------------------------*/
|
---|
2903 |
|
---|
2904 | float64 float64_sqrt( float64 a STATUS_PARAM )
|
---|
2905 | {
|
---|
2906 | flag aSign;
|
---|
2907 | int16 aExp, zExp;
|
---|
2908 | bits64 aSig, zSig, doubleZSig;
|
---|
2909 | bits64 rem0, rem1, term0, term1;
|
---|
2910 |
|
---|
2911 | aSig = extractFloat64Frac( a );
|
---|
2912 | aExp = extractFloat64Exp( a );
|
---|
2913 | aSign = extractFloat64Sign( a );
|
---|
2914 | if ( aExp == 0x7FF ) {
|
---|
2915 | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
|
---|
2916 | if ( ! aSign ) return a;
|
---|
2917 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2918 | return float64_default_nan;
|
---|
2919 | }
|
---|
2920 | if ( aSign ) {
|
---|
2921 | if ( ( aExp | aSig ) == 0 ) return a;
|
---|
2922 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2923 | return float64_default_nan;
|
---|
2924 | }
|
---|
2925 | if ( aExp == 0 ) {
|
---|
2926 | if ( aSig == 0 ) return 0;
|
---|
2927 | normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
---|
2928 | }
|
---|
2929 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
|
---|
2930 | aSig |= LIT64( 0x0010000000000000 );
|
---|
2931 | zSig = estimateSqrt32( aExp, aSig>>21 );
|
---|
2932 | aSig <<= 9 - ( aExp & 1 );
|
---|
2933 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
|
---|
2934 | if ( ( zSig & 0x1FF ) <= 5 ) {
|
---|
2935 | doubleZSig = zSig<<1;
|
---|
2936 | mul64To128( zSig, zSig, &term0, &term1 );
|
---|
2937 | sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
---|
2938 | while ( (sbits64) rem0 < 0 ) {
|
---|
2939 | --zSig;
|
---|
2940 | doubleZSig -= 2;
|
---|
2941 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
|
---|
2942 | }
|
---|
2943 | zSig |= ( ( rem0 | rem1 ) != 0 );
|
---|
2944 | }
|
---|
2945 | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );
|
---|
2946 |
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | /*----------------------------------------------------------------------------
|
---|
2950 | | Returns 1 if the double-precision floating-point value `a' is equal to the
|
---|
2951 | | corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2952 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2953 | *----------------------------------------------------------------------------*/
|
---|
2954 |
|
---|
2955 | int float64_eq( float64 a, float64 b STATUS_PARAM )
|
---|
2956 | {
|
---|
2957 |
|
---|
2958 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
2959 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
2960 | ) {
|
---|
2961 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
2962 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2963 | }
|
---|
2964 | return 0;
|
---|
2965 | }
|
---|
2966 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
---|
2967 |
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | /*----------------------------------------------------------------------------
|
---|
2971 | | Returns 1 if the double-precision floating-point value `a' is less than or
|
---|
2972 | | equal to the corresponding value `b', and 0 otherwise. The comparison is
|
---|
2973 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
2974 | | Arithmetic.
|
---|
2975 | *----------------------------------------------------------------------------*/
|
---|
2976 |
|
---|
2977 | int float64_le( float64 a, float64 b STATUS_PARAM )
|
---|
2978 | {
|
---|
2979 | flag aSign, bSign;
|
---|
2980 |
|
---|
2981 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
2982 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
2983 | ) {
|
---|
2984 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
2985 | return 0;
|
---|
2986 | }
|
---|
2987 | aSign = extractFloat64Sign( a );
|
---|
2988 | bSign = extractFloat64Sign( b );
|
---|
2989 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
---|
2990 | return ( a == b ) || ( aSign ^ ( a < b ) );
|
---|
2991 |
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 | /*----------------------------------------------------------------------------
|
---|
2995 | | Returns 1 if the double-precision floating-point value `a' is less than
|
---|
2996 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
2997 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
2998 | *----------------------------------------------------------------------------*/
|
---|
2999 |
|
---|
3000 | int float64_lt( float64 a, float64 b STATUS_PARAM )
|
---|
3001 | {
|
---|
3002 | flag aSign, bSign;
|
---|
3003 |
|
---|
3004 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3005 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3006 | ) {
|
---|
3007 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3008 | return 0;
|
---|
3009 | }
|
---|
3010 | aSign = extractFloat64Sign( a );
|
---|
3011 | bSign = extractFloat64Sign( b );
|
---|
3012 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
|
---|
3013 | return ( a != b ) && ( aSign ^ ( a < b ) );
|
---|
3014 |
|
---|
3015 | }
|
---|
3016 |
|
---|
3017 | /*----------------------------------------------------------------------------
|
---|
3018 | | Returns 1 if the double-precision floating-point value `a' is equal to the
|
---|
3019 | | corresponding value `b', and 0 otherwise. The invalid exception is raised
|
---|
3020 | | if either operand is a NaN. Otherwise, the comparison is performed
|
---|
3021 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3022 | *----------------------------------------------------------------------------*/
|
---|
3023 |
|
---|
3024 | int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
|
---|
3025 | {
|
---|
3026 |
|
---|
3027 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3028 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3029 | ) {
|
---|
3030 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3031 | return 0;
|
---|
3032 | }
|
---|
3033 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
---|
3034 |
|
---|
3035 | }
|
---|
3036 |
|
---|
3037 | /*----------------------------------------------------------------------------
|
---|
3038 | | Returns 1 if the double-precision floating-point value `a' is less than or
|
---|
3039 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
3040 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
3041 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3042 | *----------------------------------------------------------------------------*/
|
---|
3043 |
|
---|
3044 | int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
|
---|
3045 | {
|
---|
3046 | flag aSign, bSign;
|
---|
3047 |
|
---|
3048 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3049 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3050 | ) {
|
---|
3051 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
3052 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3053 | }
|
---|
3054 | return 0;
|
---|
3055 | }
|
---|
3056 | aSign = extractFloat64Sign( a );
|
---|
3057 | bSign = extractFloat64Sign( b );
|
---|
3058 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
|
---|
3059 | return ( a == b ) || ( aSign ^ ( a < b ) );
|
---|
3060 |
|
---|
3061 | }
|
---|
3062 |
|
---|
3063 | /*----------------------------------------------------------------------------
|
---|
3064 | | Returns 1 if the double-precision floating-point value `a' is less than
|
---|
3065 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
3066 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
3067 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3068 | *----------------------------------------------------------------------------*/
|
---|
3069 |
|
---|
3070 | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
|
---|
3071 | {
|
---|
3072 | flag aSign, bSign;
|
---|
3073 |
|
---|
3074 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|
---|
3075 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
|
---|
3076 | ) {
|
---|
3077 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
|
---|
3078 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3079 | }
|
---|
3080 | return 0;
|
---|
3081 | }
|
---|
3082 | aSign = extractFloat64Sign( a );
|
---|
3083 | bSign = extractFloat64Sign( b );
|
---|
3084 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
|
---|
3085 | return ( a != b ) && ( aSign ^ ( a < b ) );
|
---|
3086 |
|
---|
3087 | }
|
---|
3088 |
|
---|
3089 | #ifdef FLOATX80
|
---|
3090 |
|
---|
3091 | /*----------------------------------------------------------------------------
|
---|
3092 | | Returns the result of converting the extended double-precision floating-
|
---|
3093 | | point value `a' to the 32-bit two's complement integer format. The
|
---|
3094 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3095 | | Floating-Point Arithmetic---which means in particular that the conversion
|
---|
3096 | | is rounded according to the current rounding mode. If `a' is a NaN, the
|
---|
3097 | | largest positive integer is returned. Otherwise, if the conversion
|
---|
3098 | | overflows, the largest integer with the same sign as `a' is returned.
|
---|
3099 | *----------------------------------------------------------------------------*/
|
---|
3100 |
|
---|
3101 | int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
|
---|
3102 | {
|
---|
3103 | flag aSign;
|
---|
3104 | int32 aExp, shiftCount;
|
---|
3105 | bits64 aSig;
|
---|
3106 |
|
---|
3107 | aSig = extractFloatx80Frac( a );
|
---|
3108 | aExp = extractFloatx80Exp( a );
|
---|
3109 | aSign = extractFloatx80Sign( a );
|
---|
3110 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
|
---|
3111 | shiftCount = 0x4037 - aExp;
|
---|
3112 | if ( shiftCount <= 0 ) shiftCount = 1;
|
---|
3113 | shift64RightJamming( aSig, shiftCount, &aSig );
|
---|
3114 | return roundAndPackInt32( aSign, aSig STATUS_VAR );
|
---|
3115 |
|
---|
3116 | }
|
---|
3117 |
|
---|
3118 | /*----------------------------------------------------------------------------
|
---|
3119 | | Returns the result of converting the extended double-precision floating-
|
---|
3120 | | point value `a' to the 32-bit two's complement integer format. The
|
---|
3121 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3122 | | Floating-Point Arithmetic, except that the conversion is always rounded
|
---|
3123 | | toward zero. If `a' is a NaN, the largest positive integer is returned.
|
---|
3124 | | Otherwise, if the conversion overflows, the largest integer with the same
|
---|
3125 | | sign as `a' is returned.
|
---|
3126 | *----------------------------------------------------------------------------*/
|
---|
3127 |
|
---|
3128 | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
|
---|
3129 | {
|
---|
3130 | flag aSign;
|
---|
3131 | int32 aExp, shiftCount;
|
---|
3132 | bits64 aSig, savedASig;
|
---|
3133 | int32 z;
|
---|
3134 |
|
---|
3135 | aSig = extractFloatx80Frac( a );
|
---|
3136 | aExp = extractFloatx80Exp( a );
|
---|
3137 | aSign = extractFloatx80Sign( a );
|
---|
3138 | if ( 0x401E < aExp ) {
|
---|
3139 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
|
---|
3140 | goto invalid;
|
---|
3141 | }
|
---|
3142 | else if ( aExp < 0x3FFF ) {
|
---|
3143 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3144 | return 0;
|
---|
3145 | }
|
---|
3146 | shiftCount = 0x403E - aExp;
|
---|
3147 | savedASig = aSig;
|
---|
3148 | aSig >>= shiftCount;
|
---|
3149 | z = aSig;
|
---|
3150 | if ( aSign ) z = - z;
|
---|
3151 | if ( ( z < 0 ) ^ aSign ) {
|
---|
3152 | invalid:
|
---|
3153 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3154 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
3155 | }
|
---|
3156 | if ( ( aSig<<shiftCount ) != savedASig ) {
|
---|
3157 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3158 | }
|
---|
3159 | return z;
|
---|
3160 |
|
---|
3161 | }
|
---|
3162 |
|
---|
3163 | /*----------------------------------------------------------------------------
|
---|
3164 | | Returns the result of converting the extended double-precision floating-
|
---|
3165 | | point value `a' to the 64-bit two's complement integer format. The
|
---|
3166 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3167 | | Floating-Point Arithmetic---which means in particular that the conversion
|
---|
3168 | | is rounded according to the current rounding mode. If `a' is a NaN,
|
---|
3169 | | the largest positive integer is returned. Otherwise, if the conversion
|
---|
3170 | | overflows, the largest integer with the same sign as `a' is returned.
|
---|
3171 | *----------------------------------------------------------------------------*/
|
---|
3172 |
|
---|
3173 | int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
|
---|
3174 | {
|
---|
3175 | flag aSign;
|
---|
3176 | int32 aExp, shiftCount;
|
---|
3177 | bits64 aSig, aSigExtra;
|
---|
3178 |
|
---|
3179 | aSig = extractFloatx80Frac( a );
|
---|
3180 | aExp = extractFloatx80Exp( a );
|
---|
3181 | aSign = extractFloatx80Sign( a );
|
---|
3182 | shiftCount = 0x403E - aExp;
|
---|
3183 | if ( shiftCount <= 0 ) {
|
---|
3184 | if ( shiftCount ) {
|
---|
3185 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3186 | if ( ! aSign
|
---|
3187 | || ( ( aExp == 0x7FFF )
|
---|
3188 | && ( aSig != LIT64( 0x8000000000000000 ) ) )
|
---|
3189 | ) {
|
---|
3190 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3191 | }
|
---|
3192 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
3193 | }
|
---|
3194 | aSigExtra = 0;
|
---|
3195 | }
|
---|
3196 | else {
|
---|
3197 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
|
---|
3198 | }
|
---|
3199 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
|
---|
3200 |
|
---|
3201 | }
|
---|
3202 |
|
---|
3203 | /*----------------------------------------------------------------------------
|
---|
3204 | | Returns the result of converting the extended double-precision floating-
|
---|
3205 | | point value `a' to the 64-bit two's complement integer format. The
|
---|
3206 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3207 | | Floating-Point Arithmetic, except that the conversion is always rounded
|
---|
3208 | | toward zero. If `a' is a NaN, the largest positive integer is returned.
|
---|
3209 | | Otherwise, if the conversion overflows, the largest integer with the same
|
---|
3210 | | sign as `a' is returned.
|
---|
3211 | *----------------------------------------------------------------------------*/
|
---|
3212 |
|
---|
3213 | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
|
---|
3214 | {
|
---|
3215 | flag aSign;
|
---|
3216 | int32 aExp, shiftCount;
|
---|
3217 | bits64 aSig;
|
---|
3218 | int64 z;
|
---|
3219 |
|
---|
3220 | aSig = extractFloatx80Frac( a );
|
---|
3221 | aExp = extractFloatx80Exp( a );
|
---|
3222 | aSign = extractFloatx80Sign( a );
|
---|
3223 | shiftCount = aExp - 0x403E;
|
---|
3224 | if ( 0 <= shiftCount ) {
|
---|
3225 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3226 | if ( ( a.high != 0xC03E ) || aSig ) {
|
---|
3227 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3228 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
|
---|
3229 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
3230 | }
|
---|
3231 | }
|
---|
3232 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
3233 | }
|
---|
3234 | else if ( aExp < 0x3FFF ) {
|
---|
3235 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3236 | return 0;
|
---|
3237 | }
|
---|
3238 | z = aSig>>( - shiftCount );
|
---|
3239 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
|
---|
3240 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3241 | }
|
---|
3242 | if ( aSign ) z = - z;
|
---|
3243 | return z;
|
---|
3244 |
|
---|
3245 | }
|
---|
3246 |
|
---|
3247 | /*----------------------------------------------------------------------------
|
---|
3248 | | Returns the result of converting the extended double-precision floating-
|
---|
3249 | | point value `a' to the single-precision floating-point format. The
|
---|
3250 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3251 | | Floating-Point Arithmetic.
|
---|
3252 | *----------------------------------------------------------------------------*/
|
---|
3253 |
|
---|
3254 | float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
|
---|
3255 | {
|
---|
3256 | flag aSign;
|
---|
3257 | int32 aExp;
|
---|
3258 | bits64 aSig;
|
---|
3259 |
|
---|
3260 | aSig = extractFloatx80Frac( a );
|
---|
3261 | aExp = extractFloatx80Exp( a );
|
---|
3262 | aSign = extractFloatx80Sign( a );
|
---|
3263 | if ( aExp == 0x7FFF ) {
|
---|
3264 | if ( (bits64) ( aSig<<1 ) ) {
|
---|
3265 | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3266 | }
|
---|
3267 | return packFloat32( aSign, 0xFF, 0 );
|
---|
3268 | }
|
---|
3269 | shift64RightJamming( aSig, 33, &aSig );
|
---|
3270 | if ( aExp || aSig ) aExp -= 0x3F81;
|
---|
3271 | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
|
---|
3272 |
|
---|
3273 | }
|
---|
3274 |
|
---|
3275 | /*----------------------------------------------------------------------------
|
---|
3276 | | Returns the result of converting the extended double-precision floating-
|
---|
3277 | | point value `a' to the double-precision floating-point format. The
|
---|
3278 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3279 | | Floating-Point Arithmetic.
|
---|
3280 | *----------------------------------------------------------------------------*/
|
---|
3281 |
|
---|
3282 | float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
|
---|
3283 | {
|
---|
3284 | flag aSign;
|
---|
3285 | int32 aExp;
|
---|
3286 | bits64 aSig, zSig;
|
---|
3287 |
|
---|
3288 | aSig = extractFloatx80Frac( a );
|
---|
3289 | aExp = extractFloatx80Exp( a );
|
---|
3290 | aSign = extractFloatx80Sign( a );
|
---|
3291 | if ( aExp == 0x7FFF ) {
|
---|
3292 | if ( (bits64) ( aSig<<1 ) ) {
|
---|
3293 | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3294 | }
|
---|
3295 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
3296 | }
|
---|
3297 | shift64RightJamming( aSig, 1, &zSig );
|
---|
3298 | if ( aExp || aSig ) aExp -= 0x3C01;
|
---|
3299 | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );
|
---|
3300 |
|
---|
3301 | }
|
---|
3302 |
|
---|
3303 | #ifdef FLOAT128
|
---|
3304 |
|
---|
3305 | /*----------------------------------------------------------------------------
|
---|
3306 | | Returns the result of converting the extended double-precision floating-
|
---|
3307 | | point value `a' to the quadruple-precision floating-point format. The
|
---|
3308 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
3309 | | Floating-Point Arithmetic.
|
---|
3310 | *----------------------------------------------------------------------------*/
|
---|
3311 |
|
---|
3312 | float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
|
---|
3313 | {
|
---|
3314 | flag aSign;
|
---|
3315 | int16 aExp;
|
---|
3316 | bits64 aSig, zSig0, zSig1;
|
---|
3317 |
|
---|
3318 | aSig = extractFloatx80Frac( a );
|
---|
3319 | aExp = extractFloatx80Exp( a );
|
---|
3320 | aSign = extractFloatx80Sign( a );
|
---|
3321 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
|
---|
3322 | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) );
|
---|
3323 | }
|
---|
3324 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
|
---|
3325 | return packFloat128( aSign, aExp, zSig0, zSig1 );
|
---|
3326 |
|
---|
3327 | }
|
---|
3328 |
|
---|
3329 | #endif
|
---|
3330 |
|
---|
3331 | /*----------------------------------------------------------------------------
|
---|
3332 | | Rounds the extended double-precision floating-point value `a' to an integer,
|
---|
3333 | | and returns the result as an extended quadruple-precision floating-point
|
---|
3334 | | value. The operation is performed according to the IEC/IEEE Standard for
|
---|
3335 | | Binary Floating-Point Arithmetic.
|
---|
3336 | *----------------------------------------------------------------------------*/
|
---|
3337 |
|
---|
3338 | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
|
---|
3339 | {
|
---|
3340 | flag aSign;
|
---|
3341 | int32 aExp;
|
---|
3342 | bits64 lastBitMask, roundBitsMask;
|
---|
3343 | int8 roundingMode;
|
---|
3344 | floatx80 z;
|
---|
3345 |
|
---|
3346 | aExp = extractFloatx80Exp( a );
|
---|
3347 | if ( 0x403E <= aExp ) {
|
---|
3348 | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
|
---|
3349 | return propagateFloatx80NaN( a, a STATUS_VAR );
|
---|
3350 | }
|
---|
3351 | return a;
|
---|
3352 | }
|
---|
3353 | if ( aExp < 0x3FFF ) {
|
---|
3354 | if ( ( aExp == 0 )
|
---|
3355 | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
|
---|
3356 | return a;
|
---|
3357 | }
|
---|
3358 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3359 | aSign = extractFloatx80Sign( a );
|
---|
3360 | switch ( STATUS(float_rounding_mode) ) {
|
---|
3361 | case float_round_nearest_even:
|
---|
3362 | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
|
---|
3363 | ) {
|
---|
3364 | return
|
---|
3365 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
---|
3366 | }
|
---|
3367 | break;
|
---|
3368 | case float_round_down:
|
---|
3369 | return
|
---|
3370 | aSign ?
|
---|
3371 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
|
---|
3372 | : packFloatx80( 0, 0, 0 );
|
---|
3373 | case float_round_up:
|
---|
3374 | return
|
---|
3375 | aSign ? packFloatx80( 1, 0, 0 )
|
---|
3376 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
|
---|
3377 | }
|
---|
3378 | return packFloatx80( aSign, 0, 0 );
|
---|
3379 | }
|
---|
3380 | lastBitMask = 1;
|
---|
3381 | lastBitMask <<= 0x403E - aExp;
|
---|
3382 | roundBitsMask = lastBitMask - 1;
|
---|
3383 | z = a;
|
---|
3384 | roundingMode = STATUS(float_rounding_mode);
|
---|
3385 | if ( roundingMode == float_round_nearest_even ) {
|
---|
3386 | z.low += lastBitMask>>1;
|
---|
3387 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
---|
3388 | }
|
---|
3389 | else if ( roundingMode != float_round_to_zero ) {
|
---|
3390 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
|
---|
3391 | z.low += roundBitsMask;
|
---|
3392 | }
|
---|
3393 | }
|
---|
3394 | z.low &= ~ roundBitsMask;
|
---|
3395 | if ( z.low == 0 ) {
|
---|
3396 | ++z.high;
|
---|
3397 | z.low = LIT64( 0x8000000000000000 );
|
---|
3398 | }
|
---|
3399 | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
3400 | return z;
|
---|
3401 |
|
---|
3402 | }
|
---|
3403 |
|
---|
3404 | /*----------------------------------------------------------------------------
|
---|
3405 | | Returns the result of adding the absolute values of the extended double-
|
---|
3406 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
---|
3407 | | negated before being returned. `zSign' is ignored if the result is a NaN.
|
---|
3408 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
3409 | | Floating-Point Arithmetic.
|
---|
3410 | *----------------------------------------------------------------------------*/
|
---|
3411 |
|
---|
3412 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
|
---|
3413 | {
|
---|
3414 | int32 aExp, bExp, zExp;
|
---|
3415 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3416 | int32 expDiff;
|
---|
3417 |
|
---|
3418 | aSig = extractFloatx80Frac( a );
|
---|
3419 | aExp = extractFloatx80Exp( a );
|
---|
3420 | bSig = extractFloatx80Frac( b );
|
---|
3421 | bExp = extractFloatx80Exp( b );
|
---|
3422 | expDiff = aExp - bExp;
|
---|
3423 | if ( 0 < expDiff ) {
|
---|
3424 | if ( aExp == 0x7FFF ) {
|
---|
3425 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3426 | return a;
|
---|
3427 | }
|
---|
3428 | if ( bExp == 0 ) --expDiff;
|
---|
3429 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
---|
3430 | zExp = aExp;
|
---|
3431 | }
|
---|
3432 | else if ( expDiff < 0 ) {
|
---|
3433 | if ( bExp == 0x7FFF ) {
|
---|
3434 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3435 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3436 | }
|
---|
3437 | if ( aExp == 0 ) ++expDiff;
|
---|
3438 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
---|
3439 | zExp = bExp;
|
---|
3440 | }
|
---|
3441 | else {
|
---|
3442 | if ( aExp == 0x7FFF ) {
|
---|
3443 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
|
---|
3444 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3445 | }
|
---|
3446 | return a;
|
---|
3447 | }
|
---|
3448 | zSig1 = 0;
|
---|
3449 | zSig0 = aSig + bSig;
|
---|
3450 | if ( aExp == 0 ) {
|
---|
3451 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
|
---|
3452 | goto roundAndPack;
|
---|
3453 | }
|
---|
3454 | zExp = aExp;
|
---|
3455 | goto shiftRight1;
|
---|
3456 | }
|
---|
3457 | zSig0 = aSig + bSig;
|
---|
3458 | if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
|
---|
3459 | shiftRight1:
|
---|
3460 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
---|
3461 | zSig0 |= LIT64( 0x8000000000000000 );
|
---|
3462 | ++zExp;
|
---|
3463 | roundAndPack:
|
---|
3464 | return
|
---|
3465 | roundAndPackFloatx80(
|
---|
3466 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3467 |
|
---|
3468 | }
|
---|
3469 |
|
---|
3470 | /*----------------------------------------------------------------------------
|
---|
3471 | | Returns the result of subtracting the absolute values of the extended
|
---|
3472 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
3473 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
3474 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
3475 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3476 | *----------------------------------------------------------------------------*/
|
---|
3477 |
|
---|
3478 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
|
---|
3479 | {
|
---|
3480 | int32 aExp, bExp, zExp;
|
---|
3481 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3482 | int32 expDiff;
|
---|
3483 | floatx80 z;
|
---|
3484 |
|
---|
3485 | aSig = extractFloatx80Frac( a );
|
---|
3486 | aExp = extractFloatx80Exp( a );
|
---|
3487 | bSig = extractFloatx80Frac( b );
|
---|
3488 | bExp = extractFloatx80Exp( b );
|
---|
3489 | expDiff = aExp - bExp;
|
---|
3490 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
3491 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
3492 | if ( aExp == 0x7FFF ) {
|
---|
3493 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
|
---|
3494 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3495 | }
|
---|
3496 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3497 | z.low = floatx80_default_nan_low;
|
---|
3498 | z.high = floatx80_default_nan_high;
|
---|
3499 | return z;
|
---|
3500 | }
|
---|
3501 | if ( aExp == 0 ) {
|
---|
3502 | aExp = 1;
|
---|
3503 | bExp = 1;
|
---|
3504 | }
|
---|
3505 | zSig1 = 0;
|
---|
3506 | if ( bSig < aSig ) goto aBigger;
|
---|
3507 | if ( aSig < bSig ) goto bBigger;
|
---|
3508 | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
|
---|
3509 | bExpBigger:
|
---|
3510 | if ( bExp == 0x7FFF ) {
|
---|
3511 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3512 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3513 | }
|
---|
3514 | if ( aExp == 0 ) ++expDiff;
|
---|
3515 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
|
---|
3516 | bBigger:
|
---|
3517 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
|
---|
3518 | zExp = bExp;
|
---|
3519 | zSign ^= 1;
|
---|
3520 | goto normalizeRoundAndPack;
|
---|
3521 | aExpBigger:
|
---|
3522 | if ( aExp == 0x7FFF ) {
|
---|
3523 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3524 | return a;
|
---|
3525 | }
|
---|
3526 | if ( bExp == 0 ) --expDiff;
|
---|
3527 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
|
---|
3528 | aBigger:
|
---|
3529 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
|
---|
3530 | zExp = aExp;
|
---|
3531 | normalizeRoundAndPack:
|
---|
3532 | return
|
---|
3533 | normalizeRoundAndPackFloatx80(
|
---|
3534 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3535 |
|
---|
3536 | }
|
---|
3537 |
|
---|
3538 | /*----------------------------------------------------------------------------
|
---|
3539 | | Returns the result of adding the extended double-precision floating-point
|
---|
3540 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
3541 | | Standard for Binary Floating-Point Arithmetic.
|
---|
3542 | *----------------------------------------------------------------------------*/
|
---|
3543 |
|
---|
3544 | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3545 | {
|
---|
3546 | flag aSign, bSign;
|
---|
3547 |
|
---|
3548 | aSign = extractFloatx80Sign( a );
|
---|
3549 | bSign = extractFloatx80Sign( b );
|
---|
3550 | if ( aSign == bSign ) {
|
---|
3551 | return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3552 | }
|
---|
3553 | else {
|
---|
3554 | return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3555 | }
|
---|
3556 |
|
---|
3557 | }
|
---|
3558 |
|
---|
3559 | /*----------------------------------------------------------------------------
|
---|
3560 | | Returns the result of subtracting the extended double-precision floating-
|
---|
3561 | | point values `a' and `b'. The operation is performed according to the
|
---|
3562 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3563 | *----------------------------------------------------------------------------*/
|
---|
3564 |
|
---|
3565 | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3566 | {
|
---|
3567 | flag aSign, bSign;
|
---|
3568 |
|
---|
3569 | aSign = extractFloatx80Sign( a );
|
---|
3570 | bSign = extractFloatx80Sign( b );
|
---|
3571 | if ( aSign == bSign ) {
|
---|
3572 | return subFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3573 | }
|
---|
3574 | else {
|
---|
3575 | return addFloatx80Sigs( a, b, aSign STATUS_VAR );
|
---|
3576 | }
|
---|
3577 |
|
---|
3578 | }
|
---|
3579 |
|
---|
3580 | /*----------------------------------------------------------------------------
|
---|
3581 | | Returns the result of multiplying the extended double-precision floating-
|
---|
3582 | | point values `a' and `b'. The operation is performed according to the
|
---|
3583 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3584 | *----------------------------------------------------------------------------*/
|
---|
3585 |
|
---|
3586 | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3587 | {
|
---|
3588 | flag aSign, bSign, zSign;
|
---|
3589 | int32 aExp, bExp, zExp;
|
---|
3590 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3591 | floatx80 z;
|
---|
3592 |
|
---|
3593 | aSig = extractFloatx80Frac( a );
|
---|
3594 | aExp = extractFloatx80Exp( a );
|
---|
3595 | aSign = extractFloatx80Sign( a );
|
---|
3596 | bSig = extractFloatx80Frac( b );
|
---|
3597 | bExp = extractFloatx80Exp( b );
|
---|
3598 | bSign = extractFloatx80Sign( b );
|
---|
3599 | zSign = aSign ^ bSign;
|
---|
3600 | if ( aExp == 0x7FFF ) {
|
---|
3601 | if ( (bits64) ( aSig<<1 )
|
---|
3602 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
|
---|
3603 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3604 | }
|
---|
3605 | if ( ( bExp | bSig ) == 0 ) goto invalid;
|
---|
3606 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3607 | }
|
---|
3608 | if ( bExp == 0x7FFF ) {
|
---|
3609 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3610 | if ( ( aExp | aSig ) == 0 ) {
|
---|
3611 | invalid:
|
---|
3612 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3613 | z.low = floatx80_default_nan_low;
|
---|
3614 | z.high = floatx80_default_nan_high;
|
---|
3615 | return z;
|
---|
3616 | }
|
---|
3617 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3618 | }
|
---|
3619 | if ( aExp == 0 ) {
|
---|
3620 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3621 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
---|
3622 | }
|
---|
3623 | if ( bExp == 0 ) {
|
---|
3624 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3625 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3626 | }
|
---|
3627 | zExp = aExp + bExp - 0x3FFE;
|
---|
3628 | mul64To128( aSig, bSig, &zSig0, &zSig1 );
|
---|
3629 | if ( 0 < (sbits64) zSig0 ) {
|
---|
3630 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
|
---|
3631 | --zExp;
|
---|
3632 | }
|
---|
3633 | return
|
---|
3634 | roundAndPackFloatx80(
|
---|
3635 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3636 |
|
---|
3637 | }
|
---|
3638 |
|
---|
3639 | /*----------------------------------------------------------------------------
|
---|
3640 | | Returns the result of dividing the extended double-precision floating-point
|
---|
3641 | | value `a' by the corresponding value `b'. The operation is performed
|
---|
3642 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3643 | *----------------------------------------------------------------------------*/
|
---|
3644 |
|
---|
3645 | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3646 | {
|
---|
3647 | flag aSign, bSign, zSign;
|
---|
3648 | int32 aExp, bExp, zExp;
|
---|
3649 | bits64 aSig, bSig, zSig0, zSig1;
|
---|
3650 | bits64 rem0, rem1, rem2, term0, term1, term2;
|
---|
3651 | floatx80 z;
|
---|
3652 |
|
---|
3653 | aSig = extractFloatx80Frac( a );
|
---|
3654 | aExp = extractFloatx80Exp( a );
|
---|
3655 | aSign = extractFloatx80Sign( a );
|
---|
3656 | bSig = extractFloatx80Frac( b );
|
---|
3657 | bExp = extractFloatx80Exp( b );
|
---|
3658 | bSign = extractFloatx80Sign( b );
|
---|
3659 | zSign = aSign ^ bSign;
|
---|
3660 | if ( aExp == 0x7FFF ) {
|
---|
3661 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3662 | if ( bExp == 0x7FFF ) {
|
---|
3663 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3664 | goto invalid;
|
---|
3665 | }
|
---|
3666 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3667 | }
|
---|
3668 | if ( bExp == 0x7FFF ) {
|
---|
3669 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3670 | return packFloatx80( zSign, 0, 0 );
|
---|
3671 | }
|
---|
3672 | if ( bExp == 0 ) {
|
---|
3673 | if ( bSig == 0 ) {
|
---|
3674 | if ( ( aExp | aSig ) == 0 ) {
|
---|
3675 | invalid:
|
---|
3676 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3677 | z.low = floatx80_default_nan_low;
|
---|
3678 | z.high = floatx80_default_nan_high;
|
---|
3679 | return z;
|
---|
3680 | }
|
---|
3681 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
3682 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
3683 | }
|
---|
3684 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3685 | }
|
---|
3686 | if ( aExp == 0 ) {
|
---|
3687 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
|
---|
3688 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
|
---|
3689 | }
|
---|
3690 | zExp = aExp - bExp + 0x3FFE;
|
---|
3691 | rem1 = 0;
|
---|
3692 | if ( bSig <= aSig ) {
|
---|
3693 | shift128Right( aSig, 0, 1, &aSig, &rem1 );
|
---|
3694 | ++zExp;
|
---|
3695 | }
|
---|
3696 | zSig0 = estimateDiv128To64( aSig, rem1, bSig );
|
---|
3697 | mul64To128( bSig, zSig0, &term0, &term1 );
|
---|
3698 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
|
---|
3699 | while ( (sbits64) rem0 < 0 ) {
|
---|
3700 | --zSig0;
|
---|
3701 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
---|
3702 | }
|
---|
3703 | zSig1 = estimateDiv128To64( rem1, 0, bSig );
|
---|
3704 | if ( (bits64) ( zSig1<<1 ) <= 8 ) {
|
---|
3705 | mul64To128( bSig, zSig1, &term1, &term2 );
|
---|
3706 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
3707 | while ( (sbits64) rem1 < 0 ) {
|
---|
3708 | --zSig1;
|
---|
3709 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
|
---|
3710 | }
|
---|
3711 | zSig1 |= ( ( rem1 | rem2 ) != 0 );
|
---|
3712 | }
|
---|
3713 | return
|
---|
3714 | roundAndPackFloatx80(
|
---|
3715 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3716 |
|
---|
3717 | }
|
---|
3718 |
|
---|
3719 | /*----------------------------------------------------------------------------
|
---|
3720 | | Returns the remainder of the extended double-precision floating-point value
|
---|
3721 | | `a' with respect to the corresponding value `b'. The operation is performed
|
---|
3722 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3723 | *----------------------------------------------------------------------------*/
|
---|
3724 |
|
---|
3725 | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3726 | {
|
---|
3727 | flag aSign, bSign, zSign;
|
---|
3728 | int32 aExp, bExp, expDiff;
|
---|
3729 | bits64 aSig0, aSig1, bSig;
|
---|
3730 | bits64 q, term0, term1, alternateASig0, alternateASig1;
|
---|
3731 | floatx80 z;
|
---|
3732 |
|
---|
3733 | aSig0 = extractFloatx80Frac( a );
|
---|
3734 | aExp = extractFloatx80Exp( a );
|
---|
3735 | aSign = extractFloatx80Sign( a );
|
---|
3736 | bSig = extractFloatx80Frac( b );
|
---|
3737 | bExp = extractFloatx80Exp( b );
|
---|
3738 | bSign = extractFloatx80Sign( b );
|
---|
3739 | if ( aExp == 0x7FFF ) {
|
---|
3740 | if ( (bits64) ( aSig0<<1 )
|
---|
3741 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
|
---|
3742 | return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3743 | }
|
---|
3744 | goto invalid;
|
---|
3745 | }
|
---|
3746 | if ( bExp == 0x7FFF ) {
|
---|
3747 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
|
---|
3748 | return a;
|
---|
3749 | }
|
---|
3750 | if ( bExp == 0 ) {
|
---|
3751 | if ( bSig == 0 ) {
|
---|
3752 | invalid:
|
---|
3753 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3754 | z.low = floatx80_default_nan_low;
|
---|
3755 | z.high = floatx80_default_nan_high;
|
---|
3756 | return z;
|
---|
3757 | }
|
---|
3758 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
|
---|
3759 | }
|
---|
3760 | if ( aExp == 0 ) {
|
---|
3761 | if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
|
---|
3762 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
---|
3763 | }
|
---|
3764 | bSig |= LIT64( 0x8000000000000000 );
|
---|
3765 | zSign = aSign;
|
---|
3766 | expDiff = aExp - bExp;
|
---|
3767 | aSig1 = 0;
|
---|
3768 | if ( expDiff < 0 ) {
|
---|
3769 | if ( expDiff < -1 ) return a;
|
---|
3770 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
|
---|
3771 | expDiff = 0;
|
---|
3772 | }
|
---|
3773 | q = ( bSig <= aSig0 );
|
---|
3774 | if ( q ) aSig0 -= bSig;
|
---|
3775 | expDiff -= 64;
|
---|
3776 | while ( 0 < expDiff ) {
|
---|
3777 | q = estimateDiv128To64( aSig0, aSig1, bSig );
|
---|
3778 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
3779 | mul64To128( bSig, q, &term0, &term1 );
|
---|
3780 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3781 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
|
---|
3782 | expDiff -= 62;
|
---|
3783 | }
|
---|
3784 | expDiff += 64;
|
---|
3785 | if ( 0 < expDiff ) {
|
---|
3786 | q = estimateDiv128To64( aSig0, aSig1, bSig );
|
---|
3787 | q = ( 2 < q ) ? q - 2 : 0;
|
---|
3788 | q >>= 64 - expDiff;
|
---|
3789 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
|
---|
3790 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3791 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
|
---|
3792 | while ( le128( term0, term1, aSig0, aSig1 ) ) {
|
---|
3793 | ++q;
|
---|
3794 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
|
---|
3795 | }
|
---|
3796 | }
|
---|
3797 | else {
|
---|
3798 | term1 = 0;
|
---|
3799 | term0 = bSig;
|
---|
3800 | }
|
---|
3801 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
|
---|
3802 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
---|
3803 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
|
---|
3804 | && ( q & 1 ) )
|
---|
3805 | ) {
|
---|
3806 | aSig0 = alternateASig0;
|
---|
3807 | aSig1 = alternateASig1;
|
---|
3808 | zSign = ! zSign;
|
---|
3809 | }
|
---|
3810 | return
|
---|
3811 | normalizeRoundAndPackFloatx80(
|
---|
3812 | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );
|
---|
3813 |
|
---|
3814 | }
|
---|
3815 |
|
---|
3816 | /*----------------------------------------------------------------------------
|
---|
3817 | | Returns the square root of the extended double-precision floating-point
|
---|
3818 | | value `a'. The operation is performed according to the IEC/IEEE Standard
|
---|
3819 | | for Binary Floating-Point Arithmetic.
|
---|
3820 | *----------------------------------------------------------------------------*/
|
---|
3821 |
|
---|
3822 | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
|
---|
3823 | {
|
---|
3824 | flag aSign;
|
---|
3825 | int32 aExp, zExp;
|
---|
3826 | bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
---|
3827 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
3828 | floatx80 z;
|
---|
3829 |
|
---|
3830 | aSig0 = extractFloatx80Frac( a );
|
---|
3831 | aExp = extractFloatx80Exp( a );
|
---|
3832 | aSign = extractFloatx80Sign( a );
|
---|
3833 | if ( aExp == 0x7FFF ) {
|
---|
3834 | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
|
---|
3835 | if ( ! aSign ) return a;
|
---|
3836 | goto invalid;
|
---|
3837 | }
|
---|
3838 | if ( aSign ) {
|
---|
3839 | if ( ( aExp | aSig0 ) == 0 ) return a;
|
---|
3840 | invalid:
|
---|
3841 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3842 | z.low = floatx80_default_nan_low;
|
---|
3843 | z.high = floatx80_default_nan_high;
|
---|
3844 | return z;
|
---|
3845 | }
|
---|
3846 | if ( aExp == 0 ) {
|
---|
3847 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
|
---|
3848 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
|
---|
3849 | }
|
---|
3850 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
|
---|
3851 | zSig0 = estimateSqrt32( aExp, aSig0>>32 );
|
---|
3852 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
|
---|
3853 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
---|
3854 | doubleZSig0 = zSig0<<1;
|
---|
3855 | mul64To128( zSig0, zSig0, &term0, &term1 );
|
---|
3856 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
---|
3857 | while ( (sbits64) rem0 < 0 ) {
|
---|
3858 | --zSig0;
|
---|
3859 | doubleZSig0 -= 2;
|
---|
3860 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
---|
3861 | }
|
---|
3862 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
---|
3863 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
|
---|
3864 | if ( zSig1 == 0 ) zSig1 = 1;
|
---|
3865 | mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
---|
3866 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
3867 | mul64To128( zSig1, zSig1, &term2, &term3 );
|
---|
3868 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
3869 | while ( (sbits64) rem1 < 0 ) {
|
---|
3870 | --zSig1;
|
---|
3871 | shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
---|
3872 | term3 |= 1;
|
---|
3873 | term2 |= doubleZSig0;
|
---|
3874 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
3875 | }
|
---|
3876 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
3877 | }
|
---|
3878 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
|
---|
3879 | zSig0 |= doubleZSig0;
|
---|
3880 | return
|
---|
3881 | roundAndPackFloatx80(
|
---|
3882 | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );
|
---|
3883 |
|
---|
3884 | }
|
---|
3885 |
|
---|
3886 | /*----------------------------------------------------------------------------
|
---|
3887 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
3888 | | equal to the corresponding value `b', and 0 otherwise. The comparison is
|
---|
3889 | | performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
3890 | | Arithmetic.
|
---|
3891 | *----------------------------------------------------------------------------*/
|
---|
3892 |
|
---|
3893 | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3894 | {
|
---|
3895 |
|
---|
3896 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
3897 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
3898 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
3899 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
3900 | ) {
|
---|
3901 | if ( floatx80_is_signaling_nan( a )
|
---|
3902 | || floatx80_is_signaling_nan( b ) ) {
|
---|
3903 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3904 | }
|
---|
3905 | return 0;
|
---|
3906 | }
|
---|
3907 | return
|
---|
3908 | ( a.low == b.low )
|
---|
3909 | && ( ( a.high == b.high )
|
---|
3910 | || ( ( a.low == 0 )
|
---|
3911 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
3912 | );
|
---|
3913 |
|
---|
3914 | }
|
---|
3915 |
|
---|
3916 | /*----------------------------------------------------------------------------
|
---|
3917 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
3918 | | less than or equal to the corresponding value `b', and 0 otherwise. The
|
---|
3919 | | comparison is performed according to the IEC/IEEE Standard for Binary
|
---|
3920 | | Floating-Point Arithmetic.
|
---|
3921 | *----------------------------------------------------------------------------*/
|
---|
3922 |
|
---|
3923 | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3924 | {
|
---|
3925 | flag aSign, bSign;
|
---|
3926 |
|
---|
3927 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
3928 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
3929 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
3930 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
3931 | ) {
|
---|
3932 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3933 | return 0;
|
---|
3934 | }
|
---|
3935 | aSign = extractFloatx80Sign( a );
|
---|
3936 | bSign = extractFloatx80Sign( b );
|
---|
3937 | if ( aSign != bSign ) {
|
---|
3938 | return
|
---|
3939 | aSign
|
---|
3940 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
3941 | == 0 );
|
---|
3942 | }
|
---|
3943 | return
|
---|
3944 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
3945 | : le128( a.high, a.low, b.high, b.low );
|
---|
3946 |
|
---|
3947 | }
|
---|
3948 |
|
---|
3949 | /*----------------------------------------------------------------------------
|
---|
3950 | | Returns 1 if the extended double-precision floating-point value `a' is
|
---|
3951 | | less than the corresponding value `b', and 0 otherwise. The comparison
|
---|
3952 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
3953 | | Arithmetic.
|
---|
3954 | *----------------------------------------------------------------------------*/
|
---|
3955 |
|
---|
3956 | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3957 | {
|
---|
3958 | flag aSign, bSign;
|
---|
3959 |
|
---|
3960 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
3961 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
3962 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
3963 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
3964 | ) {
|
---|
3965 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3966 | return 0;
|
---|
3967 | }
|
---|
3968 | aSign = extractFloatx80Sign( a );
|
---|
3969 | bSign = extractFloatx80Sign( b );
|
---|
3970 | if ( aSign != bSign ) {
|
---|
3971 | return
|
---|
3972 | aSign
|
---|
3973 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
3974 | != 0 );
|
---|
3975 | }
|
---|
3976 | return
|
---|
3977 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
3978 | : lt128( a.high, a.low, b.high, b.low );
|
---|
3979 |
|
---|
3980 | }
|
---|
3981 |
|
---|
3982 | /*----------------------------------------------------------------------------
|
---|
3983 | | Returns 1 if the extended double-precision floating-point value `a' is equal
|
---|
3984 | | to the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
3985 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
3986 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
3987 | *----------------------------------------------------------------------------*/
|
---|
3988 |
|
---|
3989 | int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
3990 | {
|
---|
3991 |
|
---|
3992 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
3993 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
3994 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
3995 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
3996 | ) {
|
---|
3997 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
3998 | return 0;
|
---|
3999 | }
|
---|
4000 | return
|
---|
4001 | ( a.low == b.low )
|
---|
4002 | && ( ( a.high == b.high )
|
---|
4003 | || ( ( a.low == 0 )
|
---|
4004 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
4005 | );
|
---|
4006 |
|
---|
4007 | }
|
---|
4008 |
|
---|
4009 | /*----------------------------------------------------------------------------
|
---|
4010 | | Returns 1 if the extended double-precision floating-point value `a' is less
|
---|
4011 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
|
---|
4012 | | do not cause an exception. Otherwise, the comparison is performed according
|
---|
4013 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4014 | *----------------------------------------------------------------------------*/
|
---|
4015 |
|
---|
4016 | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4017 | {
|
---|
4018 | flag aSign, bSign;
|
---|
4019 |
|
---|
4020 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4021 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4022 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4023 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4024 | ) {
|
---|
4025 | if ( floatx80_is_signaling_nan( a )
|
---|
4026 | || floatx80_is_signaling_nan( b ) ) {
|
---|
4027 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4028 | }
|
---|
4029 | return 0;
|
---|
4030 | }
|
---|
4031 | aSign = extractFloatx80Sign( a );
|
---|
4032 | bSign = extractFloatx80Sign( b );
|
---|
4033 | if ( aSign != bSign ) {
|
---|
4034 | return
|
---|
4035 | aSign
|
---|
4036 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4037 | == 0 );
|
---|
4038 | }
|
---|
4039 | return
|
---|
4040 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
4041 | : le128( a.high, a.low, b.high, b.low );
|
---|
4042 |
|
---|
4043 | }
|
---|
4044 |
|
---|
4045 | /*----------------------------------------------------------------------------
|
---|
4046 | | Returns 1 if the extended double-precision floating-point value `a' is less
|
---|
4047 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
|
---|
4048 | | an exception. Otherwise, the comparison is performed according to the
|
---|
4049 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4050 | *----------------------------------------------------------------------------*/
|
---|
4051 |
|
---|
4052 | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
|
---|
4053 | {
|
---|
4054 | flag aSign, bSign;
|
---|
4055 |
|
---|
4056 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
|
---|
4057 | && (bits64) ( extractFloatx80Frac( a )<<1 ) )
|
---|
4058 | || ( ( extractFloatx80Exp( b ) == 0x7FFF )
|
---|
4059 | && (bits64) ( extractFloatx80Frac( b )<<1 ) )
|
---|
4060 | ) {
|
---|
4061 | if ( floatx80_is_signaling_nan( a )
|
---|
4062 | || floatx80_is_signaling_nan( b ) ) {
|
---|
4063 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4064 | }
|
---|
4065 | return 0;
|
---|
4066 | }
|
---|
4067 | aSign = extractFloatx80Sign( a );
|
---|
4068 | bSign = extractFloatx80Sign( b );
|
---|
4069 | if ( aSign != bSign ) {
|
---|
4070 | return
|
---|
4071 | aSign
|
---|
4072 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
4073 | != 0 );
|
---|
4074 | }
|
---|
4075 | return
|
---|
4076 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
4077 | : lt128( a.high, a.low, b.high, b.low );
|
---|
4078 |
|
---|
4079 | }
|
---|
4080 |
|
---|
4081 | #endif
|
---|
4082 |
|
---|
4083 | #ifdef FLOAT128
|
---|
4084 |
|
---|
4085 | /*----------------------------------------------------------------------------
|
---|
4086 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4087 | | value `a' to the 32-bit two's complement integer format. The conversion
|
---|
4088 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4089 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
4090 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
4091 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
4092 | | largest integer with the same sign as `a' is returned.
|
---|
4093 | *----------------------------------------------------------------------------*/
|
---|
4094 |
|
---|
4095 | int32 float128_to_int32( float128 a STATUS_PARAM )
|
---|
4096 | {
|
---|
4097 | flag aSign;
|
---|
4098 | int32 aExp, shiftCount;
|
---|
4099 | bits64 aSig0, aSig1;
|
---|
4100 |
|
---|
4101 | aSig1 = extractFloat128Frac1( a );
|
---|
4102 | aSig0 = extractFloat128Frac0( a );
|
---|
4103 | aExp = extractFloat128Exp( a );
|
---|
4104 | aSign = extractFloat128Sign( a );
|
---|
4105 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
|
---|
4106 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4107 | aSig0 |= ( aSig1 != 0 );
|
---|
4108 | shiftCount = 0x4028 - aExp;
|
---|
4109 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
|
---|
4110 | return roundAndPackInt32( aSign, aSig0 STATUS_VAR );
|
---|
4111 |
|
---|
4112 | }
|
---|
4113 |
|
---|
4114 | /*----------------------------------------------------------------------------
|
---|
4115 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4116 | | value `a' to the 32-bit two's complement integer format. The conversion
|
---|
4117 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4118 | | Arithmetic, except that the conversion is always rounded toward zero. If
|
---|
4119 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
---|
4120 | | conversion overflows, the largest integer with the same sign as `a' is
|
---|
4121 | | returned.
|
---|
4122 | *----------------------------------------------------------------------------*/
|
---|
4123 |
|
---|
4124 | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
|
---|
4125 | {
|
---|
4126 | flag aSign;
|
---|
4127 | int32 aExp, shiftCount;
|
---|
4128 | bits64 aSig0, aSig1, savedASig;
|
---|
4129 | int32 z;
|
---|
4130 |
|
---|
4131 | aSig1 = extractFloat128Frac1( a );
|
---|
4132 | aSig0 = extractFloat128Frac0( a );
|
---|
4133 | aExp = extractFloat128Exp( a );
|
---|
4134 | aSign = extractFloat128Sign( a );
|
---|
4135 | aSig0 |= ( aSig1 != 0 );
|
---|
4136 | if ( 0x401E < aExp ) {
|
---|
4137 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
|
---|
4138 | goto invalid;
|
---|
4139 | }
|
---|
4140 | else if ( aExp < 0x3FFF ) {
|
---|
4141 | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4142 | return 0;
|
---|
4143 | }
|
---|
4144 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4145 | shiftCount = 0x402F - aExp;
|
---|
4146 | savedASig = aSig0;
|
---|
4147 | aSig0 >>= shiftCount;
|
---|
4148 | z = aSig0;
|
---|
4149 | if ( aSign ) z = - z;
|
---|
4150 | if ( ( z < 0 ) ^ aSign ) {
|
---|
4151 | invalid:
|
---|
4152 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4153 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
|
---|
4154 | }
|
---|
4155 | if ( ( aSig0<<shiftCount ) != savedASig ) {
|
---|
4156 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4157 | }
|
---|
4158 | return z;
|
---|
4159 |
|
---|
4160 | }
|
---|
4161 |
|
---|
4162 | /*----------------------------------------------------------------------------
|
---|
4163 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4164 | | value `a' to the 64-bit two's complement integer format. The conversion
|
---|
4165 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4166 | | Arithmetic---which means in particular that the conversion is rounded
|
---|
4167 | | according to the current rounding mode. If `a' is a NaN, the largest
|
---|
4168 | | positive integer is returned. Otherwise, if the conversion overflows, the
|
---|
4169 | | largest integer with the same sign as `a' is returned.
|
---|
4170 | *----------------------------------------------------------------------------*/
|
---|
4171 |
|
---|
4172 | int64 float128_to_int64( float128 a STATUS_PARAM )
|
---|
4173 | {
|
---|
4174 | flag aSign;
|
---|
4175 | int32 aExp, shiftCount;
|
---|
4176 | bits64 aSig0, aSig1;
|
---|
4177 |
|
---|
4178 | aSig1 = extractFloat128Frac1( a );
|
---|
4179 | aSig0 = extractFloat128Frac0( a );
|
---|
4180 | aExp = extractFloat128Exp( a );
|
---|
4181 | aSign = extractFloat128Sign( a );
|
---|
4182 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4183 | shiftCount = 0x402F - aExp;
|
---|
4184 | if ( shiftCount <= 0 ) {
|
---|
4185 | if ( 0x403E < aExp ) {
|
---|
4186 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4187 | if ( ! aSign
|
---|
4188 | || ( ( aExp == 0x7FFF )
|
---|
4189 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
|
---|
4190 | )
|
---|
4191 | ) {
|
---|
4192 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
4193 | }
|
---|
4194 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
4195 | }
|
---|
4196 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
|
---|
4197 | }
|
---|
4198 | else {
|
---|
4199 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
|
---|
4200 | }
|
---|
4201 | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );
|
---|
4202 |
|
---|
4203 | }
|
---|
4204 |
|
---|
4205 | /*----------------------------------------------------------------------------
|
---|
4206 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4207 | | value `a' to the 64-bit two's complement integer format. The conversion
|
---|
4208 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4209 | | Arithmetic, except that the conversion is always rounded toward zero.
|
---|
4210 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
---|
4211 | | the conversion overflows, the largest integer with the same sign as `a' is
|
---|
4212 | | returned.
|
---|
4213 | *----------------------------------------------------------------------------*/
|
---|
4214 |
|
---|
4215 | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
|
---|
4216 | {
|
---|
4217 | flag aSign;
|
---|
4218 | int32 aExp, shiftCount;
|
---|
4219 | bits64 aSig0, aSig1;
|
---|
4220 | int64 z;
|
---|
4221 |
|
---|
4222 | aSig1 = extractFloat128Frac1( a );
|
---|
4223 | aSig0 = extractFloat128Frac0( a );
|
---|
4224 | aExp = extractFloat128Exp( a );
|
---|
4225 | aSign = extractFloat128Sign( a );
|
---|
4226 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4227 | shiftCount = aExp - 0x402F;
|
---|
4228 | if ( 0 < shiftCount ) {
|
---|
4229 | if ( 0x403E <= aExp ) {
|
---|
4230 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
|
---|
4231 | if ( ( a.high == LIT64( 0xC03E000000000000 ) )
|
---|
4232 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
|
---|
4233 | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4234 | }
|
---|
4235 | else {
|
---|
4236 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4237 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
|
---|
4238 | return LIT64( 0x7FFFFFFFFFFFFFFF );
|
---|
4239 | }
|
---|
4240 | }
|
---|
4241 | return (sbits64) LIT64( 0x8000000000000000 );
|
---|
4242 | }
|
---|
4243 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
|
---|
4244 | if ( (bits64) ( aSig1<<shiftCount ) ) {
|
---|
4245 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4246 | }
|
---|
4247 | }
|
---|
4248 | else {
|
---|
4249 | if ( aExp < 0x3FFF ) {
|
---|
4250 | if ( aExp | aSig0 | aSig1 ) {
|
---|
4251 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4252 | }
|
---|
4253 | return 0;
|
---|
4254 | }
|
---|
4255 | z = aSig0>>( - shiftCount );
|
---|
4256 | if ( aSig1
|
---|
4257 | || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
|
---|
4258 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4259 | }
|
---|
4260 | }
|
---|
4261 | if ( aSign ) z = - z;
|
---|
4262 | return z;
|
---|
4263 |
|
---|
4264 | }
|
---|
4265 |
|
---|
4266 | /*----------------------------------------------------------------------------
|
---|
4267 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4268 | | value `a' to the single-precision floating-point format. The conversion
|
---|
4269 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4270 | | Arithmetic.
|
---|
4271 | *----------------------------------------------------------------------------*/
|
---|
4272 |
|
---|
4273 | float32 float128_to_float32( float128 a STATUS_PARAM )
|
---|
4274 | {
|
---|
4275 | flag aSign;
|
---|
4276 | int32 aExp;
|
---|
4277 | bits64 aSig0, aSig1;
|
---|
4278 | bits32 zSig;
|
---|
4279 |
|
---|
4280 | aSig1 = extractFloat128Frac1( a );
|
---|
4281 | aSig0 = extractFloat128Frac0( a );
|
---|
4282 | aExp = extractFloat128Exp( a );
|
---|
4283 | aSign = extractFloat128Sign( a );
|
---|
4284 | if ( aExp == 0x7FFF ) {
|
---|
4285 | if ( aSig0 | aSig1 ) {
|
---|
4286 | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4287 | }
|
---|
4288 | return packFloat32( aSign, 0xFF, 0 );
|
---|
4289 | }
|
---|
4290 | aSig0 |= ( aSig1 != 0 );
|
---|
4291 | shift64RightJamming( aSig0, 18, &aSig0 );
|
---|
4292 | zSig = aSig0;
|
---|
4293 | if ( aExp || zSig ) {
|
---|
4294 | zSig |= 0x40000000;
|
---|
4295 | aExp -= 0x3F81;
|
---|
4296 | }
|
---|
4297 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
|
---|
4298 |
|
---|
4299 | }
|
---|
4300 |
|
---|
4301 | /*----------------------------------------------------------------------------
|
---|
4302 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4303 | | value `a' to the double-precision floating-point format. The conversion
|
---|
4304 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
4305 | | Arithmetic.
|
---|
4306 | *----------------------------------------------------------------------------*/
|
---|
4307 |
|
---|
4308 | float64 float128_to_float64( float128 a STATUS_PARAM )
|
---|
4309 | {
|
---|
4310 | flag aSign;
|
---|
4311 | int32 aExp;
|
---|
4312 | bits64 aSig0, aSig1;
|
---|
4313 |
|
---|
4314 | aSig1 = extractFloat128Frac1( a );
|
---|
4315 | aSig0 = extractFloat128Frac0( a );
|
---|
4316 | aExp = extractFloat128Exp( a );
|
---|
4317 | aSign = extractFloat128Sign( a );
|
---|
4318 | if ( aExp == 0x7FFF ) {
|
---|
4319 | if ( aSig0 | aSig1 ) {
|
---|
4320 | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4321 | }
|
---|
4322 | return packFloat64( aSign, 0x7FF, 0 );
|
---|
4323 | }
|
---|
4324 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
---|
4325 | aSig0 |= ( aSig1 != 0 );
|
---|
4326 | if ( aExp || aSig0 ) {
|
---|
4327 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4328 | aExp -= 0x3C01;
|
---|
4329 | }
|
---|
4330 | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );
|
---|
4331 |
|
---|
4332 | }
|
---|
4333 |
|
---|
4334 | #ifdef FLOATX80
|
---|
4335 |
|
---|
4336 | /*----------------------------------------------------------------------------
|
---|
4337 | | Returns the result of converting the quadruple-precision floating-point
|
---|
4338 | | value `a' to the extended double-precision floating-point format. The
|
---|
4339 | | conversion is performed according to the IEC/IEEE Standard for Binary
|
---|
4340 | | Floating-Point Arithmetic.
|
---|
4341 | *----------------------------------------------------------------------------*/
|
---|
4342 |
|
---|
4343 | floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
|
---|
4344 | {
|
---|
4345 | flag aSign;
|
---|
4346 | int32 aExp;
|
---|
4347 | bits64 aSig0, aSig1;
|
---|
4348 |
|
---|
4349 | aSig1 = extractFloat128Frac1( a );
|
---|
4350 | aSig0 = extractFloat128Frac0( a );
|
---|
4351 | aExp = extractFloat128Exp( a );
|
---|
4352 | aSign = extractFloat128Sign( a );
|
---|
4353 | if ( aExp == 0x7FFF ) {
|
---|
4354 | if ( aSig0 | aSig1 ) {
|
---|
4355 | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) );
|
---|
4356 | }
|
---|
4357 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
|
---|
4358 | }
|
---|
4359 | if ( aExp == 0 ) {
|
---|
4360 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
|
---|
4361 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4362 | }
|
---|
4363 | else {
|
---|
4364 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4365 | }
|
---|
4366 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
|
---|
4367 | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );
|
---|
4368 |
|
---|
4369 | }
|
---|
4370 |
|
---|
4371 | #endif
|
---|
4372 |
|
---|
4373 | /*----------------------------------------------------------------------------
|
---|
4374 | | Rounds the quadruple-precision floating-point value `a' to an integer, and
|
---|
4375 | | returns the result as a quadruple-precision floating-point value. The
|
---|
4376 | | operation is performed according to the IEC/IEEE Standard for Binary
|
---|
4377 | | Floating-Point Arithmetic.
|
---|
4378 | *----------------------------------------------------------------------------*/
|
---|
4379 |
|
---|
4380 | float128 float128_round_to_int( float128 a STATUS_PARAM )
|
---|
4381 | {
|
---|
4382 | flag aSign;
|
---|
4383 | int32 aExp;
|
---|
4384 | bits64 lastBitMask, roundBitsMask;
|
---|
4385 | int8 roundingMode;
|
---|
4386 | float128 z;
|
---|
4387 |
|
---|
4388 | aExp = extractFloat128Exp( a );
|
---|
4389 | if ( 0x402F <= aExp ) {
|
---|
4390 | if ( 0x406F <= aExp ) {
|
---|
4391 | if ( ( aExp == 0x7FFF )
|
---|
4392 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
|
---|
4393 | ) {
|
---|
4394 | return propagateFloat128NaN( a, a STATUS_VAR );
|
---|
4395 | }
|
---|
4396 | return a;
|
---|
4397 | }
|
---|
4398 | lastBitMask = 1;
|
---|
4399 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
|
---|
4400 | roundBitsMask = lastBitMask - 1;
|
---|
4401 | z = a;
|
---|
4402 | roundingMode = STATUS(float_rounding_mode);
|
---|
4403 | if ( roundingMode == float_round_nearest_even ) {
|
---|
4404 | if ( lastBitMask ) {
|
---|
4405 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
|
---|
4406 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
|
---|
4407 | }
|
---|
4408 | else {
|
---|
4409 | if ( (sbits64) z.low < 0 ) {
|
---|
4410 | ++z.high;
|
---|
4411 | if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
|
---|
4412 | }
|
---|
4413 | }
|
---|
4414 | }
|
---|
4415 | else if ( roundingMode != float_round_to_zero ) {
|
---|
4416 | if ( extractFloat128Sign( z )
|
---|
4417 | ^ ( roundingMode == float_round_up ) ) {
|
---|
4418 | add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
|
---|
4419 | }
|
---|
4420 | }
|
---|
4421 | z.low &= ~ roundBitsMask;
|
---|
4422 | }
|
---|
4423 | else {
|
---|
4424 | if ( aExp < 0x3FFF ) {
|
---|
4425 | if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
|
---|
4426 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4427 | aSign = extractFloat128Sign( a );
|
---|
4428 | switch ( STATUS(float_rounding_mode) ) {
|
---|
4429 | case float_round_nearest_even:
|
---|
4430 | if ( ( aExp == 0x3FFE )
|
---|
4431 | && ( extractFloat128Frac0( a )
|
---|
4432 | | extractFloat128Frac1( a ) )
|
---|
4433 | ) {
|
---|
4434 | return packFloat128( aSign, 0x3FFF, 0, 0 );
|
---|
4435 | }
|
---|
4436 | break;
|
---|
4437 | case float_round_down:
|
---|
4438 | return
|
---|
4439 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
|
---|
4440 | : packFloat128( 0, 0, 0, 0 );
|
---|
4441 | case float_round_up:
|
---|
4442 | return
|
---|
4443 | aSign ? packFloat128( 1, 0, 0, 0 )
|
---|
4444 | : packFloat128( 0, 0x3FFF, 0, 0 );
|
---|
4445 | }
|
---|
4446 | return packFloat128( aSign, 0, 0, 0 );
|
---|
4447 | }
|
---|
4448 | lastBitMask = 1;
|
---|
4449 | lastBitMask <<= 0x402F - aExp;
|
---|
4450 | roundBitsMask = lastBitMask - 1;
|
---|
4451 | z.low = 0;
|
---|
4452 | z.high = a.high;
|
---|
4453 | roundingMode = STATUS(float_rounding_mode);
|
---|
4454 | if ( roundingMode == float_round_nearest_even ) {
|
---|
4455 | z.high += lastBitMask>>1;
|
---|
4456 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
|
---|
4457 | z.high &= ~ lastBitMask;
|
---|
4458 | }
|
---|
4459 | }
|
---|
4460 | else if ( roundingMode != float_round_to_zero ) {
|
---|
4461 | if ( extractFloat128Sign( z )
|
---|
4462 | ^ ( roundingMode == float_round_up ) ) {
|
---|
4463 | z.high |= ( a.low != 0 );
|
---|
4464 | z.high += roundBitsMask;
|
---|
4465 | }
|
---|
4466 | }
|
---|
4467 | z.high &= ~ roundBitsMask;
|
---|
4468 | }
|
---|
4469 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
|
---|
4470 | STATUS(float_exception_flags) |= float_flag_inexact;
|
---|
4471 | }
|
---|
4472 | return z;
|
---|
4473 |
|
---|
4474 | }
|
---|
4475 |
|
---|
4476 | /*----------------------------------------------------------------------------
|
---|
4477 | | Returns the result of adding the absolute values of the quadruple-precision
|
---|
4478 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
---|
4479 | | before being returned. `zSign' is ignored if the result is a NaN.
|
---|
4480 | | The addition is performed according to the IEC/IEEE Standard for Binary
|
---|
4481 | | Floating-Point Arithmetic.
|
---|
4482 | *----------------------------------------------------------------------------*/
|
---|
4483 |
|
---|
4484 | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
---|
4485 | {
|
---|
4486 | int32 aExp, bExp, zExp;
|
---|
4487 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
---|
4488 | int32 expDiff;
|
---|
4489 |
|
---|
4490 | aSig1 = extractFloat128Frac1( a );
|
---|
4491 | aSig0 = extractFloat128Frac0( a );
|
---|
4492 | aExp = extractFloat128Exp( a );
|
---|
4493 | bSig1 = extractFloat128Frac1( b );
|
---|
4494 | bSig0 = extractFloat128Frac0( b );
|
---|
4495 | bExp = extractFloat128Exp( b );
|
---|
4496 | expDiff = aExp - bExp;
|
---|
4497 | if ( 0 < expDiff ) {
|
---|
4498 | if ( aExp == 0x7FFF ) {
|
---|
4499 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4500 | return a;
|
---|
4501 | }
|
---|
4502 | if ( bExp == 0 ) {
|
---|
4503 | --expDiff;
|
---|
4504 | }
|
---|
4505 | else {
|
---|
4506 | bSig0 |= LIT64( 0x0001000000000000 );
|
---|
4507 | }
|
---|
4508 | shift128ExtraRightJamming(
|
---|
4509 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
|
---|
4510 | zExp = aExp;
|
---|
4511 | }
|
---|
4512 | else if ( expDiff < 0 ) {
|
---|
4513 | if ( bExp == 0x7FFF ) {
|
---|
4514 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4515 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4516 | }
|
---|
4517 | if ( aExp == 0 ) {
|
---|
4518 | ++expDiff;
|
---|
4519 | }
|
---|
4520 | else {
|
---|
4521 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4522 | }
|
---|
4523 | shift128ExtraRightJamming(
|
---|
4524 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
|
---|
4525 | zExp = bExp;
|
---|
4526 | }
|
---|
4527 | else {
|
---|
4528 | if ( aExp == 0x7FFF ) {
|
---|
4529 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
---|
4530 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4531 | }
|
---|
4532 | return a;
|
---|
4533 | }
|
---|
4534 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4535 | if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
|
---|
4536 | zSig2 = 0;
|
---|
4537 | zSig0 |= LIT64( 0x0002000000000000 );
|
---|
4538 | zExp = aExp;
|
---|
4539 | goto shiftRight1;
|
---|
4540 | }
|
---|
4541 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4542 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4543 | --zExp;
|
---|
4544 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
|
---|
4545 | ++zExp;
|
---|
4546 | shiftRight1:
|
---|
4547 | shift128ExtraRightJamming(
|
---|
4548 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
---|
4549 | roundAndPack:
|
---|
4550 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4551 |
|
---|
4552 | }
|
---|
4553 |
|
---|
4554 | /*----------------------------------------------------------------------------
|
---|
4555 | | Returns the result of subtracting the absolute values of the quadruple-
|
---|
4556 | | precision floating-point values `a' and `b'. If `zSign' is 1, the
|
---|
4557 | | difference is negated before being returned. `zSign' is ignored if the
|
---|
4558 | | result is a NaN. The subtraction is performed according to the IEC/IEEE
|
---|
4559 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4560 | *----------------------------------------------------------------------------*/
|
---|
4561 |
|
---|
4562 | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
|
---|
4563 | {
|
---|
4564 | int32 aExp, bExp, zExp;
|
---|
4565 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
|
---|
4566 | int32 expDiff;
|
---|
4567 | float128 z;
|
---|
4568 |
|
---|
4569 | aSig1 = extractFloat128Frac1( a );
|
---|
4570 | aSig0 = extractFloat128Frac0( a );
|
---|
4571 | aExp = extractFloat128Exp( a );
|
---|
4572 | bSig1 = extractFloat128Frac1( b );
|
---|
4573 | bSig0 = extractFloat128Frac0( b );
|
---|
4574 | bExp = extractFloat128Exp( b );
|
---|
4575 | expDiff = aExp - bExp;
|
---|
4576 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
|
---|
4577 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
|
---|
4578 | if ( 0 < expDiff ) goto aExpBigger;
|
---|
4579 | if ( expDiff < 0 ) goto bExpBigger;
|
---|
4580 | if ( aExp == 0x7FFF ) {
|
---|
4581 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
|
---|
4582 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4583 | }
|
---|
4584 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4585 | z.low = float128_default_nan_low;
|
---|
4586 | z.high = float128_default_nan_high;
|
---|
4587 | return z;
|
---|
4588 | }
|
---|
4589 | if ( aExp == 0 ) {
|
---|
4590 | aExp = 1;
|
---|
4591 | bExp = 1;
|
---|
4592 | }
|
---|
4593 | if ( bSig0 < aSig0 ) goto aBigger;
|
---|
4594 | if ( aSig0 < bSig0 ) goto bBigger;
|
---|
4595 | if ( bSig1 < aSig1 ) goto aBigger;
|
---|
4596 | if ( aSig1 < bSig1 ) goto bBigger;
|
---|
4597 | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
|
---|
4598 | bExpBigger:
|
---|
4599 | if ( bExp == 0x7FFF ) {
|
---|
4600 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4601 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
|
---|
4602 | }
|
---|
4603 | if ( aExp == 0 ) {
|
---|
4604 | ++expDiff;
|
---|
4605 | }
|
---|
4606 | else {
|
---|
4607 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4608 | }
|
---|
4609 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
---|
4610 | bSig0 |= LIT64( 0x4000000000000000 );
|
---|
4611 | bBigger:
|
---|
4612 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
---|
4613 | zExp = bExp;
|
---|
4614 | zSign ^= 1;
|
---|
4615 | goto normalizeRoundAndPack;
|
---|
4616 | aExpBigger:
|
---|
4617 | if ( aExp == 0x7FFF ) {
|
---|
4618 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4619 | return a;
|
---|
4620 | }
|
---|
4621 | if ( bExp == 0 ) {
|
---|
4622 | --expDiff;
|
---|
4623 | }
|
---|
4624 | else {
|
---|
4625 | bSig0 |= LIT64( 0x4000000000000000 );
|
---|
4626 | }
|
---|
4627 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
|
---|
4628 | aSig0 |= LIT64( 0x4000000000000000 );
|
---|
4629 | aBigger:
|
---|
4630 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
|
---|
4631 | zExp = aExp;
|
---|
4632 | normalizeRoundAndPack:
|
---|
4633 | --zExp;
|
---|
4634 | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );
|
---|
4635 |
|
---|
4636 | }
|
---|
4637 |
|
---|
4638 | /*----------------------------------------------------------------------------
|
---|
4639 | | Returns the result of adding the quadruple-precision floating-point values
|
---|
4640 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
---|
4641 | | for Binary Floating-Point Arithmetic.
|
---|
4642 | *----------------------------------------------------------------------------*/
|
---|
4643 |
|
---|
4644 | float128 float128_add( float128 a, float128 b STATUS_PARAM )
|
---|
4645 | {
|
---|
4646 | flag aSign, bSign;
|
---|
4647 |
|
---|
4648 | aSign = extractFloat128Sign( a );
|
---|
4649 | bSign = extractFloat128Sign( b );
|
---|
4650 | if ( aSign == bSign ) {
|
---|
4651 | return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4652 | }
|
---|
4653 | else {
|
---|
4654 | return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4655 | }
|
---|
4656 |
|
---|
4657 | }
|
---|
4658 |
|
---|
4659 | /*----------------------------------------------------------------------------
|
---|
4660 | | Returns the result of subtracting the quadruple-precision floating-point
|
---|
4661 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
4662 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4663 | *----------------------------------------------------------------------------*/
|
---|
4664 |
|
---|
4665 | float128 float128_sub( float128 a, float128 b STATUS_PARAM )
|
---|
4666 | {
|
---|
4667 | flag aSign, bSign;
|
---|
4668 |
|
---|
4669 | aSign = extractFloat128Sign( a );
|
---|
4670 | bSign = extractFloat128Sign( b );
|
---|
4671 | if ( aSign == bSign ) {
|
---|
4672 | return subFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4673 | }
|
---|
4674 | else {
|
---|
4675 | return addFloat128Sigs( a, b, aSign STATUS_VAR );
|
---|
4676 | }
|
---|
4677 |
|
---|
4678 | }
|
---|
4679 |
|
---|
4680 | /*----------------------------------------------------------------------------
|
---|
4681 | | Returns the result of multiplying the quadruple-precision floating-point
|
---|
4682 | | values `a' and `b'. The operation is performed according to the IEC/IEEE
|
---|
4683 | | Standard for Binary Floating-Point Arithmetic.
|
---|
4684 | *----------------------------------------------------------------------------*/
|
---|
4685 |
|
---|
4686 | float128 float128_mul( float128 a, float128 b STATUS_PARAM )
|
---|
4687 | {
|
---|
4688 | flag aSign, bSign, zSign;
|
---|
4689 | int32 aExp, bExp, zExp;
|
---|
4690 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
|
---|
4691 | float128 z;
|
---|
4692 |
|
---|
4693 | aSig1 = extractFloat128Frac1( a );
|
---|
4694 | aSig0 = extractFloat128Frac0( a );
|
---|
4695 | aExp = extractFloat128Exp( a );
|
---|
4696 | aSign = extractFloat128Sign( a );
|
---|
4697 | bSig1 = extractFloat128Frac1( b );
|
---|
4698 | bSig0 = extractFloat128Frac0( b );
|
---|
4699 | bExp = extractFloat128Exp( b );
|
---|
4700 | bSign = extractFloat128Sign( b );
|
---|
4701 | zSign = aSign ^ bSign;
|
---|
4702 | if ( aExp == 0x7FFF ) {
|
---|
4703 | if ( ( aSig0 | aSig1 )
|
---|
4704 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
---|
4705 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4706 | }
|
---|
4707 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
|
---|
4708 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4709 | }
|
---|
4710 | if ( bExp == 0x7FFF ) {
|
---|
4711 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4712 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
---|
4713 | invalid:
|
---|
4714 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4715 | z.low = float128_default_nan_low;
|
---|
4716 | z.high = float128_default_nan_high;
|
---|
4717 | return z;
|
---|
4718 | }
|
---|
4719 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4720 | }
|
---|
4721 | if ( aExp == 0 ) {
|
---|
4722 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4723 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4724 | }
|
---|
4725 | if ( bExp == 0 ) {
|
---|
4726 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4727 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
4728 | }
|
---|
4729 | zExp = aExp + bExp - 0x4000;
|
---|
4730 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4731 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
|
---|
4732 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
|
---|
4733 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
|
---|
4734 | zSig2 |= ( zSig3 != 0 );
|
---|
4735 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
|
---|
4736 | shift128ExtraRightJamming(
|
---|
4737 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
|
---|
4738 | ++zExp;
|
---|
4739 | }
|
---|
4740 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4741 |
|
---|
4742 | }
|
---|
4743 |
|
---|
4744 | /*----------------------------------------------------------------------------
|
---|
4745 | | Returns the result of dividing the quadruple-precision floating-point value
|
---|
4746 | | `a' by the corresponding value `b'. The operation is performed according to
|
---|
4747 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4748 | *----------------------------------------------------------------------------*/
|
---|
4749 |
|
---|
4750 | float128 float128_div( float128 a, float128 b STATUS_PARAM )
|
---|
4751 | {
|
---|
4752 | flag aSign, bSign, zSign;
|
---|
4753 | int32 aExp, bExp, zExp;
|
---|
4754 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
|
---|
4755 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
4756 | float128 z;
|
---|
4757 |
|
---|
4758 | aSig1 = extractFloat128Frac1( a );
|
---|
4759 | aSig0 = extractFloat128Frac0( a );
|
---|
4760 | aExp = extractFloat128Exp( a );
|
---|
4761 | aSign = extractFloat128Sign( a );
|
---|
4762 | bSig1 = extractFloat128Frac1( b );
|
---|
4763 | bSig0 = extractFloat128Frac0( b );
|
---|
4764 | bExp = extractFloat128Exp( b );
|
---|
4765 | bSign = extractFloat128Sign( b );
|
---|
4766 | zSign = aSign ^ bSign;
|
---|
4767 | if ( aExp == 0x7FFF ) {
|
---|
4768 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4769 | if ( bExp == 0x7FFF ) {
|
---|
4770 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4771 | goto invalid;
|
---|
4772 | }
|
---|
4773 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4774 | }
|
---|
4775 | if ( bExp == 0x7FFF ) {
|
---|
4776 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4777 | return packFloat128( zSign, 0, 0, 0 );
|
---|
4778 | }
|
---|
4779 | if ( bExp == 0 ) {
|
---|
4780 | if ( ( bSig0 | bSig1 ) == 0 ) {
|
---|
4781 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
|
---|
4782 | invalid:
|
---|
4783 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4784 | z.low = float128_default_nan_low;
|
---|
4785 | z.high = float128_default_nan_high;
|
---|
4786 | return z;
|
---|
4787 | }
|
---|
4788 | float_raise( float_flag_divbyzero STATUS_VAR);
|
---|
4789 | return packFloat128( zSign, 0x7FFF, 0, 0 );
|
---|
4790 | }
|
---|
4791 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
4792 | }
|
---|
4793 | if ( aExp == 0 ) {
|
---|
4794 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
|
---|
4795 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4796 | }
|
---|
4797 | zExp = aExp - bExp + 0x3FFD;
|
---|
4798 | shortShift128Left(
|
---|
4799 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
|
---|
4800 | shortShift128Left(
|
---|
4801 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
---|
4802 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
|
---|
4803 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
|
---|
4804 | ++zExp;
|
---|
4805 | }
|
---|
4806 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
4807 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
|
---|
4808 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
|
---|
4809 | while ( (sbits64) rem0 < 0 ) {
|
---|
4810 | --zSig0;
|
---|
4811 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
|
---|
4812 | }
|
---|
4813 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
|
---|
4814 | if ( ( zSig1 & 0x3FFF ) <= 4 ) {
|
---|
4815 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
|
---|
4816 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4817 | while ( (sbits64) rem1 < 0 ) {
|
---|
4818 | --zSig1;
|
---|
4819 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
|
---|
4820 | }
|
---|
4821 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
4822 | }
|
---|
4823 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
|
---|
4824 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
4825 |
|
---|
4826 | }
|
---|
4827 |
|
---|
4828 | /*----------------------------------------------------------------------------
|
---|
4829 | | Returns the remainder of the quadruple-precision floating-point value `a'
|
---|
4830 | | with respect to the corresponding value `b'. The operation is performed
|
---|
4831 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
4832 | *----------------------------------------------------------------------------*/
|
---|
4833 |
|
---|
4834 | float128 float128_rem( float128 a, float128 b STATUS_PARAM )
|
---|
4835 | {
|
---|
4836 | flag aSign, bSign, zSign;
|
---|
4837 | int32 aExp, bExp, expDiff;
|
---|
4838 | bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
|
---|
4839 | bits64 allZero, alternateASig0, alternateASig1, sigMean1;
|
---|
4840 | sbits64 sigMean0;
|
---|
4841 | float128 z;
|
---|
4842 |
|
---|
4843 | aSig1 = extractFloat128Frac1( a );
|
---|
4844 | aSig0 = extractFloat128Frac0( a );
|
---|
4845 | aExp = extractFloat128Exp( a );
|
---|
4846 | aSign = extractFloat128Sign( a );
|
---|
4847 | bSig1 = extractFloat128Frac1( b );
|
---|
4848 | bSig0 = extractFloat128Frac0( b );
|
---|
4849 | bExp = extractFloat128Exp( b );
|
---|
4850 | bSign = extractFloat128Sign( b );
|
---|
4851 | if ( aExp == 0x7FFF ) {
|
---|
4852 | if ( ( aSig0 | aSig1 )
|
---|
4853 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
|
---|
4854 | return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4855 | }
|
---|
4856 | goto invalid;
|
---|
4857 | }
|
---|
4858 | if ( bExp == 0x7FFF ) {
|
---|
4859 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
|
---|
4860 | return a;
|
---|
4861 | }
|
---|
4862 | if ( bExp == 0 ) {
|
---|
4863 | if ( ( bSig0 | bSig1 ) == 0 ) {
|
---|
4864 | invalid:
|
---|
4865 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4866 | z.low = float128_default_nan_low;
|
---|
4867 | z.high = float128_default_nan_high;
|
---|
4868 | return z;
|
---|
4869 | }
|
---|
4870 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
|
---|
4871 | }
|
---|
4872 | if ( aExp == 0 ) {
|
---|
4873 | if ( ( aSig0 | aSig1 ) == 0 ) return a;
|
---|
4874 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4875 | }
|
---|
4876 | expDiff = aExp - bExp;
|
---|
4877 | if ( expDiff < -1 ) return a;
|
---|
4878 | shortShift128Left(
|
---|
4879 | aSig0 | LIT64( 0x0001000000000000 ),
|
---|
4880 | aSig1,
|
---|
4881 | 15 - ( expDiff < 0 ),
|
---|
4882 | &aSig0,
|
---|
4883 | &aSig1
|
---|
4884 | );
|
---|
4885 | shortShift128Left(
|
---|
4886 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
|
---|
4887 | q = le128( bSig0, bSig1, aSig0, aSig1 );
|
---|
4888 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
---|
4889 | expDiff -= 64;
|
---|
4890 | while ( 0 < expDiff ) {
|
---|
4891 | q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
4892 | q = ( 4 < q ) ? q - 4 : 0;
|
---|
4893 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
---|
4894 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
|
---|
4895 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
|
---|
4896 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
|
---|
4897 | expDiff -= 61;
|
---|
4898 | }
|
---|
4899 | if ( -64 < expDiff ) {
|
---|
4900 | q = estimateDiv128To64( aSig0, aSig1, bSig0 );
|
---|
4901 | q = ( 4 < q ) ? q - 4 : 0;
|
---|
4902 | q >>= - expDiff;
|
---|
4903 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
---|
4904 | expDiff += 52;
|
---|
4905 | if ( expDiff < 0 ) {
|
---|
4906 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
|
---|
4907 | }
|
---|
4908 | else {
|
---|
4909 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
|
---|
4910 | }
|
---|
4911 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
|
---|
4912 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
|
---|
4913 | }
|
---|
4914 | else {
|
---|
4915 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
|
---|
4916 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
|
---|
4917 | }
|
---|
4918 | do {
|
---|
4919 | alternateASig0 = aSig0;
|
---|
4920 | alternateASig1 = aSig1;
|
---|
4921 | ++q;
|
---|
4922 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
|
---|
4923 | } while ( 0 <= (sbits64) aSig0 );
|
---|
4924 | add128(
|
---|
4925 | aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
|
---|
4926 | if ( ( sigMean0 < 0 )
|
---|
4927 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
|
---|
4928 | aSig0 = alternateASig0;
|
---|
4929 | aSig1 = alternateASig1;
|
---|
4930 | }
|
---|
4931 | zSign = ( (sbits64) aSig0 < 0 );
|
---|
4932 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
|
---|
4933 | return
|
---|
4934 | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );
|
---|
4935 |
|
---|
4936 | }
|
---|
4937 |
|
---|
4938 | /*----------------------------------------------------------------------------
|
---|
4939 | | Returns the square root of the quadruple-precision floating-point value `a'.
|
---|
4940 | | The operation is performed according to the IEC/IEEE Standard for Binary
|
---|
4941 | | Floating-Point Arithmetic.
|
---|
4942 | *----------------------------------------------------------------------------*/
|
---|
4943 |
|
---|
4944 | float128 float128_sqrt( float128 a STATUS_PARAM )
|
---|
4945 | {
|
---|
4946 | flag aSign;
|
---|
4947 | int32 aExp, zExp;
|
---|
4948 | bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
|
---|
4949 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
---|
4950 | float128 z;
|
---|
4951 |
|
---|
4952 | aSig1 = extractFloat128Frac1( a );
|
---|
4953 | aSig0 = extractFloat128Frac0( a );
|
---|
4954 | aExp = extractFloat128Exp( a );
|
---|
4955 | aSign = extractFloat128Sign( a );
|
---|
4956 | if ( aExp == 0x7FFF ) {
|
---|
4957 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
|
---|
4958 | if ( ! aSign ) return a;
|
---|
4959 | goto invalid;
|
---|
4960 | }
|
---|
4961 | if ( aSign ) {
|
---|
4962 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
|
---|
4963 | invalid:
|
---|
4964 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
4965 | z.low = float128_default_nan_low;
|
---|
4966 | z.high = float128_default_nan_high;
|
---|
4967 | return z;
|
---|
4968 | }
|
---|
4969 | if ( aExp == 0 ) {
|
---|
4970 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
|
---|
4971 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
|
---|
4972 | }
|
---|
4973 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
|
---|
4974 | aSig0 |= LIT64( 0x0001000000000000 );
|
---|
4975 | zSig0 = estimateSqrt32( aExp, aSig0>>17 );
|
---|
4976 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
|
---|
4977 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
|
---|
4978 | doubleZSig0 = zSig0<<1;
|
---|
4979 | mul64To128( zSig0, zSig0, &term0, &term1 );
|
---|
4980 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
|
---|
4981 | while ( (sbits64) rem0 < 0 ) {
|
---|
4982 | --zSig0;
|
---|
4983 | doubleZSig0 -= 2;
|
---|
4984 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
|
---|
4985 | }
|
---|
4986 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
|
---|
4987 | if ( ( zSig1 & 0x1FFF ) <= 5 ) {
|
---|
4988 | if ( zSig1 == 0 ) zSig1 = 1;
|
---|
4989 | mul64To128( doubleZSig0, zSig1, &term1, &term2 );
|
---|
4990 | sub128( rem1, 0, term1, term2, &rem1, &rem2 );
|
---|
4991 | mul64To128( zSig1, zSig1, &term2, &term3 );
|
---|
4992 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4993 | while ( (sbits64) rem1 < 0 ) {
|
---|
4994 | --zSig1;
|
---|
4995 | shortShift128Left( 0, zSig1, 1, &term2, &term3 );
|
---|
4996 | term3 |= 1;
|
---|
4997 | term2 |= doubleZSig0;
|
---|
4998 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
|
---|
4999 | }
|
---|
5000 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
|
---|
5001 | }
|
---|
5002 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
|
---|
5003 | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
|
---|
5004 |
|
---|
5005 | }
|
---|
5006 |
|
---|
5007 | /*----------------------------------------------------------------------------
|
---|
5008 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
---|
5009 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
5010 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5011 | *----------------------------------------------------------------------------*/
|
---|
5012 |
|
---|
5013 | int float128_eq( float128 a, float128 b STATUS_PARAM )
|
---|
5014 | {
|
---|
5015 |
|
---|
5016 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5017 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5018 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5019 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5020 | ) {
|
---|
5021 | if ( float128_is_signaling_nan( a )
|
---|
5022 | || float128_is_signaling_nan( b ) ) {
|
---|
5023 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5024 | }
|
---|
5025 | return 0;
|
---|
5026 | }
|
---|
5027 | return
|
---|
5028 | ( a.low == b.low )
|
---|
5029 | && ( ( a.high == b.high )
|
---|
5030 | || ( ( a.low == 0 )
|
---|
5031 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
5032 | );
|
---|
5033 |
|
---|
5034 | }
|
---|
5035 |
|
---|
5036 | /*----------------------------------------------------------------------------
|
---|
5037 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5038 | | or equal to the corresponding value `b', and 0 otherwise. The comparison
|
---|
5039 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
---|
5040 | | Arithmetic.
|
---|
5041 | *----------------------------------------------------------------------------*/
|
---|
5042 |
|
---|
5043 | int float128_le( float128 a, float128 b STATUS_PARAM )
|
---|
5044 | {
|
---|
5045 | flag aSign, bSign;
|
---|
5046 |
|
---|
5047 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5048 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5049 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5050 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5051 | ) {
|
---|
5052 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5053 | return 0;
|
---|
5054 | }
|
---|
5055 | aSign = extractFloat128Sign( a );
|
---|
5056 | bSign = extractFloat128Sign( b );
|
---|
5057 | if ( aSign != bSign ) {
|
---|
5058 | return
|
---|
5059 | aSign
|
---|
5060 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5061 | == 0 );
|
---|
5062 | }
|
---|
5063 | return
|
---|
5064 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
5065 | : le128( a.high, a.low, b.high, b.low );
|
---|
5066 |
|
---|
5067 | }
|
---|
5068 |
|
---|
5069 | /*----------------------------------------------------------------------------
|
---|
5070 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5071 | | the corresponding value `b', and 0 otherwise. The comparison is performed
|
---|
5072 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5073 | *----------------------------------------------------------------------------*/
|
---|
5074 |
|
---|
5075 | int float128_lt( float128 a, float128 b STATUS_PARAM )
|
---|
5076 | {
|
---|
5077 | flag aSign, bSign;
|
---|
5078 |
|
---|
5079 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5080 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5081 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5082 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5083 | ) {
|
---|
5084 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5085 | return 0;
|
---|
5086 | }
|
---|
5087 | aSign = extractFloat128Sign( a );
|
---|
5088 | bSign = extractFloat128Sign( b );
|
---|
5089 | if ( aSign != bSign ) {
|
---|
5090 | return
|
---|
5091 | aSign
|
---|
5092 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5093 | != 0 );
|
---|
5094 | }
|
---|
5095 | return
|
---|
5096 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
5097 | : lt128( a.high, a.low, b.high, b.low );
|
---|
5098 |
|
---|
5099 | }
|
---|
5100 |
|
---|
5101 | /*----------------------------------------------------------------------------
|
---|
5102 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to
|
---|
5103 | | the corresponding value `b', and 0 otherwise. The invalid exception is
|
---|
5104 | | raised if either operand is a NaN. Otherwise, the comparison is performed
|
---|
5105 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5106 | *----------------------------------------------------------------------------*/
|
---|
5107 |
|
---|
5108 | int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
|
---|
5109 | {
|
---|
5110 |
|
---|
5111 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5112 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5113 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5114 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5115 | ) {
|
---|
5116 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5117 | return 0;
|
---|
5118 | }
|
---|
5119 | return
|
---|
5120 | ( a.low == b.low )
|
---|
5121 | && ( ( a.high == b.high )
|
---|
5122 | || ( ( a.low == 0 )
|
---|
5123 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
|
---|
5124 | );
|
---|
5125 |
|
---|
5126 | }
|
---|
5127 |
|
---|
5128 | /*----------------------------------------------------------------------------
|
---|
5129 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5130 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
---|
5131 | | cause an exception. Otherwise, the comparison is performed according to the
|
---|
5132 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
---|
5133 | *----------------------------------------------------------------------------*/
|
---|
5134 |
|
---|
5135 | int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
|
---|
5136 | {
|
---|
5137 | flag aSign, bSign;
|
---|
5138 |
|
---|
5139 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5140 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5141 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5142 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5143 | ) {
|
---|
5144 | if ( float128_is_signaling_nan( a )
|
---|
5145 | || float128_is_signaling_nan( b ) ) {
|
---|
5146 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5147 | }
|
---|
5148 | return 0;
|
---|
5149 | }
|
---|
5150 | aSign = extractFloat128Sign( a );
|
---|
5151 | bSign = extractFloat128Sign( b );
|
---|
5152 | if ( aSign != bSign ) {
|
---|
5153 | return
|
---|
5154 | aSign
|
---|
5155 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5156 | == 0 );
|
---|
5157 | }
|
---|
5158 | return
|
---|
5159 | aSign ? le128( b.high, b.low, a.high, a.low )
|
---|
5160 | : le128( a.high, a.low, b.high, b.low );
|
---|
5161 |
|
---|
5162 | }
|
---|
5163 |
|
---|
5164 | /*----------------------------------------------------------------------------
|
---|
5165 | | Returns 1 if the quadruple-precision floating-point value `a' is less than
|
---|
5166 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
---|
5167 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
---|
5168 | | Standard for Binary Floating-Point Arithmetic.
|
---|
5169 | *----------------------------------------------------------------------------*/
|
---|
5170 |
|
---|
5171 | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
|
---|
5172 | {
|
---|
5173 | flag aSign, bSign;
|
---|
5174 |
|
---|
5175 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
|
---|
5176 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|
---|
5177 | || ( ( extractFloat128Exp( b ) == 0x7FFF )
|
---|
5178 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
|
---|
5179 | ) {
|
---|
5180 | if ( float128_is_signaling_nan( a )
|
---|
5181 | || float128_is_signaling_nan( b ) ) {
|
---|
5182 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5183 | }
|
---|
5184 | return 0;
|
---|
5185 | }
|
---|
5186 | aSign = extractFloat128Sign( a );
|
---|
5187 | bSign = extractFloat128Sign( b );
|
---|
5188 | if ( aSign != bSign ) {
|
---|
5189 | return
|
---|
5190 | aSign
|
---|
5191 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
|
---|
5192 | != 0 );
|
---|
5193 | }
|
---|
5194 | return
|
---|
5195 | aSign ? lt128( b.high, b.low, a.high, a.low )
|
---|
5196 | : lt128( a.high, a.low, b.high, b.low );
|
---|
5197 |
|
---|
5198 | }
|
---|
5199 |
|
---|
5200 | #endif
|
---|
5201 |
|
---|
5202 | /* misc functions */
|
---|
5203 | float32 uint32_to_float32( unsigned int a STATUS_PARAM )
|
---|
5204 | {
|
---|
5205 | return int64_to_float32(a STATUS_VAR);
|
---|
5206 | }
|
---|
5207 |
|
---|
5208 | float64 uint32_to_float64( unsigned int a STATUS_PARAM )
|
---|
5209 | {
|
---|
5210 | return int64_to_float64(a STATUS_VAR);
|
---|
5211 | }
|
---|
5212 |
|
---|
5213 | unsigned int float32_to_uint32( float32 a STATUS_PARAM )
|
---|
5214 | {
|
---|
5215 | int64_t v;
|
---|
5216 | unsigned int res;
|
---|
5217 |
|
---|
5218 | v = float32_to_int64(a STATUS_VAR);
|
---|
5219 | if (v < 0) {
|
---|
5220 | res = 0;
|
---|
5221 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5222 | } else if (v > 0xffffffff) {
|
---|
5223 | res = 0xffffffff;
|
---|
5224 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5225 | } else {
|
---|
5226 | res = v;
|
---|
5227 | }
|
---|
5228 | return res;
|
---|
5229 | }
|
---|
5230 |
|
---|
5231 | unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
|
---|
5232 | {
|
---|
5233 | int64_t v;
|
---|
5234 | unsigned int res;
|
---|
5235 |
|
---|
5236 | v = float32_to_int64_round_to_zero(a STATUS_VAR);
|
---|
5237 | if (v < 0) {
|
---|
5238 | res = 0;
|
---|
5239 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5240 | } else if (v > 0xffffffff) {
|
---|
5241 | res = 0xffffffff;
|
---|
5242 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5243 | } else {
|
---|
5244 | res = v;
|
---|
5245 | }
|
---|
5246 | return res;
|
---|
5247 | }
|
---|
5248 |
|
---|
5249 | unsigned int float64_to_uint32( float64 a STATUS_PARAM )
|
---|
5250 | {
|
---|
5251 | int64_t v;
|
---|
5252 | unsigned int res;
|
---|
5253 |
|
---|
5254 | v = float64_to_int64(a STATUS_VAR);
|
---|
5255 | if (v < 0) {
|
---|
5256 | res = 0;
|
---|
5257 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5258 | } else if (v > 0xffffffff) {
|
---|
5259 | res = 0xffffffff;
|
---|
5260 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5261 | } else {
|
---|
5262 | res = v;
|
---|
5263 | }
|
---|
5264 | return res;
|
---|
5265 | }
|
---|
5266 |
|
---|
5267 | unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
|
---|
5268 | {
|
---|
5269 | int64_t v;
|
---|
5270 | unsigned int res;
|
---|
5271 |
|
---|
5272 | v = float64_to_int64_round_to_zero(a STATUS_VAR);
|
---|
5273 | if (v < 0) {
|
---|
5274 | res = 0;
|
---|
5275 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5276 | } else if (v > 0xffffffff) {
|
---|
5277 | res = 0xffffffff;
|
---|
5278 | float_raise( float_flag_invalid STATUS_VAR);
|
---|
5279 | } else {
|
---|
5280 | res = v;
|
---|
5281 | }
|
---|
5282 | return res;
|
---|
5283 | }
|
---|
5284 |
|
---|
5285 | #define COMPARE(s, nan_exp) \
|
---|
5286 | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \
|
---|
5287 | int is_quiet STATUS_PARAM ) \
|
---|
5288 | { \
|
---|
5289 | flag aSign, bSign; \
|
---|
5290 | \
|
---|
5291 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
|
---|
5292 | extractFloat ## s ## Frac( a ) ) || \
|
---|
5293 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
|
---|
5294 | extractFloat ## s ## Frac( b ) )) { \
|
---|
5295 | if (!is_quiet || \
|
---|
5296 | float ## s ## _is_signaling_nan( a ) || \
|
---|
5297 | float ## s ## _is_signaling_nan( b ) ) { \
|
---|
5298 | float_raise( float_flag_invalid STATUS_VAR); \
|
---|
5299 | } \
|
---|
5300 | return float_relation_unordered; \
|
---|
5301 | } \
|
---|
5302 | aSign = extractFloat ## s ## Sign( a ); \
|
---|
5303 | bSign = extractFloat ## s ## Sign( b ); \
|
---|
5304 | if ( aSign != bSign ) { \
|
---|
5305 | if ( (bits ## s) ( ( a | b )<<1 ) == 0 ) { \
|
---|
5306 | /* zero case */ \
|
---|
5307 | return float_relation_equal; \
|
---|
5308 | } else { \
|
---|
5309 | return 1 - (2 * aSign); \
|
---|
5310 | } \
|
---|
5311 | } else { \
|
---|
5312 | if (a == b) { \
|
---|
5313 | return float_relation_equal; \
|
---|
5314 | } else { \
|
---|
5315 | return 1 - 2 * (aSign ^ ( a < b )); \
|
---|
5316 | } \
|
---|
5317 | } \
|
---|
5318 | } \
|
---|
5319 | \
|
---|
5320 | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \
|
---|
5321 | { \
|
---|
5322 | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \
|
---|
5323 | } \
|
---|
5324 | \
|
---|
5325 | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \
|
---|
5326 | { \
|
---|
5327 | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \
|
---|
5328 | }
|
---|
5329 |
|
---|
5330 | COMPARE(32, 0xff)
|
---|
5331 | COMPARE(64, 0x7ff)
|
---|