VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 9219

Last change on this file since 9219 was 9219, checked in by vboxsync, 16 years ago

More fixes for 32 bits hosts & 64 bits guests.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 150.9 KB
Line 
1/* $Id: VBoxRecompiler.c 9219 2008-05-29 12:03:45Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
460 SSMR3PutU32(pSSM, ~0); /* separator */
461
462 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
463 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
464
465 /*
466 * Save the REM stuff.
467 */
468 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
469 unsigned i;
470 for (i = 0; i < pRem->cInvalidatedPages; i++)
471 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
472
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if (u32Version != REM_SAVED_STATE_VERSION)
497 {
498 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
499 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
500 }
501
502 /*
503 * Do a reset to be on the safe side...
504 */
505 REMR3Reset(pVM);
506
507 /*
508 * Ignore all ignorable notifications.
509 * (Not doing this will cause serious trouble.)
510 */
511 pVM->rem.s.fIgnoreAll = true;
512
513 /*
514 * Load the required CPU Env bits.
515 * (Not much because we're never in REM when doing the save.)
516 */
517 PREM pRem = &pVM->rem.s;
518 Assert(!pRem->fInREM);
519 SSMR3GetU32(pSSM, &pRem->Env.hflags);
520 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
521 uint32_t u32Sep;
522 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (u32Sep != ~0)
526 {
527 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530
531 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
532 SSMR3GetUInt(pSSM, &fRawRing0);
533 if (fRawRing0)
534 pRem->Env.state |= CPU_RAW_RING0;
535
536 /*
537 * Load the REM stuff.
538 */
539 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
543 {
544 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547 unsigned i;
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
577 /*
578 * Clear all lazy flags (only FPU sync for now).
579 */
580 CPUMGetAndClearFPUUsedREM(pVM);
581#endif
582
583 /*
584 * Stop ignoring ignornable notifications.
585 */
586 pVM->rem.s.fIgnoreAll = false;
587
588 return VINF_SUCCESS;
589}
590
591
592
593#undef LOG_GROUP
594#define LOG_GROUP LOG_GROUP_REM_RUN
595
596/**
597 * Single steps an instruction in recompiled mode.
598 *
599 * Before calling this function the REM state needs to be in sync with
600 * the VM. Call REMR3State() to perform the sync. It's only necessary
601 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
602 * and after calling REMR3StateBack().
603 *
604 * @returns VBox status code.
605 *
606 * @param pVM VM Handle.
607 */
608REMR3DECL(int) REMR3Step(PVM pVM)
609{
610 /*
611 * Lock the REM - we don't wanna have anyone interrupting us
612 * while stepping - and enabled single stepping. We also ignore
613 * pending interrupts and suchlike.
614 */
615 int interrupt_request = pVM->rem.s.Env.interrupt_request;
616 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
617 pVM->rem.s.Env.interrupt_request = 0;
618 cpu_single_step(&pVM->rem.s.Env, 1);
619
620 /*
621 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
622 */
623 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
624 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
625
626 /*
627 * Execute and handle the return code.
628 * We execute without enabling the cpu tick, so on success we'll
629 * just flip it on and off to make sure it moves
630 */
631 int rc = cpu_exec(&pVM->rem.s.Env);
632 if (rc == EXCP_DEBUG)
633 {
634 TMCpuTickResume(pVM);
635 TMCpuTickPause(pVM);
636 TMVirtualResume(pVM);
637 TMVirtualPause(pVM);
638 rc = VINF_EM_DBG_STEPPED;
639 }
640 else
641 {
642 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
643 switch (rc)
644 {
645 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
646 case EXCP_HLT:
647 case EXCP_HALTED: rc = VINF_EM_HALT; break;
648 case EXCP_RC:
649 rc = pVM->rem.s.rc;
650 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
651 break;
652 default:
653 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
654 rc = VERR_INTERNAL_ERROR;
655 break;
656 }
657 }
658
659 /*
660 * Restore the stuff we changed to prevent interruption.
661 * Unlock the REM.
662 */
663 if (fBp)
664 {
665 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
666 Assert(rc2 == 0); NOREF(rc2);
667 }
668 cpu_single_step(&pVM->rem.s.Env, 0);
669 pVM->rem.s.Env.interrupt_request = interrupt_request;
670
671 return rc;
672}
673
674
675/**
676 * Set a breakpoint using the REM facilities.
677 *
678 * @returns VBox status code.
679 * @param pVM The VM handle.
680 * @param Address The breakpoint address.
681 * @thread The emulation thread.
682 */
683REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
684{
685 VM_ASSERT_EMT(pVM);
686 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
687 {
688 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
689 return VINF_SUCCESS;
690 }
691 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
692 return VERR_REM_NO_MORE_BP_SLOTS;
693}
694
695
696/**
697 * Clears a breakpoint set by REMR3BreakpointSet().
698 *
699 * @returns VBox status code.
700 * @param pVM The VM handle.
701 * @param Address The breakpoint address.
702 * @thread The emulation thread.
703 */
704REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
705{
706 VM_ASSERT_EMT(pVM);
707 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
708 {
709 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
710 return VINF_SUCCESS;
711 }
712 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
713 return VERR_REM_BP_NOT_FOUND;
714}
715
716
717/**
718 * Emulate an instruction.
719 *
720 * This function executes one instruction without letting anyone
721 * interrupt it. This is intended for being called while being in
722 * raw mode and thus will take care of all the state syncing between
723 * REM and the rest.
724 *
725 * @returns VBox status code.
726 * @param pVM VM handle.
727 */
728REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
729{
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /*
733 * Sync the state and enable single instruction / single stepping.
734 */
735 int rc = REMR3State(pVM);
736 if (VBOX_SUCCESS(rc))
737 {
738 int interrupt_request = pVM->rem.s.Env.interrupt_request;
739 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
740 Assert(!pVM->rem.s.Env.singlestep_enabled);
741#if 1
742
743 /*
744 * Now we set the execute single instruction flag and enter the cpu_exec loop.
745 */
746 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
747 rc = cpu_exec(&pVM->rem.s.Env);
748 switch (rc)
749 {
750 /*
751 * Executed without anything out of the way happening.
752 */
753 case EXCP_SINGLE_INSTR:
754 rc = VINF_EM_RESCHEDULE;
755 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
756 break;
757
758 /*
759 * If we take a trap or start servicing a pending interrupt, we might end up here.
760 * (Timer thread or some other thread wishing EMT's attention.)
761 */
762 case EXCP_INTERRUPT:
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
764 rc = VINF_EM_RESCHEDULE;
765 break;
766
767 /*
768 * Single step, we assume!
769 * If there was a breakpoint there we're fucked now.
770 */
771 case EXCP_DEBUG:
772 {
773 /* breakpoint or single step? */
774 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
775 int iBP;
776 rc = VINF_EM_DBG_STEPPED;
777 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
778 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
779 {
780 rc = VINF_EM_DBG_BREAKPOINT;
781 break;
782 }
783 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
784 break;
785 }
786
787 /*
788 * hlt instruction.
789 */
790 case EXCP_HLT:
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
792 rc = VINF_EM_HALT;
793 break;
794
795 /*
796 * The VM has halted.
797 */
798 case EXCP_HALTED:
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
800 rc = VINF_EM_HALT;
801 break;
802
803 /*
804 * Switch to RAW-mode.
805 */
806 case EXCP_EXECUTE_RAW:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
808 rc = VINF_EM_RESCHEDULE_RAW;
809 break;
810
811 /*
812 * Switch to hardware accelerated RAW-mode.
813 */
814 case EXCP_EXECUTE_HWACC:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
816 rc = VINF_EM_RESCHEDULE_HWACC;
817 break;
818
819 /*
820 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
821 */
822 case EXCP_RC:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
824 rc = pVM->rem.s.rc;
825 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
826 break;
827
828 /*
829 * Figure out the rest when they arrive....
830 */
831 default:
832 AssertMsgFailed(("rc=%d\n", rc));
833 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
834 rc = VINF_EM_RESCHEDULE;
835 break;
836 }
837
838 /*
839 * Switch back the state.
840 */
841#else
842 pVM->rem.s.Env.interrupt_request = 0;
843 cpu_single_step(&pVM->rem.s.Env, 1);
844
845 /*
846 * Execute and handle the return code.
847 * We execute without enabling the cpu tick, so on success we'll
848 * just flip it on and off to make sure it moves.
849 *
850 * (We do not use emulate_single_instr() because that doesn't enter the
851 * right way in will cause serious trouble if a longjmp was attempted.)
852 */
853# ifdef DEBUG_bird
854 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
855# endif
856 int cTimesMax = 16384;
857 uint32_t eip = pVM->rem.s.Env.eip;
858 do
859 {
860 rc = cpu_exec(&pVM->rem.s.Env);
861
862 } while ( eip == pVM->rem.s.Env.eip
863 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
864 && --cTimesMax > 0);
865 switch (rc)
866 {
867 /*
868 * Single step, we assume!
869 * If there was a breakpoint there we're fucked now.
870 */
871 case EXCP_DEBUG:
872 {
873 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
874 rc = VINF_EM_RESCHEDULE;
875 break;
876 }
877
878 /*
879 * We cannot be interrupted!
880 */
881 case EXCP_INTERRUPT:
882 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
883 rc = VERR_INTERNAL_ERROR;
884 break;
885
886 /*
887 * hlt instruction.
888 */
889 case EXCP_HLT:
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
891 rc = VINF_EM_HALT;
892 break;
893
894 /*
895 * The VM has halted.
896 */
897 case EXCP_HALTED:
898 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
899 rc = VINF_EM_HALT;
900 break;
901
902 /*
903 * Switch to RAW-mode.
904 */
905 case EXCP_EXECUTE_RAW:
906 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
907 rc = VINF_EM_RESCHEDULE_RAW;
908 break;
909
910 /*
911 * Switch to hardware accelerated RAW-mode.
912 */
913 case EXCP_EXECUTE_HWACC:
914 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
915 rc = VINF_EM_RESCHEDULE_HWACC;
916 break;
917
918 /*
919 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
920 */
921 case EXCP_RC:
922 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
923 rc = pVM->rem.s.rc;
924 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
925 break;
926
927 /*
928 * Figure out the rest when they arrive....
929 */
930 default:
931 AssertMsgFailed(("rc=%d\n", rc));
932 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
933 rc = VINF_SUCCESS;
934 break;
935 }
936
937 /*
938 * Switch back the state.
939 */
940 cpu_single_step(&pVM->rem.s.Env, 0);
941#endif
942 pVM->rem.s.Env.interrupt_request = interrupt_request;
943 int rc2 = REMR3StateBack(pVM);
944 AssertRC(rc2);
945 }
946
947 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
948 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
949 return rc;
950}
951
952
953/**
954 * Runs code in recompiled mode.
955 *
956 * Before calling this function the REM state needs to be in sync with
957 * the VM. Call REMR3State() to perform the sync. It's only necessary
958 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
959 * and after calling REMR3StateBack().
960 *
961 * @returns VBox status code.
962 *
963 * @param pVM VM Handle.
964 */
965REMR3DECL(int) REMR3Run(PVM pVM)
966{
967 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
968 Assert(pVM->rem.s.fInREM);
969
970 int rc = cpu_exec(&pVM->rem.s.Env);
971 switch (rc)
972 {
973 /*
974 * This happens when the execution was interrupted
975 * by an external event, like pending timers.
976 */
977 case EXCP_INTERRUPT:
978 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
979 rc = VINF_SUCCESS;
980 break;
981
982 /*
983 * hlt instruction.
984 */
985 case EXCP_HLT:
986 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
987 rc = VINF_EM_HALT;
988 break;
989
990 /*
991 * The VM has halted.
992 */
993 case EXCP_HALTED:
994 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
995 rc = VINF_EM_HALT;
996 break;
997
998 /*
999 * Breakpoint/single step.
1000 */
1001 case EXCP_DEBUG:
1002 {
1003#if 0//def DEBUG_bird
1004 static int iBP = 0;
1005 printf("howdy, breakpoint! iBP=%d\n", iBP);
1006 switch (iBP)
1007 {
1008 case 0:
1009 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1010 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1011 //pVM->rem.s.Env.interrupt_request = 0;
1012 //pVM->rem.s.Env.exception_index = -1;
1013 //g_fInterruptDisabled = 1;
1014 rc = VINF_SUCCESS;
1015 asm("int3");
1016 break;
1017 default:
1018 asm("int3");
1019 break;
1020 }
1021 iBP++;
1022#else
1023 /* breakpoint or single step? */
1024 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1025 int iBP;
1026 rc = VINF_EM_DBG_STEPPED;
1027 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1028 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1029 {
1030 rc = VINF_EM_DBG_BREAKPOINT;
1031 break;
1032 }
1033 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1034#endif
1035 break;
1036 }
1037
1038 /*
1039 * Switch to RAW-mode.
1040 */
1041 case EXCP_EXECUTE_RAW:
1042 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1043 rc = VINF_EM_RESCHEDULE_RAW;
1044 break;
1045
1046 /*
1047 * Switch to hardware accelerated RAW-mode.
1048 */
1049 case EXCP_EXECUTE_HWACC:
1050 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1051 rc = VINF_EM_RESCHEDULE_HWACC;
1052 break;
1053
1054 /*
1055 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1056 */
1057 case EXCP_RC:
1058 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1059 rc = pVM->rem.s.rc;
1060 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1061 break;
1062
1063 /*
1064 * Figure out the rest when they arrive....
1065 */
1066 default:
1067 AssertMsgFailed(("rc=%d\n", rc));
1068 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1069 rc = VINF_SUCCESS;
1070 break;
1071 }
1072
1073 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1074 return rc;
1075}
1076
1077
1078/**
1079 * Check if the cpu state is suitable for Raw execution.
1080 *
1081 * @returns boolean
1082 * @param env The CPU env struct.
1083 * @param eip The EIP to check this for (might differ from env->eip).
1084 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1085 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1086 *
1087 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1088 */
1089bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1090{
1091 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1092 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1093 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1094
1095 /* Update counter. */
1096 env->pVM->rem.s.cCanExecuteRaw++;
1097
1098 if (HWACCMIsEnabled(env->pVM))
1099 {
1100 env->state |= CPU_RAW_HWACC;
1101
1102 /*
1103 * Create partial context for HWACCMR3CanExecuteGuest
1104 */
1105 CPUMCTX Ctx;
1106 Ctx.cr0 = env->cr[0];
1107 Ctx.cr3 = env->cr[3];
1108 Ctx.cr4 = env->cr[4];
1109
1110 Ctx.tr = env->tr.selector;
1111 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1112 Ctx.trHid.u32Limit = env->tr.limit;
1113 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1114
1115 Ctx.idtr.cbIdt = env->idt.limit;
1116 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1117
1118 Ctx.eflags.u32 = env->eflags;
1119
1120 Ctx.cs = env->segs[R_CS].selector;
1121 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1122 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1123 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1124
1125 Ctx.ss = env->segs[R_SS].selector;
1126 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1127 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1128 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1129
1130 /* Hardware accelerated raw-mode:
1131 *
1132 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1133 */
1134 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1135 {
1136 *piException = EXCP_EXECUTE_HWACC;
1137 return true;
1138 }
1139 return false;
1140 }
1141
1142 /*
1143 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1144 * or 32 bits protected mode ring 0 code
1145 *
1146 * The tests are ordered by the likelyhood of being true during normal execution.
1147 */
1148 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1149 {
1150 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1151 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1152 return false;
1153 }
1154
1155#ifndef VBOX_RAW_V86
1156 if (fFlags & VM_MASK) {
1157 STAM_COUNTER_INC(&gStatRefuseVM86);
1158 Log2(("raw mode refused: VM_MASK\n"));
1159 return false;
1160 }
1161#endif
1162
1163 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1164 {
1165#ifndef DEBUG_bird
1166 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1167#endif
1168 return false;
1169 }
1170
1171 if (env->singlestep_enabled)
1172 {
1173 //Log2(("raw mode refused: Single step\n"));
1174 return false;
1175 }
1176
1177 if (env->nb_breakpoints > 0)
1178 {
1179 //Log2(("raw mode refused: Breakpoints\n"));
1180 return false;
1181 }
1182
1183 uint32_t u32CR0 = env->cr[0];
1184 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1185 {
1186 STAM_COUNTER_INC(&gStatRefusePaging);
1187 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1188 return false;
1189 }
1190
1191 if (env->cr[4] & CR4_PAE_MASK)
1192 {
1193 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1194 {
1195 STAM_COUNTER_INC(&gStatRefusePAE);
1196 return false;
1197 }
1198 }
1199
1200 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1201 {
1202 if (!EMIsRawRing3Enabled(env->pVM))
1203 return false;
1204
1205 if (!(env->eflags & IF_MASK))
1206 {
1207 STAM_COUNTER_INC(&gStatRefuseIF0);
1208 Log2(("raw mode refused: IF (RawR3)\n"));
1209 return false;
1210 }
1211
1212 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1213 {
1214 STAM_COUNTER_INC(&gStatRefuseWP0);
1215 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1216 return false;
1217 }
1218 }
1219 else
1220 {
1221 if (!EMIsRawRing0Enabled(env->pVM))
1222 return false;
1223
1224 // Let's start with pure 32 bits ring 0 code first
1225 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseCode16);
1228 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1229 return false;
1230 }
1231
1232 // Only R0
1233 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1236 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1237 return false;
1238 }
1239
1240 if (!(u32CR0 & CR0_WP_MASK))
1241 {
1242 STAM_COUNTER_INC(&gStatRefuseWP0);
1243 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1244 return false;
1245 }
1246
1247 if (PATMIsPatchGCAddr(env->pVM, eip))
1248 {
1249 Log2(("raw r0 mode forced: patch code\n"));
1250 *piException = EXCP_EXECUTE_RAW;
1251 return true;
1252 }
1253
1254#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1255 if (!(env->eflags & IF_MASK))
1256 {
1257 STAM_COUNTER_INC(&gStatRefuseIF0);
1258 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1259 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1260 return false;
1261 }
1262#endif
1263
1264 env->state |= CPU_RAW_RING0;
1265 }
1266
1267 /*
1268 * Don't reschedule the first time we're called, because there might be
1269 * special reasons why we're here that is not covered by the above checks.
1270 */
1271 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1272 {
1273 Log2(("raw mode refused: first scheduling\n"));
1274 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1275 return false;
1276 }
1277
1278 Assert(PGMPhysIsA20Enabled(env->pVM));
1279 *piException = EXCP_EXECUTE_RAW;
1280 return true;
1281}
1282
1283
1284/**
1285 * Fetches a code byte.
1286 *
1287 * @returns Success indicator (bool) for ease of use.
1288 * @param env The CPU environment structure.
1289 * @param GCPtrInstr Where to fetch code.
1290 * @param pu8Byte Where to store the byte on success
1291 */
1292bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1293{
1294 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1295 if (VBOX_SUCCESS(rc))
1296 return true;
1297 return false;
1298}
1299
1300
1301/**
1302 * Flush (or invalidate if you like) page table/dir entry.
1303 *
1304 * (invlpg instruction; tlb_flush_page)
1305 *
1306 * @param env Pointer to cpu environment.
1307 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1308 */
1309void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1310{
1311 PVM pVM = env->pVM;
1312
1313 /*
1314 * When we're replaying invlpg instructions or restoring a saved
1315 * state we disable this path.
1316 */
1317 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1318 return;
1319 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1320 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1321
1322 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1323
1324 /*
1325 * Update the control registers before calling PGMFlushPage.
1326 */
1327 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1328 pCtx->cr0 = env->cr[0];
1329 pCtx->cr3 = env->cr[3];
1330 pCtx->cr4 = env->cr[4];
1331
1332 /*
1333 * Let PGM do the rest.
1334 */
1335 int rc = PGMInvalidatePage(pVM, GCPtr);
1336 if (VBOX_FAILURE(rc))
1337 {
1338 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1339 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1340 }
1341 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1342}
1343
1344
1345/**
1346 * Called from tlb_protect_code in order to write monitor a code page.
1347 *
1348 * @param env Pointer to the CPU environment.
1349 * @param GCPtr Code page to monitor
1350 */
1351void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1352{
1353 Assert(env->pVM->rem.s.fInREM);
1354 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1355 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1356 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1357 && !(env->eflags & VM_MASK) /* no V86 mode */
1358 && !HWACCMIsEnabled(env->pVM))
1359 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1360}
1361
1362/**
1363 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1364 *
1365 * @param env Pointer to the CPU environment.
1366 * @param GCPtr Code page to monitor
1367 */
1368void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1369{
1370 Assert(env->pVM->rem.s.fInREM);
1371 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1372 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1373 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1374 && !(env->eflags & VM_MASK) /* no V86 mode */
1375 && !HWACCMIsEnabled(env->pVM))
1376 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1377}
1378
1379
1380/**
1381 * Called when the CPU is initialized, any of the CRx registers are changed or
1382 * when the A20 line is modified.
1383 *
1384 * @param env Pointer to the CPU environment.
1385 * @param fGlobal Set if the flush is global.
1386 */
1387void remR3FlushTLB(CPUState *env, bool fGlobal)
1388{
1389 PVM pVM = env->pVM;
1390
1391 /*
1392 * When we're replaying invlpg instructions or restoring a saved
1393 * state we disable this path.
1394 */
1395 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1396 return;
1397 Assert(pVM->rem.s.fInREM);
1398
1399 /*
1400 * The caller doesn't check cr4, so we have to do that for ourselves.
1401 */
1402 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1403 fGlobal = true;
1404 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1405
1406 /*
1407 * Update the control registers before calling PGMR3FlushTLB.
1408 */
1409 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1410 pCtx->cr0 = env->cr[0];
1411 pCtx->cr3 = env->cr[3];
1412 pCtx->cr4 = env->cr[4];
1413
1414 /*
1415 * Let PGM do the rest.
1416 */
1417 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1418}
1419
1420
1421/**
1422 * Called when any of the cr0, cr4 or efer registers is updated.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 */
1426void remR3ChangeCpuMode(CPUState *env)
1427{
1428 int rc;
1429 PVM pVM = env->pVM;
1430
1431 /*
1432 * When we're replaying loads or restoring a saved
1433 * state this path is disabled.
1434 */
1435 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Assert(pVM->rem.s.fInREM);
1438
1439 /*
1440 * Update the control registers before calling PGMR3ChangeMode()
1441 * as it may need to map whatever cr3 is pointing to.
1442 */
1443 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1444 pCtx->cr0 = env->cr[0];
1445 pCtx->cr3 = env->cr[3];
1446 pCtx->cr4 = env->cr[4];
1447
1448#ifdef TARGET_X86_64
1449 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1450 if (rc != VINF_SUCCESS)
1451 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1452#else
1453 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1454 if (rc != VINF_SUCCESS)
1455 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1456#endif
1457}
1458
1459
1460/**
1461 * Called from compiled code to run dma.
1462 *
1463 * @param env Pointer to the CPU environment.
1464 */
1465void remR3DmaRun(CPUState *env)
1466{
1467 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1468 PDMR3DmaRun(env->pVM);
1469 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1470}
1471
1472
1473/**
1474 * Called from compiled code to schedule pending timers in VMM
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3TimersRun(CPUState *env)
1479{
1480 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1481 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1482 TMR3TimerQueuesDo(env->pVM);
1483 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1484 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1485}
1486
1487
1488/**
1489 * Record trap occurance
1490 *
1491 * @returns VBox status code
1492 * @param env Pointer to the CPU environment.
1493 * @param uTrap Trap nr
1494 * @param uErrorCode Error code
1495 * @param pvNextEIP Next EIP
1496 */
1497int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1498{
1499 PVM pVM = env->pVM;
1500#ifdef VBOX_WITH_STATISTICS
1501 static STAMCOUNTER s_aStatTrap[255];
1502 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1503#endif
1504
1505#ifdef VBOX_WITH_STATISTICS
1506 if (uTrap < 255)
1507 {
1508 if (!s_aRegisters[uTrap])
1509 {
1510 s_aRegisters[uTrap] = true;
1511 char szStatName[64];
1512 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1513 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1514 }
1515 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1516 }
1517#endif
1518 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1519 if( uTrap < 0x20
1520 && (env->cr[0] & X86_CR0_PE)
1521 && !(env->eflags & X86_EFL_VM))
1522 {
1523#ifdef DEBUG
1524 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1525#endif
1526 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1527 {
1528 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1529 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1530 return VERR_REM_TOO_MANY_TRAPS;
1531 }
1532 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1533 pVM->rem.s.cPendingExceptions = 1;
1534 pVM->rem.s.uPendingException = uTrap;
1535 pVM->rem.s.uPendingExcptEIP = env->eip;
1536 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1537 }
1538 else
1539 {
1540 pVM->rem.s.cPendingExceptions = 0;
1541 pVM->rem.s.uPendingException = uTrap;
1542 pVM->rem.s.uPendingExcptEIP = env->eip;
1543 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1544 }
1545 return VINF_SUCCESS;
1546}
1547
1548
1549/*
1550 * Clear current active trap
1551 *
1552 * @param pVM VM Handle.
1553 */
1554void remR3TrapClear(PVM pVM)
1555{
1556 pVM->rem.s.cPendingExceptions = 0;
1557 pVM->rem.s.uPendingException = 0;
1558 pVM->rem.s.uPendingExcptEIP = 0;
1559 pVM->rem.s.uPendingExcptCR2 = 0;
1560}
1561
1562
1563/*
1564 * Record previous call instruction addresses
1565 *
1566 * @param env Pointer to the CPU environment.
1567 */
1568void remR3RecordCall(CPUState *env)
1569{
1570 CSAMR3RecordCallAddress(env->pVM, env->eip);
1571}
1572
1573
1574/**
1575 * Syncs the internal REM state with the VM.
1576 *
1577 * This must be called before REMR3Run() is invoked whenever when the REM
1578 * state is not up to date. Calling it several times in a row is not
1579 * permitted.
1580 *
1581 * @returns VBox status code.
1582 *
1583 * @param pVM VM Handle.
1584 *
1585 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1586 * no do this since the majority of the callers don't want any unnecessary of events
1587 * pending that would immediatly interrupt execution.
1588 */
1589REMR3DECL(int) REMR3State(PVM pVM)
1590{
1591 Log2(("REMR3State:\n"));
1592 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1593 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1594 register unsigned fFlags;
1595 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1596
1597 Assert(!pVM->rem.s.fInREM);
1598 pVM->rem.s.fInStateSync = true;
1599
1600 /*
1601 * Copy the registers which requires no special handling.
1602 */
1603 Assert(R_EAX == 0);
1604 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1605 Assert(R_ECX == 1);
1606 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1607 Assert(R_EDX == 2);
1608 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1609 Assert(R_EBX == 3);
1610 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1611 Assert(R_ESP == 4);
1612 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1613 Assert(R_EBP == 5);
1614 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1615 Assert(R_ESI == 6);
1616 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1617 Assert(R_EDI == 7);
1618 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1619 pVM->rem.s.Env.eip = pCtx->eip;
1620
1621 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1622
1623 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1624
1625 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1626 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1627 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1628 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1629 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1630 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1631 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1632 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1633 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1634
1635 /*
1636 * Clear the halted hidden flag (the interrupt waking up the CPU can
1637 * have been dispatched in raw mode).
1638 */
1639 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1640
1641 /*
1642 * Replay invlpg?
1643 */
1644 if (pVM->rem.s.cInvalidatedPages)
1645 {
1646 pVM->rem.s.fIgnoreInvlPg = true;
1647 RTUINT i;
1648 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1649 {
1650 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1651 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1652 }
1653 pVM->rem.s.fIgnoreInvlPg = false;
1654 pVM->rem.s.cInvalidatedPages = 0;
1655 }
1656
1657 /*
1658 * Registers which are rarely changed and require special handling / order when changed.
1659 */
1660 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1661 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1662 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1663 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1664 {
1665 if (fFlags & CPUM_CHANGED_FPU_REM)
1666 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1667
1668 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1669 {
1670 pVM->rem.s.fIgnoreCR3Load = true;
1671 tlb_flush(&pVM->rem.s.Env, true);
1672 pVM->rem.s.fIgnoreCR3Load = false;
1673 }
1674
1675 if (fFlags & CPUM_CHANGED_CR4)
1676 {
1677 pVM->rem.s.fIgnoreCR3Load = true;
1678 pVM->rem.s.fIgnoreCpuMode = true;
1679 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1680 pVM->rem.s.fIgnoreCpuMode = false;
1681 pVM->rem.s.fIgnoreCR3Load = false;
1682 }
1683
1684 if (fFlags & CPUM_CHANGED_CR0)
1685 {
1686 pVM->rem.s.fIgnoreCR3Load = true;
1687 pVM->rem.s.fIgnoreCpuMode = true;
1688 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1689 pVM->rem.s.fIgnoreCpuMode = false;
1690 pVM->rem.s.fIgnoreCR3Load = false;
1691 }
1692
1693 if (fFlags & CPUM_CHANGED_CR3)
1694 {
1695 pVM->rem.s.fIgnoreCR3Load = true;
1696 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1697 pVM->rem.s.fIgnoreCR3Load = false;
1698 }
1699
1700 if (fFlags & CPUM_CHANGED_GDTR)
1701 {
1702 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1703 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1704 }
1705
1706 if (fFlags & CPUM_CHANGED_IDTR)
1707 {
1708 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1709 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1710 }
1711
1712 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1713 {
1714 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1715 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1716 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1717 }
1718
1719 if (fFlags & CPUM_CHANGED_LDTR)
1720 {
1721 if (fHiddenSelRegsValid)
1722 {
1723 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1724 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1725 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1726 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1727 }
1728 else
1729 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1730 }
1731
1732 if (fFlags & CPUM_CHANGED_TR)
1733 {
1734 if (fHiddenSelRegsValid)
1735 {
1736 pVM->rem.s.Env.tr.selector = pCtx->tr;
1737 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1738 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1739 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1740 }
1741 else
1742 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1743
1744 /** @note do_interrupt will fault if the busy flag is still set.... */
1745 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1746 }
1747
1748 if (fFlags & CPUM_CHANGED_CPUID)
1749 {
1750 uint32_t u32Dummy;
1751
1752 /*
1753 * Get the CPUID features.
1754 */
1755 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1756 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1757 }
1758 }
1759
1760 /*
1761 * Update selector registers.
1762 * This must be done *after* we've synced gdt, ldt and crX registers
1763 * since we're reading the GDT/LDT om sync_seg. This will happen with
1764 * saved state which takes a quick dip into rawmode for instance.
1765 */
1766 /*
1767 * Stack; Note first check this one as the CPL might have changed. The
1768 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1769 */
1770
1771 if (fHiddenSelRegsValid)
1772 {
1773 /* The hidden selector registers are valid in the CPU context. */
1774 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1775
1776 /* Set current CPL */
1777 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1778
1779 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1780 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1781 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1782 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1783 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1784 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1785 }
1786 else
1787 {
1788 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1789 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1790 {
1791 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1792
1793 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1794 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1795#ifdef VBOX_WITH_STATISTICS
1796 if (pVM->rem.s.Env.segs[R_SS].newselector)
1797 {
1798 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1799 }
1800#endif
1801 }
1802 else
1803 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1804
1805 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1806 {
1807 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1808 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1809#ifdef VBOX_WITH_STATISTICS
1810 if (pVM->rem.s.Env.segs[R_ES].newselector)
1811 {
1812 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1813 }
1814#endif
1815 }
1816 else
1817 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1818
1819 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1820 {
1821 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1822 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1823#ifdef VBOX_WITH_STATISTICS
1824 if (pVM->rem.s.Env.segs[R_CS].newselector)
1825 {
1826 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1827 }
1828#endif
1829 }
1830 else
1831 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1832
1833 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1834 {
1835 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1836 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1837#ifdef VBOX_WITH_STATISTICS
1838 if (pVM->rem.s.Env.segs[R_DS].newselector)
1839 {
1840 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1841 }
1842#endif
1843 }
1844 else
1845 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1846
1847 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1848 * be the same but not the base/limit. */
1849 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1850 {
1851 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1852 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1853#ifdef VBOX_WITH_STATISTICS
1854 if (pVM->rem.s.Env.segs[R_FS].newselector)
1855 {
1856 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1857 }
1858#endif
1859 }
1860 else
1861 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1862
1863 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1864 {
1865 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1866 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1867#ifdef VBOX_WITH_STATISTICS
1868 if (pVM->rem.s.Env.segs[R_GS].newselector)
1869 {
1870 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1871 }
1872#endif
1873 }
1874 else
1875 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1876 }
1877
1878 /* Update MSRs. */
1879 pVM->rem.s.Env.efer = pCtx->msrEFER;
1880 pVM->rem.s.Env.star = pCtx->msrSTAR;
1881 pVM->rem.s.Env.pat = pCtx->msrPAT;
1882#ifdef TARGET_X86_64
1883 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1884 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1885 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1886 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1887#endif
1888 /* Note that FS_BASE & GS_BASE are already synced; QEmu keeps them in the hidden selector registers.
1889 * So we basically assume the hidden registers are in sync with these MSRs (vt-x & amd-v). Correct??
1890 */
1891
1892 /*
1893 * Check for traps.
1894 */
1895 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1896 TRPMEVENT enmType;
1897 uint8_t u8TrapNo;
1898 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1899 if (VBOX_SUCCESS(rc))
1900 {
1901#ifdef DEBUG
1902 if (u8TrapNo == 0x80)
1903 {
1904 remR3DumpLnxSyscall(pVM);
1905 remR3DumpOBsdSyscall(pVM);
1906 }
1907#endif
1908
1909 pVM->rem.s.Env.exception_index = u8TrapNo;
1910 if (enmType != TRPM_SOFTWARE_INT)
1911 {
1912 pVM->rem.s.Env.exception_is_int = 0;
1913 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1914 }
1915 else
1916 {
1917 /*
1918 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1919 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1920 * for int03 and into.
1921 */
1922 pVM->rem.s.Env.exception_is_int = 1;
1923 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1924 /* int 3 may be generated by one-byte 0xcc */
1925 if (u8TrapNo == 3)
1926 {
1927 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1928 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1929 }
1930 /* int 4 may be generated by one-byte 0xce */
1931 else if (u8TrapNo == 4)
1932 {
1933 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1934 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1935 }
1936 }
1937
1938 /* get error code and cr2 if needed. */
1939 switch (u8TrapNo)
1940 {
1941 case 0x0e:
1942 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1943 /* fallthru */
1944 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1945 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1946 break;
1947
1948 case 0x11: case 0x08:
1949 default:
1950 pVM->rem.s.Env.error_code = 0;
1951 break;
1952 }
1953
1954 /*
1955 * We can now reset the active trap since the recompiler is gonna have a go at it.
1956 */
1957 rc = TRPMResetTrap(pVM);
1958 AssertRC(rc);
1959 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1960 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1961 }
1962
1963 /*
1964 * Clear old interrupt request flags; Check for pending hardware interrupts.
1965 * (See @remark for why we don't check for other FFs.)
1966 */
1967 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1968 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1969 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1970 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1971
1972 /*
1973 * We're now in REM mode.
1974 */
1975 pVM->rem.s.fInREM = true;
1976 pVM->rem.s.fInStateSync = false;
1977 pVM->rem.s.cCanExecuteRaw = 0;
1978 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1979 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1980 return VINF_SUCCESS;
1981}
1982
1983
1984/**
1985 * Syncs back changes in the REM state to the the VM state.
1986 *
1987 * This must be called after invoking REMR3Run().
1988 * Calling it several times in a row is not permitted.
1989 *
1990 * @returns VBox status code.
1991 *
1992 * @param pVM VM Handle.
1993 */
1994REMR3DECL(int) REMR3StateBack(PVM pVM)
1995{
1996 Log2(("REMR3StateBack:\n"));
1997 Assert(pVM->rem.s.fInREM);
1998 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1999 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2000
2001 /*
2002 * Copy back the registers.
2003 * This is done in the order they are declared in the CPUMCTX structure.
2004 */
2005
2006 /** @todo FOP */
2007 /** @todo FPUIP */
2008 /** @todo CS */
2009 /** @todo FPUDP */
2010 /** @todo DS */
2011 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2012 pCtx->fpu.MXCSR = 0;
2013 pCtx->fpu.MXCSR_MASK = 0;
2014
2015 /** @todo check if FPU/XMM was actually used in the recompiler */
2016 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2017//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2018
2019 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2020 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2021 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2022 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2023 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2024 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2025 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2026
2027 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2028 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2029
2030#ifdef VBOX_WITH_STATISTICS
2031 if (pVM->rem.s.Env.segs[R_SS].newselector)
2032 {
2033 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2034 }
2035 if (pVM->rem.s.Env.segs[R_GS].newselector)
2036 {
2037 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2038 }
2039 if (pVM->rem.s.Env.segs[R_FS].newselector)
2040 {
2041 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2042 }
2043 if (pVM->rem.s.Env.segs[R_ES].newselector)
2044 {
2045 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2046 }
2047 if (pVM->rem.s.Env.segs[R_DS].newselector)
2048 {
2049 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2050 }
2051 if (pVM->rem.s.Env.segs[R_CS].newselector)
2052 {
2053 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2054 }
2055#endif
2056 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2057 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2058 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2059 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2060 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2061
2062 pCtx->eip = pVM->rem.s.Env.eip;
2063 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2064
2065 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2066 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2067 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2068 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2069
2070 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2071 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2072 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2073 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2074 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2075 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2076 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2077 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2078
2079 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2080 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2081 {
2082 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2083 STAM_COUNTER_INC(&gStatREMGDTChange);
2084 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2085 }
2086
2087 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2088 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2089 {
2090 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2091 STAM_COUNTER_INC(&gStatREMIDTChange);
2092 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2093 }
2094
2095 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2096 {
2097 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2098 STAM_COUNTER_INC(&gStatREMLDTRChange);
2099 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2100 }
2101 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2102 {
2103 pCtx->tr = pVM->rem.s.Env.tr.selector;
2104 STAM_COUNTER_INC(&gStatREMTRChange);
2105 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2106 }
2107
2108 /** @todo These values could still be out of sync! */
2109 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2110 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2111 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2112 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2113
2114 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2115 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2116 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2117
2118 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2119 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2120 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2121
2122 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2123 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2124 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2125
2126 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2127 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2128 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2129
2130 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2131 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2132 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2133
2134 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2135 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2136 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2137
2138 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2139 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2140 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2141
2142 /* Sysenter MSR */
2143 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2144 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2145 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2146
2147 /* System MSRs. */
2148 pCtx->msrEFER = pVM->rem.s.Env.efer;
2149 pCtx->msrSTAR = pVM->rem.s.Env.star;
2150 pCtx->msrPAT = pVM->rem.s.Env.pat;
2151#ifdef TARGET_X86_64
2152 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2153 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2154 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2155 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2156 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2157 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2158#endif
2159
2160 remR3TrapClear(pVM);
2161
2162 /*
2163 * Check for traps.
2164 */
2165 if ( pVM->rem.s.Env.exception_index >= 0
2166 && pVM->rem.s.Env.exception_index < 256)
2167 {
2168 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2169 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2170 AssertRC(rc);
2171 switch (pVM->rem.s.Env.exception_index)
2172 {
2173 case 0x0e:
2174 TRPMSetFaultAddress(pVM, pCtx->cr2);
2175 /* fallthru */
2176 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2177 case 0x11: case 0x08: /* 0 */
2178 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2179 break;
2180 }
2181
2182 }
2183
2184 /*
2185 * We're not longer in REM mode.
2186 */
2187 pVM->rem.s.fInREM = false;
2188 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2189 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2190 return VINF_SUCCESS;
2191}
2192
2193
2194/**
2195 * This is called by the disassembler when it wants to update the cpu state
2196 * before for instance doing a register dump.
2197 */
2198static void remR3StateUpdate(PVM pVM)
2199{
2200 Assert(pVM->rem.s.fInREM);
2201 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2202
2203 /*
2204 * Copy back the registers.
2205 * This is done in the order they are declared in the CPUMCTX structure.
2206 */
2207
2208 /** @todo FOP */
2209 /** @todo FPUIP */
2210 /** @todo CS */
2211 /** @todo FPUDP */
2212 /** @todo DS */
2213 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2214 pCtx->fpu.MXCSR = 0;
2215 pCtx->fpu.MXCSR_MASK = 0;
2216
2217 /** @todo check if FPU/XMM was actually used in the recompiler */
2218 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2219//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2220
2221 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2222 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2223 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2224 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2225 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2226 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2227 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2228
2229 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2230 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2231
2232 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2233 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2234 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2235 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2236 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2237
2238 pCtx->eip = pVM->rem.s.Env.eip;
2239 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2240
2241 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2242 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2243 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2244 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2245
2246 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2247 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2248 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2249 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2250 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2251 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2252 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2253 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2254
2255 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2256 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2257 {
2258 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2259 STAM_COUNTER_INC(&gStatREMGDTChange);
2260 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2261 }
2262
2263 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2264 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2265 {
2266 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2267 STAM_COUNTER_INC(&gStatREMIDTChange);
2268 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2269 }
2270
2271 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2272 {
2273 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2274 STAM_COUNTER_INC(&gStatREMLDTRChange);
2275 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2276 }
2277 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2278 {
2279 pCtx->tr = pVM->rem.s.Env.tr.selector;
2280 STAM_COUNTER_INC(&gStatREMTRChange);
2281 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2282 }
2283
2284 /** @todo These values could still be out of sync! */
2285 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2286 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2287 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2288 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2289
2290 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2291 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2292 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2293
2294 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2295 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2296 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2297
2298 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2299 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2300 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2301
2302 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2303 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2304 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2305
2306 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2307 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2308 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2309
2310 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2311 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2312 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2313
2314 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2315 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2316 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2317
2318 /* Sysenter MSR */
2319 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2320 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2321 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2322}
2323
2324
2325/**
2326 * Update the VMM state information if we're currently in REM.
2327 *
2328 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2329 * we're currently executing in REM and the VMM state is invalid. This method will of
2330 * course check that we're executing in REM before syncing any data over to the VMM.
2331 *
2332 * @param pVM The VM handle.
2333 */
2334REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2335{
2336 if (pVM->rem.s.fInREM)
2337 remR3StateUpdate(pVM);
2338}
2339
2340
2341#undef LOG_GROUP
2342#define LOG_GROUP LOG_GROUP_REM
2343
2344
2345/**
2346 * Notify the recompiler about Address Gate 20 state change.
2347 *
2348 * This notification is required since A20 gate changes are
2349 * initialized from a device driver and the VM might just as
2350 * well be in REM mode as in RAW mode.
2351 *
2352 * @param pVM VM handle.
2353 * @param fEnable True if the gate should be enabled.
2354 * False if the gate should be disabled.
2355 */
2356REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2357{
2358 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2359 VM_ASSERT_EMT(pVM);
2360 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2361}
2362
2363
2364/**
2365 * Replays the invalidated recorded pages.
2366 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2367 *
2368 * @param pVM VM handle.
2369 */
2370REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2371{
2372 VM_ASSERT_EMT(pVM);
2373
2374 /*
2375 * Sync the required registers.
2376 */
2377 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2378 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2379 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2380 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2381
2382 /*
2383 * Replay the flushes.
2384 */
2385 pVM->rem.s.fIgnoreInvlPg = true;
2386 RTUINT i;
2387 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2388 {
2389 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2390 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2391 }
2392 pVM->rem.s.fIgnoreInvlPg = false;
2393 pVM->rem.s.cInvalidatedPages = 0;
2394}
2395
2396
2397/**
2398 * Replays the invalidated recorded pages.
2399 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2400 *
2401 * @param pVM VM handle.
2402 */
2403REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2404{
2405 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2406 VM_ASSERT_EMT(pVM);
2407
2408 /*
2409 * Replay the flushes.
2410 */
2411 RTUINT i;
2412 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2413 pVM->rem.s.cHandlerNotifications = 0;
2414 for (i = 0; i < c; i++)
2415 {
2416 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2417 switch (pRec->enmKind)
2418 {
2419 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2420 REMR3NotifyHandlerPhysicalRegister(pVM,
2421 pRec->u.PhysicalRegister.enmType,
2422 pRec->u.PhysicalRegister.GCPhys,
2423 pRec->u.PhysicalRegister.cb,
2424 pRec->u.PhysicalRegister.fHasHCHandler);
2425 break;
2426
2427 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2428 REMR3NotifyHandlerPhysicalDeregister(pVM,
2429 pRec->u.PhysicalDeregister.enmType,
2430 pRec->u.PhysicalDeregister.GCPhys,
2431 pRec->u.PhysicalDeregister.cb,
2432 pRec->u.PhysicalDeregister.fHasHCHandler,
2433 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2434 break;
2435
2436 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2437 REMR3NotifyHandlerPhysicalModify(pVM,
2438 pRec->u.PhysicalModify.enmType,
2439 pRec->u.PhysicalModify.GCPhysOld,
2440 pRec->u.PhysicalModify.GCPhysNew,
2441 pRec->u.PhysicalModify.cb,
2442 pRec->u.PhysicalModify.fHasHCHandler,
2443 pRec->u.PhysicalModify.fRestoreAsRAM);
2444 break;
2445
2446 default:
2447 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2448 break;
2449 }
2450 }
2451}
2452
2453
2454/**
2455 * Notify REM about changed code page.
2456 *
2457 * @returns VBox status code.
2458 * @param pVM VM handle.
2459 * @param pvCodePage Code page address
2460 */
2461REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2462{
2463 int rc;
2464 RTGCPHYS PhysGC;
2465 uint64_t flags;
2466
2467 VM_ASSERT_EMT(pVM);
2468
2469 /*
2470 * Get the physical page address.
2471 */
2472 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2473 if (rc == VINF_SUCCESS)
2474 {
2475 /*
2476 * Sync the required registers and flush the whole page.
2477 * (Easier to do the whole page than notifying it about each physical
2478 * byte that was changed.
2479 */
2480 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2481 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2482 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2483 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2484
2485 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2486 }
2487 return VINF_SUCCESS;
2488}
2489
2490
2491/**
2492 * Notification about a successful MMR3PhysRegister() call.
2493 *
2494 * @param pVM VM handle.
2495 * @param GCPhys The physical address the RAM.
2496 * @param cb Size of the memory.
2497 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2498 */
2499REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2500{
2501 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2502 VM_ASSERT_EMT(pVM);
2503
2504 /*
2505 * Validate input - we trust the caller.
2506 */
2507 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2508 Assert(cb);
2509 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2510
2511 /*
2512 * Base ram?
2513 */
2514 if (!GCPhys)
2515 {
2516 phys_ram_size = cb;
2517 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2518#ifndef VBOX_STRICT
2519 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2520 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2521#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2522 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2523 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2524 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2525 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2526 AssertRC(rc);
2527 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2528#endif
2529 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2530 }
2531
2532 /*
2533 * Register the ram.
2534 */
2535 Assert(!pVM->rem.s.fIgnoreAll);
2536 pVM->rem.s.fIgnoreAll = true;
2537
2538#ifdef VBOX_WITH_NEW_PHYS_CODE
2539 if (fFlags & MM_RAM_FLAGS_RESERVED)
2540 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2541 else
2542 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2543#else
2544 if (!GCPhys)
2545 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2546 else
2547 {
2548 if (fFlags & MM_RAM_FLAGS_RESERVED)
2549 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2550 else
2551 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2552 }
2553#endif
2554 Assert(pVM->rem.s.fIgnoreAll);
2555 pVM->rem.s.fIgnoreAll = false;
2556}
2557
2558#ifndef VBOX_WITH_NEW_PHYS_CODE
2559
2560/**
2561 * Notification about a successful PGMR3PhysRegisterChunk() call.
2562 *
2563 * @param pVM VM handle.
2564 * @param GCPhys The physical address the RAM.
2565 * @param cb Size of the memory.
2566 * @param pvRam The HC address of the RAM.
2567 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2568 */
2569REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2570{
2571 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2572 VM_ASSERT_EMT(pVM);
2573
2574 /*
2575 * Validate input - we trust the caller.
2576 */
2577 Assert(pvRam);
2578 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2579 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2580 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2581 Assert(fFlags == 0 /* normal RAM */);
2582 Assert(!pVM->rem.s.fIgnoreAll);
2583 pVM->rem.s.fIgnoreAll = true;
2584
2585 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2586
2587 Assert(pVM->rem.s.fIgnoreAll);
2588 pVM->rem.s.fIgnoreAll = false;
2589}
2590
2591
2592/**
2593 * Grows dynamically allocated guest RAM.
2594 * Will raise a fatal error if the operation fails.
2595 *
2596 * @param physaddr The physical address.
2597 */
2598void remR3GrowDynRange(unsigned long physaddr)
2599{
2600 int rc;
2601 PVM pVM = cpu_single_env->pVM;
2602
2603 Log(("remR3GrowDynRange %VGp\n", physaddr));
2604 const RTGCPHYS GCPhys = physaddr;
2605 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2606 if (VBOX_SUCCESS(rc))
2607 return;
2608
2609 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2610 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2611 AssertFatalFailed();
2612}
2613
2614#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2615
2616/**
2617 * Notification about a successful MMR3PhysRomRegister() call.
2618 *
2619 * @param pVM VM handle.
2620 * @param GCPhys The physical address of the ROM.
2621 * @param cb The size of the ROM.
2622 * @param pvCopy Pointer to the ROM copy.
2623 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2624 * This function will be called when ever the protection of the
2625 * shadow ROM changes (at reset and end of POST).
2626 */
2627REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2628{
2629 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2630 VM_ASSERT_EMT(pVM);
2631
2632 /*
2633 * Validate input - we trust the caller.
2634 */
2635 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2636 Assert(cb);
2637 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2638 Assert(pvCopy);
2639 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2640
2641 /*
2642 * Register the rom.
2643 */
2644 Assert(!pVM->rem.s.fIgnoreAll);
2645 pVM->rem.s.fIgnoreAll = true;
2646
2647 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2648
2649 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2650
2651 Assert(pVM->rem.s.fIgnoreAll);
2652 pVM->rem.s.fIgnoreAll = false;
2653}
2654
2655
2656/**
2657 * Notification about a successful memory deregistration or reservation.
2658 *
2659 * @param pVM VM Handle.
2660 * @param GCPhys Start physical address.
2661 * @param cb The size of the range.
2662 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2663 * reserve any memory soon.
2664 */
2665REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2666{
2667 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2668 VM_ASSERT_EMT(pVM);
2669
2670 /*
2671 * Validate input - we trust the caller.
2672 */
2673 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2674 Assert(cb);
2675 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2676
2677 /*
2678 * Unassigning the memory.
2679 */
2680 Assert(!pVM->rem.s.fIgnoreAll);
2681 pVM->rem.s.fIgnoreAll = true;
2682
2683 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2684
2685 Assert(pVM->rem.s.fIgnoreAll);
2686 pVM->rem.s.fIgnoreAll = false;
2687}
2688
2689
2690/**
2691 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2692 *
2693 * @param pVM VM Handle.
2694 * @param enmType Handler type.
2695 * @param GCPhys Handler range address.
2696 * @param cb Size of the handler range.
2697 * @param fHasHCHandler Set if the handler has a HC callback function.
2698 *
2699 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2700 * Handler memory type to memory which has no HC handler.
2701 */
2702REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2703{
2704 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2705 enmType, GCPhys, cb, fHasHCHandler));
2706 VM_ASSERT_EMT(pVM);
2707 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2708 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2709
2710 if (pVM->rem.s.cHandlerNotifications)
2711 REMR3ReplayHandlerNotifications(pVM);
2712
2713 Assert(!pVM->rem.s.fIgnoreAll);
2714 pVM->rem.s.fIgnoreAll = true;
2715
2716 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2717 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2718 else if (fHasHCHandler)
2719 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2720
2721 Assert(pVM->rem.s.fIgnoreAll);
2722 pVM->rem.s.fIgnoreAll = false;
2723}
2724
2725
2726/**
2727 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2728 *
2729 * @param pVM VM Handle.
2730 * @param enmType Handler type.
2731 * @param GCPhys Handler range address.
2732 * @param cb Size of the handler range.
2733 * @param fHasHCHandler Set if the handler has a HC callback function.
2734 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2735 */
2736REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2737{
2738 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2739 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2740 VM_ASSERT_EMT(pVM);
2741
2742 if (pVM->rem.s.cHandlerNotifications)
2743 REMR3ReplayHandlerNotifications(pVM);
2744
2745 Assert(!pVM->rem.s.fIgnoreAll);
2746 pVM->rem.s.fIgnoreAll = true;
2747
2748/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2749 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2750 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2751 else if (fHasHCHandler)
2752 {
2753 if (!fRestoreAsRAM)
2754 {
2755 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2756 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2757 }
2758 else
2759 {
2760 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2761 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2762 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2763 }
2764 }
2765
2766 Assert(pVM->rem.s.fIgnoreAll);
2767 pVM->rem.s.fIgnoreAll = false;
2768}
2769
2770
2771/**
2772 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2773 *
2774 * @param pVM VM Handle.
2775 * @param enmType Handler type.
2776 * @param GCPhysOld Old handler range address.
2777 * @param GCPhysNew New handler range address.
2778 * @param cb Size of the handler range.
2779 * @param fHasHCHandler Set if the handler has a HC callback function.
2780 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2781 */
2782REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2783{
2784 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2785 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2786 VM_ASSERT_EMT(pVM);
2787 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2788
2789 if (pVM->rem.s.cHandlerNotifications)
2790 REMR3ReplayHandlerNotifications(pVM);
2791
2792 if (fHasHCHandler)
2793 {
2794 Assert(!pVM->rem.s.fIgnoreAll);
2795 pVM->rem.s.fIgnoreAll = true;
2796
2797 /*
2798 * Reset the old page.
2799 */
2800 if (!fRestoreAsRAM)
2801 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2802 else
2803 {
2804 /* This is not perfect, but it'll do for PD monitoring... */
2805 Assert(cb == PAGE_SIZE);
2806 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2807 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2808 }
2809
2810 /*
2811 * Update the new page.
2812 */
2813 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2814 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2815 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2816
2817 Assert(pVM->rem.s.fIgnoreAll);
2818 pVM->rem.s.fIgnoreAll = false;
2819 }
2820}
2821
2822
2823/**
2824 * Checks if we're handling access to this page or not.
2825 *
2826 * @returns true if we're trapping access.
2827 * @returns false if we aren't.
2828 * @param pVM The VM handle.
2829 * @param GCPhys The physical address.
2830 *
2831 * @remark This function will only work correctly in VBOX_STRICT builds!
2832 */
2833REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2834{
2835#ifdef VBOX_STRICT
2836 if (pVM->rem.s.cHandlerNotifications)
2837 REMR3ReplayHandlerNotifications(pVM);
2838
2839 unsigned long off = get_phys_page_offset(GCPhys);
2840 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2841 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2842 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2843#else
2844 return false;
2845#endif
2846}
2847
2848
2849/**
2850 * Deals with a rare case in get_phys_addr_code where the code
2851 * is being monitored.
2852 *
2853 * It could also be an MMIO page, in which case we will raise a fatal error.
2854 *
2855 * @returns The physical address corresponding to addr.
2856 * @param env The cpu environment.
2857 * @param addr The virtual address.
2858 * @param pTLBEntry The TLB entry.
2859 */
2860target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2861{
2862 PVM pVM = env->pVM;
2863 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2864 {
2865 target_ulong ret = pTLBEntry->addend + addr;
2866 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2867 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2868 return ret;
2869 }
2870 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2871 "*** handlers\n",
2872 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2873 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2874 LogRel(("*** mmio\n"));
2875 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2876 LogRel(("*** phys\n"));
2877 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2878 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2879 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2880 AssertFatalFailed();
2881}
2882
2883
2884/** Validate the physical address passed to the read functions.
2885 * Useful for finding non-guest-ram reads/writes. */
2886#if 1 /* disable if it becomes bothersome... */
2887# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2888#else
2889# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2890#endif
2891
2892/**
2893 * Read guest RAM and ROM.
2894 *
2895 * @param SrcGCPhys The source address (guest physical).
2896 * @param pvDst The destination address.
2897 * @param cb Number of bytes
2898 */
2899void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2900{
2901 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2902 VBOX_CHECK_ADDR(SrcGCPhys);
2903 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2904 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2905}
2906
2907
2908/**
2909 * Read guest RAM and ROM, unsigned 8-bit.
2910 *
2911 * @param SrcGCPhys The source address (guest physical).
2912 */
2913uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
2914{
2915 uint8_t val;
2916 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2917 VBOX_CHECK_ADDR(SrcGCPhys);
2918 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2919 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2920 return val;
2921}
2922
2923
2924/**
2925 * Read guest RAM and ROM, signed 8-bit.
2926 *
2927 * @param SrcGCPhys The source address (guest physical).
2928 */
2929int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
2930{
2931 int8_t val;
2932 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2933 VBOX_CHECK_ADDR(SrcGCPhys);
2934 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2935 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2936 return val;
2937}
2938
2939
2940/**
2941 * Read guest RAM and ROM, unsigned 16-bit.
2942 *
2943 * @param SrcGCPhys The source address (guest physical).
2944 */
2945uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
2946{
2947 uint16_t val;
2948 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2949 VBOX_CHECK_ADDR(SrcGCPhys);
2950 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2951 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2952 return val;
2953}
2954
2955
2956/**
2957 * Read guest RAM and ROM, signed 16-bit.
2958 *
2959 * @param SrcGCPhys The source address (guest physical).
2960 */
2961int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
2962{
2963 uint16_t val;
2964 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2965 VBOX_CHECK_ADDR(SrcGCPhys);
2966 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2967 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2968 return val;
2969}
2970
2971
2972/**
2973 * Read guest RAM and ROM, unsigned 32-bit.
2974 *
2975 * @param SrcGCPhys The source address (guest physical).
2976 */
2977uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
2978{
2979 uint32_t val;
2980 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2981 VBOX_CHECK_ADDR(SrcGCPhys);
2982 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
2983 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2984 return val;
2985}
2986
2987
2988/**
2989 * Read guest RAM and ROM, signed 32-bit.
2990 *
2991 * @param SrcGCPhys The source address (guest physical).
2992 */
2993int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
2994{
2995 int32_t val;
2996 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2997 VBOX_CHECK_ADDR(SrcGCPhys);
2998 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
2999 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3000 return val;
3001}
3002
3003
3004/**
3005 * Read guest RAM and ROM, unsigned 64-bit.
3006 *
3007 * @param SrcGCPhys The source address (guest physical).
3008 */
3009uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3010{
3011 uint64_t val;
3012 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3013 VBOX_CHECK_ADDR(SrcGCPhys);
3014 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3015 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3016 return val;
3017}
3018
3019
3020/**
3021 * Write guest RAM.
3022 *
3023 * @param DstGCPhys The destination address (guest physical).
3024 * @param pvSrc The source address.
3025 * @param cb Number of bytes to write
3026 */
3027void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3028{
3029 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3030 VBOX_CHECK_ADDR(DstGCPhys);
3031 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3032 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3033}
3034
3035
3036/**
3037 * Write guest RAM, unsigned 8-bit.
3038 *
3039 * @param DstGCPhys The destination address (guest physical).
3040 * @param val Value
3041 */
3042void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3043{
3044 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3045 VBOX_CHECK_ADDR(DstGCPhys);
3046 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3047 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3048}
3049
3050
3051/**
3052 * Write guest RAM, unsigned 8-bit.
3053 *
3054 * @param DstGCPhys The destination address (guest physical).
3055 * @param val Value
3056 */
3057void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3058{
3059 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3060 VBOX_CHECK_ADDR(DstGCPhys);
3061 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3062 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3063}
3064
3065
3066/**
3067 * Write guest RAM, unsigned 32-bit.
3068 *
3069 * @param DstGCPhys The destination address (guest physical).
3070 * @param val Value
3071 */
3072void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3073{
3074 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3075 VBOX_CHECK_ADDR(DstGCPhys);
3076 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3077 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3078}
3079
3080
3081/**
3082 * Write guest RAM, unsigned 64-bit.
3083 *
3084 * @param DstGCPhys The destination address (guest physical).
3085 * @param val Value
3086 */
3087void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3088{
3089 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3090 VBOX_CHECK_ADDR(DstGCPhys);
3091 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3092 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3093}
3094
3095#undef LOG_GROUP
3096#define LOG_GROUP LOG_GROUP_REM_MMIO
3097
3098/** Read MMIO memory. */
3099static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3100{
3101 uint32_t u32 = 0;
3102 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3103 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3104 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3105 return u32;
3106}
3107
3108/** Read MMIO memory. */
3109static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3110{
3111 uint32_t u32 = 0;
3112 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3113 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3114 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3115 return u32;
3116}
3117
3118/** Read MMIO memory. */
3119static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3120{
3121 uint32_t u32 = 0;
3122 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3123 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3124 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3125 return u32;
3126}
3127
3128/** Write to MMIO memory. */
3129static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3130{
3131 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3132 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3133 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3134}
3135
3136/** Write to MMIO memory. */
3137static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3138{
3139 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3140 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3141 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3142}
3143
3144/** Write to MMIO memory. */
3145static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3146{
3147 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3148 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3149 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3150}
3151
3152
3153#undef LOG_GROUP
3154#define LOG_GROUP LOG_GROUP_REM_HANDLER
3155
3156/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3157
3158static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3159{
3160 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3161 uint8_t u8;
3162 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3163 return u8;
3164}
3165
3166static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3167{
3168 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3169 uint16_t u16;
3170 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3171 return u16;
3172}
3173
3174static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3175{
3176 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3177 uint32_t u32;
3178 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3179 return u32;
3180}
3181
3182static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3183{
3184 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3185 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3186}
3187
3188static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3189{
3190 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3191 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3192}
3193
3194static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3195{
3196 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3197 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3198}
3199
3200/* -+- disassembly -+- */
3201
3202#undef LOG_GROUP
3203#define LOG_GROUP LOG_GROUP_REM_DISAS
3204
3205
3206/**
3207 * Enables or disables singled stepped disassembly.
3208 *
3209 * @returns VBox status code.
3210 * @param pVM VM handle.
3211 * @param fEnable To enable set this flag, to disable clear it.
3212 */
3213static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3214{
3215 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3216 VM_ASSERT_EMT(pVM);
3217
3218 if (fEnable)
3219 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3220 else
3221 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3222 return VINF_SUCCESS;
3223}
3224
3225
3226/**
3227 * Enables or disables singled stepped disassembly.
3228 *
3229 * @returns VBox status code.
3230 * @param pVM VM handle.
3231 * @param fEnable To enable set this flag, to disable clear it.
3232 */
3233REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3234{
3235 PVMREQ pReq;
3236 int rc;
3237
3238 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3239 if (VM_IS_EMT(pVM))
3240 return remR3DisasEnableStepping(pVM, fEnable);
3241
3242 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3243 AssertRC(rc);
3244 if (VBOX_SUCCESS(rc))
3245 rc = pReq->iStatus;
3246 VMR3ReqFree(pReq);
3247 return rc;
3248}
3249
3250
3251#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3252/**
3253 * External Debugger Command: .remstep [on|off|1|0]
3254 */
3255static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3256{
3257 bool fEnable;
3258 int rc;
3259
3260 /* print status */
3261 if (cArgs == 0)
3262 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3263 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3264
3265 /* convert the argument and change the mode. */
3266 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3267 if (VBOX_FAILURE(rc))
3268 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3269 rc = REMR3DisasEnableStepping(pVM, fEnable);
3270 if (VBOX_FAILURE(rc))
3271 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3272 return rc;
3273}
3274#endif
3275
3276
3277/**
3278 * Disassembles n instructions and prints them to the log.
3279 *
3280 * @returns Success indicator.
3281 * @param env Pointer to the recompiler CPU structure.
3282 * @param f32BitCode Indicates that whether or not the code should
3283 * be disassembled as 16 or 32 bit. If -1 the CS
3284 * selector will be inspected.
3285 * @param nrInstructions Nr of instructions to disassemble
3286 * @param pszPrefix
3287 * @remark not currently used for anything but ad-hoc debugging.
3288 */
3289bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3290{
3291 int i;
3292
3293 /*
3294 * Determin 16/32 bit mode.
3295 */
3296 if (f32BitCode == -1)
3297 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3298
3299 /*
3300 * Convert cs:eip to host context address.
3301 * We don't care to much about cross page correctness presently.
3302 */
3303 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3304 void *pvPC;
3305 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3306 {
3307 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3308
3309 /* convert eip to physical address. */
3310 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3311 GCPtrPC,
3312 env->cr[3],
3313 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3314 &pvPC);
3315 if (VBOX_FAILURE(rc))
3316 {
3317 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3318 return false;
3319 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3320 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3321 }
3322 }
3323 else
3324 {
3325 /* physical address */
3326 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3327 if (VBOX_FAILURE(rc))
3328 return false;
3329 }
3330
3331 /*
3332 * Disassemble.
3333 */
3334 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3335 DISCPUSTATE Cpu;
3336 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3337 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3338 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3339 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3340 //Cpu.dwUserData[2] = GCPtrPC;
3341
3342 for (i=0;i<nrInstructions;i++)
3343 {
3344 char szOutput[256];
3345 uint32_t cbOp;
3346 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3347 return false;
3348 if (pszPrefix)
3349 Log(("%s: %s", pszPrefix, szOutput));
3350 else
3351 Log(("%s", szOutput));
3352
3353 pvPC += cbOp;
3354 }
3355 return true;
3356}
3357
3358
3359/** @todo need to test the new code, using the old code in the mean while. */
3360#define USE_OLD_DUMP_AND_DISASSEMBLY
3361
3362/**
3363 * Disassembles one instruction and prints it to the log.
3364 *
3365 * @returns Success indicator.
3366 * @param env Pointer to the recompiler CPU structure.
3367 * @param f32BitCode Indicates that whether or not the code should
3368 * be disassembled as 16 or 32 bit. If -1 the CS
3369 * selector will be inspected.
3370 * @param pszPrefix
3371 */
3372bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3373{
3374#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3375 PVM pVM = env->pVM;
3376
3377 /*
3378 * Determin 16/32 bit mode.
3379 */
3380 if (f32BitCode == -1)
3381 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3382
3383 /*
3384 * Log registers
3385 */
3386 if (LogIs2Enabled())
3387 {
3388 remR3StateUpdate(pVM);
3389 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3390 }
3391
3392 /*
3393 * Convert cs:eip to host context address.
3394 * We don't care to much about cross page correctness presently.
3395 */
3396 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3397 void *pvPC;
3398 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3399 {
3400 /* convert eip to physical address. */
3401 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3402 GCPtrPC,
3403 env->cr[3],
3404 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3405 &pvPC);
3406 if (VBOX_FAILURE(rc))
3407 {
3408 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3409 return false;
3410 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3411 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3412 }
3413 }
3414 else
3415 {
3416
3417 /* physical address */
3418 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3419 if (VBOX_FAILURE(rc))
3420 return false;
3421 }
3422
3423 /*
3424 * Disassemble.
3425 */
3426 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3427 DISCPUSTATE Cpu;
3428 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3429 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3430 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3431 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3432 //Cpu.dwUserData[2] = GCPtrPC;
3433 char szOutput[256];
3434 uint32_t cbOp;
3435 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3436 return false;
3437
3438 if (!f32BitCode)
3439 {
3440 if (pszPrefix)
3441 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3442 else
3443 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3444 }
3445 else
3446 {
3447 if (pszPrefix)
3448 Log(("%s: %s", pszPrefix, szOutput));
3449 else
3450 Log(("%s", szOutput));
3451 }
3452 return true;
3453
3454#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3455 PVM pVM = env->pVM;
3456 const bool fLog = LogIsEnabled();
3457 const bool fLog2 = LogIs2Enabled();
3458 int rc = VINF_SUCCESS;
3459
3460 /*
3461 * Don't bother if there ain't any log output to do.
3462 */
3463 if (!fLog && !fLog2)
3464 return true;
3465
3466 /*
3467 * Update the state so DBGF reads the correct register values.
3468 */
3469 remR3StateUpdate(pVM);
3470
3471 /*
3472 * Log registers if requested.
3473 */
3474 if (!fLog2)
3475 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3476
3477 /*
3478 * Disassemble to log.
3479 */
3480 if (fLog)
3481 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3482
3483 return VBOX_SUCCESS(rc);
3484#endif
3485}
3486
3487
3488/**
3489 * Disassemble recompiled code.
3490 *
3491 * @param phFileIgnored Ignored, logfile usually.
3492 * @param pvCode Pointer to the code block.
3493 * @param cb Size of the code block.
3494 */
3495void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3496{
3497 if (LogIs2Enabled())
3498 {
3499 unsigned off = 0;
3500 char szOutput[256];
3501 DISCPUSTATE Cpu;
3502
3503 memset(&Cpu, 0, sizeof(Cpu));
3504#ifdef RT_ARCH_X86
3505 Cpu.mode = CPUMODE_32BIT;
3506#else
3507 Cpu.mode = CPUMODE_64BIT;
3508#endif
3509
3510 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3511 while (off < cb)
3512 {
3513 uint32_t cbInstr;
3514 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3515 RTLogPrintf("%s", szOutput);
3516 else
3517 {
3518 RTLogPrintf("disas error\n");
3519 cbInstr = 1;
3520#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3521 break;
3522#endif
3523 }
3524 off += cbInstr;
3525 }
3526 }
3527 NOREF(phFileIgnored);
3528}
3529
3530
3531/**
3532 * Disassemble guest code.
3533 *
3534 * @param phFileIgnored Ignored, logfile usually.
3535 * @param uCode The guest address of the code to disassemble. (flat?)
3536 * @param cb Number of bytes to disassemble.
3537 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3538 */
3539void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3540{
3541 if (LogIs2Enabled())
3542 {
3543 PVM pVM = cpu_single_env->pVM;
3544
3545 /*
3546 * Update the state so DBGF reads the correct register values (flags).
3547 */
3548 remR3StateUpdate(pVM);
3549
3550 /*
3551 * Do the disassembling.
3552 */
3553 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3554 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3555 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3556 for (;;)
3557 {
3558 char szBuf[256];
3559 uint32_t cbInstr;
3560 int rc = DBGFR3DisasInstrEx(pVM,
3561 cs,
3562 eip,
3563 0,
3564 szBuf, sizeof(szBuf),
3565 &cbInstr);
3566 if (VBOX_SUCCESS(rc))
3567 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3568 else
3569 {
3570 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3571 cbInstr = 1;
3572 }
3573
3574 /* next */
3575 if (cb <= cbInstr)
3576 break;
3577 cb -= cbInstr;
3578 uCode += cbInstr;
3579 eip += cbInstr;
3580 }
3581 }
3582 NOREF(phFileIgnored);
3583}
3584
3585
3586/**
3587 * Looks up a guest symbol.
3588 *
3589 * @returns Pointer to symbol name. This is a static buffer.
3590 * @param orig_addr The address in question.
3591 */
3592const char *lookup_symbol(target_ulong orig_addr)
3593{
3594 RTGCINTPTR off = 0;
3595 DBGFSYMBOL Sym;
3596 PVM pVM = cpu_single_env->pVM;
3597 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3598 if (VBOX_SUCCESS(rc))
3599 {
3600 static char szSym[sizeof(Sym.szName) + 48];
3601 if (!off)
3602 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3603 else if (off > 0)
3604 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3605 else
3606 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3607 return szSym;
3608 }
3609 return "<N/A>";
3610}
3611
3612
3613#undef LOG_GROUP
3614#define LOG_GROUP LOG_GROUP_REM
3615
3616
3617/* -+- FF notifications -+- */
3618
3619
3620/**
3621 * Notification about a pending interrupt.
3622 *
3623 * @param pVM VM Handle.
3624 * @param u8Interrupt Interrupt
3625 * @thread The emulation thread.
3626 */
3627REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3628{
3629 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3630 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3631}
3632
3633/**
3634 * Notification about a pending interrupt.
3635 *
3636 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3637 * @param pVM VM Handle.
3638 * @thread The emulation thread.
3639 */
3640REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3641{
3642 return pVM->rem.s.u32PendingInterrupt;
3643}
3644
3645/**
3646 * Notification about the interrupt FF being set.
3647 *
3648 * @param pVM VM Handle.
3649 * @thread The emulation thread.
3650 */
3651REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3652{
3653 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3654 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3655 if (pVM->rem.s.fInREM)
3656 {
3657 if (VM_IS_EMT(pVM))
3658 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3659 else
3660 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3661 }
3662}
3663
3664
3665/**
3666 * Notification about the interrupt FF being set.
3667 *
3668 * @param pVM VM Handle.
3669 * @thread Any.
3670 */
3671REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3672{
3673 LogFlow(("REMR3NotifyInterruptClear:\n"));
3674 if (pVM->rem.s.fInREM)
3675 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3676}
3677
3678
3679/**
3680 * Notification about pending timer(s).
3681 *
3682 * @param pVM VM Handle.
3683 * @thread Any.
3684 */
3685REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3686{
3687#ifndef DEBUG_bird
3688 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3689#endif
3690 if (pVM->rem.s.fInREM)
3691 {
3692 if (VM_IS_EMT(pVM))
3693 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3694 else
3695 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3696 }
3697}
3698
3699
3700/**
3701 * Notification about pending DMA transfers.
3702 *
3703 * @param pVM VM Handle.
3704 * @thread Any.
3705 */
3706REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3707{
3708 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3709 if (pVM->rem.s.fInREM)
3710 {
3711 if (VM_IS_EMT(pVM))
3712 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3713 else
3714 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3715 }
3716}
3717
3718
3719/**
3720 * Notification about pending timer(s).
3721 *
3722 * @param pVM VM Handle.
3723 * @thread Any.
3724 */
3725REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3726{
3727 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3728 if (pVM->rem.s.fInREM)
3729 {
3730 if (VM_IS_EMT(pVM))
3731 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3732 else
3733 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3734 }
3735}
3736
3737
3738/**
3739 * Notification about pending FF set by an external thread.
3740 *
3741 * @param pVM VM handle.
3742 * @thread Any.
3743 */
3744REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3745{
3746 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3747 if (pVM->rem.s.fInREM)
3748 {
3749 if (VM_IS_EMT(pVM))
3750 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3751 else
3752 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3753 }
3754}
3755
3756
3757#ifdef VBOX_WITH_STATISTICS
3758void remR3ProfileStart(int statcode)
3759{
3760 STAMPROFILEADV *pStat;
3761 switch(statcode)
3762 {
3763 case STATS_EMULATE_SINGLE_INSTR:
3764 pStat = &gStatExecuteSingleInstr;
3765 break;
3766 case STATS_QEMU_COMPILATION:
3767 pStat = &gStatCompilationQEmu;
3768 break;
3769 case STATS_QEMU_RUN_EMULATED_CODE:
3770 pStat = &gStatRunCodeQEmu;
3771 break;
3772 case STATS_QEMU_TOTAL:
3773 pStat = &gStatTotalTimeQEmu;
3774 break;
3775 case STATS_QEMU_RUN_TIMERS:
3776 pStat = &gStatTimers;
3777 break;
3778 case STATS_TLB_LOOKUP:
3779 pStat= &gStatTBLookup;
3780 break;
3781 case STATS_IRQ_HANDLING:
3782 pStat= &gStatIRQ;
3783 break;
3784 case STATS_RAW_CHECK:
3785 pStat = &gStatRawCheck;
3786 break;
3787
3788 default:
3789 AssertMsgFailed(("unknown stat %d\n", statcode));
3790 return;
3791 }
3792 STAM_PROFILE_ADV_START(pStat, a);
3793}
3794
3795
3796void remR3ProfileStop(int statcode)
3797{
3798 STAMPROFILEADV *pStat;
3799 switch(statcode)
3800 {
3801 case STATS_EMULATE_SINGLE_INSTR:
3802 pStat = &gStatExecuteSingleInstr;
3803 break;
3804 case STATS_QEMU_COMPILATION:
3805 pStat = &gStatCompilationQEmu;
3806 break;
3807 case STATS_QEMU_RUN_EMULATED_CODE:
3808 pStat = &gStatRunCodeQEmu;
3809 break;
3810 case STATS_QEMU_TOTAL:
3811 pStat = &gStatTotalTimeQEmu;
3812 break;
3813 case STATS_QEMU_RUN_TIMERS:
3814 pStat = &gStatTimers;
3815 break;
3816 case STATS_TLB_LOOKUP:
3817 pStat= &gStatTBLookup;
3818 break;
3819 case STATS_IRQ_HANDLING:
3820 pStat= &gStatIRQ;
3821 break;
3822 case STATS_RAW_CHECK:
3823 pStat = &gStatRawCheck;
3824 break;
3825 default:
3826 AssertMsgFailed(("unknown stat %d\n", statcode));
3827 return;
3828 }
3829 STAM_PROFILE_ADV_STOP(pStat, a);
3830}
3831#endif
3832
3833/**
3834 * Raise an RC, force rem exit.
3835 *
3836 * @param pVM VM handle.
3837 * @param rc The rc.
3838 */
3839void remR3RaiseRC(PVM pVM, int rc)
3840{
3841 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3842 Assert(pVM->rem.s.fInREM);
3843 VM_ASSERT_EMT(pVM);
3844 pVM->rem.s.rc = rc;
3845 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3846}
3847
3848
3849/* -+- timers -+- */
3850
3851uint64_t cpu_get_tsc(CPUX86State *env)
3852{
3853 STAM_COUNTER_INC(&gStatCpuGetTSC);
3854 return TMCpuTickGet(env->pVM);
3855}
3856
3857
3858/* -+- interrupts -+- */
3859
3860void cpu_set_ferr(CPUX86State *env)
3861{
3862 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3863 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3864}
3865
3866int cpu_get_pic_interrupt(CPUState *env)
3867{
3868 uint8_t u8Interrupt;
3869 int rc;
3870
3871 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3872 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3873 * with the (a)pic.
3874 */
3875 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3876 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3877 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3878 * remove this kludge. */
3879 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3880 {
3881 rc = VINF_SUCCESS;
3882 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3883 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3884 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3885 }
3886 else
3887 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3888
3889 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3890 if (VBOX_SUCCESS(rc))
3891 {
3892 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3893 env->interrupt_request |= CPU_INTERRUPT_HARD;
3894 return u8Interrupt;
3895 }
3896 return -1;
3897}
3898
3899
3900/* -+- local apic -+- */
3901
3902void cpu_set_apic_base(CPUX86State *env, uint64_t val)
3903{
3904 int rc = PDMApicSetBase(env->pVM, val);
3905 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
3906}
3907
3908uint64_t cpu_get_apic_base(CPUX86State *env)
3909{
3910 uint64_t u64;
3911 int rc = PDMApicGetBase(env->pVM, &u64);
3912 if (VBOX_SUCCESS(rc))
3913 {
3914 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
3915 return u64;
3916 }
3917 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
3918 return 0;
3919}
3920
3921void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
3922{
3923 int rc = PDMApicSetTPR(env->pVM, val);
3924 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
3925}
3926
3927uint8_t cpu_get_apic_tpr(CPUX86State *env)
3928{
3929 uint8_t u8;
3930 int rc = PDMApicGetTPR(env->pVM, &u8);
3931 if (VBOX_SUCCESS(rc))
3932 {
3933 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
3934 return u8;
3935 }
3936 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
3937 return 0;
3938}
3939
3940
3941/* -+- I/O Ports -+- */
3942
3943#undef LOG_GROUP
3944#define LOG_GROUP LOG_GROUP_REM_IOPORT
3945
3946void cpu_outb(CPUState *env, int addr, int val)
3947{
3948 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
3949 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
3950
3951 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
3952 if (RT_LIKELY(rc == VINF_SUCCESS))
3953 return;
3954 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3955 {
3956 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3957 remR3RaiseRC(env->pVM, rc);
3958 return;
3959 }
3960 remAbort(rc, __FUNCTION__);
3961}
3962
3963void cpu_outw(CPUState *env, int addr, int val)
3964{
3965 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
3966 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
3967 if (RT_LIKELY(rc == VINF_SUCCESS))
3968 return;
3969 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3970 {
3971 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3972 remR3RaiseRC(env->pVM, rc);
3973 return;
3974 }
3975 remAbort(rc, __FUNCTION__);
3976}
3977
3978void cpu_outl(CPUState *env, int addr, int val)
3979{
3980 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
3981 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
3982 if (RT_LIKELY(rc == VINF_SUCCESS))
3983 return;
3984 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3985 {
3986 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3987 remR3RaiseRC(env->pVM, rc);
3988 return;
3989 }
3990 remAbort(rc, __FUNCTION__);
3991}
3992
3993int cpu_inb(CPUState *env, int addr)
3994{
3995 uint32_t u32 = 0;
3996 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
3997 if (RT_LIKELY(rc == VINF_SUCCESS))
3998 {
3999 if (/*addr != 0x61 && */addr != 0x71)
4000 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4001 return (int)u32;
4002 }
4003 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4004 {
4005 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4006 remR3RaiseRC(env->pVM, rc);
4007 return (int)u32;
4008 }
4009 remAbort(rc, __FUNCTION__);
4010 return 0xff;
4011}
4012
4013int cpu_inw(CPUState *env, int addr)
4014{
4015 uint32_t u32 = 0;
4016 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4017 if (RT_LIKELY(rc == VINF_SUCCESS))
4018 {
4019 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4020 return (int)u32;
4021 }
4022 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4023 {
4024 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4025 remR3RaiseRC(env->pVM, rc);
4026 return (int)u32;
4027 }
4028 remAbort(rc, __FUNCTION__);
4029 return 0xffff;
4030}
4031
4032int cpu_inl(CPUState *env, int addr)
4033{
4034 uint32_t u32 = 0;
4035 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4036 if (RT_LIKELY(rc == VINF_SUCCESS))
4037 {
4038//if (addr==0x01f0 && u32 == 0x6b6d)
4039// loglevel = ~0;
4040 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4041 return (int)u32;
4042 }
4043 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4044 {
4045 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4046 remR3RaiseRC(env->pVM, rc);
4047 return (int)u32;
4048 }
4049 remAbort(rc, __FUNCTION__);
4050 return 0xffffffff;
4051}
4052
4053#undef LOG_GROUP
4054#define LOG_GROUP LOG_GROUP_REM
4055
4056
4057/* -+- helpers and misc other interfaces -+- */
4058
4059/**
4060 * Perform the CPUID instruction.
4061 *
4062 * ASMCpuId cannot be invoked from some source files where this is used because of global
4063 * register allocations.
4064 *
4065 * @param env Pointer to the recompiler CPU structure.
4066 * @param uOperator CPUID operation (eax).
4067 * @param pvEAX Where to store eax.
4068 * @param pvEBX Where to store ebx.
4069 * @param pvECX Where to store ecx.
4070 * @param pvEDX Where to store edx.
4071 */
4072void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4073{
4074 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4075}
4076
4077
4078#if 0 /* not used */
4079/**
4080 * Interface for qemu hardware to report back fatal errors.
4081 */
4082void hw_error(const char *pszFormat, ...)
4083{
4084 /*
4085 * Bitch about it.
4086 */
4087 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4088 * this in my Odin32 tree at home! */
4089 va_list args;
4090 va_start(args, pszFormat);
4091 RTLogPrintf("fatal error in virtual hardware:");
4092 RTLogPrintfV(pszFormat, args);
4093 va_end(args);
4094 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4095
4096 /*
4097 * If we're in REM context we'll sync back the state before 'jumping' to
4098 * the EMs failure handling.
4099 */
4100 PVM pVM = cpu_single_env->pVM;
4101 if (pVM->rem.s.fInREM)
4102 REMR3StateBack(pVM);
4103 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4104 AssertMsgFailed(("EMR3FatalError returned!\n"));
4105}
4106#endif
4107
4108/**
4109 * Interface for the qemu cpu to report unhandled situation
4110 * raising a fatal VM error.
4111 */
4112void cpu_abort(CPUState *env, const char *pszFormat, ...)
4113{
4114 /*
4115 * Bitch about it.
4116 */
4117 RTLogFlags(NULL, "nodisabled nobuffered");
4118 va_list args;
4119 va_start(args, pszFormat);
4120 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4121 va_end(args);
4122 va_start(args, pszFormat);
4123 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4124 va_end(args);
4125
4126 /*
4127 * If we're in REM context we'll sync back the state before 'jumping' to
4128 * the EMs failure handling.
4129 */
4130 PVM pVM = cpu_single_env->pVM;
4131 if (pVM->rem.s.fInREM)
4132 REMR3StateBack(pVM);
4133 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4134 AssertMsgFailed(("EMR3FatalError returned!\n"));
4135}
4136
4137
4138/**
4139 * Aborts the VM.
4140 *
4141 * @param rc VBox error code.
4142 * @param pszTip Hint about why/when this happend.
4143 */
4144static void remAbort(int rc, const char *pszTip)
4145{
4146 /*
4147 * Bitch about it.
4148 */
4149 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4150 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4151
4152 /*
4153 * Jump back to where we entered the recompiler.
4154 */
4155 PVM pVM = cpu_single_env->pVM;
4156 if (pVM->rem.s.fInREM)
4157 REMR3StateBack(pVM);
4158 EMR3FatalError(pVM, rc);
4159 AssertMsgFailed(("EMR3FatalError returned!\n"));
4160}
4161
4162
4163/**
4164 * Dumps a linux system call.
4165 * @param pVM VM handle.
4166 */
4167void remR3DumpLnxSyscall(PVM pVM)
4168{
4169 static const char *apsz[] =
4170 {
4171 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4172 "sys_exit",
4173 "sys_fork",
4174 "sys_read",
4175 "sys_write",
4176 "sys_open", /* 5 */
4177 "sys_close",
4178 "sys_waitpid",
4179 "sys_creat",
4180 "sys_link",
4181 "sys_unlink", /* 10 */
4182 "sys_execve",
4183 "sys_chdir",
4184 "sys_time",
4185 "sys_mknod",
4186 "sys_chmod", /* 15 */
4187 "sys_lchown16",
4188 "sys_ni_syscall", /* old break syscall holder */
4189 "sys_stat",
4190 "sys_lseek",
4191 "sys_getpid", /* 20 */
4192 "sys_mount",
4193 "sys_oldumount",
4194 "sys_setuid16",
4195 "sys_getuid16",
4196 "sys_stime", /* 25 */
4197 "sys_ptrace",
4198 "sys_alarm",
4199 "sys_fstat",
4200 "sys_pause",
4201 "sys_utime", /* 30 */
4202 "sys_ni_syscall", /* old stty syscall holder */
4203 "sys_ni_syscall", /* old gtty syscall holder */
4204 "sys_access",
4205 "sys_nice",
4206 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4207 "sys_sync",
4208 "sys_kill",
4209 "sys_rename",
4210 "sys_mkdir",
4211 "sys_rmdir", /* 40 */
4212 "sys_dup",
4213 "sys_pipe",
4214 "sys_times",
4215 "sys_ni_syscall", /* old prof syscall holder */
4216 "sys_brk", /* 45 */
4217 "sys_setgid16",
4218 "sys_getgid16",
4219 "sys_signal",
4220 "sys_geteuid16",
4221 "sys_getegid16", /* 50 */
4222 "sys_acct",
4223 "sys_umount", /* recycled never used phys() */
4224 "sys_ni_syscall", /* old lock syscall holder */
4225 "sys_ioctl",
4226 "sys_fcntl", /* 55 */
4227 "sys_ni_syscall", /* old mpx syscall holder */
4228 "sys_setpgid",
4229 "sys_ni_syscall", /* old ulimit syscall holder */
4230 "sys_olduname",
4231 "sys_umask", /* 60 */
4232 "sys_chroot",
4233 "sys_ustat",
4234 "sys_dup2",
4235 "sys_getppid",
4236 "sys_getpgrp", /* 65 */
4237 "sys_setsid",
4238 "sys_sigaction",
4239 "sys_sgetmask",
4240 "sys_ssetmask",
4241 "sys_setreuid16", /* 70 */
4242 "sys_setregid16",
4243 "sys_sigsuspend",
4244 "sys_sigpending",
4245 "sys_sethostname",
4246 "sys_setrlimit", /* 75 */
4247 "sys_old_getrlimit",
4248 "sys_getrusage",
4249 "sys_gettimeofday",
4250 "sys_settimeofday",
4251 "sys_getgroups16", /* 80 */
4252 "sys_setgroups16",
4253 "old_select",
4254 "sys_symlink",
4255 "sys_lstat",
4256 "sys_readlink", /* 85 */
4257 "sys_uselib",
4258 "sys_swapon",
4259 "sys_reboot",
4260 "old_readdir",
4261 "old_mmap", /* 90 */
4262 "sys_munmap",
4263 "sys_truncate",
4264 "sys_ftruncate",
4265 "sys_fchmod",
4266 "sys_fchown16", /* 95 */
4267 "sys_getpriority",
4268 "sys_setpriority",
4269 "sys_ni_syscall", /* old profil syscall holder */
4270 "sys_statfs",
4271 "sys_fstatfs", /* 100 */
4272 "sys_ioperm",
4273 "sys_socketcall",
4274 "sys_syslog",
4275 "sys_setitimer",
4276 "sys_getitimer", /* 105 */
4277 "sys_newstat",
4278 "sys_newlstat",
4279 "sys_newfstat",
4280 "sys_uname",
4281 "sys_iopl", /* 110 */
4282 "sys_vhangup",
4283 "sys_ni_syscall", /* old "idle" system call */
4284 "sys_vm86old",
4285 "sys_wait4",
4286 "sys_swapoff", /* 115 */
4287 "sys_sysinfo",
4288 "sys_ipc",
4289 "sys_fsync",
4290 "sys_sigreturn",
4291 "sys_clone", /* 120 */
4292 "sys_setdomainname",
4293 "sys_newuname",
4294 "sys_modify_ldt",
4295 "sys_adjtimex",
4296 "sys_mprotect", /* 125 */
4297 "sys_sigprocmask",
4298 "sys_ni_syscall", /* old "create_module" */
4299 "sys_init_module",
4300 "sys_delete_module",
4301 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4302 "sys_quotactl",
4303 "sys_getpgid",
4304 "sys_fchdir",
4305 "sys_bdflush",
4306 "sys_sysfs", /* 135 */
4307 "sys_personality",
4308 "sys_ni_syscall", /* reserved for afs_syscall */
4309 "sys_setfsuid16",
4310 "sys_setfsgid16",
4311 "sys_llseek", /* 140 */
4312 "sys_getdents",
4313 "sys_select",
4314 "sys_flock",
4315 "sys_msync",
4316 "sys_readv", /* 145 */
4317 "sys_writev",
4318 "sys_getsid",
4319 "sys_fdatasync",
4320 "sys_sysctl",
4321 "sys_mlock", /* 150 */
4322 "sys_munlock",
4323 "sys_mlockall",
4324 "sys_munlockall",
4325 "sys_sched_setparam",
4326 "sys_sched_getparam", /* 155 */
4327 "sys_sched_setscheduler",
4328 "sys_sched_getscheduler",
4329 "sys_sched_yield",
4330 "sys_sched_get_priority_max",
4331 "sys_sched_get_priority_min", /* 160 */
4332 "sys_sched_rr_get_interval",
4333 "sys_nanosleep",
4334 "sys_mremap",
4335 "sys_setresuid16",
4336 "sys_getresuid16", /* 165 */
4337 "sys_vm86",
4338 "sys_ni_syscall", /* Old sys_query_module */
4339 "sys_poll",
4340 "sys_nfsservctl",
4341 "sys_setresgid16", /* 170 */
4342 "sys_getresgid16",
4343 "sys_prctl",
4344 "sys_rt_sigreturn",
4345 "sys_rt_sigaction",
4346 "sys_rt_sigprocmask", /* 175 */
4347 "sys_rt_sigpending",
4348 "sys_rt_sigtimedwait",
4349 "sys_rt_sigqueueinfo",
4350 "sys_rt_sigsuspend",
4351 "sys_pread64", /* 180 */
4352 "sys_pwrite64",
4353 "sys_chown16",
4354 "sys_getcwd",
4355 "sys_capget",
4356 "sys_capset", /* 185 */
4357 "sys_sigaltstack",
4358 "sys_sendfile",
4359 "sys_ni_syscall", /* reserved for streams1 */
4360 "sys_ni_syscall", /* reserved for streams2 */
4361 "sys_vfork", /* 190 */
4362 "sys_getrlimit",
4363 "sys_mmap2",
4364 "sys_truncate64",
4365 "sys_ftruncate64",
4366 "sys_stat64", /* 195 */
4367 "sys_lstat64",
4368 "sys_fstat64",
4369 "sys_lchown",
4370 "sys_getuid",
4371 "sys_getgid", /* 200 */
4372 "sys_geteuid",
4373 "sys_getegid",
4374 "sys_setreuid",
4375 "sys_setregid",
4376 "sys_getgroups", /* 205 */
4377 "sys_setgroups",
4378 "sys_fchown",
4379 "sys_setresuid",
4380 "sys_getresuid",
4381 "sys_setresgid", /* 210 */
4382 "sys_getresgid",
4383 "sys_chown",
4384 "sys_setuid",
4385 "sys_setgid",
4386 "sys_setfsuid", /* 215 */
4387 "sys_setfsgid",
4388 "sys_pivot_root",
4389 "sys_mincore",
4390 "sys_madvise",
4391 "sys_getdents64", /* 220 */
4392 "sys_fcntl64",
4393 "sys_ni_syscall", /* reserved for TUX */
4394 "sys_ni_syscall",
4395 "sys_gettid",
4396 "sys_readahead", /* 225 */
4397 "sys_setxattr",
4398 "sys_lsetxattr",
4399 "sys_fsetxattr",
4400 "sys_getxattr",
4401 "sys_lgetxattr", /* 230 */
4402 "sys_fgetxattr",
4403 "sys_listxattr",
4404 "sys_llistxattr",
4405 "sys_flistxattr",
4406 "sys_removexattr", /* 235 */
4407 "sys_lremovexattr",
4408 "sys_fremovexattr",
4409 "sys_tkill",
4410 "sys_sendfile64",
4411 "sys_futex", /* 240 */
4412 "sys_sched_setaffinity",
4413 "sys_sched_getaffinity",
4414 "sys_set_thread_area",
4415 "sys_get_thread_area",
4416 "sys_io_setup", /* 245 */
4417 "sys_io_destroy",
4418 "sys_io_getevents",
4419 "sys_io_submit",
4420 "sys_io_cancel",
4421 "sys_fadvise64", /* 250 */
4422 "sys_ni_syscall",
4423 "sys_exit_group",
4424 "sys_lookup_dcookie",
4425 "sys_epoll_create",
4426 "sys_epoll_ctl", /* 255 */
4427 "sys_epoll_wait",
4428 "sys_remap_file_pages",
4429 "sys_set_tid_address",
4430 "sys_timer_create",
4431 "sys_timer_settime", /* 260 */
4432 "sys_timer_gettime",
4433 "sys_timer_getoverrun",
4434 "sys_timer_delete",
4435 "sys_clock_settime",
4436 "sys_clock_gettime", /* 265 */
4437 "sys_clock_getres",
4438 "sys_clock_nanosleep",
4439 "sys_statfs64",
4440 "sys_fstatfs64",
4441 "sys_tgkill", /* 270 */
4442 "sys_utimes",
4443 "sys_fadvise64_64",
4444 "sys_ni_syscall" /* sys_vserver */
4445 };
4446
4447 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4448 switch (uEAX)
4449 {
4450 default:
4451 if (uEAX < ELEMENTS(apsz))
4452 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4453 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4454 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4455 else
4456 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4457 break;
4458
4459 }
4460}
4461
4462
4463/**
4464 * Dumps an OpenBSD system call.
4465 * @param pVM VM handle.
4466 */
4467void remR3DumpOBsdSyscall(PVM pVM)
4468{
4469 static const char *apsz[] =
4470 {
4471 "SYS_syscall", //0
4472 "SYS_exit", //1
4473 "SYS_fork", //2
4474 "SYS_read", //3
4475 "SYS_write", //4
4476 "SYS_open", //5
4477 "SYS_close", //6
4478 "SYS_wait4", //7
4479 "SYS_8",
4480 "SYS_link", //9
4481 "SYS_unlink", //10
4482 "SYS_11",
4483 "SYS_chdir", //12
4484 "SYS_fchdir", //13
4485 "SYS_mknod", //14
4486 "SYS_chmod", //15
4487 "SYS_chown", //16
4488 "SYS_break", //17
4489 "SYS_18",
4490 "SYS_19",
4491 "SYS_getpid", //20
4492 "SYS_mount", //21
4493 "SYS_unmount", //22
4494 "SYS_setuid", //23
4495 "SYS_getuid", //24
4496 "SYS_geteuid", //25
4497 "SYS_ptrace", //26
4498 "SYS_recvmsg", //27
4499 "SYS_sendmsg", //28
4500 "SYS_recvfrom", //29
4501 "SYS_accept", //30
4502 "SYS_getpeername", //31
4503 "SYS_getsockname", //32
4504 "SYS_access", //33
4505 "SYS_chflags", //34
4506 "SYS_fchflags", //35
4507 "SYS_sync", //36
4508 "SYS_kill", //37
4509 "SYS_38",
4510 "SYS_getppid", //39
4511 "SYS_40",
4512 "SYS_dup", //41
4513 "SYS_opipe", //42
4514 "SYS_getegid", //43
4515 "SYS_profil", //44
4516 "SYS_ktrace", //45
4517 "SYS_sigaction", //46
4518 "SYS_getgid", //47
4519 "SYS_sigprocmask", //48
4520 "SYS_getlogin", //49
4521 "SYS_setlogin", //50
4522 "SYS_acct", //51
4523 "SYS_sigpending", //52
4524 "SYS_osigaltstack", //53
4525 "SYS_ioctl", //54
4526 "SYS_reboot", //55
4527 "SYS_revoke", //56
4528 "SYS_symlink", //57
4529 "SYS_readlink", //58
4530 "SYS_execve", //59
4531 "SYS_umask", //60
4532 "SYS_chroot", //61
4533 "SYS_62",
4534 "SYS_63",
4535 "SYS_64",
4536 "SYS_65",
4537 "SYS_vfork", //66
4538 "SYS_67",
4539 "SYS_68",
4540 "SYS_sbrk", //69
4541 "SYS_sstk", //70
4542 "SYS_61",
4543 "SYS_vadvise", //72
4544 "SYS_munmap", //73
4545 "SYS_mprotect", //74
4546 "SYS_madvise", //75
4547 "SYS_76",
4548 "SYS_77",
4549 "SYS_mincore", //78
4550 "SYS_getgroups", //79
4551 "SYS_setgroups", //80
4552 "SYS_getpgrp", //81
4553 "SYS_setpgid", //82
4554 "SYS_setitimer", //83
4555 "SYS_84",
4556 "SYS_85",
4557 "SYS_getitimer", //86
4558 "SYS_87",
4559 "SYS_88",
4560 "SYS_89",
4561 "SYS_dup2", //90
4562 "SYS_91",
4563 "SYS_fcntl", //92
4564 "SYS_select", //93
4565 "SYS_94",
4566 "SYS_fsync", //95
4567 "SYS_setpriority", //96
4568 "SYS_socket", //97
4569 "SYS_connect", //98
4570 "SYS_99",
4571 "SYS_getpriority", //100
4572 "SYS_101",
4573 "SYS_102",
4574 "SYS_sigreturn", //103
4575 "SYS_bind", //104
4576 "SYS_setsockopt", //105
4577 "SYS_listen", //106
4578 "SYS_107",
4579 "SYS_108",
4580 "SYS_109",
4581 "SYS_110",
4582 "SYS_sigsuspend", //111
4583 "SYS_112",
4584 "SYS_113",
4585 "SYS_114",
4586 "SYS_115",
4587 "SYS_gettimeofday", //116
4588 "SYS_getrusage", //117
4589 "SYS_getsockopt", //118
4590 "SYS_119",
4591 "SYS_readv", //120
4592 "SYS_writev", //121
4593 "SYS_settimeofday", //122
4594 "SYS_fchown", //123
4595 "SYS_fchmod", //124
4596 "SYS_125",
4597 "SYS_setreuid", //126
4598 "SYS_setregid", //127
4599 "SYS_rename", //128
4600 "SYS_129",
4601 "SYS_130",
4602 "SYS_flock", //131
4603 "SYS_mkfifo", //132
4604 "SYS_sendto", //133
4605 "SYS_shutdown", //134
4606 "SYS_socketpair", //135
4607 "SYS_mkdir", //136
4608 "SYS_rmdir", //137
4609 "SYS_utimes", //138
4610 "SYS_139",
4611 "SYS_adjtime", //140
4612 "SYS_141",
4613 "SYS_142",
4614 "SYS_143",
4615 "SYS_144",
4616 "SYS_145",
4617 "SYS_146",
4618 "SYS_setsid", //147
4619 "SYS_quotactl", //148
4620 "SYS_149",
4621 "SYS_150",
4622 "SYS_151",
4623 "SYS_152",
4624 "SYS_153",
4625 "SYS_154",
4626 "SYS_nfssvc", //155
4627 "SYS_156",
4628 "SYS_157",
4629 "SYS_158",
4630 "SYS_159",
4631 "SYS_160",
4632 "SYS_getfh", //161
4633 "SYS_162",
4634 "SYS_163",
4635 "SYS_164",
4636 "SYS_sysarch", //165
4637 "SYS_166",
4638 "SYS_167",
4639 "SYS_168",
4640 "SYS_169",
4641 "SYS_170",
4642 "SYS_171",
4643 "SYS_172",
4644 "SYS_pread", //173
4645 "SYS_pwrite", //174
4646 "SYS_175",
4647 "SYS_176",
4648 "SYS_177",
4649 "SYS_178",
4650 "SYS_179",
4651 "SYS_180",
4652 "SYS_setgid", //181
4653 "SYS_setegid", //182
4654 "SYS_seteuid", //183
4655 "SYS_lfs_bmapv", //184
4656 "SYS_lfs_markv", //185
4657 "SYS_lfs_segclean", //186
4658 "SYS_lfs_segwait", //187
4659 "SYS_188",
4660 "SYS_189",
4661 "SYS_190",
4662 "SYS_pathconf", //191
4663 "SYS_fpathconf", //192
4664 "SYS_swapctl", //193
4665 "SYS_getrlimit", //194
4666 "SYS_setrlimit", //195
4667 "SYS_getdirentries", //196
4668 "SYS_mmap", //197
4669 "SYS___syscall", //198
4670 "SYS_lseek", //199
4671 "SYS_truncate", //200
4672 "SYS_ftruncate", //201
4673 "SYS___sysctl", //202
4674 "SYS_mlock", //203
4675 "SYS_munlock", //204
4676 "SYS_205",
4677 "SYS_futimes", //206
4678 "SYS_getpgid", //207
4679 "SYS_xfspioctl", //208
4680 "SYS_209",
4681 "SYS_210",
4682 "SYS_211",
4683 "SYS_212",
4684 "SYS_213",
4685 "SYS_214",
4686 "SYS_215",
4687 "SYS_216",
4688 "SYS_217",
4689 "SYS_218",
4690 "SYS_219",
4691 "SYS_220",
4692 "SYS_semget", //221
4693 "SYS_222",
4694 "SYS_223",
4695 "SYS_224",
4696 "SYS_msgget", //225
4697 "SYS_msgsnd", //226
4698 "SYS_msgrcv", //227
4699 "SYS_shmat", //228
4700 "SYS_229",
4701 "SYS_shmdt", //230
4702 "SYS_231",
4703 "SYS_clock_gettime", //232
4704 "SYS_clock_settime", //233
4705 "SYS_clock_getres", //234
4706 "SYS_235",
4707 "SYS_236",
4708 "SYS_237",
4709 "SYS_238",
4710 "SYS_239",
4711 "SYS_nanosleep", //240
4712 "SYS_241",
4713 "SYS_242",
4714 "SYS_243",
4715 "SYS_244",
4716 "SYS_245",
4717 "SYS_246",
4718 "SYS_247",
4719 "SYS_248",
4720 "SYS_249",
4721 "SYS_minherit", //250
4722 "SYS_rfork", //251
4723 "SYS_poll", //252
4724 "SYS_issetugid", //253
4725 "SYS_lchown", //254
4726 "SYS_getsid", //255
4727 "SYS_msync", //256
4728 "SYS_257",
4729 "SYS_258",
4730 "SYS_259",
4731 "SYS_getfsstat", //260
4732 "SYS_statfs", //261
4733 "SYS_fstatfs", //262
4734 "SYS_pipe", //263
4735 "SYS_fhopen", //264
4736 "SYS_265",
4737 "SYS_fhstatfs", //266
4738 "SYS_preadv", //267
4739 "SYS_pwritev", //268
4740 "SYS_kqueue", //269
4741 "SYS_kevent", //270
4742 "SYS_mlockall", //271
4743 "SYS_munlockall", //272
4744 "SYS_getpeereid", //273
4745 "SYS_274",
4746 "SYS_275",
4747 "SYS_276",
4748 "SYS_277",
4749 "SYS_278",
4750 "SYS_279",
4751 "SYS_280",
4752 "SYS_getresuid", //281
4753 "SYS_setresuid", //282
4754 "SYS_getresgid", //283
4755 "SYS_setresgid", //284
4756 "SYS_285",
4757 "SYS_mquery", //286
4758 "SYS_closefrom", //287
4759 "SYS_sigaltstack", //288
4760 "SYS_shmget", //289
4761 "SYS_semop", //290
4762 "SYS_stat", //291
4763 "SYS_fstat", //292
4764 "SYS_lstat", //293
4765 "SYS_fhstat", //294
4766 "SYS___semctl", //295
4767 "SYS_shmctl", //296
4768 "SYS_msgctl", //297
4769 "SYS_MAXSYSCALL", //298
4770 //299
4771 //300
4772 };
4773 uint32_t uEAX;
4774 if (!LogIsEnabled())
4775 return;
4776 uEAX = CPUMGetGuestEAX(pVM);
4777 switch (uEAX)
4778 {
4779 default:
4780 if (uEAX < ELEMENTS(apsz))
4781 {
4782 uint32_t au32Args[8] = {0};
4783 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4784 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4785 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4786 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4787 }
4788 else
4789 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4790 break;
4791 }
4792}
4793
4794
4795#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4796/**
4797 * The Dll main entry point (stub).
4798 */
4799bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4800{
4801 return true;
4802}
4803
4804void *memcpy(void *dst, const void *src, size_t size)
4805{
4806 uint8_t*pbDst = dst, *pbSrc = src;
4807 while (size-- > 0)
4808 *pbDst++ = *pbSrc++;
4809 return dst;
4810}
4811
4812#endif
4813
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette