/* * i386 micro operations (included several times to generate * different operand sizes) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice * other than GPL or LGPL is available it will apply instead, Oracle elects to use only * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where * a choice of LGPL license versions is made available with the language indicating * that LGPLv2 or any later version may be used, or where a choice of which version * of the LGPL is applied is otherwise unspecified. */ #ifdef MEM_WRITE #if MEM_WRITE == 0 #if DATA_BITS == 8 #define MEM_SUFFIX b_raw #elif DATA_BITS == 16 #define MEM_SUFFIX w_raw #elif DATA_BITS == 32 #define MEM_SUFFIX l_raw #elif DATA_BITS == 64 #define MEM_SUFFIX q_raw #endif #elif MEM_WRITE == 1 #if DATA_BITS == 8 #define MEM_SUFFIX b_kernel #elif DATA_BITS == 16 #define MEM_SUFFIX w_kernel #elif DATA_BITS == 32 #define MEM_SUFFIX l_kernel #elif DATA_BITS == 64 #define MEM_SUFFIX q_kernel #endif #elif MEM_WRITE == 2 #if DATA_BITS == 8 #define MEM_SUFFIX b_user #elif DATA_BITS == 16 #define MEM_SUFFIX w_user #elif DATA_BITS == 32 #define MEM_SUFFIX l_user #elif DATA_BITS == 64 #define MEM_SUFFIX q_user #endif #else #error invalid MEM_WRITE #endif #else #define MEM_SUFFIX SUFFIX #endif void OPPROTO glue(glue(op_rol, MEM_SUFFIX), _T0_T1_cc)(void) { int count; target_long src; if (T1 & SHIFT1_MASK) { count = T1 & SHIFT_MASK; src = T0; T0 &= DATA_MASK; T0 = (T0 << count) | (T0 >> (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #else /* gcc 3.2 workaround. This is really a bug in gcc. */ asm volatile("" : : "r" (T0)); #endif CC_SRC = (cc_table[CC_OP].compute_all() & ~(CC_O | CC_C)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | (T0 & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_ror, MEM_SUFFIX), _T0_T1_cc)(void) { int count; target_long src; if (T1 & SHIFT1_MASK) { count = T1 & SHIFT_MASK; src = T0; T0 &= DATA_MASK; T0 = (T0 >> count) | (T0 << (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #else /* gcc 3.2 workaround. This is really a bug in gcc. */ asm volatile("" : : "r" (T0)); #endif CC_SRC = (cc_table[CC_OP].compute_all() & ~(CC_O | CC_C)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((T0 >> (DATA_BITS - 1)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_rol, MEM_SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT_MASK; if (count) { T0 &= DATA_MASK; T0 = (T0 << count) | (T0 >> (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif } FORCE_RET(); } void OPPROTO glue(glue(op_ror, MEM_SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT_MASK; if (count) { T0 &= DATA_MASK; T0 = (T0 >> count) | (T0 << (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif } FORCE_RET(); } void OPPROTO glue(glue(op_rcl, MEM_SUFFIX), _T0_T1_cc)(void) { int count, eflags; target_ulong src; target_long res; count = T1 & SHIFT1_MASK; #if DATA_BITS == 16 count = rclw_table[count]; #elif DATA_BITS == 8 count = rclb_table[count]; #endif if (count) { eflags = cc_table[CC_OP].compute_all(); T0 &= DATA_MASK; src = T0; res = (T0 << count) | ((target_ulong)(eflags & CC_C) << (count - 1)); if (count > 1) res |= T0 >> (DATA_BITS + 1 - count); T0 = res; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = (eflags & ~(CC_C | CC_O)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((src >> (DATA_BITS - count)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_rcr, MEM_SUFFIX), _T0_T1_cc)(void) { int count, eflags; target_ulong src; target_long res; count = T1 & SHIFT1_MASK; #if DATA_BITS == 16 count = rclw_table[count]; #elif DATA_BITS == 8 count = rclb_table[count]; #endif if (count) { eflags = cc_table[CC_OP].compute_all(); T0 &= DATA_MASK; src = T0; res = (T0 >> count) | ((target_ulong)(eflags & CC_C) << (DATA_BITS - count)); if (count > 1) res |= T0 << (DATA_BITS + 1 - count); T0 = res; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = (eflags & ~(CC_C | CC_O)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((src >> (count - 1)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_shl, MEM_SUFFIX), _T0_T1_cc)(void) { int count; target_long src; count = T1 & SHIFT1_MASK; if (count) { src = (DATA_TYPE)T0 << (count - 1); T0 = T0 << count; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = src; CC_DST = T0; CC_OP = CC_OP_SHLB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shr, MEM_SUFFIX), _T0_T1_cc)(void) { int count; target_long src; count = T1 & SHIFT1_MASK; if (count) { T0 &= DATA_MASK; src = T0 >> (count - 1); T0 = T0 >> count; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = src; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_sar, MEM_SUFFIX), _T0_T1_cc)(void) { int count; target_long src; count = T1 & SHIFT1_MASK; if (count) { src = (DATA_STYPE)T0; T0 = src >> count; src = src >> (count - 1); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = src; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } #if DATA_BITS == 16 /* XXX: overflow flag might be incorrect in some cases in shldw */ void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_im_cc)(void) { int count; unsigned int res, tmp; count = PARAM1; T1 &= 0xffff; res = T1 | (T0 << 16); tmp = res >> (32 - count); res <<= count; if (count > 16) res |= T1 << (count - 16); T0 = res >> 16; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; } void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_ECX_cc)(void) { int count; unsigned int res, tmp; count = ECX & 0x1f; if (count) { T1 &= 0xffff; res = T1 | (T0 << 16); tmp = res >> (32 - count); res <<= count; if (count > 16) res |= T1 << (count - 16); T0 = res >> 16; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_im_cc)(void) { int count; unsigned int res, tmp; count = PARAM1; res = (T0 & 0xffff) | (T1 << 16); tmp = res >> (count - 1); res >>= count; if (count > 16) res |= T1 << (32 - count); T0 = res; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; } void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_ECX_cc)(void) { int count; unsigned int res, tmp; count = ECX & 0x1f; if (count) { res = (T0 & 0xffff) | (T1 << 16); tmp = res >> (count - 1); res >>= count; if (count > 16) res |= T1 << (32 - count); T0 = res; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } #endif #if DATA_BITS >= 32 void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_im_cc)(void) { int count; target_long tmp; count = PARAM1; T0 &= DATA_MASK; T1 &= DATA_MASK; tmp = T0 << (count - 1); T0 = (T0 << count) | (T1 >> (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; } void OPPROTO glue(glue(op_shld, MEM_SUFFIX), _T0_T1_ECX_cc)(void) { int count; target_long tmp; count = ECX & SHIFT1_MASK; if (count) { T0 &= DATA_MASK; T1 &= DATA_MASK; tmp = T0 << (count - 1); T0 = (T0 << count) | (T1 >> (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; CC_OP = CC_OP_SHLB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_im_cc)(void) { int count; target_long tmp; count = PARAM1; T0 &= DATA_MASK; T1 &= DATA_MASK; tmp = T0 >> (count - 1); T0 = (T0 >> count) | (T1 << (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; } void OPPROTO glue(glue(op_shrd, MEM_SUFFIX), _T0_T1_ECX_cc)(void) { int count; target_long tmp; count = ECX & SHIFT1_MASK; if (count) { T0 &= DATA_MASK; T1 &= DATA_MASK; tmp = T0 >> (count - 1); T0 = (T0 >> count) | (T1 << (DATA_BITS - count)); #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = tmp; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } #endif /* carry add/sub (we only need to set CC_OP differently) */ void OPPROTO glue(glue(op_adc, MEM_SUFFIX), _T0_T1_cc)(void) { int cf; cf = cc_table[CC_OP].compute_c(); T0 = T0 + T1 + cf; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = T1; CC_DST = T0; CC_OP = CC_OP_ADDB + SHIFT + cf * 4; } void OPPROTO glue(glue(op_sbb, MEM_SUFFIX), _T0_T1_cc)(void) { int cf; cf = cc_table[CC_OP].compute_c(); T0 = T0 - T1 - cf; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif CC_SRC = T1; CC_DST = T0; CC_OP = CC_OP_SUBB + SHIFT + cf * 4; } void OPPROTO glue(glue(op_cmpxchg, MEM_SUFFIX), _T0_T1_EAX_cc)(void) { target_ulong src, dst; src = T0; dst = EAX - T0; if ((DATA_TYPE)dst == 0) { T0 = T1; #ifdef MEM_WRITE glue(st, MEM_SUFFIX)(A0, T0); #endif } else { EAX = (EAX & ~DATA_MASK) | (T0 & DATA_MASK); } CC_SRC = src; CC_DST = dst; FORCE_RET(); } #undef MEM_SUFFIX #undef MEM_WRITE