VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 9798

Last change on this file since 9798 was 9798, checked in by vboxsync, 17 years ago

fs & gs base fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.0 KB
Line 
1/* $Id: VBoxRecompiler.c 9798 2008-06-18 15:47:24Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
460 SSMR3PutU32(pSSM, ~0); /* separator */
461
462 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
463 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
464
465 /*
466 * Save the REM stuff.
467 */
468 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
469 unsigned i;
470 for (i = 0; i < pRem->cInvalidatedPages; i++)
471 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
472
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if (u32Version != REM_SAVED_STATE_VERSION)
497 {
498 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
499 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
500 }
501
502 /*
503 * Do a reset to be on the safe side...
504 */
505 REMR3Reset(pVM);
506
507 /*
508 * Ignore all ignorable notifications.
509 * (Not doing this will cause serious trouble.)
510 */
511 pVM->rem.s.fIgnoreAll = true;
512
513 /*
514 * Load the required CPU Env bits.
515 * (Not much because we're never in REM when doing the save.)
516 */
517 PREM pRem = &pVM->rem.s;
518 Assert(!pRem->fInREM);
519 SSMR3GetU32(pSSM, &pRem->Env.hflags);
520 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
521 uint32_t u32Sep;
522 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (u32Sep != ~0)
526 {
527 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530
531 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
532 SSMR3GetUInt(pSSM, &fRawRing0);
533 if (fRawRing0)
534 pRem->Env.state |= CPU_RAW_RING0;
535
536 /*
537 * Load the REM stuff.
538 */
539 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
543 {
544 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547 unsigned i;
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
577 /*
578 * Clear all lazy flags (only FPU sync for now).
579 */
580 CPUMGetAndClearFPUUsedREM(pVM);
581#endif
582
583 /*
584 * Stop ignoring ignornable notifications.
585 */
586 pVM->rem.s.fIgnoreAll = false;
587
588 return VINF_SUCCESS;
589}
590
591
592
593#undef LOG_GROUP
594#define LOG_GROUP LOG_GROUP_REM_RUN
595
596/**
597 * Single steps an instruction in recompiled mode.
598 *
599 * Before calling this function the REM state needs to be in sync with
600 * the VM. Call REMR3State() to perform the sync. It's only necessary
601 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
602 * and after calling REMR3StateBack().
603 *
604 * @returns VBox status code.
605 *
606 * @param pVM VM Handle.
607 */
608REMR3DECL(int) REMR3Step(PVM pVM)
609{
610 /*
611 * Lock the REM - we don't wanna have anyone interrupting us
612 * while stepping - and enabled single stepping. We also ignore
613 * pending interrupts and suchlike.
614 */
615 int interrupt_request = pVM->rem.s.Env.interrupt_request;
616 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
617 pVM->rem.s.Env.interrupt_request = 0;
618 cpu_single_step(&pVM->rem.s.Env, 1);
619
620 /*
621 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
622 */
623 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
624 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
625
626 /*
627 * Execute and handle the return code.
628 * We execute without enabling the cpu tick, so on success we'll
629 * just flip it on and off to make sure it moves
630 */
631 int rc = cpu_exec(&pVM->rem.s.Env);
632 if (rc == EXCP_DEBUG)
633 {
634 TMCpuTickResume(pVM);
635 TMCpuTickPause(pVM);
636 TMVirtualResume(pVM);
637 TMVirtualPause(pVM);
638 rc = VINF_EM_DBG_STEPPED;
639 }
640 else
641 {
642 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
643 switch (rc)
644 {
645 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
646 case EXCP_HLT:
647 case EXCP_HALTED: rc = VINF_EM_HALT; break;
648 case EXCP_RC:
649 rc = pVM->rem.s.rc;
650 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
651 break;
652 default:
653 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
654 rc = VERR_INTERNAL_ERROR;
655 break;
656 }
657 }
658
659 /*
660 * Restore the stuff we changed to prevent interruption.
661 * Unlock the REM.
662 */
663 if (fBp)
664 {
665 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
666 Assert(rc2 == 0); NOREF(rc2);
667 }
668 cpu_single_step(&pVM->rem.s.Env, 0);
669 pVM->rem.s.Env.interrupt_request = interrupt_request;
670
671 return rc;
672}
673
674
675/**
676 * Set a breakpoint using the REM facilities.
677 *
678 * @returns VBox status code.
679 * @param pVM The VM handle.
680 * @param Address The breakpoint address.
681 * @thread The emulation thread.
682 */
683REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
684{
685 VM_ASSERT_EMT(pVM);
686 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
687 {
688 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
689 return VINF_SUCCESS;
690 }
691 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
692 return VERR_REM_NO_MORE_BP_SLOTS;
693}
694
695
696/**
697 * Clears a breakpoint set by REMR3BreakpointSet().
698 *
699 * @returns VBox status code.
700 * @param pVM The VM handle.
701 * @param Address The breakpoint address.
702 * @thread The emulation thread.
703 */
704REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
705{
706 VM_ASSERT_EMT(pVM);
707 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
708 {
709 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
710 return VINF_SUCCESS;
711 }
712 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
713 return VERR_REM_BP_NOT_FOUND;
714}
715
716
717/**
718 * Emulate an instruction.
719 *
720 * This function executes one instruction without letting anyone
721 * interrupt it. This is intended for being called while being in
722 * raw mode and thus will take care of all the state syncing between
723 * REM and the rest.
724 *
725 * @returns VBox status code.
726 * @param pVM VM handle.
727 */
728REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
729{
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /*
733 * Sync the state and enable single instruction / single stepping.
734 */
735 int rc = REMR3State(pVM);
736 if (VBOX_SUCCESS(rc))
737 {
738 int interrupt_request = pVM->rem.s.Env.interrupt_request;
739 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
740 Assert(!pVM->rem.s.Env.singlestep_enabled);
741#if 1
742
743 /*
744 * Now we set the execute single instruction flag and enter the cpu_exec loop.
745 */
746 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
747 rc = cpu_exec(&pVM->rem.s.Env);
748 switch (rc)
749 {
750 /*
751 * Executed without anything out of the way happening.
752 */
753 case EXCP_SINGLE_INSTR:
754 rc = VINF_EM_RESCHEDULE;
755 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
756 break;
757
758 /*
759 * If we take a trap or start servicing a pending interrupt, we might end up here.
760 * (Timer thread or some other thread wishing EMT's attention.)
761 */
762 case EXCP_INTERRUPT:
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
764 rc = VINF_EM_RESCHEDULE;
765 break;
766
767 /*
768 * Single step, we assume!
769 * If there was a breakpoint there we're fucked now.
770 */
771 case EXCP_DEBUG:
772 {
773 /* breakpoint or single step? */
774 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
775 int iBP;
776 rc = VINF_EM_DBG_STEPPED;
777 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
778 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
779 {
780 rc = VINF_EM_DBG_BREAKPOINT;
781 break;
782 }
783 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
784 break;
785 }
786
787 /*
788 * hlt instruction.
789 */
790 case EXCP_HLT:
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
792 rc = VINF_EM_HALT;
793 break;
794
795 /*
796 * The VM has halted.
797 */
798 case EXCP_HALTED:
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
800 rc = VINF_EM_HALT;
801 break;
802
803 /*
804 * Switch to RAW-mode.
805 */
806 case EXCP_EXECUTE_RAW:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
808 rc = VINF_EM_RESCHEDULE_RAW;
809 break;
810
811 /*
812 * Switch to hardware accelerated RAW-mode.
813 */
814 case EXCP_EXECUTE_HWACC:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
816 rc = VINF_EM_RESCHEDULE_HWACC;
817 break;
818
819 /*
820 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
821 */
822 case EXCP_RC:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
824 rc = pVM->rem.s.rc;
825 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
826 break;
827
828 /*
829 * Figure out the rest when they arrive....
830 */
831 default:
832 AssertMsgFailed(("rc=%d\n", rc));
833 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
834 rc = VINF_EM_RESCHEDULE;
835 break;
836 }
837
838 /*
839 * Switch back the state.
840 */
841#else
842 pVM->rem.s.Env.interrupt_request = 0;
843 cpu_single_step(&pVM->rem.s.Env, 1);
844
845 /*
846 * Execute and handle the return code.
847 * We execute without enabling the cpu tick, so on success we'll
848 * just flip it on and off to make sure it moves.
849 *
850 * (We do not use emulate_single_instr() because that doesn't enter the
851 * right way in will cause serious trouble if a longjmp was attempted.)
852 */
853# ifdef DEBUG_bird
854 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
855# endif
856 int cTimesMax = 16384;
857 uint32_t eip = pVM->rem.s.Env.eip;
858 do
859 {
860 rc = cpu_exec(&pVM->rem.s.Env);
861
862 } while ( eip == pVM->rem.s.Env.eip
863 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
864 && --cTimesMax > 0);
865 switch (rc)
866 {
867 /*
868 * Single step, we assume!
869 * If there was a breakpoint there we're fucked now.
870 */
871 case EXCP_DEBUG:
872 {
873 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
874 rc = VINF_EM_RESCHEDULE;
875 break;
876 }
877
878 /*
879 * We cannot be interrupted!
880 */
881 case EXCP_INTERRUPT:
882 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
883 rc = VERR_INTERNAL_ERROR;
884 break;
885
886 /*
887 * hlt instruction.
888 */
889 case EXCP_HLT:
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
891 rc = VINF_EM_HALT;
892 break;
893
894 /*
895 * The VM has halted.
896 */
897 case EXCP_HALTED:
898 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
899 rc = VINF_EM_HALT;
900 break;
901
902 /*
903 * Switch to RAW-mode.
904 */
905 case EXCP_EXECUTE_RAW:
906 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
907 rc = VINF_EM_RESCHEDULE_RAW;
908 break;
909
910 /*
911 * Switch to hardware accelerated RAW-mode.
912 */
913 case EXCP_EXECUTE_HWACC:
914 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
915 rc = VINF_EM_RESCHEDULE_HWACC;
916 break;
917
918 /*
919 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
920 */
921 case EXCP_RC:
922 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
923 rc = pVM->rem.s.rc;
924 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
925 break;
926
927 /*
928 * Figure out the rest when they arrive....
929 */
930 default:
931 AssertMsgFailed(("rc=%d\n", rc));
932 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
933 rc = VINF_SUCCESS;
934 break;
935 }
936
937 /*
938 * Switch back the state.
939 */
940 cpu_single_step(&pVM->rem.s.Env, 0);
941#endif
942 pVM->rem.s.Env.interrupt_request = interrupt_request;
943 int rc2 = REMR3StateBack(pVM);
944 AssertRC(rc2);
945 }
946
947 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
948 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
949 return rc;
950}
951
952
953/**
954 * Runs code in recompiled mode.
955 *
956 * Before calling this function the REM state needs to be in sync with
957 * the VM. Call REMR3State() to perform the sync. It's only necessary
958 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
959 * and after calling REMR3StateBack().
960 *
961 * @returns VBox status code.
962 *
963 * @param pVM VM Handle.
964 */
965REMR3DECL(int) REMR3Run(PVM pVM)
966{
967 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
968 Assert(pVM->rem.s.fInREM);
969
970 int rc = cpu_exec(&pVM->rem.s.Env);
971 switch (rc)
972 {
973 /*
974 * This happens when the execution was interrupted
975 * by an external event, like pending timers.
976 */
977 case EXCP_INTERRUPT:
978 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
979 rc = VINF_SUCCESS;
980 break;
981
982 /*
983 * hlt instruction.
984 */
985 case EXCP_HLT:
986 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
987 rc = VINF_EM_HALT;
988 break;
989
990 /*
991 * The VM has halted.
992 */
993 case EXCP_HALTED:
994 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
995 rc = VINF_EM_HALT;
996 break;
997
998 /*
999 * Breakpoint/single step.
1000 */
1001 case EXCP_DEBUG:
1002 {
1003#if 0//def DEBUG_bird
1004 static int iBP = 0;
1005 printf("howdy, breakpoint! iBP=%d\n", iBP);
1006 switch (iBP)
1007 {
1008 case 0:
1009 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1010 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1011 //pVM->rem.s.Env.interrupt_request = 0;
1012 //pVM->rem.s.Env.exception_index = -1;
1013 //g_fInterruptDisabled = 1;
1014 rc = VINF_SUCCESS;
1015 asm("int3");
1016 break;
1017 default:
1018 asm("int3");
1019 break;
1020 }
1021 iBP++;
1022#else
1023 /* breakpoint or single step? */
1024 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1025 int iBP;
1026 rc = VINF_EM_DBG_STEPPED;
1027 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1028 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1029 {
1030 rc = VINF_EM_DBG_BREAKPOINT;
1031 break;
1032 }
1033 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1034#endif
1035 break;
1036 }
1037
1038 /*
1039 * Switch to RAW-mode.
1040 */
1041 case EXCP_EXECUTE_RAW:
1042 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1043 rc = VINF_EM_RESCHEDULE_RAW;
1044 break;
1045
1046 /*
1047 * Switch to hardware accelerated RAW-mode.
1048 */
1049 case EXCP_EXECUTE_HWACC:
1050 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1051 rc = VINF_EM_RESCHEDULE_HWACC;
1052 break;
1053
1054 /*
1055 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1056 */
1057 case EXCP_RC:
1058 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1059 rc = pVM->rem.s.rc;
1060 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1061 break;
1062
1063 /*
1064 * Figure out the rest when they arrive....
1065 */
1066 default:
1067 AssertMsgFailed(("rc=%d\n", rc));
1068 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1069 rc = VINF_SUCCESS;
1070 break;
1071 }
1072
1073 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1074 return rc;
1075}
1076
1077
1078/**
1079 * Check if the cpu state is suitable for Raw execution.
1080 *
1081 * @returns boolean
1082 * @param env The CPU env struct.
1083 * @param eip The EIP to check this for (might differ from env->eip).
1084 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1085 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1086 *
1087 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1088 */
1089bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1090{
1091 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1092 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1093 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1094
1095 /* Update counter. */
1096 env->pVM->rem.s.cCanExecuteRaw++;
1097
1098 if (HWACCMIsEnabled(env->pVM))
1099 {
1100 env->state |= CPU_RAW_HWACC;
1101
1102 /*
1103 * Create partial context for HWACCMR3CanExecuteGuest
1104 */
1105 CPUMCTX Ctx;
1106 Ctx.cr0 = env->cr[0];
1107 Ctx.cr3 = env->cr[3];
1108 Ctx.cr4 = env->cr[4];
1109
1110 Ctx.tr = env->tr.selector;
1111 Ctx.trHid.u64Base = env->tr.base;
1112 Ctx.trHid.u32Limit = env->tr.limit;
1113 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1114
1115 Ctx.idtr.cbIdt = env->idt.limit;
1116 Ctx.idtr.pIdt = env->idt.base;
1117
1118 Ctx.eflags.u32 = env->eflags;
1119
1120 Ctx.cs = env->segs[R_CS].selector;
1121 Ctx.csHid.u64Base = env->segs[R_CS].base;
1122 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1123 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1124
1125 Ctx.ss = env->segs[R_SS].selector;
1126 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1127 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1128 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1129
1130 /* Hardware accelerated raw-mode:
1131 *
1132 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1133 */
1134 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1135 {
1136 *piException = EXCP_EXECUTE_HWACC;
1137 return true;
1138 }
1139 return false;
1140 }
1141
1142 /*
1143 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1144 * or 32 bits protected mode ring 0 code
1145 *
1146 * The tests are ordered by the likelyhood of being true during normal execution.
1147 */
1148 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1149 {
1150 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1151 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1152 return false;
1153 }
1154
1155#ifndef VBOX_RAW_V86
1156 if (fFlags & VM_MASK) {
1157 STAM_COUNTER_INC(&gStatRefuseVM86);
1158 Log2(("raw mode refused: VM_MASK\n"));
1159 return false;
1160 }
1161#endif
1162
1163 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1164 {
1165#ifndef DEBUG_bird
1166 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1167#endif
1168 return false;
1169 }
1170
1171 if (env->singlestep_enabled)
1172 {
1173 //Log2(("raw mode refused: Single step\n"));
1174 return false;
1175 }
1176
1177 if (env->nb_breakpoints > 0)
1178 {
1179 //Log2(("raw mode refused: Breakpoints\n"));
1180 return false;
1181 }
1182
1183 uint32_t u32CR0 = env->cr[0];
1184 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1185 {
1186 STAM_COUNTER_INC(&gStatRefusePaging);
1187 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1188 return false;
1189 }
1190
1191 if (env->cr[4] & CR4_PAE_MASK)
1192 {
1193 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1194 {
1195 STAM_COUNTER_INC(&gStatRefusePAE);
1196 return false;
1197 }
1198 }
1199
1200 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1201 {
1202 if (!EMIsRawRing3Enabled(env->pVM))
1203 return false;
1204
1205 if (!(env->eflags & IF_MASK))
1206 {
1207 STAM_COUNTER_INC(&gStatRefuseIF0);
1208 Log2(("raw mode refused: IF (RawR3)\n"));
1209 return false;
1210 }
1211
1212 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1213 {
1214 STAM_COUNTER_INC(&gStatRefuseWP0);
1215 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1216 return false;
1217 }
1218 }
1219 else
1220 {
1221 if (!EMIsRawRing0Enabled(env->pVM))
1222 return false;
1223
1224 // Let's start with pure 32 bits ring 0 code first
1225 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseCode16);
1228 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1229 return false;
1230 }
1231
1232 // Only R0
1233 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1236 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1237 return false;
1238 }
1239
1240 if (!(u32CR0 & CR0_WP_MASK))
1241 {
1242 STAM_COUNTER_INC(&gStatRefuseWP0);
1243 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1244 return false;
1245 }
1246
1247 if (PATMIsPatchGCAddr(env->pVM, eip))
1248 {
1249 Log2(("raw r0 mode forced: patch code\n"));
1250 *piException = EXCP_EXECUTE_RAW;
1251 return true;
1252 }
1253
1254#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1255 if (!(env->eflags & IF_MASK))
1256 {
1257 STAM_COUNTER_INC(&gStatRefuseIF0);
1258 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1259 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1260 return false;
1261 }
1262#endif
1263
1264 env->state |= CPU_RAW_RING0;
1265 }
1266
1267 /*
1268 * Don't reschedule the first time we're called, because there might be
1269 * special reasons why we're here that is not covered by the above checks.
1270 */
1271 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1272 {
1273 Log2(("raw mode refused: first scheduling\n"));
1274 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1275 return false;
1276 }
1277
1278 Assert(PGMPhysIsA20Enabled(env->pVM));
1279 *piException = EXCP_EXECUTE_RAW;
1280 return true;
1281}
1282
1283
1284/**
1285 * Fetches a code byte.
1286 *
1287 * @returns Success indicator (bool) for ease of use.
1288 * @param env The CPU environment structure.
1289 * @param GCPtrInstr Where to fetch code.
1290 * @param pu8Byte Where to store the byte on success
1291 */
1292bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1293{
1294 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1295 if (VBOX_SUCCESS(rc))
1296 return true;
1297 return false;
1298}
1299
1300
1301/**
1302 * Flush (or invalidate if you like) page table/dir entry.
1303 *
1304 * (invlpg instruction; tlb_flush_page)
1305 *
1306 * @param env Pointer to cpu environment.
1307 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1308 */
1309void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1310{
1311 PVM pVM = env->pVM;
1312
1313 /*
1314 * When we're replaying invlpg instructions or restoring a saved
1315 * state we disable this path.
1316 */
1317 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1318 return;
1319 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1320 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1321
1322 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1323
1324 /*
1325 * Update the control registers before calling PGMFlushPage.
1326 */
1327 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1328 pCtx->cr0 = env->cr[0];
1329 pCtx->cr3 = env->cr[3];
1330 pCtx->cr4 = env->cr[4];
1331
1332 /*
1333 * Let PGM do the rest.
1334 */
1335 int rc = PGMInvalidatePage(pVM, GCPtr);
1336 if (VBOX_FAILURE(rc))
1337 {
1338 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1339 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1340 }
1341 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1342}
1343
1344
1345/**
1346 * Called from tlb_protect_code in order to write monitor a code page.
1347 *
1348 * @param env Pointer to the CPU environment.
1349 * @param GCPtr Code page to monitor
1350 */
1351void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1352{
1353 Assert(env->pVM->rem.s.fInREM);
1354 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1355 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1356 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1357 && !(env->eflags & VM_MASK) /* no V86 mode */
1358 && !HWACCMIsEnabled(env->pVM))
1359 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1360}
1361
1362/**
1363 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1364 *
1365 * @param env Pointer to the CPU environment.
1366 * @param GCPtr Code page to monitor
1367 */
1368void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1369{
1370 Assert(env->pVM->rem.s.fInREM);
1371 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1372 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1373 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1374 && !(env->eflags & VM_MASK) /* no V86 mode */
1375 && !HWACCMIsEnabled(env->pVM))
1376 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1377}
1378
1379
1380/**
1381 * Called when the CPU is initialized, any of the CRx registers are changed or
1382 * when the A20 line is modified.
1383 *
1384 * @param env Pointer to the CPU environment.
1385 * @param fGlobal Set if the flush is global.
1386 */
1387void remR3FlushTLB(CPUState *env, bool fGlobal)
1388{
1389 PVM pVM = env->pVM;
1390
1391 /*
1392 * When we're replaying invlpg instructions or restoring a saved
1393 * state we disable this path.
1394 */
1395 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1396 return;
1397 Assert(pVM->rem.s.fInREM);
1398
1399 /*
1400 * The caller doesn't check cr4, so we have to do that for ourselves.
1401 */
1402 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1403 fGlobal = true;
1404 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1405
1406 /*
1407 * Update the control registers before calling PGMR3FlushTLB.
1408 */
1409 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1410 pCtx->cr0 = env->cr[0];
1411 pCtx->cr3 = env->cr[3];
1412 pCtx->cr4 = env->cr[4];
1413
1414 /*
1415 * Let PGM do the rest.
1416 */
1417 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1418}
1419
1420
1421/**
1422 * Called when any of the cr0, cr4 or efer registers is updated.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 */
1426void remR3ChangeCpuMode(CPUState *env)
1427{
1428 int rc;
1429 PVM pVM = env->pVM;
1430
1431 /*
1432 * When we're replaying loads or restoring a saved
1433 * state this path is disabled.
1434 */
1435 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Assert(pVM->rem.s.fInREM);
1438
1439 /*
1440 * Update the control registers before calling PGMChangeMode()
1441 * as it may need to map whatever cr3 is pointing to.
1442 */
1443 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1444 pCtx->cr0 = env->cr[0];
1445 pCtx->cr3 = env->cr[3];
1446 pCtx->cr4 = env->cr[4];
1447
1448#ifdef TARGET_X86_64
1449 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1450 if (rc != VINF_SUCCESS)
1451 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1452#else
1453 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1454 if (rc != VINF_SUCCESS)
1455 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1456#endif
1457}
1458
1459
1460/**
1461 * Called from compiled code to run dma.
1462 *
1463 * @param env Pointer to the CPU environment.
1464 */
1465void remR3DmaRun(CPUState *env)
1466{
1467 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1468 PDMR3DmaRun(env->pVM);
1469 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1470}
1471
1472
1473/**
1474 * Called from compiled code to schedule pending timers in VMM
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3TimersRun(CPUState *env)
1479{
1480 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1481 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1482 TMR3TimerQueuesDo(env->pVM);
1483 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1484 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1485}
1486
1487
1488/**
1489 * Record trap occurance
1490 *
1491 * @returns VBox status code
1492 * @param env Pointer to the CPU environment.
1493 * @param uTrap Trap nr
1494 * @param uErrorCode Error code
1495 * @param pvNextEIP Next EIP
1496 */
1497int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1498{
1499 PVM pVM = env->pVM;
1500#ifdef VBOX_WITH_STATISTICS
1501 static STAMCOUNTER s_aStatTrap[255];
1502 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1503#endif
1504
1505#ifdef VBOX_WITH_STATISTICS
1506 if (uTrap < 255)
1507 {
1508 if (!s_aRegisters[uTrap])
1509 {
1510 s_aRegisters[uTrap] = true;
1511 char szStatName[64];
1512 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1513 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1514 }
1515 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1516 }
1517#endif
1518 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1519 if( uTrap < 0x20
1520 && (env->cr[0] & X86_CR0_PE)
1521 && !(env->eflags & X86_EFL_VM))
1522 {
1523#ifdef DEBUG
1524 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1525#endif
1526 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1527 {
1528 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1529 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1530 return VERR_REM_TOO_MANY_TRAPS;
1531 }
1532 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1533 pVM->rem.s.cPendingExceptions = 1;
1534 pVM->rem.s.uPendingException = uTrap;
1535 pVM->rem.s.uPendingExcptEIP = env->eip;
1536 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1537 }
1538 else
1539 {
1540 pVM->rem.s.cPendingExceptions = 0;
1541 pVM->rem.s.uPendingException = uTrap;
1542 pVM->rem.s.uPendingExcptEIP = env->eip;
1543 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1544 }
1545 return VINF_SUCCESS;
1546}
1547
1548
1549/*
1550 * Clear current active trap
1551 *
1552 * @param pVM VM Handle.
1553 */
1554void remR3TrapClear(PVM pVM)
1555{
1556 pVM->rem.s.cPendingExceptions = 0;
1557 pVM->rem.s.uPendingException = 0;
1558 pVM->rem.s.uPendingExcptEIP = 0;
1559 pVM->rem.s.uPendingExcptCR2 = 0;
1560}
1561
1562
1563/*
1564 * Record previous call instruction addresses
1565 *
1566 * @param env Pointer to the CPU environment.
1567 */
1568void remR3RecordCall(CPUState *env)
1569{
1570 CSAMR3RecordCallAddress(env->pVM, env->eip);
1571}
1572
1573
1574/**
1575 * Syncs the internal REM state with the VM.
1576 *
1577 * This must be called before REMR3Run() is invoked whenever when the REM
1578 * state is not up to date. Calling it several times in a row is not
1579 * permitted.
1580 *
1581 * @returns VBox status code.
1582 *
1583 * @param pVM VM Handle.
1584 *
1585 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1586 * no do this since the majority of the callers don't want any unnecessary of events
1587 * pending that would immediatly interrupt execution.
1588 */
1589REMR3DECL(int) REMR3State(PVM pVM)
1590{
1591 Log2(("REMR3State:\n"));
1592 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1593 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1594 register unsigned fFlags;
1595 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1596
1597 Assert(!pVM->rem.s.fInREM);
1598 pVM->rem.s.fInStateSync = true;
1599
1600 /*
1601 * Copy the registers which require no special handling.
1602 */
1603#ifdef TARGET_X86_64
1604 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1605 Assert(R_EAX == 0);
1606 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1607 Assert(R_ECX == 1);
1608 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1609 Assert(R_EDX == 2);
1610 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1611 Assert(R_EBX == 3);
1612 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1613 Assert(R_ESP == 4);
1614 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1615 Assert(R_EBP == 5);
1616 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1617 Assert(R_ESI == 6);
1618 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1619 Assert(R_EDI == 7);
1620 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1621 pVM->rem.s.Env.regs[8] = pCtx->r8;
1622 pVM->rem.s.Env.regs[9] = pCtx->r9;
1623 pVM->rem.s.Env.regs[10] = pCtx->r10;
1624 pVM->rem.s.Env.regs[11] = pCtx->r11;
1625 pVM->rem.s.Env.regs[12] = pCtx->r12;
1626 pVM->rem.s.Env.regs[13] = pCtx->r13;
1627 pVM->rem.s.Env.regs[14] = pCtx->r14;
1628 pVM->rem.s.Env.regs[15] = pCtx->r15;
1629
1630 pVM->rem.s.Env.eip = pCtx->rip;
1631
1632 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1633#else
1634 Assert(R_EAX == 0);
1635 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1636 Assert(R_ECX == 1);
1637 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1638 Assert(R_EDX == 2);
1639 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1640 Assert(R_EBX == 3);
1641 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1642 Assert(R_ESP == 4);
1643 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1644 Assert(R_EBP == 5);
1645 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1646 Assert(R_ESI == 6);
1647 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1648 Assert(R_EDI == 7);
1649 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1650 pVM->rem.s.Env.eip = pCtx->eip;
1651
1652 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1653#endif
1654
1655 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1656
1657 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1658 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1659 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1660 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1661 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1662 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1663 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1664 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1665 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1666
1667 /*
1668 * Clear the halted hidden flag (the interrupt waking up the CPU can
1669 * have been dispatched in raw mode).
1670 */
1671 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1672
1673 /*
1674 * Replay invlpg?
1675 */
1676 if (pVM->rem.s.cInvalidatedPages)
1677 {
1678 pVM->rem.s.fIgnoreInvlPg = true;
1679 RTUINT i;
1680 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1681 {
1682 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1683 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1684 }
1685 pVM->rem.s.fIgnoreInvlPg = false;
1686 pVM->rem.s.cInvalidatedPages = 0;
1687 }
1688
1689 /* Update MSRs; before CRx registers! */
1690 pVM->rem.s.Env.efer = pCtx->msrEFER;
1691 pVM->rem.s.Env.star = pCtx->msrSTAR;
1692 pVM->rem.s.Env.pat = pCtx->msrPAT;
1693#ifdef TARGET_X86_64
1694 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1695 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1696 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1697 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1698#endif
1699
1700
1701 /*
1702 * Registers which are rarely changed and require special handling / order when changed.
1703 */
1704 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1705 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1706 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1707 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1708 {
1709 if (fFlags & CPUM_CHANGED_FPU_REM)
1710 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1711
1712 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1713 {
1714 pVM->rem.s.fIgnoreCR3Load = true;
1715 tlb_flush(&pVM->rem.s.Env, true);
1716 pVM->rem.s.fIgnoreCR3Load = false;
1717 }
1718
1719 if (fFlags & CPUM_CHANGED_CR4)
1720 {
1721 pVM->rem.s.fIgnoreCR3Load = true;
1722 pVM->rem.s.fIgnoreCpuMode = true;
1723 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1724 pVM->rem.s.fIgnoreCpuMode = false;
1725 pVM->rem.s.fIgnoreCR3Load = false;
1726 }
1727
1728 if (fFlags & CPUM_CHANGED_CR0)
1729 {
1730 pVM->rem.s.fIgnoreCR3Load = true;
1731 pVM->rem.s.fIgnoreCpuMode = true;
1732 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1733 pVM->rem.s.fIgnoreCpuMode = false;
1734 pVM->rem.s.fIgnoreCR3Load = false;
1735 }
1736
1737 if (fFlags & CPUM_CHANGED_CR3)
1738 {
1739 pVM->rem.s.fIgnoreCR3Load = true;
1740 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1741 pVM->rem.s.fIgnoreCR3Load = false;
1742 }
1743
1744 if (fFlags & CPUM_CHANGED_GDTR)
1745 {
1746 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1747 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1748 }
1749
1750 if (fFlags & CPUM_CHANGED_IDTR)
1751 {
1752 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1753 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1754 }
1755
1756 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1757 {
1758 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1759 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1760 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1761 }
1762
1763 if (fFlags & CPUM_CHANGED_LDTR)
1764 {
1765 if (fHiddenSelRegsValid)
1766 {
1767 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1768 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1769 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1770 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1771 }
1772 else
1773 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1774 }
1775
1776 if (fFlags & CPUM_CHANGED_TR)
1777 {
1778 if (fHiddenSelRegsValid)
1779 {
1780 pVM->rem.s.Env.tr.selector = pCtx->tr;
1781 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1782 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1783 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1784 }
1785 else
1786 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1787
1788 /** @note do_interrupt will fault if the busy flag is still set.... */
1789 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1790 }
1791
1792 if (fFlags & CPUM_CHANGED_CPUID)
1793 {
1794 uint32_t u32Dummy;
1795
1796 /*
1797 * Get the CPUID features.
1798 */
1799 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1800 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1801 }
1802 }
1803
1804 /*
1805 * Update selector registers.
1806 * This must be done *after* we've synced gdt, ldt and crX registers
1807 * since we're reading the GDT/LDT om sync_seg. This will happen with
1808 * saved state which takes a quick dip into rawmode for instance.
1809 */
1810 /*
1811 * Stack; Note first check this one as the CPL might have changed. The
1812 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1813 */
1814
1815 if (fHiddenSelRegsValid)
1816 {
1817 /* The hidden selector registers are valid in the CPU context. */
1818 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1819
1820 /* Set current CPL */
1821 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1822
1823 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1824 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1825 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1827
1828 /* FS & GS base addresses need to be loaded from the MSRs if in 64 bits mode. */
1829 if (CPUMIsGuestIn64BitCode(pVM, CPUMCTX2CORE(pCtx)))
1830 {
1831 /* Note that the base values in the hidden fs & gs registers are cut to 32 bits and can't be used in this case. */
1832 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->msrFSBASE, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1833 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->msrGSBASE, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1834 }
1835 else
1836 {
1837 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1838 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1839 }
1840 }
1841 else
1842 {
1843 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1844 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1845 {
1846 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1847
1848 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1849 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1850#ifdef VBOX_WITH_STATISTICS
1851 if (pVM->rem.s.Env.segs[R_SS].newselector)
1852 {
1853 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1854 }
1855#endif
1856 }
1857 else
1858 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1859
1860 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1861 {
1862 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1863 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1864#ifdef VBOX_WITH_STATISTICS
1865 if (pVM->rem.s.Env.segs[R_ES].newselector)
1866 {
1867 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1868 }
1869#endif
1870 }
1871 else
1872 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1873
1874 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1875 {
1876 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1877 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1878#ifdef VBOX_WITH_STATISTICS
1879 if (pVM->rem.s.Env.segs[R_CS].newselector)
1880 {
1881 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1882 }
1883#endif
1884 }
1885 else
1886 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1887
1888 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1889 {
1890 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1891 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1892#ifdef VBOX_WITH_STATISTICS
1893 if (pVM->rem.s.Env.segs[R_DS].newselector)
1894 {
1895 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1896 }
1897#endif
1898 }
1899 else
1900 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1901
1902 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1903 * be the same but not the base/limit. */
1904 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1905 {
1906 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1907 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1908#ifdef VBOX_WITH_STATISTICS
1909 if (pVM->rem.s.Env.segs[R_FS].newselector)
1910 {
1911 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1912 }
1913#endif
1914 }
1915 else
1916 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1917
1918 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1919 {
1920 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1921 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1922#ifdef VBOX_WITH_STATISTICS
1923 if (pVM->rem.s.Env.segs[R_GS].newselector)
1924 {
1925 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1926 }
1927#endif
1928 }
1929 else
1930 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1931 }
1932
1933 /*
1934 * Check for traps.
1935 */
1936 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1937 TRPMEVENT enmType;
1938 uint8_t u8TrapNo;
1939 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1940 if (VBOX_SUCCESS(rc))
1941 {
1942#ifdef DEBUG
1943 if (u8TrapNo == 0x80)
1944 {
1945 remR3DumpLnxSyscall(pVM);
1946 remR3DumpOBsdSyscall(pVM);
1947 }
1948#endif
1949
1950 pVM->rem.s.Env.exception_index = u8TrapNo;
1951 if (enmType != TRPM_SOFTWARE_INT)
1952 {
1953 pVM->rem.s.Env.exception_is_int = 0;
1954 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1955 }
1956 else
1957 {
1958 /*
1959 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1960 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1961 * for int03 and into.
1962 */
1963 pVM->rem.s.Env.exception_is_int = 1;
1964 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1965 /* int 3 may be generated by one-byte 0xcc */
1966 if (u8TrapNo == 3)
1967 {
1968 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1969 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1970 }
1971 /* int 4 may be generated by one-byte 0xce */
1972 else if (u8TrapNo == 4)
1973 {
1974 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1975 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1976 }
1977 }
1978
1979 /* get error code and cr2 if needed. */
1980 switch (u8TrapNo)
1981 {
1982 case 0x0e:
1983 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1984 /* fallthru */
1985 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1986 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1987 break;
1988
1989 case 0x11: case 0x08:
1990 default:
1991 pVM->rem.s.Env.error_code = 0;
1992 break;
1993 }
1994
1995 /*
1996 * We can now reset the active trap since the recompiler is gonna have a go at it.
1997 */
1998 rc = TRPMResetTrap(pVM);
1999 AssertRC(rc);
2000 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2001 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2002 }
2003
2004 /*
2005 * Clear old interrupt request flags; Check for pending hardware interrupts.
2006 * (See @remark for why we don't check for other FFs.)
2007 */
2008 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2009 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2010 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2011 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2012
2013 /*
2014 * We're now in REM mode.
2015 */
2016 pVM->rem.s.fInREM = true;
2017 pVM->rem.s.fInStateSync = false;
2018 pVM->rem.s.cCanExecuteRaw = 0;
2019 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2020 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2021 return VINF_SUCCESS;
2022}
2023
2024
2025/**
2026 * Syncs back changes in the REM state to the the VM state.
2027 *
2028 * This must be called after invoking REMR3Run().
2029 * Calling it several times in a row is not permitted.
2030 *
2031 * @returns VBox status code.
2032 *
2033 * @param pVM VM Handle.
2034 */
2035REMR3DECL(int) REMR3StateBack(PVM pVM)
2036{
2037 Log2(("REMR3StateBack:\n"));
2038 Assert(pVM->rem.s.fInREM);
2039 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2040 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2041
2042 /*
2043 * Copy back the registers.
2044 * This is done in the order they are declared in the CPUMCTX structure.
2045 */
2046
2047 /** @todo FOP */
2048 /** @todo FPUIP */
2049 /** @todo CS */
2050 /** @todo FPUDP */
2051 /** @todo DS */
2052 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2053 pCtx->fpu.MXCSR = 0;
2054 pCtx->fpu.MXCSR_MASK = 0;
2055
2056 /** @todo check if FPU/XMM was actually used in the recompiler */
2057 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2058//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2059
2060#ifdef TARGET_X86_64
2061 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2062 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2063 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2064 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2065 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2066 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2067 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2068 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2069 pCtx->r8 = pVM->rem.s.Env.regs[8];
2070 pCtx->r9 = pVM->rem.s.Env.regs[9];
2071 pCtx->r10 = pVM->rem.s.Env.regs[10];
2072 pCtx->r11 = pVM->rem.s.Env.regs[11];
2073 pCtx->r12 = pVM->rem.s.Env.regs[12];
2074 pCtx->r13 = pVM->rem.s.Env.regs[13];
2075 pCtx->r14 = pVM->rem.s.Env.regs[14];
2076 pCtx->r15 = pVM->rem.s.Env.regs[15];
2077
2078 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2079
2080#else
2081 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2082 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2083 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2084 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2085 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2086 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2087 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2088
2089 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2090#endif
2091
2092 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2093
2094#ifdef VBOX_WITH_STATISTICS
2095 if (pVM->rem.s.Env.segs[R_SS].newselector)
2096 {
2097 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2098 }
2099 if (pVM->rem.s.Env.segs[R_GS].newselector)
2100 {
2101 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2102 }
2103 if (pVM->rem.s.Env.segs[R_FS].newselector)
2104 {
2105 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2106 }
2107 if (pVM->rem.s.Env.segs[R_ES].newselector)
2108 {
2109 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2110 }
2111 if (pVM->rem.s.Env.segs[R_DS].newselector)
2112 {
2113 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2114 }
2115 if (pVM->rem.s.Env.segs[R_CS].newselector)
2116 {
2117 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2118 }
2119#endif
2120 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2121 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2122 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2123 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2124 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2125
2126#ifdef TARGET_X86_64
2127 pCtx->rip = pVM->rem.s.Env.eip;
2128 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2129#else
2130 pCtx->eip = pVM->rem.s.Env.eip;
2131 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2132#endif
2133
2134 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2135 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2136 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2137 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2138
2139 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2140 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2141 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2142 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2143 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2144 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2145 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2146 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2147
2148 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2149 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2150 {
2151 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2152 STAM_COUNTER_INC(&gStatREMGDTChange);
2153 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2154 }
2155
2156 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2157 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2158 {
2159 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2160 STAM_COUNTER_INC(&gStatREMIDTChange);
2161 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2162 }
2163
2164 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2165 {
2166 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2167 STAM_COUNTER_INC(&gStatREMLDTRChange);
2168 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2169 }
2170 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2171 {
2172 pCtx->tr = pVM->rem.s.Env.tr.selector;
2173 STAM_COUNTER_INC(&gStatREMTRChange);
2174 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2175 }
2176
2177 /** @todo These values could still be out of sync! */
2178 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2179 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2180 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2181 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2182
2183 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2184 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2185 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2186
2187 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2188 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2189 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2190
2191 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2192 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2193 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2194
2195 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2196 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2197 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2198
2199 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2200 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2201 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2202
2203 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2204 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2205 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2206
2207 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2208 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2209 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2210
2211 /* Sysenter MSR */
2212 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2213 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2214 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2215
2216 /* System MSRs. */
2217 pCtx->msrEFER = pVM->rem.s.Env.efer;
2218 pCtx->msrSTAR = pVM->rem.s.Env.star;
2219 pCtx->msrPAT = pVM->rem.s.Env.pat;
2220#ifdef TARGET_X86_64
2221 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2222 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2223 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2224 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2225 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2226 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2227#endif
2228
2229 remR3TrapClear(pVM);
2230
2231 /*
2232 * Check for traps.
2233 */
2234 if ( pVM->rem.s.Env.exception_index >= 0
2235 && pVM->rem.s.Env.exception_index < 256)
2236 {
2237 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2238 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2239 AssertRC(rc);
2240 switch (pVM->rem.s.Env.exception_index)
2241 {
2242 case 0x0e:
2243 TRPMSetFaultAddress(pVM, pCtx->cr2);
2244 /* fallthru */
2245 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2246 case 0x11: case 0x08: /* 0 */
2247 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2248 break;
2249 }
2250
2251 }
2252
2253 /*
2254 * We're not longer in REM mode.
2255 */
2256 pVM->rem.s.fInREM = false;
2257 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2258 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2259 return VINF_SUCCESS;
2260}
2261
2262
2263/**
2264 * This is called by the disassembler when it wants to update the cpu state
2265 * before for instance doing a register dump.
2266 */
2267static void remR3StateUpdate(PVM pVM)
2268{
2269 Assert(pVM->rem.s.fInREM);
2270 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2271
2272 /*
2273 * Copy back the registers.
2274 * This is done in the order they are declared in the CPUMCTX structure.
2275 */
2276
2277 /** @todo FOP */
2278 /** @todo FPUIP */
2279 /** @todo CS */
2280 /** @todo FPUDP */
2281 /** @todo DS */
2282 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2283 pCtx->fpu.MXCSR = 0;
2284 pCtx->fpu.MXCSR_MASK = 0;
2285
2286 /** @todo check if FPU/XMM was actually used in the recompiler */
2287 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2288//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2289
2290#ifdef TARGET_X86_64
2291 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2292 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2293 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2294 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2295 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2296 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2297 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2298 pCtx->r8 = pVM->rem.s.Env.regs[8];
2299 pCtx->r9 = pVM->rem.s.Env.regs[9];
2300 pCtx->r10 = pVM->rem.s.Env.regs[10];
2301 pCtx->r11 = pVM->rem.s.Env.regs[11];
2302 pCtx->r12 = pVM->rem.s.Env.regs[12];
2303 pCtx->r13 = pVM->rem.s.Env.regs[13];
2304 pCtx->r14 = pVM->rem.s.Env.regs[14];
2305 pCtx->r15 = pVM->rem.s.Env.regs[15];
2306
2307 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2308#else
2309 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2310 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2311 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2312 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2313 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2314 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2315 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2316
2317 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2318#endif
2319
2320 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2321
2322 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2323 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2324 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2325 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2326 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2327
2328#ifdef TARGET_X86_64
2329 pCtx->rip = pVM->rem.s.Env.eip;
2330 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2331#else
2332 pCtx->eip = pVM->rem.s.Env.eip;
2333 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2334#endif
2335
2336 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2337 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2338 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2339 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2340
2341 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2342 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2343 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2344 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2345 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2346 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2347 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2348 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2349
2350 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2351 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2352 {
2353 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2354 STAM_COUNTER_INC(&gStatREMGDTChange);
2355 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2356 }
2357
2358 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2359 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2360 {
2361 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2362 STAM_COUNTER_INC(&gStatREMIDTChange);
2363 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2364 }
2365
2366 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2367 {
2368 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2369 STAM_COUNTER_INC(&gStatREMLDTRChange);
2370 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2371 }
2372 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2373 {
2374 pCtx->tr = pVM->rem.s.Env.tr.selector;
2375 STAM_COUNTER_INC(&gStatREMTRChange);
2376 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2377 }
2378
2379 /** @todo These values could still be out of sync! */
2380 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2381 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2382 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2383 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2384
2385 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2386 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2387 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2388
2389 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2390 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2391 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2392
2393 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2394 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2395 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2396
2397 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2398 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2399 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2400
2401 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2402 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2403 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2404
2405 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2406 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2407 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2408
2409 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2410 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2411 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2412
2413 /* Sysenter MSR */
2414 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2415 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2416 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2417
2418 /* System MSRs. */
2419 pCtx->msrEFER = pVM->rem.s.Env.efer;
2420 pCtx->msrSTAR = pVM->rem.s.Env.star;
2421 pCtx->msrPAT = pVM->rem.s.Env.pat;
2422#ifdef TARGET_X86_64
2423 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2424 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2425 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2426 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2427 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2428 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2429#endif
2430
2431}
2432
2433
2434/**
2435 * Update the VMM state information if we're currently in REM.
2436 *
2437 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2438 * we're currently executing in REM and the VMM state is invalid. This method will of
2439 * course check that we're executing in REM before syncing any data over to the VMM.
2440 *
2441 * @param pVM The VM handle.
2442 */
2443REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2444{
2445 if (pVM->rem.s.fInREM)
2446 remR3StateUpdate(pVM);
2447}
2448
2449
2450#undef LOG_GROUP
2451#define LOG_GROUP LOG_GROUP_REM
2452
2453
2454/**
2455 * Notify the recompiler about Address Gate 20 state change.
2456 *
2457 * This notification is required since A20 gate changes are
2458 * initialized from a device driver and the VM might just as
2459 * well be in REM mode as in RAW mode.
2460 *
2461 * @param pVM VM handle.
2462 * @param fEnable True if the gate should be enabled.
2463 * False if the gate should be disabled.
2464 */
2465REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2466{
2467 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2468 VM_ASSERT_EMT(pVM);
2469
2470 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2471 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2472
2473 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2474
2475 pVM->rem.s.fIgnoreAll = fSaved;
2476}
2477
2478
2479/**
2480 * Replays the invalidated recorded pages.
2481 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2482 *
2483 * @param pVM VM handle.
2484 */
2485REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2486{
2487 VM_ASSERT_EMT(pVM);
2488
2489 /*
2490 * Sync the required registers.
2491 */
2492 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2493 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2494 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2495 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2496
2497 /*
2498 * Replay the flushes.
2499 */
2500 pVM->rem.s.fIgnoreInvlPg = true;
2501 RTUINT i;
2502 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2503 {
2504 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2505 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2506 }
2507 pVM->rem.s.fIgnoreInvlPg = false;
2508 pVM->rem.s.cInvalidatedPages = 0;
2509}
2510
2511
2512/**
2513 * Replays the invalidated recorded pages.
2514 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2515 *
2516 * @param pVM VM handle.
2517 */
2518REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2519{
2520 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2521 VM_ASSERT_EMT(pVM);
2522
2523 /*
2524 * Replay the flushes.
2525 */
2526 RTUINT i;
2527 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2528 pVM->rem.s.cHandlerNotifications = 0;
2529 for (i = 0; i < c; i++)
2530 {
2531 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2532 switch (pRec->enmKind)
2533 {
2534 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2535 REMR3NotifyHandlerPhysicalRegister(pVM,
2536 pRec->u.PhysicalRegister.enmType,
2537 pRec->u.PhysicalRegister.GCPhys,
2538 pRec->u.PhysicalRegister.cb,
2539 pRec->u.PhysicalRegister.fHasHCHandler);
2540 break;
2541
2542 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2543 REMR3NotifyHandlerPhysicalDeregister(pVM,
2544 pRec->u.PhysicalDeregister.enmType,
2545 pRec->u.PhysicalDeregister.GCPhys,
2546 pRec->u.PhysicalDeregister.cb,
2547 pRec->u.PhysicalDeregister.fHasHCHandler,
2548 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2549 break;
2550
2551 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2552 REMR3NotifyHandlerPhysicalModify(pVM,
2553 pRec->u.PhysicalModify.enmType,
2554 pRec->u.PhysicalModify.GCPhysOld,
2555 pRec->u.PhysicalModify.GCPhysNew,
2556 pRec->u.PhysicalModify.cb,
2557 pRec->u.PhysicalModify.fHasHCHandler,
2558 pRec->u.PhysicalModify.fRestoreAsRAM);
2559 break;
2560
2561 default:
2562 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2563 break;
2564 }
2565 }
2566}
2567
2568
2569/**
2570 * Notify REM about changed code page.
2571 *
2572 * @returns VBox status code.
2573 * @param pVM VM handle.
2574 * @param pvCodePage Code page address
2575 */
2576REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2577{
2578 int rc;
2579 RTGCPHYS PhysGC;
2580 uint64_t flags;
2581
2582 VM_ASSERT_EMT(pVM);
2583
2584 /*
2585 * Get the physical page address.
2586 */
2587 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2588 if (rc == VINF_SUCCESS)
2589 {
2590 /*
2591 * Sync the required registers and flush the whole page.
2592 * (Easier to do the whole page than notifying it about each physical
2593 * byte that was changed.
2594 */
2595 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2596 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2597 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2598 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2599
2600 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2601 }
2602 return VINF_SUCCESS;
2603}
2604
2605
2606/**
2607 * Notification about a successful MMR3PhysRegister() call.
2608 *
2609 * @param pVM VM handle.
2610 * @param GCPhys The physical address the RAM.
2611 * @param cb Size of the memory.
2612 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2613 */
2614REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2615{
2616 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2617 VM_ASSERT_EMT(pVM);
2618
2619 /*
2620 * Validate input - we trust the caller.
2621 */
2622 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2623 Assert(cb);
2624 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2625
2626 /*
2627 * Base ram?
2628 */
2629 if (!GCPhys)
2630 {
2631 phys_ram_size = cb;
2632 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2633#ifndef VBOX_STRICT
2634 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2635 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2636#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2637 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2638 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2639 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2640 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2641 AssertRC(rc);
2642 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2643#endif
2644 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2645 }
2646
2647 /*
2648 * Register the ram.
2649 */
2650 Assert(!pVM->rem.s.fIgnoreAll);
2651 pVM->rem.s.fIgnoreAll = true;
2652
2653#ifdef VBOX_WITH_NEW_PHYS_CODE
2654 if (fFlags & MM_RAM_FLAGS_RESERVED)
2655 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2656 else
2657 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2658#else
2659 if (!GCPhys)
2660 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2661 else
2662 {
2663 if (fFlags & MM_RAM_FLAGS_RESERVED)
2664 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2665 else
2666 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2667 }
2668#endif
2669 Assert(pVM->rem.s.fIgnoreAll);
2670 pVM->rem.s.fIgnoreAll = false;
2671}
2672
2673#ifndef VBOX_WITH_NEW_PHYS_CODE
2674
2675/**
2676 * Notification about a successful PGMR3PhysRegisterChunk() call.
2677 *
2678 * @param pVM VM handle.
2679 * @param GCPhys The physical address the RAM.
2680 * @param cb Size of the memory.
2681 * @param pvRam The HC address of the RAM.
2682 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2683 */
2684REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2685{
2686 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2687 VM_ASSERT_EMT(pVM);
2688
2689 /*
2690 * Validate input - we trust the caller.
2691 */
2692 Assert(pvRam);
2693 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2694 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2695 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2696 Assert(fFlags == 0 /* normal RAM */);
2697 Assert(!pVM->rem.s.fIgnoreAll);
2698 pVM->rem.s.fIgnoreAll = true;
2699
2700 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2701
2702 Assert(pVM->rem.s.fIgnoreAll);
2703 pVM->rem.s.fIgnoreAll = false;
2704}
2705
2706
2707/**
2708 * Grows dynamically allocated guest RAM.
2709 * Will raise a fatal error if the operation fails.
2710 *
2711 * @param physaddr The physical address.
2712 */
2713void remR3GrowDynRange(unsigned long physaddr)
2714{
2715 int rc;
2716 PVM pVM = cpu_single_env->pVM;
2717
2718 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2719 const RTGCPHYS GCPhys = physaddr;
2720 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2721 if (VBOX_SUCCESS(rc))
2722 return;
2723
2724 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2725 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2726 AssertFatalFailed();
2727}
2728
2729#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2730
2731/**
2732 * Notification about a successful MMR3PhysRomRegister() call.
2733 *
2734 * @param pVM VM handle.
2735 * @param GCPhys The physical address of the ROM.
2736 * @param cb The size of the ROM.
2737 * @param pvCopy Pointer to the ROM copy.
2738 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2739 * This function will be called when ever the protection of the
2740 * shadow ROM changes (at reset and end of POST).
2741 */
2742REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2743{
2744 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2745 VM_ASSERT_EMT(pVM);
2746
2747 /*
2748 * Validate input - we trust the caller.
2749 */
2750 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2751 Assert(cb);
2752 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2753 Assert(pvCopy);
2754 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2755
2756 /*
2757 * Register the rom.
2758 */
2759 Assert(!pVM->rem.s.fIgnoreAll);
2760 pVM->rem.s.fIgnoreAll = true;
2761
2762 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2763
2764 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2765
2766 Assert(pVM->rem.s.fIgnoreAll);
2767 pVM->rem.s.fIgnoreAll = false;
2768}
2769
2770
2771/**
2772 * Notification about a successful memory deregistration or reservation.
2773 *
2774 * @param pVM VM Handle.
2775 * @param GCPhys Start physical address.
2776 * @param cb The size of the range.
2777 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2778 * reserve any memory soon.
2779 */
2780REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2781{
2782 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2783 VM_ASSERT_EMT(pVM);
2784
2785 /*
2786 * Validate input - we trust the caller.
2787 */
2788 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2789 Assert(cb);
2790 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2791
2792 /*
2793 * Unassigning the memory.
2794 */
2795 Assert(!pVM->rem.s.fIgnoreAll);
2796 pVM->rem.s.fIgnoreAll = true;
2797
2798 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2799
2800 Assert(pVM->rem.s.fIgnoreAll);
2801 pVM->rem.s.fIgnoreAll = false;
2802}
2803
2804
2805/**
2806 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2807 *
2808 * @param pVM VM Handle.
2809 * @param enmType Handler type.
2810 * @param GCPhys Handler range address.
2811 * @param cb Size of the handler range.
2812 * @param fHasHCHandler Set if the handler has a HC callback function.
2813 *
2814 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2815 * Handler memory type to memory which has no HC handler.
2816 */
2817REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2818{
2819 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2820 enmType, GCPhys, cb, fHasHCHandler));
2821 VM_ASSERT_EMT(pVM);
2822 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2823 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2824
2825 if (pVM->rem.s.cHandlerNotifications)
2826 REMR3ReplayHandlerNotifications(pVM);
2827
2828 Assert(!pVM->rem.s.fIgnoreAll);
2829 pVM->rem.s.fIgnoreAll = true;
2830
2831 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2832 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2833 else if (fHasHCHandler)
2834 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2835
2836 Assert(pVM->rem.s.fIgnoreAll);
2837 pVM->rem.s.fIgnoreAll = false;
2838}
2839
2840
2841/**
2842 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2843 *
2844 * @param pVM VM Handle.
2845 * @param enmType Handler type.
2846 * @param GCPhys Handler range address.
2847 * @param cb Size of the handler range.
2848 * @param fHasHCHandler Set if the handler has a HC callback function.
2849 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2850 */
2851REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2852{
2853 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2854 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2855 VM_ASSERT_EMT(pVM);
2856
2857 if (pVM->rem.s.cHandlerNotifications)
2858 REMR3ReplayHandlerNotifications(pVM);
2859
2860 Assert(!pVM->rem.s.fIgnoreAll);
2861 pVM->rem.s.fIgnoreAll = true;
2862
2863/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2864 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2865 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2866 else if (fHasHCHandler)
2867 {
2868 if (!fRestoreAsRAM)
2869 {
2870 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2871 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2872 }
2873 else
2874 {
2875 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2876 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2877 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2878 }
2879 }
2880
2881 Assert(pVM->rem.s.fIgnoreAll);
2882 pVM->rem.s.fIgnoreAll = false;
2883}
2884
2885
2886/**
2887 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2888 *
2889 * @param pVM VM Handle.
2890 * @param enmType Handler type.
2891 * @param GCPhysOld Old handler range address.
2892 * @param GCPhysNew New handler range address.
2893 * @param cb Size of the handler range.
2894 * @param fHasHCHandler Set if the handler has a HC callback function.
2895 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2896 */
2897REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2898{
2899 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2900 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2901 VM_ASSERT_EMT(pVM);
2902 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2903
2904 if (pVM->rem.s.cHandlerNotifications)
2905 REMR3ReplayHandlerNotifications(pVM);
2906
2907 if (fHasHCHandler)
2908 {
2909 Assert(!pVM->rem.s.fIgnoreAll);
2910 pVM->rem.s.fIgnoreAll = true;
2911
2912 /*
2913 * Reset the old page.
2914 */
2915 if (!fRestoreAsRAM)
2916 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2917 else
2918 {
2919 /* This is not perfect, but it'll do for PD monitoring... */
2920 Assert(cb == PAGE_SIZE);
2921 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2922 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2923 }
2924
2925 /*
2926 * Update the new page.
2927 */
2928 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2929 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2930 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2931
2932 Assert(pVM->rem.s.fIgnoreAll);
2933 pVM->rem.s.fIgnoreAll = false;
2934 }
2935}
2936
2937
2938/**
2939 * Checks if we're handling access to this page or not.
2940 *
2941 * @returns true if we're trapping access.
2942 * @returns false if we aren't.
2943 * @param pVM The VM handle.
2944 * @param GCPhys The physical address.
2945 *
2946 * @remark This function will only work correctly in VBOX_STRICT builds!
2947 */
2948REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2949{
2950#ifdef VBOX_STRICT
2951 if (pVM->rem.s.cHandlerNotifications)
2952 REMR3ReplayHandlerNotifications(pVM);
2953
2954 unsigned long off = get_phys_page_offset(GCPhys);
2955 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2956 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2957 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2958#else
2959 return false;
2960#endif
2961}
2962
2963
2964/**
2965 * Deals with a rare case in get_phys_addr_code where the code
2966 * is being monitored.
2967 *
2968 * It could also be an MMIO page, in which case we will raise a fatal error.
2969 *
2970 * @returns The physical address corresponding to addr.
2971 * @param env The cpu environment.
2972 * @param addr The virtual address.
2973 * @param pTLBEntry The TLB entry.
2974 */
2975target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2976{
2977 PVM pVM = env->pVM;
2978 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2979 {
2980 target_ulong ret = pTLBEntry->addend + addr;
2981 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2982 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2983 return ret;
2984 }
2985 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2986 "*** handlers\n",
2987 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2988 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2989 LogRel(("*** mmio\n"));
2990 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2991 LogRel(("*** phys\n"));
2992 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2993 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2994 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2995 AssertFatalFailed();
2996}
2997
2998
2999/** Validate the physical address passed to the read functions.
3000 * Useful for finding non-guest-ram reads/writes. */
3001#if 1 /* disable if it becomes bothersome... */
3002# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3003#else
3004# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3005#endif
3006
3007/**
3008 * Read guest RAM and ROM.
3009 *
3010 * @param SrcGCPhys The source address (guest physical).
3011 * @param pvDst The destination address.
3012 * @param cb Number of bytes
3013 */
3014void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3015{
3016 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3017 VBOX_CHECK_ADDR(SrcGCPhys);
3018 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3019 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3020}
3021
3022
3023/**
3024 * Read guest RAM and ROM, unsigned 8-bit.
3025 *
3026 * @param SrcGCPhys The source address (guest physical).
3027 */
3028uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3029{
3030 uint8_t val;
3031 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3032 VBOX_CHECK_ADDR(SrcGCPhys);
3033 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3034 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3035 return val;
3036}
3037
3038
3039/**
3040 * Read guest RAM and ROM, signed 8-bit.
3041 *
3042 * @param SrcGCPhys The source address (guest physical).
3043 */
3044int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3045{
3046 int8_t val;
3047 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3048 VBOX_CHECK_ADDR(SrcGCPhys);
3049 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3050 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3051 return val;
3052}
3053
3054
3055/**
3056 * Read guest RAM and ROM, unsigned 16-bit.
3057 *
3058 * @param SrcGCPhys The source address (guest physical).
3059 */
3060uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3061{
3062 uint16_t val;
3063 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3064 VBOX_CHECK_ADDR(SrcGCPhys);
3065 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3066 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3067 return val;
3068}
3069
3070
3071/**
3072 * Read guest RAM and ROM, signed 16-bit.
3073 *
3074 * @param SrcGCPhys The source address (guest physical).
3075 */
3076int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3077{
3078 uint16_t val;
3079 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3080 VBOX_CHECK_ADDR(SrcGCPhys);
3081 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3082 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3083 return val;
3084}
3085
3086
3087/**
3088 * Read guest RAM and ROM, unsigned 32-bit.
3089 *
3090 * @param SrcGCPhys The source address (guest physical).
3091 */
3092uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3093{
3094 uint32_t val;
3095 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3096 VBOX_CHECK_ADDR(SrcGCPhys);
3097 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3098 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3099 return val;
3100}
3101
3102
3103/**
3104 * Read guest RAM and ROM, signed 32-bit.
3105 *
3106 * @param SrcGCPhys The source address (guest physical).
3107 */
3108int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3109{
3110 int32_t val;
3111 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3112 VBOX_CHECK_ADDR(SrcGCPhys);
3113 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3114 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3115 return val;
3116}
3117
3118
3119/**
3120 * Read guest RAM and ROM, unsigned 64-bit.
3121 *
3122 * @param SrcGCPhys The source address (guest physical).
3123 */
3124uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3125{
3126 uint64_t val;
3127 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3128 VBOX_CHECK_ADDR(SrcGCPhys);
3129 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3130 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3131 return val;
3132}
3133
3134
3135/**
3136 * Write guest RAM.
3137 *
3138 * @param DstGCPhys The destination address (guest physical).
3139 * @param pvSrc The source address.
3140 * @param cb Number of bytes to write
3141 */
3142void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3143{
3144 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3145 VBOX_CHECK_ADDR(DstGCPhys);
3146 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3147 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3148}
3149
3150
3151/**
3152 * Write guest RAM, unsigned 8-bit.
3153 *
3154 * @param DstGCPhys The destination address (guest physical).
3155 * @param val Value
3156 */
3157void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3158{
3159 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3160 VBOX_CHECK_ADDR(DstGCPhys);
3161 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3162 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3163}
3164
3165
3166/**
3167 * Write guest RAM, unsigned 8-bit.
3168 *
3169 * @param DstGCPhys The destination address (guest physical).
3170 * @param val Value
3171 */
3172void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3173{
3174 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3175 VBOX_CHECK_ADDR(DstGCPhys);
3176 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3177 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3178}
3179
3180
3181/**
3182 * Write guest RAM, unsigned 32-bit.
3183 *
3184 * @param DstGCPhys The destination address (guest physical).
3185 * @param val Value
3186 */
3187void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3188{
3189 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3190 VBOX_CHECK_ADDR(DstGCPhys);
3191 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3192 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3193}
3194
3195
3196/**
3197 * Write guest RAM, unsigned 64-bit.
3198 *
3199 * @param DstGCPhys The destination address (guest physical).
3200 * @param val Value
3201 */
3202void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3203{
3204 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3205 VBOX_CHECK_ADDR(DstGCPhys);
3206 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3207 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3208}
3209
3210#undef LOG_GROUP
3211#define LOG_GROUP LOG_GROUP_REM_MMIO
3212
3213/** Read MMIO memory. */
3214static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3215{
3216 uint32_t u32 = 0;
3217 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3218 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3219 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3220 return u32;
3221}
3222
3223/** Read MMIO memory. */
3224static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3225{
3226 uint32_t u32 = 0;
3227 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3228 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3229 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3230 return u32;
3231}
3232
3233/** Read MMIO memory. */
3234static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3235{
3236 uint32_t u32 = 0;
3237 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3238 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3239 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3240 return u32;
3241}
3242
3243/** Write to MMIO memory. */
3244static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3245{
3246 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3247 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3248 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3249}
3250
3251/** Write to MMIO memory. */
3252static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3253{
3254 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3255 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3256 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3257}
3258
3259/** Write to MMIO memory. */
3260static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3261{
3262 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3263 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3264 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3265}
3266
3267
3268#undef LOG_GROUP
3269#define LOG_GROUP LOG_GROUP_REM_HANDLER
3270
3271/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3272
3273static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3274{
3275 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3276 uint8_t u8;
3277 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3278 return u8;
3279}
3280
3281static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3282{
3283 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3284 uint16_t u16;
3285 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3286 return u16;
3287}
3288
3289static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3290{
3291 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3292 uint32_t u32;
3293 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3294 return u32;
3295}
3296
3297static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3298{
3299 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3300 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3301}
3302
3303static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3304{
3305 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3306 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3307}
3308
3309static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3310{
3311 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3312 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3313}
3314
3315/* -+- disassembly -+- */
3316
3317#undef LOG_GROUP
3318#define LOG_GROUP LOG_GROUP_REM_DISAS
3319
3320
3321/**
3322 * Enables or disables singled stepped disassembly.
3323 *
3324 * @returns VBox status code.
3325 * @param pVM VM handle.
3326 * @param fEnable To enable set this flag, to disable clear it.
3327 */
3328static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3329{
3330 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3331 VM_ASSERT_EMT(pVM);
3332
3333 if (fEnable)
3334 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3335 else
3336 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3337 return VINF_SUCCESS;
3338}
3339
3340
3341/**
3342 * Enables or disables singled stepped disassembly.
3343 *
3344 * @returns VBox status code.
3345 * @param pVM VM handle.
3346 * @param fEnable To enable set this flag, to disable clear it.
3347 */
3348REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3349{
3350 PVMREQ pReq;
3351 int rc;
3352
3353 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3354 if (VM_IS_EMT(pVM))
3355 return remR3DisasEnableStepping(pVM, fEnable);
3356
3357 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3358 AssertRC(rc);
3359 if (VBOX_SUCCESS(rc))
3360 rc = pReq->iStatus;
3361 VMR3ReqFree(pReq);
3362 return rc;
3363}
3364
3365
3366#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3367/**
3368 * External Debugger Command: .remstep [on|off|1|0]
3369 */
3370static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3371{
3372 bool fEnable;
3373 int rc;
3374
3375 /* print status */
3376 if (cArgs == 0)
3377 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3378 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3379
3380 /* convert the argument and change the mode. */
3381 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3382 if (VBOX_FAILURE(rc))
3383 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3384 rc = REMR3DisasEnableStepping(pVM, fEnable);
3385 if (VBOX_FAILURE(rc))
3386 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3387 return rc;
3388}
3389#endif
3390
3391
3392/**
3393 * Disassembles n instructions and prints them to the log.
3394 *
3395 * @returns Success indicator.
3396 * @param env Pointer to the recompiler CPU structure.
3397 * @param f32BitCode Indicates that whether or not the code should
3398 * be disassembled as 16 or 32 bit. If -1 the CS
3399 * selector will be inspected.
3400 * @param nrInstructions Nr of instructions to disassemble
3401 * @param pszPrefix
3402 * @remark not currently used for anything but ad-hoc debugging.
3403 */
3404bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3405{
3406 int i;
3407
3408 /*
3409 * Determin 16/32 bit mode.
3410 */
3411 if (f32BitCode == -1)
3412 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3413
3414 /*
3415 * Convert cs:eip to host context address.
3416 * We don't care to much about cross page correctness presently.
3417 */
3418 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3419 void *pvPC;
3420 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3421 {
3422 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3423
3424 /* convert eip to physical address. */
3425 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3426 GCPtrPC,
3427 env->cr[3],
3428 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3429 &pvPC);
3430 if (VBOX_FAILURE(rc))
3431 {
3432 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3433 return false;
3434 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3435 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3436 }
3437 }
3438 else
3439 {
3440 /* physical address */
3441 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3442 if (VBOX_FAILURE(rc))
3443 return false;
3444 }
3445
3446 /*
3447 * Disassemble.
3448 */
3449 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3450 DISCPUSTATE Cpu;
3451 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3452 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3453 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3454 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3455 //Cpu.dwUserData[2] = GCPtrPC;
3456
3457 for (i=0;i<nrInstructions;i++)
3458 {
3459 char szOutput[256];
3460 uint32_t cbOp;
3461 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3462 return false;
3463 if (pszPrefix)
3464 Log(("%s: %s", pszPrefix, szOutput));
3465 else
3466 Log(("%s", szOutput));
3467
3468 pvPC += cbOp;
3469 }
3470 return true;
3471}
3472
3473
3474/** @todo need to test the new code, using the old code in the mean while. */
3475#define USE_OLD_DUMP_AND_DISASSEMBLY
3476
3477/**
3478 * Disassembles one instruction and prints it to the log.
3479 *
3480 * @returns Success indicator.
3481 * @param env Pointer to the recompiler CPU structure.
3482 * @param f32BitCode Indicates that whether or not the code should
3483 * be disassembled as 16 or 32 bit. If -1 the CS
3484 * selector will be inspected.
3485 * @param pszPrefix
3486 */
3487bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3488{
3489#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3490 PVM pVM = env->pVM;
3491
3492 /*
3493 * Determin 16/32 bit mode.
3494 */
3495 if (f32BitCode == -1)
3496 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3497
3498 /*
3499 * Log registers
3500 */
3501 if (LogIs2Enabled())
3502 {
3503 remR3StateUpdate(pVM);
3504 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3505 }
3506
3507 /*
3508 * Convert cs:eip to host context address.
3509 * We don't care to much about cross page correctness presently.
3510 */
3511 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3512 void *pvPC;
3513 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3514 {
3515 /* convert eip to physical address. */
3516 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3517 GCPtrPC,
3518 env->cr[3],
3519 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3520 &pvPC);
3521 if (VBOX_FAILURE(rc))
3522 {
3523 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3524 return false;
3525 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3526 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3527 }
3528 }
3529 else
3530 {
3531
3532 /* physical address */
3533 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3534 if (VBOX_FAILURE(rc))
3535 return false;
3536 }
3537
3538 /*
3539 * Disassemble.
3540 */
3541 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3542 DISCPUSTATE Cpu;
3543 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3544 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3545 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3546 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3547 //Cpu.dwUserData[2] = GCPtrPC;
3548 char szOutput[256];
3549 uint32_t cbOp;
3550 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3551 return false;
3552
3553 if (!f32BitCode)
3554 {
3555 if (pszPrefix)
3556 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3557 else
3558 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3559 }
3560 else
3561 {
3562 if (pszPrefix)
3563 Log(("%s: %s", pszPrefix, szOutput));
3564 else
3565 Log(("%s", szOutput));
3566 }
3567 return true;
3568
3569#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3570 PVM pVM = env->pVM;
3571 const bool fLog = LogIsEnabled();
3572 const bool fLog2 = LogIs2Enabled();
3573 int rc = VINF_SUCCESS;
3574
3575 /*
3576 * Don't bother if there ain't any log output to do.
3577 */
3578 if (!fLog && !fLog2)
3579 return true;
3580
3581 /*
3582 * Update the state so DBGF reads the correct register values.
3583 */
3584 remR3StateUpdate(pVM);
3585
3586 /*
3587 * Log registers if requested.
3588 */
3589 if (!fLog2)
3590 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3591
3592 /*
3593 * Disassemble to log.
3594 */
3595 if (fLog)
3596 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3597
3598 return VBOX_SUCCESS(rc);
3599#endif
3600}
3601
3602
3603/**
3604 * Disassemble recompiled code.
3605 *
3606 * @param phFileIgnored Ignored, logfile usually.
3607 * @param pvCode Pointer to the code block.
3608 * @param cb Size of the code block.
3609 */
3610void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3611{
3612 if (LogIs2Enabled())
3613 {
3614 unsigned off = 0;
3615 char szOutput[256];
3616 DISCPUSTATE Cpu;
3617
3618 memset(&Cpu, 0, sizeof(Cpu));
3619#ifdef RT_ARCH_X86
3620 Cpu.mode = CPUMODE_32BIT;
3621#else
3622 Cpu.mode = CPUMODE_64BIT;
3623#endif
3624
3625 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3626 while (off < cb)
3627 {
3628 uint32_t cbInstr;
3629 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3630 RTLogPrintf("%s", szOutput);
3631 else
3632 {
3633 RTLogPrintf("disas error\n");
3634 cbInstr = 1;
3635#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3636 break;
3637#endif
3638 }
3639 off += cbInstr;
3640 }
3641 }
3642 NOREF(phFileIgnored);
3643}
3644
3645
3646/**
3647 * Disassemble guest code.
3648 *
3649 * @param phFileIgnored Ignored, logfile usually.
3650 * @param uCode The guest address of the code to disassemble. (flat?)
3651 * @param cb Number of bytes to disassemble.
3652 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3653 */
3654void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3655{
3656 if (LogIs2Enabled())
3657 {
3658 PVM pVM = cpu_single_env->pVM;
3659
3660 /*
3661 * Update the state so DBGF reads the correct register values (flags).
3662 */
3663 remR3StateUpdate(pVM);
3664
3665 /*
3666 * Do the disassembling.
3667 */
3668 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3669 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3670 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3671 for (;;)
3672 {
3673 char szBuf[256];
3674 uint32_t cbInstr;
3675 int rc = DBGFR3DisasInstrEx(pVM,
3676 cs,
3677 eip,
3678 0,
3679 szBuf, sizeof(szBuf),
3680 &cbInstr);
3681 if (VBOX_SUCCESS(rc))
3682 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3683 else
3684 {
3685 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3686 cbInstr = 1;
3687 }
3688
3689 /* next */
3690 if (cb <= cbInstr)
3691 break;
3692 cb -= cbInstr;
3693 uCode += cbInstr;
3694 eip += cbInstr;
3695 }
3696 }
3697 NOREF(phFileIgnored);
3698}
3699
3700
3701/**
3702 * Looks up a guest symbol.
3703 *
3704 * @returns Pointer to symbol name. This is a static buffer.
3705 * @param orig_addr The address in question.
3706 */
3707const char *lookup_symbol(target_ulong orig_addr)
3708{
3709 RTGCINTPTR off = 0;
3710 DBGFSYMBOL Sym;
3711 PVM pVM = cpu_single_env->pVM;
3712 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3713 if (VBOX_SUCCESS(rc))
3714 {
3715 static char szSym[sizeof(Sym.szName) + 48];
3716 if (!off)
3717 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3718 else if (off > 0)
3719 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3720 else
3721 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3722 return szSym;
3723 }
3724 return "<N/A>";
3725}
3726
3727
3728#undef LOG_GROUP
3729#define LOG_GROUP LOG_GROUP_REM
3730
3731
3732/* -+- FF notifications -+- */
3733
3734
3735/**
3736 * Notification about a pending interrupt.
3737 *
3738 * @param pVM VM Handle.
3739 * @param u8Interrupt Interrupt
3740 * @thread The emulation thread.
3741 */
3742REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3743{
3744 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3745 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3746}
3747
3748/**
3749 * Notification about a pending interrupt.
3750 *
3751 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3752 * @param pVM VM Handle.
3753 * @thread The emulation thread.
3754 */
3755REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3756{
3757 return pVM->rem.s.u32PendingInterrupt;
3758}
3759
3760/**
3761 * Notification about the interrupt FF being set.
3762 *
3763 * @param pVM VM Handle.
3764 * @thread The emulation thread.
3765 */
3766REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3767{
3768 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3769 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3770 if (pVM->rem.s.fInREM)
3771 {
3772 if (VM_IS_EMT(pVM))
3773 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3774 else
3775 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3776 }
3777}
3778
3779
3780/**
3781 * Notification about the interrupt FF being set.
3782 *
3783 * @param pVM VM Handle.
3784 * @thread Any.
3785 */
3786REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3787{
3788 LogFlow(("REMR3NotifyInterruptClear:\n"));
3789 if (pVM->rem.s.fInREM)
3790 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3791}
3792
3793
3794/**
3795 * Notification about pending timer(s).
3796 *
3797 * @param pVM VM Handle.
3798 * @thread Any.
3799 */
3800REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3801{
3802#ifndef DEBUG_bird
3803 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3804#endif
3805 if (pVM->rem.s.fInREM)
3806 {
3807 if (VM_IS_EMT(pVM))
3808 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3809 else
3810 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3811 }
3812}
3813
3814
3815/**
3816 * Notification about pending DMA transfers.
3817 *
3818 * @param pVM VM Handle.
3819 * @thread Any.
3820 */
3821REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3822{
3823 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3824 if (pVM->rem.s.fInREM)
3825 {
3826 if (VM_IS_EMT(pVM))
3827 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3828 else
3829 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3830 }
3831}
3832
3833
3834/**
3835 * Notification about pending timer(s).
3836 *
3837 * @param pVM VM Handle.
3838 * @thread Any.
3839 */
3840REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3841{
3842 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3843 if (pVM->rem.s.fInREM)
3844 {
3845 if (VM_IS_EMT(pVM))
3846 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3847 else
3848 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3849 }
3850}
3851
3852
3853/**
3854 * Notification about pending FF set by an external thread.
3855 *
3856 * @param pVM VM handle.
3857 * @thread Any.
3858 */
3859REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3860{
3861 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3862 if (pVM->rem.s.fInREM)
3863 {
3864 if (VM_IS_EMT(pVM))
3865 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3866 else
3867 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3868 }
3869}
3870
3871
3872#ifdef VBOX_WITH_STATISTICS
3873void remR3ProfileStart(int statcode)
3874{
3875 STAMPROFILEADV *pStat;
3876 switch(statcode)
3877 {
3878 case STATS_EMULATE_SINGLE_INSTR:
3879 pStat = &gStatExecuteSingleInstr;
3880 break;
3881 case STATS_QEMU_COMPILATION:
3882 pStat = &gStatCompilationQEmu;
3883 break;
3884 case STATS_QEMU_RUN_EMULATED_CODE:
3885 pStat = &gStatRunCodeQEmu;
3886 break;
3887 case STATS_QEMU_TOTAL:
3888 pStat = &gStatTotalTimeQEmu;
3889 break;
3890 case STATS_QEMU_RUN_TIMERS:
3891 pStat = &gStatTimers;
3892 break;
3893 case STATS_TLB_LOOKUP:
3894 pStat= &gStatTBLookup;
3895 break;
3896 case STATS_IRQ_HANDLING:
3897 pStat= &gStatIRQ;
3898 break;
3899 case STATS_RAW_CHECK:
3900 pStat = &gStatRawCheck;
3901 break;
3902
3903 default:
3904 AssertMsgFailed(("unknown stat %d\n", statcode));
3905 return;
3906 }
3907 STAM_PROFILE_ADV_START(pStat, a);
3908}
3909
3910
3911void remR3ProfileStop(int statcode)
3912{
3913 STAMPROFILEADV *pStat;
3914 switch(statcode)
3915 {
3916 case STATS_EMULATE_SINGLE_INSTR:
3917 pStat = &gStatExecuteSingleInstr;
3918 break;
3919 case STATS_QEMU_COMPILATION:
3920 pStat = &gStatCompilationQEmu;
3921 break;
3922 case STATS_QEMU_RUN_EMULATED_CODE:
3923 pStat = &gStatRunCodeQEmu;
3924 break;
3925 case STATS_QEMU_TOTAL:
3926 pStat = &gStatTotalTimeQEmu;
3927 break;
3928 case STATS_QEMU_RUN_TIMERS:
3929 pStat = &gStatTimers;
3930 break;
3931 case STATS_TLB_LOOKUP:
3932 pStat= &gStatTBLookup;
3933 break;
3934 case STATS_IRQ_HANDLING:
3935 pStat= &gStatIRQ;
3936 break;
3937 case STATS_RAW_CHECK:
3938 pStat = &gStatRawCheck;
3939 break;
3940 default:
3941 AssertMsgFailed(("unknown stat %d\n", statcode));
3942 return;
3943 }
3944 STAM_PROFILE_ADV_STOP(pStat, a);
3945}
3946#endif
3947
3948/**
3949 * Raise an RC, force rem exit.
3950 *
3951 * @param pVM VM handle.
3952 * @param rc The rc.
3953 */
3954void remR3RaiseRC(PVM pVM, int rc)
3955{
3956 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3957 Assert(pVM->rem.s.fInREM);
3958 VM_ASSERT_EMT(pVM);
3959 pVM->rem.s.rc = rc;
3960 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3961}
3962
3963
3964/* -+- timers -+- */
3965
3966uint64_t cpu_get_tsc(CPUX86State *env)
3967{
3968 STAM_COUNTER_INC(&gStatCpuGetTSC);
3969 return TMCpuTickGet(env->pVM);
3970}
3971
3972
3973/* -+- interrupts -+- */
3974
3975void cpu_set_ferr(CPUX86State *env)
3976{
3977 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3978 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3979}
3980
3981int cpu_get_pic_interrupt(CPUState *env)
3982{
3983 uint8_t u8Interrupt;
3984 int rc;
3985
3986 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3987 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3988 * with the (a)pic.
3989 */
3990 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3991 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3992 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3993 * remove this kludge. */
3994 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3995 {
3996 rc = VINF_SUCCESS;
3997 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3998 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3999 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4000 }
4001 else
4002 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4003
4004 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4005 if (VBOX_SUCCESS(rc))
4006 {
4007 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4008 env->interrupt_request |= CPU_INTERRUPT_HARD;
4009 return u8Interrupt;
4010 }
4011 return -1;
4012}
4013
4014
4015/* -+- local apic -+- */
4016
4017void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4018{
4019 int rc = PDMApicSetBase(env->pVM, val);
4020 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4021}
4022
4023uint64_t cpu_get_apic_base(CPUX86State *env)
4024{
4025 uint64_t u64;
4026 int rc = PDMApicGetBase(env->pVM, &u64);
4027 if (VBOX_SUCCESS(rc))
4028 {
4029 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4030 return u64;
4031 }
4032 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4033 return 0;
4034}
4035
4036void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4037{
4038 int rc = PDMApicSetTPR(env->pVM, val);
4039 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4040}
4041
4042uint8_t cpu_get_apic_tpr(CPUX86State *env)
4043{
4044 uint8_t u8;
4045 int rc = PDMApicGetTPR(env->pVM, &u8);
4046 if (VBOX_SUCCESS(rc))
4047 {
4048 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4049 return u8;
4050 }
4051 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4052 return 0;
4053}
4054
4055
4056/* -+- I/O Ports -+- */
4057
4058#undef LOG_GROUP
4059#define LOG_GROUP LOG_GROUP_REM_IOPORT
4060
4061void cpu_outb(CPUState *env, int addr, int val)
4062{
4063 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4064 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4065
4066 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4067 if (RT_LIKELY(rc == VINF_SUCCESS))
4068 return;
4069 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4070 {
4071 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4072 remR3RaiseRC(env->pVM, rc);
4073 return;
4074 }
4075 remAbort(rc, __FUNCTION__);
4076}
4077
4078void cpu_outw(CPUState *env, int addr, int val)
4079{
4080 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4081 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4082 if (RT_LIKELY(rc == VINF_SUCCESS))
4083 return;
4084 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4085 {
4086 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4087 remR3RaiseRC(env->pVM, rc);
4088 return;
4089 }
4090 remAbort(rc, __FUNCTION__);
4091}
4092
4093void cpu_outl(CPUState *env, int addr, int val)
4094{
4095 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4096 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4097 if (RT_LIKELY(rc == VINF_SUCCESS))
4098 return;
4099 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4100 {
4101 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4102 remR3RaiseRC(env->pVM, rc);
4103 return;
4104 }
4105 remAbort(rc, __FUNCTION__);
4106}
4107
4108int cpu_inb(CPUState *env, int addr)
4109{
4110 uint32_t u32 = 0;
4111 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4112 if (RT_LIKELY(rc == VINF_SUCCESS))
4113 {
4114 if (/*addr != 0x61 && */addr != 0x71)
4115 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4116 return (int)u32;
4117 }
4118 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4119 {
4120 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4121 remR3RaiseRC(env->pVM, rc);
4122 return (int)u32;
4123 }
4124 remAbort(rc, __FUNCTION__);
4125 return 0xff;
4126}
4127
4128int cpu_inw(CPUState *env, int addr)
4129{
4130 uint32_t u32 = 0;
4131 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4132 if (RT_LIKELY(rc == VINF_SUCCESS))
4133 {
4134 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4135 return (int)u32;
4136 }
4137 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4138 {
4139 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4140 remR3RaiseRC(env->pVM, rc);
4141 return (int)u32;
4142 }
4143 remAbort(rc, __FUNCTION__);
4144 return 0xffff;
4145}
4146
4147int cpu_inl(CPUState *env, int addr)
4148{
4149 uint32_t u32 = 0;
4150 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4151 if (RT_LIKELY(rc == VINF_SUCCESS))
4152 {
4153//if (addr==0x01f0 && u32 == 0x6b6d)
4154// loglevel = ~0;
4155 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4156 return (int)u32;
4157 }
4158 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4159 {
4160 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4161 remR3RaiseRC(env->pVM, rc);
4162 return (int)u32;
4163 }
4164 remAbort(rc, __FUNCTION__);
4165 return 0xffffffff;
4166}
4167
4168#undef LOG_GROUP
4169#define LOG_GROUP LOG_GROUP_REM
4170
4171
4172/* -+- helpers and misc other interfaces -+- */
4173
4174/**
4175 * Perform the CPUID instruction.
4176 *
4177 * ASMCpuId cannot be invoked from some source files where this is used because of global
4178 * register allocations.
4179 *
4180 * @param env Pointer to the recompiler CPU structure.
4181 * @param uOperator CPUID operation (eax).
4182 * @param pvEAX Where to store eax.
4183 * @param pvEBX Where to store ebx.
4184 * @param pvECX Where to store ecx.
4185 * @param pvEDX Where to store edx.
4186 */
4187void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4188{
4189 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4190}
4191
4192
4193#if 0 /* not used */
4194/**
4195 * Interface for qemu hardware to report back fatal errors.
4196 */
4197void hw_error(const char *pszFormat, ...)
4198{
4199 /*
4200 * Bitch about it.
4201 */
4202 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4203 * this in my Odin32 tree at home! */
4204 va_list args;
4205 va_start(args, pszFormat);
4206 RTLogPrintf("fatal error in virtual hardware:");
4207 RTLogPrintfV(pszFormat, args);
4208 va_end(args);
4209 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4210
4211 /*
4212 * If we're in REM context we'll sync back the state before 'jumping' to
4213 * the EMs failure handling.
4214 */
4215 PVM pVM = cpu_single_env->pVM;
4216 if (pVM->rem.s.fInREM)
4217 REMR3StateBack(pVM);
4218 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4219 AssertMsgFailed(("EMR3FatalError returned!\n"));
4220}
4221#endif
4222
4223/**
4224 * Interface for the qemu cpu to report unhandled situation
4225 * raising a fatal VM error.
4226 */
4227void cpu_abort(CPUState *env, const char *pszFormat, ...)
4228{
4229 /*
4230 * Bitch about it.
4231 */
4232 RTLogFlags(NULL, "nodisabled nobuffered");
4233 va_list args;
4234 va_start(args, pszFormat);
4235 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4236 va_end(args);
4237 va_start(args, pszFormat);
4238 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4239 va_end(args);
4240
4241 /*
4242 * If we're in REM context we'll sync back the state before 'jumping' to
4243 * the EMs failure handling.
4244 */
4245 PVM pVM = cpu_single_env->pVM;
4246 if (pVM->rem.s.fInREM)
4247 REMR3StateBack(pVM);
4248 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4249 AssertMsgFailed(("EMR3FatalError returned!\n"));
4250}
4251
4252
4253/**
4254 * Aborts the VM.
4255 *
4256 * @param rc VBox error code.
4257 * @param pszTip Hint about why/when this happend.
4258 */
4259static void remAbort(int rc, const char *pszTip)
4260{
4261 /*
4262 * Bitch about it.
4263 */
4264 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4265 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4266
4267 /*
4268 * Jump back to where we entered the recompiler.
4269 */
4270 PVM pVM = cpu_single_env->pVM;
4271 if (pVM->rem.s.fInREM)
4272 REMR3StateBack(pVM);
4273 EMR3FatalError(pVM, rc);
4274 AssertMsgFailed(("EMR3FatalError returned!\n"));
4275}
4276
4277
4278/**
4279 * Dumps a linux system call.
4280 * @param pVM VM handle.
4281 */
4282void remR3DumpLnxSyscall(PVM pVM)
4283{
4284 static const char *apsz[] =
4285 {
4286 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4287 "sys_exit",
4288 "sys_fork",
4289 "sys_read",
4290 "sys_write",
4291 "sys_open", /* 5 */
4292 "sys_close",
4293 "sys_waitpid",
4294 "sys_creat",
4295 "sys_link",
4296 "sys_unlink", /* 10 */
4297 "sys_execve",
4298 "sys_chdir",
4299 "sys_time",
4300 "sys_mknod",
4301 "sys_chmod", /* 15 */
4302 "sys_lchown16",
4303 "sys_ni_syscall", /* old break syscall holder */
4304 "sys_stat",
4305 "sys_lseek",
4306 "sys_getpid", /* 20 */
4307 "sys_mount",
4308 "sys_oldumount",
4309 "sys_setuid16",
4310 "sys_getuid16",
4311 "sys_stime", /* 25 */
4312 "sys_ptrace",
4313 "sys_alarm",
4314 "sys_fstat",
4315 "sys_pause",
4316 "sys_utime", /* 30 */
4317 "sys_ni_syscall", /* old stty syscall holder */
4318 "sys_ni_syscall", /* old gtty syscall holder */
4319 "sys_access",
4320 "sys_nice",
4321 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4322 "sys_sync",
4323 "sys_kill",
4324 "sys_rename",
4325 "sys_mkdir",
4326 "sys_rmdir", /* 40 */
4327 "sys_dup",
4328 "sys_pipe",
4329 "sys_times",
4330 "sys_ni_syscall", /* old prof syscall holder */
4331 "sys_brk", /* 45 */
4332 "sys_setgid16",
4333 "sys_getgid16",
4334 "sys_signal",
4335 "sys_geteuid16",
4336 "sys_getegid16", /* 50 */
4337 "sys_acct",
4338 "sys_umount", /* recycled never used phys() */
4339 "sys_ni_syscall", /* old lock syscall holder */
4340 "sys_ioctl",
4341 "sys_fcntl", /* 55 */
4342 "sys_ni_syscall", /* old mpx syscall holder */
4343 "sys_setpgid",
4344 "sys_ni_syscall", /* old ulimit syscall holder */
4345 "sys_olduname",
4346 "sys_umask", /* 60 */
4347 "sys_chroot",
4348 "sys_ustat",
4349 "sys_dup2",
4350 "sys_getppid",
4351 "sys_getpgrp", /* 65 */
4352 "sys_setsid",
4353 "sys_sigaction",
4354 "sys_sgetmask",
4355 "sys_ssetmask",
4356 "sys_setreuid16", /* 70 */
4357 "sys_setregid16",
4358 "sys_sigsuspend",
4359 "sys_sigpending",
4360 "sys_sethostname",
4361 "sys_setrlimit", /* 75 */
4362 "sys_old_getrlimit",
4363 "sys_getrusage",
4364 "sys_gettimeofday",
4365 "sys_settimeofday",
4366 "sys_getgroups16", /* 80 */
4367 "sys_setgroups16",
4368 "old_select",
4369 "sys_symlink",
4370 "sys_lstat",
4371 "sys_readlink", /* 85 */
4372 "sys_uselib",
4373 "sys_swapon",
4374 "sys_reboot",
4375 "old_readdir",
4376 "old_mmap", /* 90 */
4377 "sys_munmap",
4378 "sys_truncate",
4379 "sys_ftruncate",
4380 "sys_fchmod",
4381 "sys_fchown16", /* 95 */
4382 "sys_getpriority",
4383 "sys_setpriority",
4384 "sys_ni_syscall", /* old profil syscall holder */
4385 "sys_statfs",
4386 "sys_fstatfs", /* 100 */
4387 "sys_ioperm",
4388 "sys_socketcall",
4389 "sys_syslog",
4390 "sys_setitimer",
4391 "sys_getitimer", /* 105 */
4392 "sys_newstat",
4393 "sys_newlstat",
4394 "sys_newfstat",
4395 "sys_uname",
4396 "sys_iopl", /* 110 */
4397 "sys_vhangup",
4398 "sys_ni_syscall", /* old "idle" system call */
4399 "sys_vm86old",
4400 "sys_wait4",
4401 "sys_swapoff", /* 115 */
4402 "sys_sysinfo",
4403 "sys_ipc",
4404 "sys_fsync",
4405 "sys_sigreturn",
4406 "sys_clone", /* 120 */
4407 "sys_setdomainname",
4408 "sys_newuname",
4409 "sys_modify_ldt",
4410 "sys_adjtimex",
4411 "sys_mprotect", /* 125 */
4412 "sys_sigprocmask",
4413 "sys_ni_syscall", /* old "create_module" */
4414 "sys_init_module",
4415 "sys_delete_module",
4416 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4417 "sys_quotactl",
4418 "sys_getpgid",
4419 "sys_fchdir",
4420 "sys_bdflush",
4421 "sys_sysfs", /* 135 */
4422 "sys_personality",
4423 "sys_ni_syscall", /* reserved for afs_syscall */
4424 "sys_setfsuid16",
4425 "sys_setfsgid16",
4426 "sys_llseek", /* 140 */
4427 "sys_getdents",
4428 "sys_select",
4429 "sys_flock",
4430 "sys_msync",
4431 "sys_readv", /* 145 */
4432 "sys_writev",
4433 "sys_getsid",
4434 "sys_fdatasync",
4435 "sys_sysctl",
4436 "sys_mlock", /* 150 */
4437 "sys_munlock",
4438 "sys_mlockall",
4439 "sys_munlockall",
4440 "sys_sched_setparam",
4441 "sys_sched_getparam", /* 155 */
4442 "sys_sched_setscheduler",
4443 "sys_sched_getscheduler",
4444 "sys_sched_yield",
4445 "sys_sched_get_priority_max",
4446 "sys_sched_get_priority_min", /* 160 */
4447 "sys_sched_rr_get_interval",
4448 "sys_nanosleep",
4449 "sys_mremap",
4450 "sys_setresuid16",
4451 "sys_getresuid16", /* 165 */
4452 "sys_vm86",
4453 "sys_ni_syscall", /* Old sys_query_module */
4454 "sys_poll",
4455 "sys_nfsservctl",
4456 "sys_setresgid16", /* 170 */
4457 "sys_getresgid16",
4458 "sys_prctl",
4459 "sys_rt_sigreturn",
4460 "sys_rt_sigaction",
4461 "sys_rt_sigprocmask", /* 175 */
4462 "sys_rt_sigpending",
4463 "sys_rt_sigtimedwait",
4464 "sys_rt_sigqueueinfo",
4465 "sys_rt_sigsuspend",
4466 "sys_pread64", /* 180 */
4467 "sys_pwrite64",
4468 "sys_chown16",
4469 "sys_getcwd",
4470 "sys_capget",
4471 "sys_capset", /* 185 */
4472 "sys_sigaltstack",
4473 "sys_sendfile",
4474 "sys_ni_syscall", /* reserved for streams1 */
4475 "sys_ni_syscall", /* reserved for streams2 */
4476 "sys_vfork", /* 190 */
4477 "sys_getrlimit",
4478 "sys_mmap2",
4479 "sys_truncate64",
4480 "sys_ftruncate64",
4481 "sys_stat64", /* 195 */
4482 "sys_lstat64",
4483 "sys_fstat64",
4484 "sys_lchown",
4485 "sys_getuid",
4486 "sys_getgid", /* 200 */
4487 "sys_geteuid",
4488 "sys_getegid",
4489 "sys_setreuid",
4490 "sys_setregid",
4491 "sys_getgroups", /* 205 */
4492 "sys_setgroups",
4493 "sys_fchown",
4494 "sys_setresuid",
4495 "sys_getresuid",
4496 "sys_setresgid", /* 210 */
4497 "sys_getresgid",
4498 "sys_chown",
4499 "sys_setuid",
4500 "sys_setgid",
4501 "sys_setfsuid", /* 215 */
4502 "sys_setfsgid",
4503 "sys_pivot_root",
4504 "sys_mincore",
4505 "sys_madvise",
4506 "sys_getdents64", /* 220 */
4507 "sys_fcntl64",
4508 "sys_ni_syscall", /* reserved for TUX */
4509 "sys_ni_syscall",
4510 "sys_gettid",
4511 "sys_readahead", /* 225 */
4512 "sys_setxattr",
4513 "sys_lsetxattr",
4514 "sys_fsetxattr",
4515 "sys_getxattr",
4516 "sys_lgetxattr", /* 230 */
4517 "sys_fgetxattr",
4518 "sys_listxattr",
4519 "sys_llistxattr",
4520 "sys_flistxattr",
4521 "sys_removexattr", /* 235 */
4522 "sys_lremovexattr",
4523 "sys_fremovexattr",
4524 "sys_tkill",
4525 "sys_sendfile64",
4526 "sys_futex", /* 240 */
4527 "sys_sched_setaffinity",
4528 "sys_sched_getaffinity",
4529 "sys_set_thread_area",
4530 "sys_get_thread_area",
4531 "sys_io_setup", /* 245 */
4532 "sys_io_destroy",
4533 "sys_io_getevents",
4534 "sys_io_submit",
4535 "sys_io_cancel",
4536 "sys_fadvise64", /* 250 */
4537 "sys_ni_syscall",
4538 "sys_exit_group",
4539 "sys_lookup_dcookie",
4540 "sys_epoll_create",
4541 "sys_epoll_ctl", /* 255 */
4542 "sys_epoll_wait",
4543 "sys_remap_file_pages",
4544 "sys_set_tid_address",
4545 "sys_timer_create",
4546 "sys_timer_settime", /* 260 */
4547 "sys_timer_gettime",
4548 "sys_timer_getoverrun",
4549 "sys_timer_delete",
4550 "sys_clock_settime",
4551 "sys_clock_gettime", /* 265 */
4552 "sys_clock_getres",
4553 "sys_clock_nanosleep",
4554 "sys_statfs64",
4555 "sys_fstatfs64",
4556 "sys_tgkill", /* 270 */
4557 "sys_utimes",
4558 "sys_fadvise64_64",
4559 "sys_ni_syscall" /* sys_vserver */
4560 };
4561
4562 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4563 switch (uEAX)
4564 {
4565 default:
4566 if (uEAX < ELEMENTS(apsz))
4567 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4568 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4569 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4570 else
4571 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4572 break;
4573
4574 }
4575}
4576
4577
4578/**
4579 * Dumps an OpenBSD system call.
4580 * @param pVM VM handle.
4581 */
4582void remR3DumpOBsdSyscall(PVM pVM)
4583{
4584 static const char *apsz[] =
4585 {
4586 "SYS_syscall", //0
4587 "SYS_exit", //1
4588 "SYS_fork", //2
4589 "SYS_read", //3
4590 "SYS_write", //4
4591 "SYS_open", //5
4592 "SYS_close", //6
4593 "SYS_wait4", //7
4594 "SYS_8",
4595 "SYS_link", //9
4596 "SYS_unlink", //10
4597 "SYS_11",
4598 "SYS_chdir", //12
4599 "SYS_fchdir", //13
4600 "SYS_mknod", //14
4601 "SYS_chmod", //15
4602 "SYS_chown", //16
4603 "SYS_break", //17
4604 "SYS_18",
4605 "SYS_19",
4606 "SYS_getpid", //20
4607 "SYS_mount", //21
4608 "SYS_unmount", //22
4609 "SYS_setuid", //23
4610 "SYS_getuid", //24
4611 "SYS_geteuid", //25
4612 "SYS_ptrace", //26
4613 "SYS_recvmsg", //27
4614 "SYS_sendmsg", //28
4615 "SYS_recvfrom", //29
4616 "SYS_accept", //30
4617 "SYS_getpeername", //31
4618 "SYS_getsockname", //32
4619 "SYS_access", //33
4620 "SYS_chflags", //34
4621 "SYS_fchflags", //35
4622 "SYS_sync", //36
4623 "SYS_kill", //37
4624 "SYS_38",
4625 "SYS_getppid", //39
4626 "SYS_40",
4627 "SYS_dup", //41
4628 "SYS_opipe", //42
4629 "SYS_getegid", //43
4630 "SYS_profil", //44
4631 "SYS_ktrace", //45
4632 "SYS_sigaction", //46
4633 "SYS_getgid", //47
4634 "SYS_sigprocmask", //48
4635 "SYS_getlogin", //49
4636 "SYS_setlogin", //50
4637 "SYS_acct", //51
4638 "SYS_sigpending", //52
4639 "SYS_osigaltstack", //53
4640 "SYS_ioctl", //54
4641 "SYS_reboot", //55
4642 "SYS_revoke", //56
4643 "SYS_symlink", //57
4644 "SYS_readlink", //58
4645 "SYS_execve", //59
4646 "SYS_umask", //60
4647 "SYS_chroot", //61
4648 "SYS_62",
4649 "SYS_63",
4650 "SYS_64",
4651 "SYS_65",
4652 "SYS_vfork", //66
4653 "SYS_67",
4654 "SYS_68",
4655 "SYS_sbrk", //69
4656 "SYS_sstk", //70
4657 "SYS_61",
4658 "SYS_vadvise", //72
4659 "SYS_munmap", //73
4660 "SYS_mprotect", //74
4661 "SYS_madvise", //75
4662 "SYS_76",
4663 "SYS_77",
4664 "SYS_mincore", //78
4665 "SYS_getgroups", //79
4666 "SYS_setgroups", //80
4667 "SYS_getpgrp", //81
4668 "SYS_setpgid", //82
4669 "SYS_setitimer", //83
4670 "SYS_84",
4671 "SYS_85",
4672 "SYS_getitimer", //86
4673 "SYS_87",
4674 "SYS_88",
4675 "SYS_89",
4676 "SYS_dup2", //90
4677 "SYS_91",
4678 "SYS_fcntl", //92
4679 "SYS_select", //93
4680 "SYS_94",
4681 "SYS_fsync", //95
4682 "SYS_setpriority", //96
4683 "SYS_socket", //97
4684 "SYS_connect", //98
4685 "SYS_99",
4686 "SYS_getpriority", //100
4687 "SYS_101",
4688 "SYS_102",
4689 "SYS_sigreturn", //103
4690 "SYS_bind", //104
4691 "SYS_setsockopt", //105
4692 "SYS_listen", //106
4693 "SYS_107",
4694 "SYS_108",
4695 "SYS_109",
4696 "SYS_110",
4697 "SYS_sigsuspend", //111
4698 "SYS_112",
4699 "SYS_113",
4700 "SYS_114",
4701 "SYS_115",
4702 "SYS_gettimeofday", //116
4703 "SYS_getrusage", //117
4704 "SYS_getsockopt", //118
4705 "SYS_119",
4706 "SYS_readv", //120
4707 "SYS_writev", //121
4708 "SYS_settimeofday", //122
4709 "SYS_fchown", //123
4710 "SYS_fchmod", //124
4711 "SYS_125",
4712 "SYS_setreuid", //126
4713 "SYS_setregid", //127
4714 "SYS_rename", //128
4715 "SYS_129",
4716 "SYS_130",
4717 "SYS_flock", //131
4718 "SYS_mkfifo", //132
4719 "SYS_sendto", //133
4720 "SYS_shutdown", //134
4721 "SYS_socketpair", //135
4722 "SYS_mkdir", //136
4723 "SYS_rmdir", //137
4724 "SYS_utimes", //138
4725 "SYS_139",
4726 "SYS_adjtime", //140
4727 "SYS_141",
4728 "SYS_142",
4729 "SYS_143",
4730 "SYS_144",
4731 "SYS_145",
4732 "SYS_146",
4733 "SYS_setsid", //147
4734 "SYS_quotactl", //148
4735 "SYS_149",
4736 "SYS_150",
4737 "SYS_151",
4738 "SYS_152",
4739 "SYS_153",
4740 "SYS_154",
4741 "SYS_nfssvc", //155
4742 "SYS_156",
4743 "SYS_157",
4744 "SYS_158",
4745 "SYS_159",
4746 "SYS_160",
4747 "SYS_getfh", //161
4748 "SYS_162",
4749 "SYS_163",
4750 "SYS_164",
4751 "SYS_sysarch", //165
4752 "SYS_166",
4753 "SYS_167",
4754 "SYS_168",
4755 "SYS_169",
4756 "SYS_170",
4757 "SYS_171",
4758 "SYS_172",
4759 "SYS_pread", //173
4760 "SYS_pwrite", //174
4761 "SYS_175",
4762 "SYS_176",
4763 "SYS_177",
4764 "SYS_178",
4765 "SYS_179",
4766 "SYS_180",
4767 "SYS_setgid", //181
4768 "SYS_setegid", //182
4769 "SYS_seteuid", //183
4770 "SYS_lfs_bmapv", //184
4771 "SYS_lfs_markv", //185
4772 "SYS_lfs_segclean", //186
4773 "SYS_lfs_segwait", //187
4774 "SYS_188",
4775 "SYS_189",
4776 "SYS_190",
4777 "SYS_pathconf", //191
4778 "SYS_fpathconf", //192
4779 "SYS_swapctl", //193
4780 "SYS_getrlimit", //194
4781 "SYS_setrlimit", //195
4782 "SYS_getdirentries", //196
4783 "SYS_mmap", //197
4784 "SYS___syscall", //198
4785 "SYS_lseek", //199
4786 "SYS_truncate", //200
4787 "SYS_ftruncate", //201
4788 "SYS___sysctl", //202
4789 "SYS_mlock", //203
4790 "SYS_munlock", //204
4791 "SYS_205",
4792 "SYS_futimes", //206
4793 "SYS_getpgid", //207
4794 "SYS_xfspioctl", //208
4795 "SYS_209",
4796 "SYS_210",
4797 "SYS_211",
4798 "SYS_212",
4799 "SYS_213",
4800 "SYS_214",
4801 "SYS_215",
4802 "SYS_216",
4803 "SYS_217",
4804 "SYS_218",
4805 "SYS_219",
4806 "SYS_220",
4807 "SYS_semget", //221
4808 "SYS_222",
4809 "SYS_223",
4810 "SYS_224",
4811 "SYS_msgget", //225
4812 "SYS_msgsnd", //226
4813 "SYS_msgrcv", //227
4814 "SYS_shmat", //228
4815 "SYS_229",
4816 "SYS_shmdt", //230
4817 "SYS_231",
4818 "SYS_clock_gettime", //232
4819 "SYS_clock_settime", //233
4820 "SYS_clock_getres", //234
4821 "SYS_235",
4822 "SYS_236",
4823 "SYS_237",
4824 "SYS_238",
4825 "SYS_239",
4826 "SYS_nanosleep", //240
4827 "SYS_241",
4828 "SYS_242",
4829 "SYS_243",
4830 "SYS_244",
4831 "SYS_245",
4832 "SYS_246",
4833 "SYS_247",
4834 "SYS_248",
4835 "SYS_249",
4836 "SYS_minherit", //250
4837 "SYS_rfork", //251
4838 "SYS_poll", //252
4839 "SYS_issetugid", //253
4840 "SYS_lchown", //254
4841 "SYS_getsid", //255
4842 "SYS_msync", //256
4843 "SYS_257",
4844 "SYS_258",
4845 "SYS_259",
4846 "SYS_getfsstat", //260
4847 "SYS_statfs", //261
4848 "SYS_fstatfs", //262
4849 "SYS_pipe", //263
4850 "SYS_fhopen", //264
4851 "SYS_265",
4852 "SYS_fhstatfs", //266
4853 "SYS_preadv", //267
4854 "SYS_pwritev", //268
4855 "SYS_kqueue", //269
4856 "SYS_kevent", //270
4857 "SYS_mlockall", //271
4858 "SYS_munlockall", //272
4859 "SYS_getpeereid", //273
4860 "SYS_274",
4861 "SYS_275",
4862 "SYS_276",
4863 "SYS_277",
4864 "SYS_278",
4865 "SYS_279",
4866 "SYS_280",
4867 "SYS_getresuid", //281
4868 "SYS_setresuid", //282
4869 "SYS_getresgid", //283
4870 "SYS_setresgid", //284
4871 "SYS_285",
4872 "SYS_mquery", //286
4873 "SYS_closefrom", //287
4874 "SYS_sigaltstack", //288
4875 "SYS_shmget", //289
4876 "SYS_semop", //290
4877 "SYS_stat", //291
4878 "SYS_fstat", //292
4879 "SYS_lstat", //293
4880 "SYS_fhstat", //294
4881 "SYS___semctl", //295
4882 "SYS_shmctl", //296
4883 "SYS_msgctl", //297
4884 "SYS_MAXSYSCALL", //298
4885 //299
4886 //300
4887 };
4888 uint32_t uEAX;
4889 if (!LogIsEnabled())
4890 return;
4891 uEAX = CPUMGetGuestEAX(pVM);
4892 switch (uEAX)
4893 {
4894 default:
4895 if (uEAX < ELEMENTS(apsz))
4896 {
4897 uint32_t au32Args[8] = {0};
4898 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4899 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4900 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4901 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4902 }
4903 else
4904 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4905 break;
4906 }
4907}
4908
4909
4910#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4911/**
4912 * The Dll main entry point (stub).
4913 */
4914bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4915{
4916 return true;
4917}
4918
4919void *memcpy(void *dst, const void *src, size_t size)
4920{
4921 uint8_t*pbDst = dst, *pbSrc = src;
4922 while (size-- > 0)
4923 *pbDst++ = *pbSrc++;
4924 return dst;
4925}
4926
4927#endif
4928
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette