VirtualBox

source: vbox/trunk/src/recompiler_new/exec.c@ 13504

Last change on this file since 13504 was 13504, checked in by vboxsync, 16 years ago

amd64 TCG stated breathing (not much code executed yet)

  • Property svn:eol-style set to native
File size: 93.3 KB
Line 
1/*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/*
22 * Sun LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
23 * other than GPL or LGPL is available it will apply instead, Sun elects to use only
24 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
25 * a choice of LGPL license versions is made available with the language indicating
26 * that LGPLv2 or any later version may be used, or where a choice of which version
27 * of the LGPL is applied is otherwise unspecified.
28 */
29#include "config.h"
30#ifndef VBOX
31#ifdef _WIN32
32#include <windows.h>
33#else
34#include <sys/types.h>
35#include <sys/mman.h>
36#endif
37#include <stdlib.h>
38#include <stdio.h>
39#include <stdarg.h>
40#include <string.h>
41#include <errno.h>
42#include <unistd.h>
43#include <inttypes.h>
44#else /* VBOX */
45# include <stdlib.h>
46# include <stdio.h>
47# include <iprt/alloc.h>
48# include <iprt/string.h>
49# include <iprt/param.h>
50# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
51#endif /* VBOX */
52
53#include "cpu.h"
54#include "exec-all.h"
55#if defined(CONFIG_USER_ONLY)
56#include <qemu.h>
57#endif
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61//#define DEBUG_TLB
62//#define DEBUG_UNASSIGNED
63
64/* make various TB consistency checks */
65//#define DEBUG_TB_CHECK
66//#define DEBUG_TLB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
75#define MMAP_AREA_START 0x00000000
76#define MMAP_AREA_END 0xa8000000
77
78#if defined(TARGET_SPARC64)
79#define TARGET_PHYS_ADDR_SPACE_BITS 41
80#elif defined(TARGET_SPARC)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
82#elif defined(TARGET_ALPHA)
83#define TARGET_PHYS_ADDR_SPACE_BITS 42
84#define TARGET_VIRT_ADDR_SPACE_BITS 42
85#elif defined(TARGET_PPC64)
86#define TARGET_PHYS_ADDR_SPACE_BITS 42
87#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
88#define TARGET_PHYS_ADDR_SPACE_BITS 42
89#elif defined(TARGET_I386) && !defined(USE_KQEMU)
90#define TARGET_PHYS_ADDR_SPACE_BITS 36
91#else
92/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
93#define TARGET_PHYS_ADDR_SPACE_BITS 32
94#endif
95
96static TranslationBlock *tbs;
97int code_gen_max_blocks;
98TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
99static int nb_tbs;
100/* any access to the tbs or the page table must use this lock */
101spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
102
103#ifndef VBOX
104#if defined(__arm__) || defined(__sparc_v9__)
105/* The prologue must be reachable with a direct jump. ARM and Sparc64
106 have limited branch ranges (possibly also PPC) so place it in a
107 section close to code segment. */
108#define code_gen_section \
109 __attribute__((__section__(".gen_code"))) \
110 __attribute__((aligned (32)))
111#else
112#define code_gen_section \
113 __attribute__((aligned (32)))
114#endif
115uint8_t code_gen_prologue[1024] code_gen_section;
116
117#else /* VBOX */
118extern uint8_t* code_gen_prologue;
119#endif /* VBOX */
120
121static uint8_t *code_gen_buffer;
122static unsigned long code_gen_buffer_size;
123/* threshold to flush the translated code buffer */
124static unsigned long code_gen_buffer_max_size;
125uint8_t *code_gen_ptr;
126
127#ifndef VBOX
128#if !defined(CONFIG_USER_ONLY)
129ram_addr_t phys_ram_size;
130int phys_ram_fd;
131uint8_t *phys_ram_base;
132uint8_t *phys_ram_dirty;
133static int in_migration;
134static ram_addr_t phys_ram_alloc_offset = 0;
135#endif
136#else /* VBOX */
137RTGCPHYS phys_ram_size;
138/* we have memory ranges (the high PC-BIOS mapping) which
139 causes some pages to fall outside the dirty map here. */
140uint32_t phys_ram_dirty_size;
141#endif /* VBOX */
142#if !defined(VBOX)
143uint8_t *phys_ram_base;
144#endif
145uint8_t *phys_ram_dirty;
146
147CPUState *first_cpu;
148/* current CPU in the current thread. It is only valid inside
149 cpu_exec() */
150CPUState *cpu_single_env;
151/* 0 = Do not count executed instructions.
152 1 = Precise instruction counting.
153 2 = Adaptive rate instruction counting. */
154int use_icount = 0;
155/* Current instruction counter. While executing translated code this may
156 include some instructions that have not yet been executed. */
157int64_t qemu_icount;
158
159typedef struct PageDesc {
160 /* list of TBs intersecting this ram page */
161 TranslationBlock *first_tb;
162 /* in order to optimize self modifying code, we count the number
163 of lookups we do to a given page to use a bitmap */
164 unsigned int code_write_count;
165 uint8_t *code_bitmap;
166#if defined(CONFIG_USER_ONLY)
167 unsigned long flags;
168#endif
169} PageDesc;
170
171typedef struct PhysPageDesc {
172 /* offset in host memory of the page + io_index in the low 12 bits */
173 ram_addr_t phys_offset;
174} PhysPageDesc;
175
176#define L2_BITS 10
177#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
178/* XXX: this is a temporary hack for alpha target.
179 * In the future, this is to be replaced by a multi-level table
180 * to actually be able to handle the complete 64 bits address space.
181 */
182#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
183#else
184#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
185#endif
186
187#define L1_SIZE (1 << L1_BITS)
188#define L2_SIZE (1 << L2_BITS)
189
190static void io_mem_init(void);
191
192unsigned long qemu_real_host_page_size;
193unsigned long qemu_host_page_bits;
194unsigned long qemu_host_page_size;
195unsigned long qemu_host_page_mask;
196
197/* XXX: for system emulation, it could just be an array */
198static PageDesc *l1_map[L1_SIZE];
199static PhysPageDesc **l1_phys_map;
200
201#if !defined(CONFIG_USER_ONLY)
202static void io_mem_init(void);
203
204/* io memory support */
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208static int io_mem_nb;
209static int io_mem_watch;
210#endif
211
212#ifndef VBOX
213/* log support */
214static const char *logfilename = "/tmp/qemu.log";
215#endif /* !VBOX */
216FILE *logfile;
217int loglevel;
218#ifndef VBOX
219static int log_append = 0;
220#endif
221
222/* statistics */
223static int tlb_flush_count;
224static int tb_flush_count;
225#ifndef VBOX
226static int tb_phys_invalidate_count;
227#endif /* !VBOX */
228
229#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
230typedef struct subpage_t {
231 target_phys_addr_t base;
232 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
233 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
234 void *opaque[TARGET_PAGE_SIZE][2][4];
235} subpage_t;
236
237
238#ifndef VBOX
239#ifdef _WIN32
240static void map_exec(void *addr, long size)
241{
242 DWORD old_protect;
243 VirtualProtect(addr, size,
244 PAGE_EXECUTE_READWRITE, &old_protect);
245
246}
247#else
248static void map_exec(void *addr, long size)
249{
250 unsigned long start, end, page_size;
251
252 page_size = getpagesize();
253 start = (unsigned long)addr;
254 start &= ~(page_size - 1);
255
256 end = (unsigned long)addr + size;
257 end += page_size - 1;
258 end &= ~(page_size - 1);
259
260 mprotect((void *)start, end - start,
261 PROT_READ | PROT_WRITE | PROT_EXEC);
262}
263#endif
264#else // VBOX
265static void map_exec(void *addr, long size)
266{
267 RTMemProtect(addr, size,
268 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
269}
270#endif
271
272static void page_init(void)
273{
274 /* NOTE: we can always suppose that qemu_host_page_size >=
275 TARGET_PAGE_SIZE */
276#ifdef VBOX
277 RTMemProtect(code_gen_buffer, sizeof(code_gen_buffer),
278 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
279 qemu_real_host_page_size = PAGE_SIZE;
280#else /* !VBOX */
281#ifdef _WIN32
282 {
283 SYSTEM_INFO system_info;
284 DWORD old_protect;
285
286 GetSystemInfo(&system_info);
287 qemu_real_host_page_size = system_info.dwPageSize;
288 }
289#else
290 qemu_real_host_page_size = getpagesize();
291#endif
292#endif /* !VBOX */
293
294 if (qemu_host_page_size == 0)
295 qemu_host_page_size = qemu_real_host_page_size;
296 if (qemu_host_page_size < TARGET_PAGE_SIZE)
297 qemu_host_page_size = TARGET_PAGE_SIZE;
298 qemu_host_page_bits = 0;
299#ifndef VBOX
300 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
301#else
302 while ((1 << qemu_host_page_bits) < (int)qemu_host_page_size)
303#endif
304 qemu_host_page_bits++;
305 qemu_host_page_mask = ~(qemu_host_page_size - 1);
306 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
307 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
308#ifdef VBOX
309 /* We use other means to set reserved bit on our pages */
310#else
311#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
312 {
313 long long startaddr, endaddr;
314 FILE *f;
315 int n;
316
317 mmap_lock();
318 last_brk = (unsigned long)sbrk(0);
319 f = fopen("/proc/self/maps", "r");
320 if (f) {
321 do {
322 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
323 if (n == 2) {
324 startaddr = MIN(startaddr,
325 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
326 endaddr = MIN(endaddr,
327 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
328 page_set_flags(startaddr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(endaddr),
330 PAGE_RESERVED);
331 }
332 } while (!feof(f));
333 fclose(f);
334 }
335 mmap_unlock();
336 }
337#endif
338#endif
339}
340
341#ifndef VBOX
342static inline PageDesc **page_l1_map(target_ulong index)
343#else
344DECLINLINE(PageDesc **) page_l1_map(target_ulong index)
345#endif
346{
347#if TARGET_LONG_BITS > 32
348 /* Host memory outside guest VM. For 32-bit targets we have already
349 excluded high addresses. */
350 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
351 return NULL;
352#endif
353 return &l1_map[index >> L2_BITS];
354}
355
356#ifndef VBOX
357static inline PageDesc *page_find_alloc(target_ulong index)
358#else
359DECLINLINE(PageDesc *) page_find_alloc(target_ulong index)
360#endif
361{
362 PageDesc **lp, *p;
363 lp = page_l1_map(index);
364 if (!lp)
365 return NULL;
366
367 p = *lp;
368 if (!p) {
369 /* allocate if not found */
370#if defined(CONFIG_USER_ONLY)
371 unsigned long addr;
372 size_t len = sizeof(PageDesc) * L2_SIZE;
373 /* Don't use qemu_malloc because it may recurse. */
374 p = mmap(0, len, PROT_READ | PROT_WRITE,
375 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
376 *lp = p;
377 addr = h2g(p);
378 if (addr == (target_ulong)addr) {
379 page_set_flags(addr & TARGET_PAGE_MASK,
380 TARGET_PAGE_ALIGN(addr + len),
381 PAGE_RESERVED);
382 }
383#else
384 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
385 *lp = p;
386#endif
387 }
388 return p + (index & (L2_SIZE - 1));
389}
390
391#ifndef VBOX
392static inline PageDesc *page_find(target_ulong index)
393#else
394DECLINLINE(PageDesc *) page_find(target_ulong index)
395#endif
396{
397 PageDesc **lp, *p;
398 lp = page_l1_map(index);
399 if (!lp)
400 return NULL;
401
402 p = *lp;
403 if (!p)
404 return 0;
405 return p + (index & (L2_SIZE - 1));
406}
407
408static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
409{
410 void **lp, **p;
411 PhysPageDesc *pd;
412
413 p = (void **)l1_phys_map;
414#if TARGET_PHYS_ADDR_SPACE_BITS > 32
415
416#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
417#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
418#endif
419 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
420 p = *lp;
421 if (!p) {
422 /* allocate if not found */
423 if (!alloc)
424 return NULL;
425 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
426 memset(p, 0, sizeof(void *) * L1_SIZE);
427 *lp = p;
428 }
429#endif
430 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
431 pd = *lp;
432 if (!pd) {
433 int i;
434 /* allocate if not found */
435 if (!alloc)
436 return NULL;
437 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
438 *lp = pd;
439 for (i = 0; i < L2_SIZE; i++)
440 pd[i].phys_offset = IO_MEM_UNASSIGNED;
441 }
442#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
443 pd = ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
444 if (RT_UNLIKELY((pd->phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING))
445 remR3GrowDynRange(pd->phys_offset & TARGET_PAGE_MASK);
446 return pd;
447#else
448 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
449#endif
450}
451
452#ifndef VBOX
453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
454#else
455DECLINLINE(PhysPageDesc *) phys_page_find(target_phys_addr_t index)
456#endif
457{
458 return phys_page_find_alloc(index, 0);
459}
460
461#if !defined(CONFIG_USER_ONLY)
462static void tlb_protect_code(ram_addr_t ram_addr);
463static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
464 target_ulong vaddr);
465#define mmap_lock() do { } while(0)
466#define mmap_unlock() do { } while(0)
467#endif
468
469#ifdef VBOX
470/** @todo nike: isn't 32M too much ? */
471#endif
472#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
473
474#if defined(CONFIG_USER_ONLY)
475/* Currently it is not recommanded to allocate big chunks of data in
476 user mode. It will change when a dedicated libc will be used */
477#define USE_STATIC_CODE_GEN_BUFFER
478#endif
479
480/* VBox allocates codegen buffer dynamically */
481#ifndef VBOX
482#ifdef USE_STATIC_CODE_GEN_BUFFER
483static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
484#endif
485#endif
486
487static void code_gen_alloc(unsigned long tb_size)
488{
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 code_gen_buffer = static_code_gen_buffer;
491 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
492 map_exec(code_gen_buffer, code_gen_buffer_size);
493#else
494 code_gen_buffer_size = tb_size;
495 if (code_gen_buffer_size == 0) {
496#if defined(CONFIG_USER_ONLY)
497 /* in user mode, phys_ram_size is not meaningful */
498 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
499#else
500 /* XXX: needs ajustments */
501 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
502#endif
503 }
504 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
505 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
506 /* The code gen buffer location may have constraints depending on
507 the host cpu and OS */
508#ifdef VBOX
509 code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
510
511 if (!code_gen_buffer) {
512 LogRel(("REM: failed allocate codegen buffer %lld\n",
513 code_gen_buffer_size));
514 return;
515 }
516#else //!VBOX
517#if defined(__linux__)
518 {
519 int flags;
520 void *start = NULL;
521
522 flags = MAP_PRIVATE | MAP_ANONYMOUS;
523#if defined(__x86_64__)
524 flags |= MAP_32BIT;
525 /* Cannot map more than that */
526 if (code_gen_buffer_size > (800 * 1024 * 1024))
527 code_gen_buffer_size = (800 * 1024 * 1024);
528#elif defined(__sparc_v9__)
529 // Map the buffer below 2G, so we can use direct calls and branches
530 flags |= MAP_FIXED;
531 start = (void *) 0x60000000UL;
532 if (code_gen_buffer_size > (512 * 1024 * 1024))
533 code_gen_buffer_size = (512 * 1024 * 1024);
534#endif
535 code_gen_buffer = mmap(start, code_gen_buffer_size,
536 PROT_WRITE | PROT_READ | PROT_EXEC,
537 flags, -1, 0);
538 if (code_gen_buffer == MAP_FAILED) {
539 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
540 exit(1);
541 }
542 }
543#elif defined(__FreeBSD__)
544 {
545 int flags;
546 void *addr = NULL;
547 flags = MAP_PRIVATE | MAP_ANONYMOUS;
548#if defined(__x86_64__)
549 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
550 * 0x40000000 is free */
551 flags |= MAP_FIXED;
552 addr = (void *)0x40000000;
553 /* Cannot map more than that */
554 if (code_gen_buffer_size > (800 * 1024 * 1024))
555 code_gen_buffer_size = (800 * 1024 * 1024);
556#endif
557 code_gen_buffer = mmap(addr, code_gen_buffer_size,
558 PROT_WRITE | PROT_READ | PROT_EXEC,
559 flags, -1, 0);
560 if (code_gen_buffer == MAP_FAILED) {
561 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
562 exit(1);
563 }
564 }
565#else
566 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
567 if (!code_gen_buffer) {
568 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
569 exit(1);
570 }
571 map_exec(code_gen_buffer, code_gen_buffer_size);
572#endif
573 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
574#endif /* !VBOX */
575#endif /* !USE_STATIC_CODE_GEN_BUFFER */
576#ifndef VBOX
577 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
578#else
579 map_exec(code_gen_prologue, _1K);
580#endif
581
582 code_gen_buffer_max_size = code_gen_buffer_size -
583 code_gen_max_block_size();
584 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
585 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
586}
587
588/* Must be called before using the QEMU cpus. 'tb_size' is the size
589 (in bytes) allocated to the translation buffer. Zero means default
590 size. */
591void cpu_exec_init_all(unsigned long tb_size)
592{
593 cpu_gen_init();
594 code_gen_alloc(tb_size);
595 code_gen_ptr = code_gen_buffer;
596 page_init();
597#if !defined(CONFIG_USER_ONLY)
598 io_mem_init();
599#endif
600}
601
602#ifndef VBOX
603#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
604
605#define CPU_COMMON_SAVE_VERSION 1
606
607static void cpu_common_save(QEMUFile *f, void *opaque)
608{
609 CPUState *env = opaque;
610
611 qemu_put_be32s(f, &env->halted);
612 qemu_put_be32s(f, &env->interrupt_request);
613}
614
615static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
616{
617 CPUState *env = opaque;
618
619 if (version_id != CPU_COMMON_SAVE_VERSION)
620 return -EINVAL;
621
622 qemu_get_be32s(f, &env->halted);
623 qemu_get_be32s(f, &env->interrupt_request);
624 tlb_flush(env, 1);
625
626 return 0;
627}
628#endif
629#endif //!VBOX
630
631void cpu_exec_init(CPUState *env)
632{
633 CPUState **penv;
634 int cpu_index;
635
636 env->next_cpu = NULL;
637 penv = &first_cpu;
638 cpu_index = 0;
639 while (*penv != NULL) {
640 penv = (CPUState **)&(*penv)->next_cpu;
641 cpu_index++;
642 }
643 env->cpu_index = cpu_index;
644 env->nb_watchpoints = 0;
645 *penv = env;
646#ifndef VBOX
647#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
648 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
649 cpu_common_save, cpu_common_load, env);
650 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652#endif
653#endif // !VBOX
654}
655
656#ifndef VBOX
657static inline void invalidate_page_bitmap(PageDesc *p)
658#else
659DECLINLINE(void) invalidate_page_bitmap(PageDesc *p)
660#endif
661{
662 if (p->code_bitmap) {
663 qemu_free(p->code_bitmap);
664 p->code_bitmap = NULL;
665 }
666 p->code_write_count = 0;
667}
668
669/* set to NULL all the 'first_tb' fields in all PageDescs */
670static void page_flush_tb(void)
671{
672 int i, j;
673 PageDesc *p;
674
675 for(i = 0; i < L1_SIZE; i++) {
676 p = l1_map[i];
677 if (p) {
678 for(j = 0; j < L2_SIZE; j++) {
679 p->first_tb = NULL;
680 invalidate_page_bitmap(p);
681 p++;
682 }
683 }
684 }
685}
686
687/* flush all the translation blocks */
688/* XXX: tb_flush is currently not thread safe */
689void tb_flush(CPUState *env1)
690{
691 CPUState *env;
692#if defined(DEBUG_FLUSH)
693 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
694 (unsigned long)(code_gen_ptr - code_gen_buffer),
695 nb_tbs, nb_tbs > 0 ?
696 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
697#endif
698 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
699 cpu_abort(env1, "Internal error: code buffer overflow\n");
700
701 nb_tbs = 0;
702
703 for(env = first_cpu; env != NULL; env = env->next_cpu) {
704 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
705 }
706
707 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
708 page_flush_tb();
709
710 code_gen_ptr = code_gen_buffer;
711 /* XXX: flush processor icache at this point if cache flush is
712 expensive */
713 tb_flush_count++;
714}
715
716#ifdef DEBUG_TB_CHECK
717static void tb_invalidate_check(target_ulong address)
718{
719 TranslationBlock *tb;
720 int i;
721 address &= TARGET_PAGE_MASK;
722 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
723 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
724 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
725 address >= tb->pc + tb->size)) {
726 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
727 address, (long)tb->pc, tb->size);
728 }
729 }
730 }
731}
732
733/* verify that all the pages have correct rights for code */
734static void tb_page_check(void)
735{
736 TranslationBlock *tb;
737 int i, flags1, flags2;
738
739 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
740 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
741 flags1 = page_get_flags(tb->pc);
742 flags2 = page_get_flags(tb->pc + tb->size - 1);
743 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
744 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
745 (long)tb->pc, tb->size, flags1, flags2);
746 }
747 }
748 }
749}
750
751static void tb_jmp_check(TranslationBlock *tb)
752{
753 TranslationBlock *tb1;
754 unsigned int n1;
755
756 /* suppress any remaining jumps to this TB */
757 tb1 = tb->jmp_first;
758 for(;;) {
759 n1 = (long)tb1 & 3;
760 tb1 = (TranslationBlock *)((long)tb1 & ~3);
761 if (n1 == 2)
762 break;
763 tb1 = tb1->jmp_next[n1];
764 }
765 /* check end of list */
766 if (tb1 != tb) {
767 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
768 }
769}
770#endif // DEBUG_TB_CHECK
771
772/* invalidate one TB */
773#ifndef VBOX
774static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
775 int next_offset)
776#else
777DECLINLINE(void) tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
778 int next_offset)
779#endif
780{
781 TranslationBlock *tb1;
782 for(;;) {
783 tb1 = *ptb;
784 if (tb1 == tb) {
785 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
786 break;
787 }
788 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
789 }
790}
791
792#ifndef VBOX
793static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
794#else
795DECLINLINE(void) tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
796#endif
797{
798 TranslationBlock *tb1;
799 unsigned int n1;
800
801 for(;;) {
802 tb1 = *ptb;
803 n1 = (long)tb1 & 3;
804 tb1 = (TranslationBlock *)((long)tb1 & ~3);
805 if (tb1 == tb) {
806 *ptb = tb1->page_next[n1];
807 break;
808 }
809 ptb = &tb1->page_next[n1];
810 }
811}
812
813#ifndef VBOX
814static inline void tb_jmp_remove(TranslationBlock *tb, int n)
815#else
816DECLINLINE(void) tb_jmp_remove(TranslationBlock *tb, int n)
817#endif
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847#ifndef VBOX
848static inline void tb_reset_jump(TranslationBlock *tb, int n)
849#else
850DECLINLINE(void) tb_reset_jump(TranslationBlock *tb, int n)
851#endif
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
856void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
857{
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 target_phys_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
863
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
882 tb_invalidated_flag = 1;
883
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
908
909#ifndef VBOX
910 tb_phys_invalidate_count++;
911#endif
912}
913
914
915#ifdef VBOX
916void tb_invalidate_virt(CPUState *env, uint32_t eip)
917{
918# if 1
919 tb_flush(env);
920# else
921 uint8_t *cs_base, *pc;
922 unsigned int flags, h, phys_pc;
923 TranslationBlock *tb, **ptb;
924
925 flags = env->hflags;
926 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
927 cs_base = env->segs[R_CS].base;
928 pc = cs_base + eip;
929
930 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
931 flags);
932
933 if(tb)
934 {
935# ifdef DEBUG
936 printf("invalidating TB (%08X) at %08X\n", tb, eip);
937# endif
938 tb_invalidate(tb);
939 //Note: this will leak TBs, but the whole cache will be flushed
940 // when it happens too often
941 tb->pc = 0;
942 tb->cs_base = 0;
943 tb->flags = 0;
944 }
945# endif
946}
947
948# ifdef VBOX_STRICT
949/**
950 * Gets the page offset.
951 */
952unsigned long get_phys_page_offset(target_ulong addr)
953{
954 PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
955 return p ? p->phys_offset : 0;
956}
957# endif /* VBOX_STRICT */
958#endif /* VBOX */
959
960#ifndef VBOX
961static inline void set_bits(uint8_t *tab, int start, int len)
962#else
963DECLINLINE(void) set_bits(uint8_t *tab, int start, int len)
964#endif
965{
966 int end, mask, end1;
967
968 end = start + len;
969 tab += start >> 3;
970 mask = 0xff << (start & 7);
971 if ((start & ~7) == (end & ~7)) {
972 if (start < end) {
973 mask &= ~(0xff << (end & 7));
974 *tab |= mask;
975 }
976 } else {
977 *tab++ |= mask;
978 start = (start + 8) & ~7;
979 end1 = end & ~7;
980 while (start < end1) {
981 *tab++ = 0xff;
982 start += 8;
983 }
984 if (start < end) {
985 mask = ~(0xff << (end & 7));
986 *tab |= mask;
987 }
988 }
989}
990
991static void build_page_bitmap(PageDesc *p)
992{
993 int n, tb_start, tb_end;
994 TranslationBlock *tb;
995
996 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
997 if (!p->code_bitmap)
998 return;
999 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
1000
1001 tb = p->first_tb;
1002 while (tb != NULL) {
1003 n = (long)tb & 3;
1004 tb = (TranslationBlock *)((long)tb & ~3);
1005 /* NOTE: this is subtle as a TB may span two physical pages */
1006 if (n == 0) {
1007 /* NOTE: tb_end may be after the end of the page, but
1008 it is not a problem */
1009 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1010 tb_end = tb_start + tb->size;
1011 if (tb_end > TARGET_PAGE_SIZE)
1012 tb_end = TARGET_PAGE_SIZE;
1013 } else {
1014 tb_start = 0;
1015 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1018 tb = tb->page_next[n];
1019 }
1020}
1021
1022TranslationBlock *tb_gen_code(CPUState *env,
1023 target_ulong pc, target_ulong cs_base,
1024 int flags, int cflags)
1025{
1026 TranslationBlock *tb;
1027 uint8_t *tc_ptr;
1028 target_ulong phys_pc, phys_page2, virt_page2;
1029 int code_gen_size;
1030
1031 phys_pc = get_phys_addr_code(env, pc);
1032 tb = tb_alloc(pc);
1033 if (!tb) {
1034 /* flush must be done */
1035 tb_flush(env);
1036 /* cannot fail at this point */
1037 tb = tb_alloc(pc);
1038 /* Don't forget to invalidate previous TB info. */
1039 tb_invalidated_flag = 1;
1040 }
1041 tc_ptr = code_gen_ptr;
1042 tb->tc_ptr = tc_ptr;
1043 tb->cs_base = cs_base;
1044 tb->flags = flags;
1045 tb->cflags = cflags;
1046 cpu_gen_code(env, tb, &code_gen_size);
1047 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1048
1049 /* check next page if needed */
1050 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1051 phys_page2 = -1;
1052 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1053 phys_page2 = get_phys_addr_code(env, virt_page2);
1054 }
1055 tb_link_phys(tb, phys_pc, phys_page2);
1056 return tb;
1057}
1058
1059/* invalidate all TBs which intersect with the target physical page
1060 starting in range [start;end[. NOTE: start and end must refer to
1061 the same physical page. 'is_cpu_write_access' should be true if called
1062 from a real cpu write access: the virtual CPU will exit the current
1063 TB if code is modified inside this TB. */
1064void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
1065 int is_cpu_write_access)
1066{
1067 int n, current_tb_modified, current_tb_not_found, current_flags;
1068 CPUState *env = cpu_single_env;
1069 PageDesc *p;
1070 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
1071 target_ulong tb_start, tb_end;
1072 target_ulong current_pc, current_cs_base;
1073
1074 p = page_find(start >> TARGET_PAGE_BITS);
1075 if (!p)
1076 return;
1077 if (!p->code_bitmap &&
1078 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1079 is_cpu_write_access) {
1080 /* build code bitmap */
1081 build_page_bitmap(p);
1082 }
1083
1084 /* we remove all the TBs in the range [start, end[ */
1085 /* XXX: see if in some cases it could be faster to invalidate all the code */
1086 current_tb_not_found = is_cpu_write_access;
1087 current_tb_modified = 0;
1088 current_tb = NULL; /* avoid warning */
1089 current_pc = 0; /* avoid warning */
1090 current_cs_base = 0; /* avoid warning */
1091 current_flags = 0; /* avoid warning */
1092 tb = p->first_tb;
1093 while (tb != NULL) {
1094 n = (long)tb & 3;
1095 tb = (TranslationBlock *)((long)tb & ~3);
1096 tb_next = tb->page_next[n];
1097 /* NOTE: this is subtle as a TB may span two physical pages */
1098 if (n == 0) {
1099 /* NOTE: tb_end may be after the end of the page, but
1100 it is not a problem */
1101 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1102 tb_end = tb_start + tb->size;
1103 } else {
1104 tb_start = tb->page_addr[1];
1105 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1106 }
1107 if (!(tb_end <= start || tb_start >= end)) {
1108#ifdef TARGET_HAS_PRECISE_SMC
1109 if (current_tb_not_found) {
1110 current_tb_not_found = 0;
1111 current_tb = NULL;
1112 if (env->mem_io_pc) {
1113 /* now we have a real cpu fault */
1114 current_tb = tb_find_pc(env->mem_io_pc);
1115 }
1116 }
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env,
1127 env->mem_io_pc, NULL);
1128#if defined(TARGET_I386)
1129 current_flags = env->hflags;
1130 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1131 current_cs_base = (target_ulong)env->segs[R_CS].base;
1132 current_pc = current_cs_base + env->eip;
1133#else
1134#error unsupported CPU
1135#endif
1136 }
1137#endif /* TARGET_HAS_PRECISE_SMC */
1138 /* we need to do that to handle the case where a signal
1139 occurs while doing tb_phys_invalidate() */
1140 saved_tb = NULL;
1141 if (env) {
1142 saved_tb = env->current_tb;
1143 env->current_tb = NULL;
1144 }
1145 tb_phys_invalidate(tb, -1);
1146 if (env) {
1147 env->current_tb = saved_tb;
1148 if (env->interrupt_request && env->current_tb)
1149 cpu_interrupt(env, env->interrupt_request);
1150 }
1151 }
1152 tb = tb_next;
1153 }
1154#if !defined(CONFIG_USER_ONLY)
1155 /* if no code remaining, no need to continue to use slow writes */
1156 if (!p->first_tb) {
1157 invalidate_page_bitmap(p);
1158 if (is_cpu_write_access) {
1159 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1160 }
1161 }
1162#endif
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (current_tb_modified) {
1165 /* we generate a block containing just the instruction
1166 modifying the memory. It will ensure that it cannot modify
1167 itself */
1168 env->current_tb = NULL;
1169 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1170 cpu_resume_from_signal(env, NULL);
1171 }
1172#endif
1173}
1174
1175
1176/* len must be <= 8 and start must be a multiple of len */
1177#ifndef VBOX
1178static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1179#else
1180DECLINLINE(void) tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1181#endif
1182{
1183 PageDesc *p;
1184 int offset, b;
1185#if 0
1186 if (1) {
1187 if (loglevel) {
1188 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1189 cpu_single_env->mem_io_vaddr, len,
1190 cpu_single_env->eip,
1191 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1192 }
1193 }
1194#endif
1195 p = page_find(start >> TARGET_PAGE_BITS);
1196 if (!p)
1197 return;
1198 if (p->code_bitmap) {
1199 offset = start & ~TARGET_PAGE_MASK;
1200 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1201 if (b & ((1 << len) - 1))
1202 goto do_invalidate;
1203 } else {
1204 do_invalidate:
1205 tb_invalidate_phys_page_range(start, start + len, 1);
1206 }
1207}
1208
1209
1210#if !defined(CONFIG_SOFTMMU)
1211static void tb_invalidate_phys_page(target_phys_addr_t addr,
1212 unsigned long pc, void *puc)
1213{
1214 int n, current_flags, current_tb_modified;
1215 target_ulong current_pc, current_cs_base;
1216 PageDesc *p;
1217 TranslationBlock *tb, *current_tb;
1218#ifdef TARGET_HAS_PRECISE_SMC
1219 CPUState *env = cpu_single_env;
1220#endif
1221
1222 addr &= TARGET_PAGE_MASK;
1223 p = page_find(addr >> TARGET_PAGE_BITS);
1224 if (!p)
1225 return;
1226 tb = p->first_tb;
1227 current_tb_modified = 0;
1228 current_tb = NULL;
1229 current_pc = 0; /* avoid warning */
1230 current_cs_base = 0; /* avoid warning */
1231 current_flags = 0; /* avoid warning */
1232#ifdef TARGET_HAS_PRECISE_SMC
1233 if (tb && pc != 0) {
1234 current_tb = tb_find_pc(pc);
1235 }
1236#endif
1237 while (tb != NULL) {
1238 n = (long)tb & 3;
1239 tb = (TranslationBlock *)((long)tb & ~3);
1240#ifdef TARGET_HAS_PRECISE_SMC
1241 if (current_tb == tb &&
1242 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1243 /* If we are modifying the current TB, we must stop
1244 its execution. We could be more precise by checking
1245 that the modification is after the current PC, but it
1246 would require a specialized function to partially
1247 restore the CPU state */
1248
1249 current_tb_modified = 1;
1250 cpu_restore_state(current_tb, env, pc, puc);
1251#if defined(TARGET_I386)
1252 current_flags = env->hflags;
1253 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1254 current_cs_base = (target_ulong)env->segs[R_CS].base;
1255 current_pc = current_cs_base + env->eip;
1256#else
1257#error unsupported CPU
1258#endif
1259 }
1260#endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1263 }
1264 p->first_tb = NULL;
1265#ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
1270 env->current_tb = NULL;
1271 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1272 cpu_resume_from_signal(env, puc);
1273 }
1274#endif
1275}
1276#endif
1277
1278/* add the tb in the target page and protect it if necessary */
1279#ifndef VBOX
1280static inline void tb_alloc_page(TranslationBlock *tb,
1281 unsigned int n, target_ulong page_addr)
1282#else
1283DECLINLINE(void) tb_alloc_page(TranslationBlock *tb,
1284 unsigned int n, target_ulong page_addr)
1285#endif
1286{
1287 PageDesc *p;
1288 TranslationBlock *last_first_tb;
1289
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1292 tb->page_next[n] = p->first_tb;
1293 last_first_tb = p->first_tb;
1294 p->first_tb = (TranslationBlock *)((long)tb | n);
1295 invalidate_page_bitmap(p);
1296
1297#if defined(TARGET_HAS_SMC) || 1
1298
1299#if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1304
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1311
1312 p2 = page_find (addr >> TARGET_PAGE_BITS);
1313 if (!p2)
1314 continue;
1315 prot |= p2->flags;
1316 p2->flags &= ~PAGE_WRITE;
1317 page_get_flags(addr);
1318 }
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321#ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324#endif
1325 }
1326#else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!last_first_tb) {
1331 tlb_protect_code(page_addr);
1332 }
1333#endif
1334
1335#endif /* TARGET_HAS_SMC */
1336}
1337
1338/* Allocate a new translation block. Flush the translation buffer if
1339 too many translation blocks or too much generated code. */
1340TranslationBlock *tb_alloc(target_ulong pc)
1341{
1342 TranslationBlock *tb;
1343
1344 if (nb_tbs >= code_gen_max_blocks ||
1345#ifndef VBOX
1346 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1347#else
1348 (code_gen_ptr - code_gen_buffer) >= (int)code_gen_buffer_max_size)
1349#endif
1350 return NULL;
1351 tb = &tbs[nb_tbs++];
1352 tb->pc = pc;
1353 tb->cflags = 0;
1354 return tb;
1355}
1356
1357void tb_free(TranslationBlock *tb)
1358{
1359 /* In practice this is mostly used for single use temporary TB
1360 Ignore the hard cases and just back up if this TB happens to
1361 be the last one generated. */
1362 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1363 code_gen_ptr = tb->tc_ptr;
1364 nb_tbs--;
1365 }
1366}
1367
1368/* add a new TB and link it to the physical page tables. phys_page2 is
1369 (-1) to indicate that only one page contains the TB. */
1370void tb_link_phys(TranslationBlock *tb,
1371 target_ulong phys_pc, target_ulong phys_page2)
1372{
1373 unsigned int h;
1374 TranslationBlock **ptb;
1375
1376 /* Grab the mmap lock to stop another thread invalidating this TB
1377 before we are done. */
1378 mmap_lock();
1379 /* add in the physical hash table */
1380 h = tb_phys_hash_func(phys_pc);
1381 ptb = &tb_phys_hash[h];
1382 tb->phys_hash_next = *ptb;
1383 *ptb = tb;
1384
1385 /* add in the page list */
1386 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1387 if (phys_page2 != -1)
1388 tb_alloc_page(tb, 1, phys_page2);
1389 else
1390 tb->page_addr[1] = -1;
1391
1392 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1393 tb->jmp_next[0] = NULL;
1394 tb->jmp_next[1] = NULL;
1395
1396 /* init original jump addresses */
1397 if (tb->tb_next_offset[0] != 0xffff)
1398 tb_reset_jump(tb, 0);
1399 if (tb->tb_next_offset[1] != 0xffff)
1400 tb_reset_jump(tb, 1);
1401
1402#ifdef DEBUG_TB_CHECK
1403 tb_page_check();
1404#endif
1405 mmap_unlock();
1406}
1407
1408/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1409 tb[1].tc_ptr. Return NULL if not found */
1410TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1411{
1412 int m_min, m_max, m;
1413 unsigned long v;
1414 TranslationBlock *tb;
1415
1416 if (nb_tbs <= 0)
1417 return NULL;
1418 if (tc_ptr < (unsigned long)code_gen_buffer ||
1419 tc_ptr >= (unsigned long)code_gen_ptr)
1420 return NULL;
1421 /* binary search (cf Knuth) */
1422 m_min = 0;
1423 m_max = nb_tbs - 1;
1424 while (m_min <= m_max) {
1425 m = (m_min + m_max) >> 1;
1426 tb = &tbs[m];
1427 v = (unsigned long)tb->tc_ptr;
1428 if (v == tc_ptr)
1429 return tb;
1430 else if (tc_ptr < v) {
1431 m_max = m - 1;
1432 } else {
1433 m_min = m + 1;
1434 }
1435 }
1436 return &tbs[m_max];
1437}
1438
1439static void tb_reset_jump_recursive(TranslationBlock *tb);
1440
1441#ifndef VBOX
1442static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1443#else
1444DECLINLINE(void) tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1445#endif
1446{
1447 TranslationBlock *tb1, *tb_next, **ptb;
1448 unsigned int n1;
1449
1450 tb1 = tb->jmp_next[n];
1451 if (tb1 != NULL) {
1452 /* find head of list */
1453 for(;;) {
1454 n1 = (long)tb1 & 3;
1455 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1456 if (n1 == 2)
1457 break;
1458 tb1 = tb1->jmp_next[n1];
1459 }
1460 /* we are now sure now that tb jumps to tb1 */
1461 tb_next = tb1;
1462
1463 /* remove tb from the jmp_first list */
1464 ptb = &tb_next->jmp_first;
1465 for(;;) {
1466 tb1 = *ptb;
1467 n1 = (long)tb1 & 3;
1468 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1469 if (n1 == n && tb1 == tb)
1470 break;
1471 ptb = &tb1->jmp_next[n1];
1472 }
1473 *ptb = tb->jmp_next[n];
1474 tb->jmp_next[n] = NULL;
1475
1476 /* suppress the jump to next tb in generated code */
1477 tb_reset_jump(tb, n);
1478
1479 /* suppress jumps in the tb on which we could have jumped */
1480 tb_reset_jump_recursive(tb_next);
1481 }
1482}
1483
1484static void tb_reset_jump_recursive(TranslationBlock *tb)
1485{
1486 tb_reset_jump_recursive2(tb, 0);
1487 tb_reset_jump_recursive2(tb, 1);
1488}
1489
1490#if defined(TARGET_HAS_ICE)
1491static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1492{
1493 target_ulong addr, pd;
1494 ram_addr_t ram_addr;
1495 PhysPageDesc *p;
1496
1497 addr = cpu_get_phys_page_debug(env, pc);
1498 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1499 if (!p) {
1500 pd = IO_MEM_UNASSIGNED;
1501 } else {
1502 pd = p->phys_offset;
1503 }
1504 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1505 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1506}
1507#endif
1508
1509/* Add a watchpoint. */
1510int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1511{
1512 int i;
1513
1514 for (i = 0; i < env->nb_watchpoints; i++) {
1515 if (addr == env->watchpoint[i].vaddr)
1516 return 0;
1517 }
1518 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1519 return -1;
1520
1521 i = env->nb_watchpoints++;
1522 env->watchpoint[i].vaddr = addr;
1523 env->watchpoint[i].type = type;
1524 tlb_flush_page(env, addr);
1525 /* FIXME: This flush is needed because of the hack to make memory ops
1526 terminate the TB. It can be removed once the proper IO trap and
1527 re-execute bits are in. */
1528 tb_flush(env);
1529 return i;
1530}
1531
1532/* Remove a watchpoint. */
1533int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1534{
1535 int i;
1536
1537 for (i = 0; i < env->nb_watchpoints; i++) {
1538 if (addr == env->watchpoint[i].vaddr) {
1539 env->nb_watchpoints--;
1540 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1541 tlb_flush_page(env, addr);
1542 return 0;
1543 }
1544 }
1545 return -1;
1546}
1547
1548/* Remove all watchpoints. */
1549void cpu_watchpoint_remove_all(CPUState *env) {
1550 int i;
1551
1552 for (i = 0; i < env->nb_watchpoints; i++) {
1553 tlb_flush_page(env, env->watchpoint[i].vaddr);
1554 }
1555 env->nb_watchpoints = 0;
1556}
1557
1558/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1559 breakpoint is reached */
1560int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1561{
1562#if defined(TARGET_HAS_ICE)
1563 int i;
1564
1565 for(i = 0; i < env->nb_breakpoints; i++) {
1566 if (env->breakpoints[i] == pc)
1567 return 0;
1568 }
1569
1570 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1571 return -1;
1572 env->breakpoints[env->nb_breakpoints++] = pc;
1573
1574 breakpoint_invalidate(env, pc);
1575 return 0;
1576#else
1577 return -1;
1578#endif
1579}
1580
1581/* remove all breakpoints */
1582void cpu_breakpoint_remove_all(CPUState *env) {
1583#if defined(TARGET_HAS_ICE)
1584 int i;
1585 for(i = 0; i < env->nb_breakpoints; i++) {
1586 breakpoint_invalidate(env, env->breakpoints[i]);
1587 }
1588 env->nb_breakpoints = 0;
1589#endif
1590}
1591
1592/* remove a breakpoint */
1593int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1594{
1595#if defined(TARGET_HAS_ICE)
1596 int i;
1597 for(i = 0; i < env->nb_breakpoints; i++) {
1598 if (env->breakpoints[i] == pc)
1599 goto found;
1600 }
1601 return -1;
1602 found:
1603 env->nb_breakpoints--;
1604 if (i < env->nb_breakpoints)
1605 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1606
1607 breakpoint_invalidate(env, pc);
1608 return 0;
1609#else
1610 return -1;
1611#endif
1612}
1613
1614/* enable or disable single step mode. EXCP_DEBUG is returned by the
1615 CPU loop after each instruction */
1616void cpu_single_step(CPUState *env, int enabled)
1617{
1618#if defined(TARGET_HAS_ICE)
1619 if (env->singlestep_enabled != enabled) {
1620 env->singlestep_enabled = enabled;
1621 /* must flush all the translated code to avoid inconsistancies */
1622 /* XXX: only flush what is necessary */
1623 tb_flush(env);
1624 }
1625#endif
1626}
1627
1628#ifndef VBOX
1629/* enable or disable low levels log */
1630void cpu_set_log(int log_flags)
1631{
1632 loglevel = log_flags;
1633 if (loglevel && !logfile) {
1634 logfile = fopen(logfilename, "w");
1635 if (!logfile) {
1636 perror(logfilename);
1637 _exit(1);
1638 }
1639#if !defined(CONFIG_SOFTMMU)
1640 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1641 {
1642 static uint8_t logfile_buf[4096];
1643 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1644 }
1645#else
1646 setvbuf(logfile, NULL, _IOLBF, 0);
1647#endif
1648 }
1649}
1650
1651void cpu_set_log_filename(const char *filename)
1652{
1653 logfilename = strdup(filename);
1654}
1655#endif /* !VBOX */
1656
1657/* mask must never be zero, except for A20 change call */
1658void cpu_interrupt(CPUState *env, int mask)
1659{
1660#if !defined(USE_NPTL)
1661 TranslationBlock *tb;
1662 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1663#endif
1664 int old_mask;
1665
1666 old_mask = env->interrupt_request;
1667#ifdef VBOX
1668 VM_ASSERT_EMT(env->pVM);
1669 ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
1670#else /* !VBOX */
1671 /* FIXME: This is probably not threadsafe. A different thread could
1672 be in the middle of a read-modify-write operation. */
1673 env->interrupt_request |= mask;
1674#endif /* !VBOX */
1675#if defined(USE_NPTL)
1676 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1677 problem and hope the cpu will stop of its own accord. For userspace
1678 emulation this often isn't actually as bad as it sounds. Often
1679 signals are used primarily to interrupt blocking syscalls. */
1680#else
1681 if (use_icount) {
1682 env->icount_decr.u16.high = 0xffff;
1683#ifndef CONFIG_USER_ONLY
1684 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1685 an async event happened and we need to process it. */
1686 if (!can_do_io(env)
1687 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1688 cpu_abort(env, "Raised interrupt while not in I/O function");
1689 }
1690#endif
1691 } else {
1692 tb = env->current_tb;
1693 /* if the cpu is currently executing code, we must unlink it and
1694 all the potentially executing TB */
1695 if (tb && !testandset(&interrupt_lock)) {
1696 env->current_tb = NULL;
1697 tb_reset_jump_recursive(tb);
1698 resetlock(&interrupt_lock);
1699 }
1700 }
1701#endif
1702}
1703
1704void cpu_reset_interrupt(CPUState *env, int mask)
1705{
1706#ifdef VBOX
1707 /*
1708 * Note: the current implementation can be executed by another thread without problems; make sure this remains true
1709 * for future changes!
1710 */
1711 ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
1712#else /* !VBOX */
1713 env->interrupt_request &= ~mask;
1714#endif /* !VBOX */
1715}
1716
1717#ifndef VBOX
1718CPULogItem cpu_log_items[] = {
1719 { CPU_LOG_TB_OUT_ASM, "out_asm",
1720 "show generated host assembly code for each compiled TB" },
1721 { CPU_LOG_TB_IN_ASM, "in_asm",
1722 "show target assembly code for each compiled TB" },
1723 { CPU_LOG_TB_OP, "op",
1724 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1725#ifdef TARGET_I386
1726 { CPU_LOG_TB_OP_OPT, "op_opt",
1727 "show micro ops after optimization for each compiled TB" },
1728#endif
1729 { CPU_LOG_INT, "int",
1730 "show interrupts/exceptions in short format" },
1731 { CPU_LOG_EXEC, "exec",
1732 "show trace before each executed TB (lots of logs)" },
1733 { CPU_LOG_TB_CPU, "cpu",
1734 "show CPU state before bloc translation" },
1735#ifdef TARGET_I386
1736 { CPU_LOG_PCALL, "pcall",
1737 "show protected mode far calls/returns/exceptions" },
1738#endif
1739#ifdef DEBUG_IOPORT
1740 { CPU_LOG_IOPORT, "ioport",
1741 "show all i/o ports accesses" },
1742#endif
1743 { 0, NULL, NULL },
1744};
1745
1746static int cmp1(const char *s1, int n, const char *s2)
1747{
1748 if (strlen(s2) != n)
1749 return 0;
1750 return memcmp(s1, s2, n) == 0;
1751}
1752
1753/* takes a comma separated list of log masks. Return 0 if error. */
1754int cpu_str_to_log_mask(const char *str)
1755{
1756 CPULogItem *item;
1757 int mask;
1758 const char *p, *p1;
1759
1760 p = str;
1761 mask = 0;
1762 for(;;) {
1763 p1 = strchr(p, ',');
1764 if (!p1)
1765 p1 = p + strlen(p);
1766 if(cmp1(p,p1-p,"all")) {
1767 for(item = cpu_log_items; item->mask != 0; item++) {
1768 mask |= item->mask;
1769 }
1770 } else {
1771 for(item = cpu_log_items; item->mask != 0; item++) {
1772 if (cmp1(p, p1 - p, item->name))
1773 goto found;
1774 }
1775 return 0;
1776 }
1777 found:
1778 mask |= item->mask;
1779 if (*p1 != ',')
1780 break;
1781 p = p1 + 1;
1782 }
1783 return mask;
1784}
1785#endif /* !VBOX */
1786
1787#ifndef VBOX /* VBOX: we have our own routine. */
1788void cpu_abort(CPUState *env, const char *fmt, ...)
1789{
1790 va_list ap;
1791
1792 va_start(ap, fmt);
1793 fprintf(stderr, "qemu: fatal: ");
1794 vfprintf(stderr, fmt, ap);
1795 fprintf(stderr, "\n");
1796#ifdef TARGET_I386
1797 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1798#else
1799 cpu_dump_state(env, stderr, fprintf, 0);
1800#endif
1801 va_end(ap);
1802 abort();
1803}
1804#endif /* !VBOX */
1805
1806#ifndef VBOX
1807CPUState *cpu_copy(CPUState *env)
1808{
1809 CPUState *new_env = cpu_init(env->cpu_model_str);
1810 /* preserve chaining and index */
1811 CPUState *next_cpu = new_env->next_cpu;
1812 int cpu_index = new_env->cpu_index;
1813 memcpy(new_env, env, sizeof(CPUState));
1814 new_env->next_cpu = next_cpu;
1815 new_env->cpu_index = cpu_index;
1816 return new_env;
1817}
1818#endif
1819
1820#if !defined(CONFIG_USER_ONLY)
1821
1822#ifndef VBOX
1823static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1824#else
1825DECLINLINE(void) tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1826#endif
1827{
1828 unsigned int i;
1829
1830 /* Discard jump cache entries for any tb which might potentially
1831 overlap the flushed page. */
1832 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1833 memset (&env->tb_jmp_cache[i], 0,
1834 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1835
1836 i = tb_jmp_cache_hash_page(addr);
1837 memset (&env->tb_jmp_cache[i], 0,
1838 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1839
1840#ifdef VBOX
1841 /* inform raw mode about TLB page flush */
1842 remR3FlushPage(env, addr);
1843#endif /* VBOX */
1844}
1845
1846/* NOTE: if flush_global is true, also flush global entries (not
1847 implemented yet) */
1848void tlb_flush(CPUState *env, int flush_global)
1849{
1850 int i;
1851
1852#if defined(DEBUG_TLB)
1853 printf("tlb_flush:\n");
1854#endif
1855 /* must reset current TB so that interrupts cannot modify the
1856 links while we are modifying them */
1857 env->current_tb = NULL;
1858
1859 for(i = 0; i < CPU_TLB_SIZE; i++) {
1860 env->tlb_table[0][i].addr_read = -1;
1861 env->tlb_table[0][i].addr_write = -1;
1862 env->tlb_table[0][i].addr_code = -1;
1863 env->tlb_table[1][i].addr_read = -1;
1864 env->tlb_table[1][i].addr_write = -1;
1865 env->tlb_table[1][i].addr_code = -1;
1866#if (NB_MMU_MODES >= 3)
1867 env->tlb_table[2][i].addr_read = -1;
1868 env->tlb_table[2][i].addr_write = -1;
1869 env->tlb_table[2][i].addr_code = -1;
1870#if (NB_MMU_MODES == 4)
1871 env->tlb_table[3][i].addr_read = -1;
1872 env->tlb_table[3][i].addr_write = -1;
1873 env->tlb_table[3][i].addr_code = -1;
1874#endif
1875#endif
1876 }
1877
1878 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1879
1880#ifdef VBOX
1881 /* inform raw mode about TLB flush */
1882 remR3FlushTLB(env, flush_global);
1883#endif
1884#ifdef USE_KQEMU
1885 if (env->kqemu_enabled) {
1886 kqemu_flush(env, flush_global);
1887 }
1888#endif
1889 tlb_flush_count++;
1890}
1891
1892#ifndef VBOX
1893static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1894#else
1895DECLINLINE(void) tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1896#endif
1897{
1898 if (addr == (tlb_entry->addr_read &
1899 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1900 addr == (tlb_entry->addr_write &
1901 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1902 addr == (tlb_entry->addr_code &
1903 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1904 tlb_entry->addr_read = -1;
1905 tlb_entry->addr_write = -1;
1906 tlb_entry->addr_code = -1;
1907 }
1908}
1909
1910void tlb_flush_page(CPUState *env, target_ulong addr)
1911{
1912 int i;
1913
1914#if defined(DEBUG_TLB)
1915 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1916#endif
1917 /* must reset current TB so that interrupts cannot modify the
1918 links while we are modifying them */
1919 env->current_tb = NULL;
1920
1921 addr &= TARGET_PAGE_MASK;
1922 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1923 tlb_flush_entry(&env->tlb_table[0][i], addr);
1924 tlb_flush_entry(&env->tlb_table[1][i], addr);
1925#if (NB_MMU_MODES >= 3)
1926 tlb_flush_entry(&env->tlb_table[2][i], addr);
1927#if (NB_MMU_MODES == 4)
1928 tlb_flush_entry(&env->tlb_table[3][i], addr);
1929#endif
1930#endif
1931
1932 tlb_flush_jmp_cache(env, addr);
1933
1934#ifdef USE_KQEMU
1935 if (env->kqemu_enabled) {
1936 kqemu_flush_page(env, addr);
1937 }
1938#endif
1939}
1940
1941/* update the TLBs so that writes to code in the virtual page 'addr'
1942 can be detected */
1943static void tlb_protect_code(ram_addr_t ram_addr)
1944{
1945 cpu_physical_memory_reset_dirty(ram_addr,
1946 ram_addr + TARGET_PAGE_SIZE,
1947 CODE_DIRTY_FLAG);
1948#if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
1949 /** @todo Retest this? This function has changed... */
1950 remR3ProtectCode(cpu_single_env, ram_addr);
1951#endif
1952}
1953
1954/* update the TLB so that writes in physical page 'phys_addr' are no longer
1955 tested for self modifying code */
1956static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1957 target_ulong vaddr)
1958{
1959#ifdef VBOX
1960 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
1961#endif
1962 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1963}
1964
1965#ifndef VBOX
1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1967 unsigned long start, unsigned long length)
1968#else
1969DECLINLINE(void) tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1970 unsigned long start, unsigned long length)
1971#endif
1972{
1973 unsigned long addr;
1974 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1975 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1976 if ((addr - start) < length) {
1977 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1978 }
1979 }
1980}
1981
1982void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1983 int dirty_flags)
1984{
1985 CPUState *env;
1986 unsigned long length, start1;
1987 int i, mask, len;
1988 uint8_t *p;
1989
1990 start &= TARGET_PAGE_MASK;
1991 end = TARGET_PAGE_ALIGN(end);
1992
1993 length = end - start;
1994 if (length == 0)
1995 return;
1996 len = length >> TARGET_PAGE_BITS;
1997#ifdef USE_KQEMU
1998 /* XXX: should not depend on cpu context */
1999 env = first_cpu;
2000 if (env->kqemu_enabled) {
2001 ram_addr_t addr;
2002 addr = start;
2003 for(i = 0; i < len; i++) {
2004 kqemu_set_notdirty(env, addr);
2005 addr += TARGET_PAGE_SIZE;
2006 }
2007 }
2008#endif
2009 mask = ~dirty_flags;
2010 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2011#ifdef VBOX
2012 if (RT_LIKELY((start >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2013#endif
2014 for(i = 0; i < len; i++)
2015 p[i] &= mask;
2016
2017 /* we modify the TLB cache so that the dirty bit will be set again
2018 when accessing the range */
2019#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2020 start1 = start;
2021#elif !defined(VBOX)
2022 start1 = start + (unsigned long)phys_ram_base;
2023#else
2024 start1 = (unsigned long)remR3GCPhys2HCVirt(first_cpu, start);
2025#endif
2026 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2027 for(i = 0; i < CPU_TLB_SIZE; i++)
2028 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
2029 for(i = 0; i < CPU_TLB_SIZE; i++)
2030 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
2031#if (NB_MMU_MODES >= 3)
2032 for(i = 0; i < CPU_TLB_SIZE; i++)
2033 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
2034#if (NB_MMU_MODES == 4)
2035 for(i = 0; i < CPU_TLB_SIZE; i++)
2036 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
2037#endif
2038#endif
2039 }
2040}
2041
2042#ifndef VBOX
2043int cpu_physical_memory_set_dirty_tracking(int enable)
2044{
2045 in_migration = enable;
2046 return 0;
2047}
2048
2049int cpu_physical_memory_get_dirty_tracking(void)
2050{
2051 return in_migration;
2052}
2053#endif
2054
2055#ifndef VBOX
2056static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2057#else
2058DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry)
2059#endif
2060{
2061 ram_addr_t ram_addr;
2062
2063 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2064 /* RAM case */
2065#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2066 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2067#elif !defined(VBOX)
2068 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
2069 tlb_entry->addend - (unsigned long)phys_ram_base;
2070#else
2071 ram_addr = remR3HCVirt2GCPhys(first_cpu, (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend);
2072#endif
2073 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2074 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
2075 }
2076 }
2077}
2078
2079/* update the TLB according to the current state of the dirty bits */
2080void cpu_tlb_update_dirty(CPUState *env)
2081{
2082 int i;
2083 for(i = 0; i < CPU_TLB_SIZE; i++)
2084 tlb_update_dirty(&env->tlb_table[0][i]);
2085 for(i = 0; i < CPU_TLB_SIZE; i++)
2086 tlb_update_dirty(&env->tlb_table[1][i]);
2087#if (NB_MMU_MODES >= 3)
2088 for(i = 0; i < CPU_TLB_SIZE; i++)
2089 tlb_update_dirty(&env->tlb_table[2][i]);
2090#if (NB_MMU_MODES == 4)
2091 for(i = 0; i < CPU_TLB_SIZE; i++)
2092 tlb_update_dirty(&env->tlb_table[3][i]);
2093#endif
2094#endif
2095}
2096
2097#ifndef VBOX
2098static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2099#else
2100DECLINLINE(void) tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2101#endif
2102{
2103 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2104 tlb_entry->addr_write = vaddr;
2105}
2106
2107
2108/* update the TLB corresponding to virtual page vaddr and phys addr
2109 addr so that it is no longer dirty */
2110#ifndef VBOX
2111static inline void tlb_set_dirty(CPUState *env,
2112 unsigned long addr, target_ulong vaddr)
2113#else
2114DECLINLINE(void) tlb_set_dirty(CPUState *env,
2115 unsigned long addr, target_ulong vaddr)
2116#endif
2117{
2118 int i;
2119
2120 addr &= TARGET_PAGE_MASK;
2121 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2122 tlb_set_dirty1(&env->tlb_table[0][i], addr);
2123 tlb_set_dirty1(&env->tlb_table[1][i], addr);
2124#if (NB_MMU_MODES >= 3)
2125 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2126#if (NB_MMU_MODES == 4)
2127 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2128#endif
2129#endif
2130}
2131
2132/* add a new TLB entry. At most one entry for a given virtual address
2133 is permitted. Return 0 if OK or 2 if the page could not be mapped
2134 (can only happen in non SOFTMMU mode for I/O pages or pages
2135 conflicting with the host address space). */
2136int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2137 target_phys_addr_t paddr, int prot,
2138 int mmu_idx, int is_softmmu)
2139{
2140 PhysPageDesc *p;
2141 unsigned long pd;
2142 unsigned int index;
2143 target_ulong address;
2144 target_ulong code_address;
2145 target_phys_addr_t addend;
2146 int ret;
2147 CPUTLBEntry *te;
2148 int i;
2149 target_phys_addr_t iotlb;
2150
2151 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2152 if (!p) {
2153 pd = IO_MEM_UNASSIGNED;
2154 } else {
2155 pd = p->phys_offset;
2156 }
2157#if defined(DEBUG_TLB)
2158 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2159 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2160#endif
2161
2162 ret = 0;
2163 address = vaddr;
2164 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2165 /* IO memory case (romd handled later) */
2166 address |= TLB_MMIO;
2167 }
2168#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2169 addend = pd & TARGET_PAGE_MASK;
2170#elif !defined(VBOX)
2171 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
2172#else
2173 addend = (unsigned long)remR3GCPhys2HCVirt(env, pd & TARGET_PAGE_MASK);
2174#endif
2175 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2176 /* Normal RAM. */
2177 iotlb = pd & TARGET_PAGE_MASK;
2178 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2179 iotlb |= IO_MEM_NOTDIRTY;
2180 else
2181 iotlb |= IO_MEM_ROM;
2182 } else {
2183 /* IO handlers are currently passed a phsical address.
2184 It would be nice to pass an offset from the base address
2185 of that region. This would avoid having to special case RAM,
2186 and avoid full address decoding in every device.
2187 We can't use the high bits of pd for this because
2188 IO_MEM_ROMD uses these as a ram address. */
2189 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
2190 }
2191
2192 code_address = address;
2193 /* Make accesses to pages with watchpoints go via the
2194 watchpoint trap routines. */
2195 for (i = 0; i < env->nb_watchpoints; i++) {
2196 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
2197 iotlb = io_mem_watch + paddr;
2198 /* TODO: The memory case can be optimized by not trapping
2199 reads of pages with a write breakpoint. */
2200 address |= TLB_MMIO;
2201 }
2202 }
2203
2204 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2205 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2206 te = &env->tlb_table[mmu_idx][index];
2207 te->addend = addend - vaddr;
2208 if (prot & PAGE_READ) {
2209 te->addr_read = address;
2210 } else {
2211 te->addr_read = -1;
2212 }
2213
2214 if (prot & PAGE_EXEC) {
2215 te->addr_code = code_address;
2216 } else {
2217 te->addr_code = -1;
2218 }
2219 if (prot & PAGE_WRITE) {
2220 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2221 (pd & IO_MEM_ROMD)) {
2222 /* Write access calls the I/O callback. */
2223 te->addr_write = address | TLB_MMIO;
2224 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2225 !cpu_physical_memory_is_dirty(pd)) {
2226 te->addr_write = address | TLB_NOTDIRTY;
2227 } else {
2228 te->addr_write = address;
2229 }
2230 } else {
2231 te->addr_write = -1;
2232 }
2233#ifdef VBOX
2234 /* inform raw mode about TLB page change */
2235 remR3FlushPage(env, vaddr);
2236#endif
2237 return ret;
2238}
2239
2240/* called from signal handler: invalidate the code and unprotect the
2241 page. Return TRUE if the fault was succesfully handled. */
2242int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
2243{
2244#if !defined(CONFIG_SOFTMMU)
2245 VirtPageDesc *vp;
2246
2247#if defined(DEBUG_TLB)
2248 printf("page_unprotect: addr=0x%08x\n", addr);
2249#endif
2250 addr &= TARGET_PAGE_MASK;
2251
2252 /* if it is not mapped, no need to worry here */
2253 if (addr >= MMAP_AREA_END)
2254 return 0;
2255 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
2256 if (!vp)
2257 return 0;
2258 /* NOTE: in this case, validate_tag is _not_ tested as it
2259 validates only the code TLB */
2260 if (vp->valid_tag != virt_valid_tag)
2261 return 0;
2262 if (!(vp->prot & PAGE_WRITE))
2263 return 0;
2264#if defined(DEBUG_TLB)
2265 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
2266 addr, vp->phys_addr, vp->prot);
2267#endif
2268 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
2269 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
2270 (unsigned long)addr, vp->prot);
2271 /* set the dirty bit */
2272 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
2273 /* flush the code inside */
2274 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
2275 return 1;
2276#elif defined(VBOX)
2277 addr &= TARGET_PAGE_MASK;
2278
2279 /* if it is not mapped, no need to worry here */
2280 if (addr >= MMAP_AREA_END)
2281 return 0;
2282 return 1;
2283#else
2284 return 0;
2285#endif
2286}
2287
2288#else
2289
2290void tlb_flush(CPUState *env, int flush_global)
2291{
2292}
2293
2294void tlb_flush_page(CPUState *env, target_ulong addr)
2295{
2296}
2297
2298int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2299 target_phys_addr_t paddr, int prot,
2300 int is_user, int is_softmmu)
2301{
2302 return 0;
2303}
2304
2305#ifndef VBOX
2306/* dump memory mappings */
2307void page_dump(FILE *f)
2308{
2309 unsigned long start, end;
2310 int i, j, prot, prot1;
2311 PageDesc *p;
2312
2313 fprintf(f, "%-8s %-8s %-8s %s\n",
2314 "start", "end", "size", "prot");
2315 start = -1;
2316 end = -1;
2317 prot = 0;
2318 for(i = 0; i <= L1_SIZE; i++) {
2319 if (i < L1_SIZE)
2320 p = l1_map[i];
2321 else
2322 p = NULL;
2323 for(j = 0;j < L2_SIZE; j++) {
2324 if (!p)
2325 prot1 = 0;
2326 else
2327 prot1 = p[j].flags;
2328 if (prot1 != prot) {
2329 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2330 if (start != -1) {
2331 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2332 start, end, end - start,
2333 prot & PAGE_READ ? 'r' : '-',
2334 prot & PAGE_WRITE ? 'w' : '-',
2335 prot & PAGE_EXEC ? 'x' : '-');
2336 }
2337 if (prot1 != 0)
2338 start = end;
2339 else
2340 start = -1;
2341 prot = prot1;
2342 }
2343 if (!p)
2344 break;
2345 }
2346 }
2347}
2348#endif /* !VBOX */
2349
2350int page_get_flags(target_ulong address)
2351{
2352 PageDesc *p;
2353
2354 p = page_find(address >> TARGET_PAGE_BITS);
2355 if (!p)
2356 return 0;
2357 return p->flags;
2358}
2359
2360/* modify the flags of a page and invalidate the code if
2361 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2362 depending on PAGE_WRITE */
2363void page_set_flags(target_ulong start, target_ulong end, int flags)
2364{
2365 PageDesc *p;
2366 target_ulong addr;
2367
2368 start = start & TARGET_PAGE_MASK;
2369 end = TARGET_PAGE_ALIGN(end);
2370 if (flags & PAGE_WRITE)
2371 flags |= PAGE_WRITE_ORG;
2372#ifdef VBOX
2373 AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
2374#endif
2375 spin_lock(&tb_lock);
2376 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2377 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2378 /* if the write protection is set, then we invalidate the code
2379 inside */
2380 if (!(p->flags & PAGE_WRITE) &&
2381 (flags & PAGE_WRITE) &&
2382 p->first_tb) {
2383 tb_invalidate_phys_page(addr, 0, NULL);
2384 }
2385 p->flags = flags;
2386 }
2387 spin_unlock(&tb_lock);
2388}
2389
2390/* called from signal handler: invalidate the code and unprotect the
2391 page. Return TRUE if the fault was succesfully handled. */
2392int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2393{
2394 unsigned int page_index, prot, pindex;
2395 PageDesc *p, *p1;
2396 target_ulong host_start, host_end, addr;
2397
2398 host_start = address & qemu_host_page_mask;
2399 page_index = host_start >> TARGET_PAGE_BITS;
2400 p1 = page_find(page_index);
2401 if (!p1)
2402 return 0;
2403 host_end = host_start + qemu_host_page_size;
2404 p = p1;
2405 prot = 0;
2406 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2407 prot |= p->flags;
2408 p++;
2409 }
2410 /* if the page was really writable, then we change its
2411 protection back to writable */
2412 if (prot & PAGE_WRITE_ORG) {
2413 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2414 if (!(p1[pindex].flags & PAGE_WRITE)) {
2415 mprotect((void *)g2h(host_start), qemu_host_page_size,
2416 (prot & PAGE_BITS) | PAGE_WRITE);
2417 p1[pindex].flags |= PAGE_WRITE;
2418 /* and since the content will be modified, we must invalidate
2419 the corresponding translated code. */
2420 tb_invalidate_phys_page(address, pc, puc);
2421#ifdef DEBUG_TB_CHECK
2422 tb_invalidate_check(address);
2423#endif
2424 return 1;
2425 }
2426 }
2427 return 0;
2428}
2429
2430/* call this function when system calls directly modify a memory area */
2431/* ??? This should be redundant now we have lock_user. */
2432void page_unprotect_range(target_ulong data, target_ulong data_size)
2433{
2434 target_ulong start, end, addr;
2435
2436 start = data;
2437 end = start + data_size;
2438 start &= TARGET_PAGE_MASK;
2439 end = TARGET_PAGE_ALIGN(end);
2440 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2441 page_unprotect(addr, 0, NULL);
2442 }
2443}
2444
2445static inline void tlb_set_dirty(CPUState *env,
2446 unsigned long addr, target_ulong vaddr)
2447{
2448}
2449#endif /* defined(CONFIG_USER_ONLY) */
2450
2451/* register physical memory. 'size' must be a multiple of the target
2452 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2453 io memory page */
2454void cpu_register_physical_memory(target_phys_addr_t start_addr,
2455 unsigned long size,
2456 unsigned long phys_offset)
2457{
2458 target_phys_addr_t addr, end_addr;
2459 PhysPageDesc *p;
2460 CPUState *env;
2461
2462 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2463 end_addr = start_addr + size;
2464 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2465 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2466 p->phys_offset = phys_offset;
2467#if !defined(VBOX) || defined(VBOX_WITH_NEW_PHYS_CODE)
2468 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2469 (phys_offset & IO_MEM_ROMD))
2470#else
2471 if ( (phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM
2472 || (phys_offset & IO_MEM_ROMD)
2473 || (phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING)
2474#endif
2475
2476 phys_offset += TARGET_PAGE_SIZE;
2477 }
2478
2479 /* since each CPU stores ram addresses in its TLB cache, we must
2480 reset the modified entries */
2481 /* XXX: slow ! */
2482 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2483 tlb_flush(env, 1);
2484 }
2485}
2486
2487/* XXX: temporary until new memory mapping API */
2488uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2489{
2490 PhysPageDesc *p;
2491
2492 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2493 if (!p)
2494 return IO_MEM_UNASSIGNED;
2495 return p->phys_offset;
2496}
2497
2498static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2499{
2500#ifdef DEBUG_UNASSIGNED
2501 printf("Unassigned mem read 0x%08x\n", (int)addr);
2502#endif
2503 return 0;
2504}
2505
2506static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2507{
2508#ifdef DEBUG_UNASSIGNED
2509 printf("Unassigned mem write 0x%08x = 0x%x\n", (int)addr, val);
2510#endif
2511}
2512
2513static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2514 unassigned_mem_readb,
2515 unassigned_mem_readb,
2516 unassigned_mem_readb,
2517};
2518
2519static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2520 unassigned_mem_writeb,
2521 unassigned_mem_writeb,
2522 unassigned_mem_writeb,
2523};
2524
2525static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2526{
2527 unsigned long ram_addr;
2528 int dirty_flags;
2529#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2530 ram_addr = addr;
2531#elif !defined(VBOX)
2532 ram_addr = addr - (unsigned long)phys_ram_base;
2533#else
2534 ram_addr = remR3HCVirt2GCPhys(first_cpu, (void *)addr);
2535#endif
2536#ifdef VBOX
2537 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2538 dirty_flags = 0xff;
2539 else
2540#endif /* VBOX */
2541 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2542 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2543#if !defined(CONFIG_USER_ONLY)
2544 tb_invalidate_phys_page_fast(ram_addr, 1);
2545# ifdef VBOX
2546 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2547 dirty_flags = 0xff;
2548 else
2549# endif /* VBOX */
2550 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2551#endif
2552 }
2553 stb_p((uint8_t *)(long)addr, val);
2554#ifdef USE_KQEMU
2555 if (cpu_single_env->kqemu_enabled &&
2556 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2557 kqemu_modify_page(cpu_single_env, ram_addr);
2558#endif
2559 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2560#ifdef VBOX
2561 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2562#endif /* !VBOX */
2563 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2564 /* we remove the notdirty callback only if the code has been
2565 flushed */
2566 if (dirty_flags == 0xff)
2567 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2568}
2569
2570static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2571{
2572 unsigned long ram_addr;
2573 int dirty_flags;
2574#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2575 ram_addr = addr;
2576#elif !defined(VBOX)
2577 ram_addr = addr - (unsigned long)phys_ram_base;
2578#else
2579 ram_addr = remR3HCVirt2GCPhys(first_cpu, (void *)addr);
2580#endif
2581#ifdef VBOX
2582 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2583 dirty_flags = 0xff;
2584 else
2585#endif /* VBOX */
2586 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2587 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2588#if !defined(CONFIG_USER_ONLY)
2589 tb_invalidate_phys_page_fast(ram_addr, 2);
2590# ifdef VBOX
2591 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2592 dirty_flags = 0xff;
2593 else
2594# endif /* VBOX */
2595 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2596#endif
2597 }
2598 stw_p((uint8_t *)(long)addr, val);
2599#ifdef USE_KQEMU
2600 if (cpu_single_env->kqemu_enabled &&
2601 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2602 kqemu_modify_page(cpu_single_env, ram_addr);
2603#endif
2604 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2605#ifdef VBOX
2606 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2607#endif
2608 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2609 /* we remove the notdirty callback only if the code has been
2610 flushed */
2611 if (dirty_flags == 0xff)
2612 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2613}
2614
2615static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2616{
2617 unsigned long ram_addr;
2618 int dirty_flags;
2619#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2620 ram_addr = addr;
2621#elif !defined(VBOX)
2622 ram_addr = addr - (unsigned long)phys_ram_base;
2623#else
2624 ram_addr = remR3HCVirt2GCPhys(first_cpu, (void *)addr);
2625#endif
2626#ifdef VBOX
2627 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2628 dirty_flags = 0xff;
2629 else
2630#endif /* VBOX */
2631 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2632 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2633#if !defined(CONFIG_USER_ONLY)
2634 tb_invalidate_phys_page_fast(ram_addr, 4);
2635# ifdef VBOX
2636 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2637 dirty_flags = 0xff;
2638 else
2639# endif /* VBOX */
2640 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2641#endif
2642 }
2643 stl_p((uint8_t *)(long)addr, val);
2644#ifdef USE_KQEMU
2645 if (cpu_single_env->kqemu_enabled &&
2646 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2647 kqemu_modify_page(cpu_single_env, ram_addr);
2648#endif
2649 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2650#ifdef VBOX
2651 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2652#endif
2653 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2654 /* we remove the notdirty callback only if the code has been
2655 flushed */
2656 if (dirty_flags == 0xff)
2657 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2658}
2659
2660static CPUReadMemoryFunc *error_mem_read[3] = {
2661 NULL, /* never used */
2662 NULL, /* never used */
2663 NULL, /* never used */
2664};
2665
2666static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2667 notdirty_mem_writeb,
2668 notdirty_mem_writew,
2669 notdirty_mem_writel,
2670};
2671
2672static void io_mem_init(void)
2673{
2674 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2675 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2676 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2677#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
2678 cpu_register_io_memory(IO_MEM_RAM_MISSING >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2679 io_mem_nb = 6;
2680#else
2681 io_mem_nb = 5;
2682#endif
2683
2684#ifndef VBOX /* VBOX: we do this later when the RAM is allocated. */
2685 /* alloc dirty bits array */
2686 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2687 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2688#endif /* !VBOX */
2689}
2690
2691/* mem_read and mem_write are arrays of functions containing the
2692 function to access byte (index 0), word (index 1) and dword (index
2693 2). All functions must be supplied. If io_index is non zero, the
2694 corresponding io zone is modified. If it is zero, a new io zone is
2695 allocated. The return value can be used with
2696 cpu_register_physical_memory(). (-1) is returned if error. */
2697int cpu_register_io_memory(int io_index,
2698 CPUReadMemoryFunc **mem_read,
2699 CPUWriteMemoryFunc **mem_write,
2700 void *opaque)
2701{
2702 int i;
2703
2704 if (io_index <= 0) {
2705 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2706 return -1;
2707 io_index = io_mem_nb++;
2708 } else {
2709 if (io_index >= IO_MEM_NB_ENTRIES)
2710 return -1;
2711 }
2712
2713 for(i = 0;i < 3; i++) {
2714 io_mem_read[io_index][i] = mem_read[i];
2715 io_mem_write[io_index][i] = mem_write[i];
2716 }
2717 io_mem_opaque[io_index] = opaque;
2718 return io_index << IO_MEM_SHIFT;
2719}
2720
2721CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2722{
2723 return io_mem_write[io_index >> IO_MEM_SHIFT];
2724}
2725
2726CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2727{
2728 return io_mem_read[io_index >> IO_MEM_SHIFT];
2729}
2730
2731/* physical memory access (slow version, mainly for debug) */
2732#if defined(CONFIG_USER_ONLY)
2733void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2734 int len, int is_write)
2735{
2736 int l, flags;
2737 target_ulong page;
2738 void * p;
2739
2740 while (len > 0) {
2741 page = addr & TARGET_PAGE_MASK;
2742 l = (page + TARGET_PAGE_SIZE) - addr;
2743 if (l > len)
2744 l = len;
2745 flags = page_get_flags(page);
2746 if (!(flags & PAGE_VALID))
2747 return;
2748 if (is_write) {
2749 if (!(flags & PAGE_WRITE))
2750 return;
2751 p = lock_user(addr, len, 0);
2752 memcpy(p, buf, len);
2753 unlock_user(p, addr, len);
2754 } else {
2755 if (!(flags & PAGE_READ))
2756 return;
2757 p = lock_user(addr, len, 1);
2758 memcpy(buf, p, len);
2759 unlock_user(p, addr, 0);
2760 }
2761 len -= l;
2762 buf += l;
2763 addr += l;
2764 }
2765}
2766
2767#else
2768void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2769 int len, int is_write)
2770{
2771 int l, io_index;
2772 uint8_t *ptr;
2773 uint32_t val;
2774 target_phys_addr_t page;
2775 unsigned long pd;
2776 PhysPageDesc *p;
2777
2778 while (len > 0) {
2779 page = addr & TARGET_PAGE_MASK;
2780 l = (page + TARGET_PAGE_SIZE) - addr;
2781 if (l > len)
2782 l = len;
2783 p = phys_page_find(page >> TARGET_PAGE_BITS);
2784 if (!p) {
2785 pd = IO_MEM_UNASSIGNED;
2786 } else {
2787 pd = p->phys_offset;
2788 }
2789
2790 if (is_write) {
2791 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2792 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2793 /* XXX: could force cpu_single_env to NULL to avoid
2794 potential bugs */
2795 if (l >= 4 && ((addr & 3) == 0)) {
2796 /* 32 bit write access */
2797#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2798 val = ldl_p(buf);
2799#else
2800 val = *(const uint32_t *)buf;
2801#endif
2802 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2803 l = 4;
2804 } else if (l >= 2 && ((addr & 1) == 0)) {
2805 /* 16 bit write access */
2806#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2807 val = lduw_p(buf);
2808#else
2809 val = *(const uint16_t *)buf;
2810#endif
2811 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2812 l = 2;
2813 } else {
2814 /* 8 bit write access */
2815#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2816 val = ldub_p(buf);
2817#else
2818 val = *(const uint8_t *)buf;
2819#endif
2820 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2821 l = 1;
2822 }
2823 } else {
2824 unsigned long addr1;
2825 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2826 /* RAM case */
2827#ifdef VBOX
2828 remR3PhysWrite(addr1, buf, l); NOREF(ptr);
2829#else
2830 ptr = phys_ram_base + addr1;
2831 memcpy(ptr, buf, l);
2832#endif
2833 if (!cpu_physical_memory_is_dirty(addr1)) {
2834 /* invalidate code */
2835 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2836 /* set dirty bit */
2837#ifdef VBOX
2838 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2839#endif
2840 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2841 (0xff & ~CODE_DIRTY_FLAG);
2842 }
2843 }
2844 } else {
2845 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2846 !(pd & IO_MEM_ROMD)) {
2847 /* I/O case */
2848 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2849 if (l >= 4 && ((addr & 3) == 0)) {
2850 /* 32 bit read access */
2851 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2852#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2853 stl_p(buf, val);
2854#else
2855 *(uint32_t *)buf = val;
2856#endif
2857 l = 4;
2858 } else if (l >= 2 && ((addr & 1) == 0)) {
2859 /* 16 bit read access */
2860 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2861#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2862 stw_p(buf, val);
2863#else
2864 *(uint16_t *)buf = val;
2865#endif
2866 l = 2;
2867 } else {
2868 /* 8 bit read access */
2869 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2870#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
2871 stb_p(buf, val);
2872#else
2873 *(uint8_t *)buf = val;
2874#endif
2875 l = 1;
2876 }
2877 } else {
2878 /* RAM case */
2879#ifdef VBOX
2880 remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
2881#else
2882 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2883 (addr & ~TARGET_PAGE_MASK);
2884 memcpy(buf, ptr, l);
2885#endif
2886 }
2887 }
2888 len -= l;
2889 buf += l;
2890 addr += l;
2891 }
2892}
2893
2894#ifndef VBOX
2895/* used for ROM loading : can write in RAM and ROM */
2896void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2897 const uint8_t *buf, int len)
2898{
2899 int l;
2900 uint8_t *ptr;
2901 target_phys_addr_t page;
2902 unsigned long pd;
2903 PhysPageDesc *p;
2904
2905 while (len > 0) {
2906 page = addr & TARGET_PAGE_MASK;
2907 l = (page + TARGET_PAGE_SIZE) - addr;
2908 if (l > len)
2909 l = len;
2910 p = phys_page_find(page >> TARGET_PAGE_BITS);
2911 if (!p) {
2912 pd = IO_MEM_UNASSIGNED;
2913 } else {
2914 pd = p->phys_offset;
2915 }
2916
2917 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2918 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2919 !(pd & IO_MEM_ROMD)) {
2920 /* do nothing */
2921 } else {
2922 unsigned long addr1;
2923 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2924 /* ROM/RAM case */
2925 ptr = phys_ram_base + addr1;
2926 memcpy(ptr, buf, l);
2927 }
2928 len -= l;
2929 buf += l;
2930 addr += l;
2931 }
2932}
2933#endif /* !VBOX */
2934
2935
2936/* warning: addr must be aligned */
2937uint32_t ldl_phys(target_phys_addr_t addr)
2938{
2939 int io_index;
2940 uint8_t *ptr;
2941 uint32_t val;
2942 unsigned long pd;
2943 PhysPageDesc *p;
2944
2945 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2946 if (!p) {
2947 pd = IO_MEM_UNASSIGNED;
2948 } else {
2949 pd = p->phys_offset;
2950 }
2951
2952 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2953 !(pd & IO_MEM_ROMD)) {
2954 /* I/O case */
2955 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2956 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2957 } else {
2958 /* RAM case */
2959#ifndef VBOX
2960 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2961 (addr & ~TARGET_PAGE_MASK);
2962 val = ldl_p(ptr);
2963#else
2964 val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
2965#endif
2966 }
2967 return val;
2968}
2969
2970/* warning: addr must be aligned */
2971uint64_t ldq_phys(target_phys_addr_t addr)
2972{
2973 int io_index;
2974 uint8_t *ptr;
2975 uint64_t val;
2976 unsigned long pd;
2977 PhysPageDesc *p;
2978
2979 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2980 if (!p) {
2981 pd = IO_MEM_UNASSIGNED;
2982 } else {
2983 pd = p->phys_offset;
2984 }
2985
2986 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2987 !(pd & IO_MEM_ROMD)) {
2988 /* I/O case */
2989 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2990#ifdef TARGET_WORDS_BIGENDIAN
2991 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2992 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2993#else
2994 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2995 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2996#endif
2997 } else {
2998 /* RAM case */
2999#ifndef VBOX
3000 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3001 (addr & ~TARGET_PAGE_MASK);
3002 val = ldq_p(ptr);
3003#else
3004 val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
3005#endif
3006 }
3007 return val;
3008}
3009
3010/* XXX: optimize */
3011uint32_t ldub_phys(target_phys_addr_t addr)
3012{
3013 uint8_t val;
3014 cpu_physical_memory_read(addr, &val, 1);
3015 return val;
3016}
3017
3018/* XXX: optimize */
3019uint32_t lduw_phys(target_phys_addr_t addr)
3020{
3021 uint16_t val;
3022 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3023 return tswap16(val);
3024}
3025
3026/* warning: addr must be aligned. The ram page is not masked as dirty
3027 and the code inside is not invalidated. It is useful if the dirty
3028 bits are used to track modified PTEs */
3029void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3030{
3031 int io_index;
3032 uint8_t *ptr;
3033 unsigned long pd;
3034 PhysPageDesc *p;
3035
3036 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3037 if (!p) {
3038 pd = IO_MEM_UNASSIGNED;
3039 } else {
3040 pd = p->phys_offset;
3041 }
3042
3043 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3044 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3045 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3046 } else {
3047#ifndef VBOX
3048 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3049 (addr & ~TARGET_PAGE_MASK);
3050 stl_p(ptr, val);
3051#else
3052 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3053#endif
3054 }
3055}
3056
3057/* warning: addr must be aligned */
3058void stl_phys(target_phys_addr_t addr, uint32_t val)
3059{
3060 int io_index;
3061 uint8_t *ptr;
3062 unsigned long pd;
3063 PhysPageDesc *p;
3064
3065 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3066 if (!p) {
3067 pd = IO_MEM_UNASSIGNED;
3068 } else {
3069 pd = p->phys_offset;
3070 }
3071
3072 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3073 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3074 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3075 } else {
3076 unsigned long addr1;
3077 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3078 /* RAM case */
3079#ifndef VBOX
3080 ptr = phys_ram_base + addr1;
3081 stl_p(ptr, val);
3082#else
3083 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3084#endif
3085 if (!cpu_physical_memory_is_dirty(addr1)) {
3086 /* invalidate code */
3087 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3088 /* set dirty bit */
3089#ifdef VBOX
3090 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
3091#endif
3092 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3093 (0xff & ~CODE_DIRTY_FLAG);
3094 }
3095 }
3096}
3097
3098/* XXX: optimize */
3099void stb_phys(target_phys_addr_t addr, uint32_t val)
3100{
3101 uint8_t v = val;
3102 cpu_physical_memory_write(addr, &v, 1);
3103}
3104
3105/* XXX: optimize */
3106void stw_phys(target_phys_addr_t addr, uint32_t val)
3107{
3108 uint16_t v = tswap16(val);
3109 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3110}
3111
3112/* XXX: optimize */
3113void stq_phys(target_phys_addr_t addr, uint64_t val)
3114{
3115 val = tswap64(val);
3116 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3117}
3118
3119#endif
3120
3121#ifndef VBOX
3122/* virtual memory access for debug */
3123int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3124 uint8_t *buf, int len, int is_write)
3125{
3126 int l;
3127 target_ulong page, phys_addr;
3128
3129 while (len > 0) {
3130 page = addr & TARGET_PAGE_MASK;
3131 phys_addr = cpu_get_phys_page_debug(env, page);
3132 /* if no physical page mapped, return an error */
3133 if (phys_addr == -1)
3134 return -1;
3135 l = (page + TARGET_PAGE_SIZE) - addr;
3136 if (l > len)
3137 l = len;
3138 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3139 buf, l, is_write);
3140 len -= l;
3141 buf += l;
3142 addr += l;
3143 }
3144 return 0;
3145}
3146
3147void dump_exec_info(FILE *f,
3148 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3149{
3150 int i, target_code_size, max_target_code_size;
3151 int direct_jmp_count, direct_jmp2_count, cross_page;
3152 TranslationBlock *tb;
3153
3154 target_code_size = 0;
3155 max_target_code_size = 0;
3156 cross_page = 0;
3157 direct_jmp_count = 0;
3158 direct_jmp2_count = 0;
3159 for(i = 0; i < nb_tbs; i++) {
3160 tb = &tbs[i];
3161 target_code_size += tb->size;
3162 if (tb->size > max_target_code_size)
3163 max_target_code_size = tb->size;
3164 if (tb->page_addr[1] != -1)
3165 cross_page++;
3166 if (tb->tb_next_offset[0] != 0xffff) {
3167 direct_jmp_count++;
3168 if (tb->tb_next_offset[1] != 0xffff) {
3169 direct_jmp2_count++;
3170 }
3171 }
3172 }
3173 /* XXX: avoid using doubles ? */
3174 cpu_fprintf(f, "TB count %d\n", nb_tbs);
3175 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3176 nb_tbs ? target_code_size / nb_tbs : 0,
3177 max_target_code_size);
3178 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3179 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3180 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3181 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3182 cross_page,
3183 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3184 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3185 direct_jmp_count,
3186 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3187 direct_jmp2_count,
3188 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3189 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3190 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3191 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3192}
3193#endif /* !VBOX */
3194
3195#if !defined(CONFIG_USER_ONLY)
3196
3197#define MMUSUFFIX _cmmu
3198#define GETPC() NULL
3199#define env cpu_single_env
3200#define SOFTMMU_CODE_ACCESS
3201
3202#define SHIFT 0
3203#include "softmmu_template.h"
3204
3205#define SHIFT 1
3206#include "softmmu_template.h"
3207
3208#define SHIFT 2
3209#include "softmmu_template.h"
3210
3211#define SHIFT 3
3212#include "softmmu_template.h"
3213
3214#undef env
3215
3216#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette