VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 8722

Last change on this file since 8722 was 8626, checked in by vboxsync, 17 years ago

Renamed the PGMR3PhysRead* and PGMR3PhysWrite* function and added U64 variants.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 151.6 KB
Line 
1/* $Id: VBoxRecompiler.c 8626 2008-05-06 13:27:07Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228#else
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#endif
231
232
233/**
234 * Initializes the REM.
235 *
236 * @returns VBox status code.
237 * @param pVM The VM to operate on.
238 */
239REMR3DECL(int) REMR3Init(PVM pVM)
240{
241 uint32_t u32Dummy;
242 unsigned i;
243
244 /*
245 * Assert sanity.
246 */
247 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
248 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
249 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
250#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
251 Assert(!testmath());
252#endif
253 ASSERT_STRUCT_TABLE(Misc);
254 ASSERT_STRUCT_TABLE(TLB);
255 ASSERT_STRUCT_TABLE(SegmentCache);
256 ASSERT_STRUCT_TABLE(XMMReg);
257 ASSERT_STRUCT_TABLE(MMXReg);
258 ASSERT_STRUCT_TABLE(float_status);
259 ASSERT_STRUCT_TABLE(float32u);
260 ASSERT_STRUCT_TABLE(float64u);
261 ASSERT_STRUCT_TABLE(floatx80u);
262 ASSERT_STRUCT_TABLE(CPUState);
263
264 /*
265 * Init some internal data members.
266 */
267 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
268 pVM->rem.s.Env.pVM = pVM;
269#ifdef CPU_RAW_MODE_INIT
270 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
271#endif
272
273 /* ctx. */
274 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
275 if (VBOX_FAILURE(rc))
276 {
277 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
278 return rc;
279 }
280 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
281
282 /* ignore all notifications */
283 pVM->rem.s.fIgnoreAll = true;
284
285 /*
286 * Init the recompiler.
287 */
288 if (!cpu_x86_init(&pVM->rem.s.Env))
289 {
290 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
291 return VERR_GENERAL_FAILURE;
292 }
293 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
294 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
295
296 /* allocate code buffer for single instruction emulation. */
297 pVM->rem.s.Env.cbCodeBuffer = 4096;
298 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
299 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
300
301 /* finally, set the cpu_single_env global. */
302 cpu_single_env = &pVM->rem.s.Env;
303
304 /* Nothing is pending by default */
305 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
306
307 /*
308 * Register ram types.
309 */
310 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
311 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
312 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
314 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
315
316 /* stop ignoring. */
317 pVM->rem.s.fIgnoreAll = false;
318
319 /*
320 * Register the saved state data unit.
321 */
322 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
323 NULL, remR3Save, NULL,
324 NULL, remR3Load, NULL);
325 if (VBOX_FAILURE(rc))
326 return rc;
327
328#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
329 /*
330 * Debugger commands.
331 */
332 static bool fRegisteredCmds = false;
333 if (!fRegisteredCmds)
334 {
335 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
336 if (VBOX_SUCCESS(rc))
337 fRegisteredCmds = true;
338 }
339#endif
340
341#ifdef VBOX_WITH_STATISTICS
342 /*
343 * Statistics.
344 */
345 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
346 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
347 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
348 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
349 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
350 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
351 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
354 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
355 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
356 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
357
358 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
359
360 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
361 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
362 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
363 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
364 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
365 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
366 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
367 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
368 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
369 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
370
371 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
372 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
373 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
374 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
375
376 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
382
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
389
390
391#endif
392
393#ifdef DEBUG_ALL_LOGGING
394 loglevel = ~0;
395#endif
396
397 return rc;
398}
399
400
401/**
402 * Terminates the REM.
403 *
404 * Termination means cleaning up and freeing all resources,
405 * the VM it self is at this point powered off or suspended.
406 *
407 * @returns VBox status code.
408 * @param pVM The VM to operate on.
409 */
410REMR3DECL(int) REMR3Term(PVM pVM)
411{
412 return VINF_SUCCESS;
413}
414
415
416/**
417 * The VM is being reset.
418 *
419 * For the REM component this means to call the cpu_reset() and
420 * reinitialize some state variables.
421 *
422 * @param pVM VM handle.
423 */
424REMR3DECL(void) REMR3Reset(PVM pVM)
425{
426 /*
427 * Reset the REM cpu.
428 */
429 pVM->rem.s.fIgnoreAll = true;
430 cpu_reset(&pVM->rem.s.Env);
431 pVM->rem.s.cInvalidatedPages = 0;
432 pVM->rem.s.fIgnoreAll = false;
433
434 /* Clear raw ring 0 init state */
435 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
436}
437
438
439/**
440 * Execute state save operation.
441 *
442 * @returns VBox status code.
443 * @param pVM VM Handle.
444 * @param pSSM SSM operation handle.
445 */
446static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
447{
448 LogFlow(("remR3Save:\n"));
449
450 /*
451 * Save the required CPU Env bits.
452 * (Not much because we're never in REM when doing the save.)
453 */
454 PREM pRem = &pVM->rem.s;
455 Assert(!pRem->fInREM);
456 SSMR3PutU32(pSSM, pRem->Env.hflags);
457 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
458 SSMR3PutU32(pSSM, ~0); /* separator */
459
460 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
461 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
462
463 /*
464 * Save the REM stuff.
465 */
466 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
467 unsigned i;
468 for (i = 0; i < pRem->cInvalidatedPages; i++)
469 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
470
471 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
472
473 return SSMR3PutU32(pSSM, ~0); /* terminator */
474}
475
476
477/**
478 * Execute state load operation.
479 *
480 * @returns VBox status code.
481 * @param pVM VM Handle.
482 * @param pSSM SSM operation handle.
483 * @param u32Version Data layout version.
484 */
485static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
486{
487 uint32_t u32Dummy;
488 uint32_t fRawRing0 = false;
489 LogFlow(("remR3Load:\n"));
490
491 /*
492 * Validate version.
493 */
494 if (u32Version != REM_SAVED_STATE_VERSION)
495 {
496 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
497 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
498 }
499
500 /*
501 * Do a reset to be on the safe side...
502 */
503 REMR3Reset(pVM);
504
505 /*
506 * Ignore all ignorable notifications.
507 * (Not doing this will cause serious trouble.)
508 */
509 pVM->rem.s.fIgnoreAll = true;
510
511 /*
512 * Load the required CPU Env bits.
513 * (Not much because we're never in REM when doing the save.)
514 */
515 PREM pRem = &pVM->rem.s;
516 Assert(!pRem->fInREM);
517 SSMR3GetU32(pSSM, &pRem->Env.hflags);
518 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
519 uint32_t u32Sep;
520 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
521 if (VBOX_FAILURE(rc))
522 return rc;
523 if (u32Sep != ~0)
524 {
525 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
526 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
527 }
528
529 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
530 SSMR3GetUInt(pSSM, &fRawRing0);
531 if (fRawRing0)
532 pRem->Env.state |= CPU_RAW_RING0;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (VBOX_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 unsigned i;
546 for (i = 0; i < pRem->cInvalidatedPages; i++)
547 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (VBOX_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (VBOX_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
575 /*
576 * Clear all lazy flags (only FPU sync for now).
577 */
578 CPUMGetAndClearFPUUsedREM(pVM);
579#endif
580
581 /*
582 * Stop ignoring ignornable notifications.
583 */
584 pVM->rem.s.fIgnoreAll = false;
585
586 return VINF_SUCCESS;
587}
588
589
590
591#undef LOG_GROUP
592#define LOG_GROUP LOG_GROUP_REM_RUN
593
594/**
595 * Single steps an instruction in recompiled mode.
596 *
597 * Before calling this function the REM state needs to be in sync with
598 * the VM. Call REMR3State() to perform the sync. It's only necessary
599 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
600 * and after calling REMR3StateBack().
601 *
602 * @returns VBox status code.
603 *
604 * @param pVM VM Handle.
605 */
606REMR3DECL(int) REMR3Step(PVM pVM)
607{
608 /*
609 * Lock the REM - we don't wanna have anyone interrupting us
610 * while stepping - and enabled single stepping. We also ignore
611 * pending interrupts and suchlike.
612 */
613 int interrupt_request = pVM->rem.s.Env.interrupt_request;
614 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
615 pVM->rem.s.Env.interrupt_request = 0;
616 cpu_single_step(&pVM->rem.s.Env, 1);
617
618 /*
619 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
620 */
621 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
622 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
623
624 /*
625 * Execute and handle the return code.
626 * We execute without enabling the cpu tick, so on success we'll
627 * just flip it on and off to make sure it moves
628 */
629 int rc = cpu_exec(&pVM->rem.s.Env);
630 if (rc == EXCP_DEBUG)
631 {
632 TMCpuTickResume(pVM);
633 TMCpuTickPause(pVM);
634 TMVirtualResume(pVM);
635 TMVirtualPause(pVM);
636 rc = VINF_EM_DBG_STEPPED;
637 }
638 else
639 {
640 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
641 switch (rc)
642 {
643 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
644 case EXCP_HLT:
645 case EXCP_HALTED: rc = VINF_EM_HALT; break;
646 case EXCP_RC:
647 rc = pVM->rem.s.rc;
648 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
649 break;
650 default:
651 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
652 rc = VERR_INTERNAL_ERROR;
653 break;
654 }
655 }
656
657 /*
658 * Restore the stuff we changed to prevent interruption.
659 * Unlock the REM.
660 */
661 if (fBp)
662 {
663 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
664 Assert(rc2 == 0); NOREF(rc2);
665 }
666 cpu_single_step(&pVM->rem.s.Env, 0);
667 pVM->rem.s.Env.interrupt_request = interrupt_request;
668
669 return rc;
670}
671
672
673/**
674 * Set a breakpoint using the REM facilities.
675 *
676 * @returns VBox status code.
677 * @param pVM The VM handle.
678 * @param Address The breakpoint address.
679 * @thread The emulation thread.
680 */
681REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
682{
683 VM_ASSERT_EMT(pVM);
684 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
685 {
686 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
687 return VINF_SUCCESS;
688 }
689 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
690 return VERR_REM_NO_MORE_BP_SLOTS;
691}
692
693
694/**
695 * Clears a breakpoint set by REMR3BreakpointSet().
696 *
697 * @returns VBox status code.
698 * @param pVM The VM handle.
699 * @param Address The breakpoint address.
700 * @thread The emulation thread.
701 */
702REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
703{
704 VM_ASSERT_EMT(pVM);
705 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
706 {
707 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
708 return VINF_SUCCESS;
709 }
710 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
711 return VERR_REM_BP_NOT_FOUND;
712}
713
714
715/**
716 * Emulate an instruction.
717 *
718 * This function executes one instruction without letting anyone
719 * interrupt it. This is intended for being called while being in
720 * raw mode and thus will take care of all the state syncing between
721 * REM and the rest.
722 *
723 * @returns VBox status code.
724 * @param pVM VM handle.
725 */
726REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
727{
728 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
729
730 /*
731 * Sync the state and enable single instruction / single stepping.
732 */
733 int rc = REMR3State(pVM);
734 if (VBOX_SUCCESS(rc))
735 {
736 int interrupt_request = pVM->rem.s.Env.interrupt_request;
737 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
738 Assert(!pVM->rem.s.Env.singlestep_enabled);
739#if 1
740
741 /*
742 * Now we set the execute single instruction flag and enter the cpu_exec loop.
743 */
744 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
745 rc = cpu_exec(&pVM->rem.s.Env);
746 switch (rc)
747 {
748 /*
749 * Executed without anything out of the way happening.
750 */
751 case EXCP_SINGLE_INSTR:
752 rc = VINF_EM_RESCHEDULE;
753 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
754 break;
755
756 /*
757 * If we take a trap or start servicing a pending interrupt, we might end up here.
758 * (Timer thread or some other thread wishing EMT's attention.)
759 */
760 case EXCP_INTERRUPT:
761 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
762 rc = VINF_EM_RESCHEDULE;
763 break;
764
765 /*
766 * Single step, we assume!
767 * If there was a breakpoint there we're fucked now.
768 */
769 case EXCP_DEBUG:
770 {
771 /* breakpoint or single step? */
772 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
773 int iBP;
774 rc = VINF_EM_DBG_STEPPED;
775 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
776 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
777 {
778 rc = VINF_EM_DBG_BREAKPOINT;
779 break;
780 }
781 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
782 break;
783 }
784
785 /*
786 * hlt instruction.
787 */
788 case EXCP_HLT:
789 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
790 rc = VINF_EM_HALT;
791 break;
792
793 /*
794 * The VM has halted.
795 */
796 case EXCP_HALTED:
797 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
798 rc = VINF_EM_HALT;
799 break;
800
801 /*
802 * Switch to RAW-mode.
803 */
804 case EXCP_EXECUTE_RAW:
805 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
806 rc = VINF_EM_RESCHEDULE_RAW;
807 break;
808
809 /*
810 * Switch to hardware accelerated RAW-mode.
811 */
812 case EXCP_EXECUTE_HWACC:
813 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
814 rc = VINF_EM_RESCHEDULE_HWACC;
815 break;
816
817 /*
818 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
819 */
820 case EXCP_RC:
821 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
822 rc = pVM->rem.s.rc;
823 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
824 break;
825
826 /*
827 * Figure out the rest when they arrive....
828 */
829 default:
830 AssertMsgFailed(("rc=%d\n", rc));
831 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
832 rc = VINF_EM_RESCHEDULE;
833 break;
834 }
835
836 /*
837 * Switch back the state.
838 */
839#else
840 pVM->rem.s.Env.interrupt_request = 0;
841 cpu_single_step(&pVM->rem.s.Env, 1);
842
843 /*
844 * Execute and handle the return code.
845 * We execute without enabling the cpu tick, so on success we'll
846 * just flip it on and off to make sure it moves.
847 *
848 * (We do not use emulate_single_instr() because that doesn't enter the
849 * right way in will cause serious trouble if a longjmp was attempted.)
850 */
851# ifdef DEBUG_bird
852 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
853# endif
854 int cTimesMax = 16384;
855 uint32_t eip = pVM->rem.s.Env.eip;
856 do
857 {
858 rc = cpu_exec(&pVM->rem.s.Env);
859
860 } while ( eip == pVM->rem.s.Env.eip
861 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
862 && --cTimesMax > 0);
863 switch (rc)
864 {
865 /*
866 * Single step, we assume!
867 * If there was a breakpoint there we're fucked now.
868 */
869 case EXCP_DEBUG:
870 {
871 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
872 rc = VINF_EM_RESCHEDULE;
873 break;
874 }
875
876 /*
877 * We cannot be interrupted!
878 */
879 case EXCP_INTERRUPT:
880 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
881 rc = VERR_INTERNAL_ERROR;
882 break;
883
884 /*
885 * hlt instruction.
886 */
887 case EXCP_HLT:
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
889 rc = VINF_EM_HALT;
890 break;
891
892 /*
893 * The VM has halted.
894 */
895 case EXCP_HALTED:
896 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
897 rc = VINF_EM_HALT;
898 break;
899
900 /*
901 * Switch to RAW-mode.
902 */
903 case EXCP_EXECUTE_RAW:
904 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
905 rc = VINF_EM_RESCHEDULE_RAW;
906 break;
907
908 /*
909 * Switch to hardware accelerated RAW-mode.
910 */
911 case EXCP_EXECUTE_HWACC:
912 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
913 rc = VINF_EM_RESCHEDULE_HWACC;
914 break;
915
916 /*
917 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
918 */
919 case EXCP_RC:
920 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
921 rc = pVM->rem.s.rc;
922 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
923 break;
924
925 /*
926 * Figure out the rest when they arrive....
927 */
928 default:
929 AssertMsgFailed(("rc=%d\n", rc));
930 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
931 rc = VINF_SUCCESS;
932 break;
933 }
934
935 /*
936 * Switch back the state.
937 */
938 cpu_single_step(&pVM->rem.s.Env, 0);
939#endif
940 pVM->rem.s.Env.interrupt_request = interrupt_request;
941 int rc2 = REMR3StateBack(pVM);
942 AssertRC(rc2);
943 }
944
945 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
946 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
947 return rc;
948}
949
950
951/**
952 * Runs code in recompiled mode.
953 *
954 * Before calling this function the REM state needs to be in sync with
955 * the VM. Call REMR3State() to perform the sync. It's only necessary
956 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
957 * and after calling REMR3StateBack().
958 *
959 * @returns VBox status code.
960 *
961 * @param pVM VM Handle.
962 */
963REMR3DECL(int) REMR3Run(PVM pVM)
964{
965 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
966 Assert(pVM->rem.s.fInREM);
967////Keyboard / tb stuff:
968//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
969// && pVM->rem.s.Env.eip >= 0xe860
970// && pVM->rem.s.Env.eip <= 0xe880)
971// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
972////A20:
973//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
974// && pVM->rem.s.Env.eip >= 0x970
975// && pVM->rem.s.Env.eip <= 0x9a0)
976// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
977////Speaker (port 61h)
978//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
979// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
980// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
981// )
982// )
983// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
984//DBGFR3InfoLog(pVM, "timers", NULL);
985
986
987 int rc = cpu_exec(&pVM->rem.s.Env);
988 switch (rc)
989 {
990 /*
991 * This happens when the execution was interrupted
992 * by an external event, like pending timers.
993 */
994 case EXCP_INTERRUPT:
995 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
996 rc = VINF_SUCCESS;
997 break;
998
999 /*
1000 * hlt instruction.
1001 */
1002 case EXCP_HLT:
1003 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1004 rc = VINF_EM_HALT;
1005 break;
1006
1007 /*
1008 * The VM has halted.
1009 */
1010 case EXCP_HALTED:
1011 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1012 rc = VINF_EM_HALT;
1013 break;
1014
1015 /*
1016 * Breakpoint/single step.
1017 */
1018 case EXCP_DEBUG:
1019 {
1020#if 0//def DEBUG_bird
1021 static int iBP = 0;
1022 printf("howdy, breakpoint! iBP=%d\n", iBP);
1023 switch (iBP)
1024 {
1025 case 0:
1026 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1027 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1028 //pVM->rem.s.Env.interrupt_request = 0;
1029 //pVM->rem.s.Env.exception_index = -1;
1030 //g_fInterruptDisabled = 1;
1031 rc = VINF_SUCCESS;
1032 asm("int3");
1033 break;
1034 default:
1035 asm("int3");
1036 break;
1037 }
1038 iBP++;
1039#else
1040 /* breakpoint or single step? */
1041 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1042 int iBP;
1043 rc = VINF_EM_DBG_STEPPED;
1044 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1045 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1046 {
1047 rc = VINF_EM_DBG_BREAKPOINT;
1048 break;
1049 }
1050 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1051#endif
1052 break;
1053 }
1054
1055 /*
1056 * Switch to RAW-mode.
1057 */
1058 case EXCP_EXECUTE_RAW:
1059 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1060 rc = VINF_EM_RESCHEDULE_RAW;
1061 break;
1062
1063 /*
1064 * Switch to hardware accelerated RAW-mode.
1065 */
1066 case EXCP_EXECUTE_HWACC:
1067 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1068 rc = VINF_EM_RESCHEDULE_HWACC;
1069 break;
1070
1071 /*
1072 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1073 */
1074 case EXCP_RC:
1075 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1076 rc = pVM->rem.s.rc;
1077 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1078 break;
1079
1080 /*
1081 * Figure out the rest when they arrive....
1082 */
1083 default:
1084 AssertMsgFailed(("rc=%d\n", rc));
1085 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1086 rc = VINF_SUCCESS;
1087 break;
1088 }
1089
1090 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1091 return rc;
1092}
1093
1094
1095/**
1096 * Check if the cpu state is suitable for Raw execution.
1097 *
1098 * @returns boolean
1099 * @param env The CPU env struct.
1100 * @param eip The EIP to check this for (might differ from env->eip).
1101 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1102 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1103 *
1104 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1105 */
1106bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1107{
1108 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1109 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1110 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1111
1112 /* Update counter. */
1113 env->pVM->rem.s.cCanExecuteRaw++;
1114
1115 if (HWACCMIsEnabled(env->pVM))
1116 {
1117 env->state |= CPU_RAW_HWACC;
1118
1119 /*
1120 * Create partial context for HWACCMR3CanExecuteGuest
1121 */
1122 CPUMCTX Ctx;
1123 Ctx.cr0 = env->cr[0];
1124 Ctx.cr3 = env->cr[3];
1125 Ctx.cr4 = env->cr[4];
1126
1127 Ctx.tr = env->tr.selector;
1128 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1129 Ctx.trHid.u32Limit = env->tr.limit;
1130 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1131
1132 Ctx.idtr.cbIdt = env->idt.limit;
1133 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1134
1135 Ctx.eflags.u32 = env->eflags;
1136
1137 Ctx.cs = env->segs[R_CS].selector;
1138 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1139 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1140 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1141
1142 Ctx.ss = env->segs[R_SS].selector;
1143 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1144 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1145 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1146
1147 /* Hardware accelerated raw-mode:
1148 *
1149 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1150 */
1151 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1152 {
1153 *piException = EXCP_EXECUTE_HWACC;
1154 return true;
1155 }
1156 return false;
1157 }
1158
1159 /*
1160 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1161 * or 32 bits protected mode ring 0 code
1162 *
1163 * The tests are ordered by the likelyhood of being true during normal execution.
1164 */
1165 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1166 {
1167 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1168 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1169 return false;
1170 }
1171
1172#ifndef VBOX_RAW_V86
1173 if (fFlags & VM_MASK) {
1174 STAM_COUNTER_INC(&gStatRefuseVM86);
1175 Log2(("raw mode refused: VM_MASK\n"));
1176 return false;
1177 }
1178#endif
1179
1180 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1181 {
1182#ifndef DEBUG_bird
1183 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1184#endif
1185 return false;
1186 }
1187
1188 if (env->singlestep_enabled)
1189 {
1190 //Log2(("raw mode refused: Single step\n"));
1191 return false;
1192 }
1193
1194 if (env->nb_breakpoints > 0)
1195 {
1196 //Log2(("raw mode refused: Breakpoints\n"));
1197 return false;
1198 }
1199
1200 uint32_t u32CR0 = env->cr[0];
1201 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1202 {
1203 STAM_COUNTER_INC(&gStatRefusePaging);
1204 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1205 return false;
1206 }
1207
1208 if (env->cr[4] & CR4_PAE_MASK)
1209 {
1210 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1211 {
1212 STAM_COUNTER_INC(&gStatRefusePAE);
1213 return false;
1214 }
1215 }
1216
1217 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1218 {
1219 if (!EMIsRawRing3Enabled(env->pVM))
1220 return false;
1221
1222 if (!(env->eflags & IF_MASK))
1223 {
1224 STAM_COUNTER_INC(&gStatRefuseIF0);
1225 Log2(("raw mode refused: IF (RawR3)\n"));
1226 return false;
1227 }
1228
1229 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1230 {
1231 STAM_COUNTER_INC(&gStatRefuseWP0);
1232 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1233 return false;
1234 }
1235 }
1236 else
1237 {
1238 if (!EMIsRawRing0Enabled(env->pVM))
1239 return false;
1240
1241 // Let's start with pure 32 bits ring 0 code first
1242 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1243 {
1244 STAM_COUNTER_INC(&gStatRefuseCode16);
1245 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1246 return false;
1247 }
1248
1249 // Only R0
1250 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1251 {
1252 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1253 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1254 return false;
1255 }
1256
1257 if (!(u32CR0 & CR0_WP_MASK))
1258 {
1259 STAM_COUNTER_INC(&gStatRefuseWP0);
1260 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1261 return false;
1262 }
1263
1264 if (PATMIsPatchGCAddr(env->pVM, eip))
1265 {
1266 Log2(("raw r0 mode forced: patch code\n"));
1267 *piException = EXCP_EXECUTE_RAW;
1268 return true;
1269 }
1270
1271#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1272 if (!(env->eflags & IF_MASK))
1273 {
1274 STAM_COUNTER_INC(&gStatRefuseIF0);
1275 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1276 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1277 return false;
1278 }
1279#endif
1280
1281 env->state |= CPU_RAW_RING0;
1282 }
1283
1284 /*
1285 * Don't reschedule the first time we're called, because there might be
1286 * special reasons why we're here that is not covered by the above checks.
1287 */
1288 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1289 {
1290 Log2(("raw mode refused: first scheduling\n"));
1291 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1292 return false;
1293 }
1294
1295 Assert(PGMPhysIsA20Enabled(env->pVM));
1296 *piException = EXCP_EXECUTE_RAW;
1297 return true;
1298}
1299
1300
1301/**
1302 * Fetches a code byte.
1303 *
1304 * @returns Success indicator (bool) for ease of use.
1305 * @param env The CPU environment structure.
1306 * @param GCPtrInstr Where to fetch code.
1307 * @param pu8Byte Where to store the byte on success
1308 */
1309bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1310{
1311 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1312 if (VBOX_SUCCESS(rc))
1313 return true;
1314 return false;
1315}
1316
1317
1318/**
1319 * Flush (or invalidate if you like) page table/dir entry.
1320 *
1321 * (invlpg instruction; tlb_flush_page)
1322 *
1323 * @param env Pointer to cpu environment.
1324 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1325 */
1326void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1327{
1328 PVM pVM = env->pVM;
1329
1330 /*
1331 * When we're replaying invlpg instructions or restoring a saved
1332 * state we disable this path.
1333 */
1334 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1335 return;
1336 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1337 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1338
1339 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1340
1341 /*
1342 * Update the control registers before calling PGMFlushPage.
1343 */
1344 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1345 pCtx->cr0 = env->cr[0];
1346 pCtx->cr3 = env->cr[3];
1347 pCtx->cr4 = env->cr[4];
1348
1349 /*
1350 * Let PGM do the rest.
1351 */
1352 int rc = PGMInvalidatePage(pVM, GCPtr);
1353 if (VBOX_FAILURE(rc))
1354 {
1355 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1356 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1357 }
1358 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1359}
1360
1361
1362/**
1363 * Called from tlb_protect_code in order to write monitor a code page.
1364 *
1365 * @param env Pointer to the CPU environment.
1366 * @param GCPtr Code page to monitor
1367 */
1368void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1369{
1370 Assert(env->pVM->rem.s.fInREM);
1371 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1372 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1373 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1374 && !(env->eflags & VM_MASK) /* no V86 mode */
1375 && !HWACCMIsEnabled(env->pVM))
1376 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1377}
1378
1379/**
1380 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1381 *
1382 * @param env Pointer to the CPU environment.
1383 * @param GCPtr Code page to monitor
1384 */
1385void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1386{
1387 Assert(env->pVM->rem.s.fInREM);
1388 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1389 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1390 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1391 && !(env->eflags & VM_MASK) /* no V86 mode */
1392 && !HWACCMIsEnabled(env->pVM))
1393 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1394}
1395
1396
1397/**
1398 * Called when the CPU is initialized, any of the CRx registers are changed or
1399 * when the A20 line is modified.
1400 *
1401 * @param env Pointer to the CPU environment.
1402 * @param fGlobal Set if the flush is global.
1403 */
1404void remR3FlushTLB(CPUState *env, bool fGlobal)
1405{
1406 PVM pVM = env->pVM;
1407
1408 /*
1409 * When we're replaying invlpg instructions or restoring a saved
1410 * state we disable this path.
1411 */
1412 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1413 return;
1414 Assert(pVM->rem.s.fInREM);
1415
1416 /*
1417 * The caller doesn't check cr4, so we have to do that for ourselves.
1418 */
1419 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1420 fGlobal = true;
1421 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1422
1423 /*
1424 * Update the control registers before calling PGMR3FlushTLB.
1425 */
1426 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1427 pCtx->cr0 = env->cr[0];
1428 pCtx->cr3 = env->cr[3];
1429 pCtx->cr4 = env->cr[4];
1430
1431 /*
1432 * Let PGM do the rest.
1433 */
1434 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1435}
1436
1437
1438/**
1439 * Called when any of the cr0, cr4 or efer registers is updated.
1440 *
1441 * @param env Pointer to the CPU environment.
1442 */
1443void remR3ChangeCpuMode(CPUState *env)
1444{
1445 int rc;
1446 PVM pVM = env->pVM;
1447
1448 /*
1449 * When we're replaying loads or restoring a saved
1450 * state this path is disabled.
1451 */
1452 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1453 return;
1454 Assert(pVM->rem.s.fInREM);
1455
1456 /*
1457 * Update the control registers before calling PGMR3ChangeMode()
1458 * as it may need to map whatever cr3 is pointing to.
1459 */
1460 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1461 pCtx->cr0 = env->cr[0];
1462 pCtx->cr3 = env->cr[3];
1463 pCtx->cr4 = env->cr[4];
1464
1465#ifdef TARGET_X86_64
1466 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1467 if (rc != VINF_SUCCESS)
1468 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1469#else
1470 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1471 if (rc != VINF_SUCCESS)
1472 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1473#endif
1474}
1475
1476
1477/**
1478 * Called from compiled code to run dma.
1479 *
1480 * @param env Pointer to the CPU environment.
1481 */
1482void remR3DmaRun(CPUState *env)
1483{
1484 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1485 PDMR3DmaRun(env->pVM);
1486 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1487}
1488
1489
1490/**
1491 * Called from compiled code to schedule pending timers in VMM
1492 *
1493 * @param env Pointer to the CPU environment.
1494 */
1495void remR3TimersRun(CPUState *env)
1496{
1497 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1498 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1499 TMR3TimerQueuesDo(env->pVM);
1500 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1501 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1502}
1503
1504
1505/**
1506 * Record trap occurance
1507 *
1508 * @returns VBox status code
1509 * @param env Pointer to the CPU environment.
1510 * @param uTrap Trap nr
1511 * @param uErrorCode Error code
1512 * @param pvNextEIP Next EIP
1513 */
1514int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1515{
1516 PVM pVM = env->pVM;
1517#ifdef VBOX_WITH_STATISTICS
1518 static STAMCOUNTER s_aStatTrap[255];
1519 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1520#endif
1521
1522#ifdef VBOX_WITH_STATISTICS
1523 if (uTrap < 255)
1524 {
1525 if (!s_aRegisters[uTrap])
1526 {
1527 s_aRegisters[uTrap] = true;
1528 char szStatName[64];
1529 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1530 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1531 }
1532 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1533 }
1534#endif
1535 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1536 if( uTrap < 0x20
1537 && (env->cr[0] & X86_CR0_PE)
1538 && !(env->eflags & X86_EFL_VM))
1539 {
1540#ifdef DEBUG
1541 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1542#endif
1543 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1544 {
1545 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1546 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1547 return VERR_REM_TOO_MANY_TRAPS;
1548 }
1549 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1550 pVM->rem.s.cPendingExceptions = 1;
1551 pVM->rem.s.uPendingException = uTrap;
1552 pVM->rem.s.uPendingExcptEIP = env->eip;
1553 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1554 }
1555 else
1556 {
1557 pVM->rem.s.cPendingExceptions = 0;
1558 pVM->rem.s.uPendingException = uTrap;
1559 pVM->rem.s.uPendingExcptEIP = env->eip;
1560 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1561 }
1562 return VINF_SUCCESS;
1563}
1564
1565
1566/*
1567 * Clear current active trap
1568 *
1569 * @param pVM VM Handle.
1570 */
1571void remR3TrapClear(PVM pVM)
1572{
1573 pVM->rem.s.cPendingExceptions = 0;
1574 pVM->rem.s.uPendingException = 0;
1575 pVM->rem.s.uPendingExcptEIP = 0;
1576 pVM->rem.s.uPendingExcptCR2 = 0;
1577}
1578
1579
1580/*
1581 * Record previous call instruction addresses
1582 *
1583 * @param env Pointer to the CPU environment.
1584 */
1585void remR3RecordCall(CPUState *env)
1586{
1587 CSAMR3RecordCallAddress(env->pVM, env->eip);
1588}
1589
1590
1591/**
1592 * Syncs the internal REM state with the VM.
1593 *
1594 * This must be called before REMR3Run() is invoked whenever when the REM
1595 * state is not up to date. Calling it several times in a row is not
1596 * permitted.
1597 *
1598 * @returns VBox status code.
1599 *
1600 * @param pVM VM Handle.
1601 *
1602 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1603 * no do this since the majority of the callers don't want any unnecessary of events
1604 * pending that would immediatly interrupt execution.
1605 */
1606REMR3DECL(int) REMR3State(PVM pVM)
1607{
1608 Log2(("REMR3State:\n"));
1609 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1610 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1611 register unsigned fFlags;
1612 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1613
1614 Assert(!pVM->rem.s.fInREM);
1615 pVM->rem.s.fInStateSync = true;
1616
1617 /*
1618 * Copy the registers which requires no special handling.
1619 */
1620 Assert(R_EAX == 0);
1621 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1622 Assert(R_ECX == 1);
1623 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1624 Assert(R_EDX == 2);
1625 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1626 Assert(R_EBX == 3);
1627 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1628 Assert(R_ESP == 4);
1629 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1630 Assert(R_EBP == 5);
1631 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1632 Assert(R_ESI == 6);
1633 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1634 Assert(R_EDI == 7);
1635 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1636 pVM->rem.s.Env.eip = pCtx->eip;
1637
1638 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1639
1640 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1641
1642 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1643 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1644 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1645 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1646 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1647 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1648 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1649 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1650 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1651
1652 /*
1653 * Clear the halted hidden flag (the interrupt waking up the CPU can
1654 * have been dispatched in raw mode).
1655 */
1656 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1657
1658 /*
1659 * Replay invlpg?
1660 */
1661 if (pVM->rem.s.cInvalidatedPages)
1662 {
1663 pVM->rem.s.fIgnoreInvlPg = true;
1664 RTUINT i;
1665 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1666 {
1667 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1668 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1669 }
1670 pVM->rem.s.fIgnoreInvlPg = false;
1671 pVM->rem.s.cInvalidatedPages = 0;
1672 }
1673
1674 /*
1675 * Registers which are rarely changed and require special handling / order when changed.
1676 */
1677 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1678 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1679 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1680 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1681 {
1682 if (fFlags & CPUM_CHANGED_FPU_REM)
1683 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1684
1685 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1686 {
1687 pVM->rem.s.fIgnoreCR3Load = true;
1688 tlb_flush(&pVM->rem.s.Env, true);
1689 pVM->rem.s.fIgnoreCR3Load = false;
1690 }
1691
1692 if (fFlags & CPUM_CHANGED_CR4)
1693 {
1694 pVM->rem.s.fIgnoreCR3Load = true;
1695 pVM->rem.s.fIgnoreCpuMode = true;
1696 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1697 pVM->rem.s.fIgnoreCpuMode = false;
1698 pVM->rem.s.fIgnoreCR3Load = false;
1699 }
1700
1701 if (fFlags & CPUM_CHANGED_CR0)
1702 {
1703 pVM->rem.s.fIgnoreCR3Load = true;
1704 pVM->rem.s.fIgnoreCpuMode = true;
1705 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1706 pVM->rem.s.fIgnoreCpuMode = false;
1707 pVM->rem.s.fIgnoreCR3Load = false;
1708 }
1709
1710 if (fFlags & CPUM_CHANGED_CR3)
1711 {
1712 pVM->rem.s.fIgnoreCR3Load = true;
1713 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1714 pVM->rem.s.fIgnoreCR3Load = false;
1715 }
1716
1717 if (fFlags & CPUM_CHANGED_GDTR)
1718 {
1719 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1720 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1721 }
1722
1723 if (fFlags & CPUM_CHANGED_IDTR)
1724 {
1725 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1726 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1727 }
1728
1729 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1730 {
1731 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1732 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1733 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1734 }
1735
1736 if (fFlags & CPUM_CHANGED_LDTR)
1737 {
1738 if (fHiddenSelRegsValid)
1739 {
1740 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1741 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1742 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1743 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1744 }
1745 else
1746 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1747 }
1748
1749 if (fFlags & CPUM_CHANGED_TR)
1750 {
1751 if (fHiddenSelRegsValid)
1752 {
1753 pVM->rem.s.Env.tr.selector = pCtx->tr;
1754 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1755 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1756 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1757 }
1758 else
1759 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1760
1761 /** @note do_interrupt will fault if the busy flag is still set.... */
1762 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1763 }
1764
1765 if (fFlags & CPUM_CHANGED_CPUID)
1766 {
1767 uint32_t u32Dummy;
1768
1769 /*
1770 * Get the CPUID features.
1771 */
1772 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1773 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1774 }
1775 }
1776
1777 /*
1778 * Update selector registers.
1779 * This must be done *after* we've synced gdt, ldt and crX registers
1780 * since we're reading the GDT/LDT om sync_seg. This will happen with
1781 * saved state which takes a quick dip into rawmode for instance.
1782 */
1783 /*
1784 * Stack; Note first check this one as the CPL might have changed. The
1785 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1786 */
1787
1788 if (fHiddenSelRegsValid)
1789 {
1790 /* The hidden selector registers are valid in the CPU context. */
1791 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1792
1793 /* Set current CPL */
1794 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1795
1796 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1797 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1798 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1799 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1800 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1801 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1802 }
1803 else
1804 {
1805 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1806 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1807 {
1808 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1809
1810 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1811 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1812#ifdef VBOX_WITH_STATISTICS
1813 if (pVM->rem.s.Env.segs[R_SS].newselector)
1814 {
1815 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1816 }
1817#endif
1818 }
1819 else
1820 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1821
1822 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1823 {
1824 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1825 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1826#ifdef VBOX_WITH_STATISTICS
1827 if (pVM->rem.s.Env.segs[R_ES].newselector)
1828 {
1829 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1830 }
1831#endif
1832 }
1833 else
1834 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1835
1836 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1837 {
1838 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1839 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1840#ifdef VBOX_WITH_STATISTICS
1841 if (pVM->rem.s.Env.segs[R_CS].newselector)
1842 {
1843 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1844 }
1845#endif
1846 }
1847 else
1848 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1849
1850 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1851 {
1852 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1853 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1854#ifdef VBOX_WITH_STATISTICS
1855 if (pVM->rem.s.Env.segs[R_DS].newselector)
1856 {
1857 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1858 }
1859#endif
1860 }
1861 else
1862 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1863
1864 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1865 * be the same but not the base/limit. */
1866 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1867 {
1868 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1869 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1870#ifdef VBOX_WITH_STATISTICS
1871 if (pVM->rem.s.Env.segs[R_FS].newselector)
1872 {
1873 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1874 }
1875#endif
1876 }
1877 else
1878 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1879
1880 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1881 {
1882 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1883 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1884#ifdef VBOX_WITH_STATISTICS
1885 if (pVM->rem.s.Env.segs[R_GS].newselector)
1886 {
1887 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1888 }
1889#endif
1890 }
1891 else
1892 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1893 }
1894
1895 /* Update MSRs. */
1896 pVM->rem.s.Env.efer = pCtx->msrEFER;
1897 pVM->rem.s.Env.star = pCtx->msrSTAR;
1898 pVM->rem.s.Env.pat = pCtx->msrPAT;
1899#ifdef TARGET_X86_64
1900 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1901 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1902 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1903 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1904#endif
1905 /* Note that FS_BASE & GS_BASE are already synced; QEmu keeps them in the hidden selector registers.
1906 * So we basically assume the hidden registers are in sync with these MSRs (vt-x & amd-v). Correct??
1907 */
1908
1909 /*
1910 * Check for traps.
1911 */
1912 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1913 TRPMEVENT enmType;
1914 uint8_t u8TrapNo;
1915 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1916 if (VBOX_SUCCESS(rc))
1917 {
1918#ifdef DEBUG
1919 if (u8TrapNo == 0x80)
1920 {
1921 remR3DumpLnxSyscall(pVM);
1922 remR3DumpOBsdSyscall(pVM);
1923 }
1924#endif
1925
1926 pVM->rem.s.Env.exception_index = u8TrapNo;
1927 if (enmType != TRPM_SOFTWARE_INT)
1928 {
1929 pVM->rem.s.Env.exception_is_int = 0;
1930 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1931 }
1932 else
1933 {
1934 /*
1935 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1936 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1937 * for int03 and into.
1938 */
1939 pVM->rem.s.Env.exception_is_int = 1;
1940 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1941 /* int 3 may be generated by one-byte 0xcc */
1942 if (u8TrapNo == 3)
1943 {
1944 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1945 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1946 }
1947 /* int 4 may be generated by one-byte 0xce */
1948 else if (u8TrapNo == 4)
1949 {
1950 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1951 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1952 }
1953 }
1954
1955 /* get error code and cr2 if needed. */
1956 switch (u8TrapNo)
1957 {
1958 case 0x0e:
1959 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1960 /* fallthru */
1961 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1962 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1963 break;
1964
1965 case 0x11: case 0x08:
1966 default:
1967 pVM->rem.s.Env.error_code = 0;
1968 break;
1969 }
1970
1971 /*
1972 * We can now reset the active trap since the recompiler is gonna have a go at it.
1973 */
1974 rc = TRPMResetTrap(pVM);
1975 AssertRC(rc);
1976 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1977 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1978 }
1979
1980 /*
1981 * Clear old interrupt request flags; Check for pending hardware interrupts.
1982 * (See @remark for why we don't check for other FFs.)
1983 */
1984 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1985 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1986 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1987 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1988
1989 /*
1990 * We're now in REM mode.
1991 */
1992 pVM->rem.s.fInREM = true;
1993 pVM->rem.s.fInStateSync = false;
1994 pVM->rem.s.cCanExecuteRaw = 0;
1995 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1996 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1997 return VINF_SUCCESS;
1998}
1999
2000
2001/**
2002 * Syncs back changes in the REM state to the the VM state.
2003 *
2004 * This must be called after invoking REMR3Run().
2005 * Calling it several times in a row is not permitted.
2006 *
2007 * @returns VBox status code.
2008 *
2009 * @param pVM VM Handle.
2010 */
2011REMR3DECL(int) REMR3StateBack(PVM pVM)
2012{
2013 Log2(("REMR3StateBack:\n"));
2014 Assert(pVM->rem.s.fInREM);
2015 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2016 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2017
2018 /*
2019 * Copy back the registers.
2020 * This is done in the order they are declared in the CPUMCTX structure.
2021 */
2022
2023 /** @todo FOP */
2024 /** @todo FPUIP */
2025 /** @todo CS */
2026 /** @todo FPUDP */
2027 /** @todo DS */
2028 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2029 pCtx->fpu.MXCSR = 0;
2030 pCtx->fpu.MXCSR_MASK = 0;
2031
2032 /** @todo check if FPU/XMM was actually used in the recompiler */
2033 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2034//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2035
2036 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2037 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2038 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2039 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2040 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2041 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2042 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2043
2044 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2045 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2046
2047#ifdef VBOX_WITH_STATISTICS
2048 if (pVM->rem.s.Env.segs[R_SS].newselector)
2049 {
2050 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2051 }
2052 if (pVM->rem.s.Env.segs[R_GS].newselector)
2053 {
2054 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2055 }
2056 if (pVM->rem.s.Env.segs[R_FS].newselector)
2057 {
2058 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2059 }
2060 if (pVM->rem.s.Env.segs[R_ES].newselector)
2061 {
2062 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2063 }
2064 if (pVM->rem.s.Env.segs[R_DS].newselector)
2065 {
2066 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2067 }
2068 if (pVM->rem.s.Env.segs[R_CS].newselector)
2069 {
2070 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2071 }
2072#endif
2073 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2074 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2075 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2076 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2077 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2078
2079 pCtx->eip = pVM->rem.s.Env.eip;
2080 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2081
2082 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2083 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2084 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2085 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2086
2087 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2088 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2089 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2090 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2091 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2092 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2093 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2094 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2095
2096 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2097 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2098 {
2099 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2100 STAM_COUNTER_INC(&gStatREMGDTChange);
2101 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2102 }
2103
2104 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2105 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2106 {
2107 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2108 STAM_COUNTER_INC(&gStatREMIDTChange);
2109 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2110 }
2111
2112 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2113 {
2114 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2115 STAM_COUNTER_INC(&gStatREMLDTRChange);
2116 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2117 }
2118 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2119 {
2120 pCtx->tr = pVM->rem.s.Env.tr.selector;
2121 STAM_COUNTER_INC(&gStatREMTRChange);
2122 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2123 }
2124
2125 /** @todo These values could still be out of sync! */
2126 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2127 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2128 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2129 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2130
2131 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2132 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2133 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2134
2135 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2136 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2137 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2138
2139 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2140 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2141 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2142
2143 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2144 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2145 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2146
2147 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2148 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2149 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2150
2151 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2152 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2153 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2154
2155 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2156 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2157 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2158
2159 /* Sysenter MSR */
2160 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2161 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2162 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2163
2164 /* System MSRs. */
2165 pCtx->msrEFER = pVM->rem.s.Env.efer;
2166 pCtx->msrSTAR = pVM->rem.s.Env.star;
2167 pCtx->msrPAT = pVM->rem.s.Env.pat;
2168#ifdef TARGET_X86_64
2169 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2170 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2171 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2172 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2173 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2174 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2175#endif
2176
2177 remR3TrapClear(pVM);
2178
2179 /*
2180 * Check for traps.
2181 */
2182 if ( pVM->rem.s.Env.exception_index >= 0
2183 && pVM->rem.s.Env.exception_index < 256)
2184 {
2185 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2186 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2187 AssertRC(rc);
2188 switch (pVM->rem.s.Env.exception_index)
2189 {
2190 case 0x0e:
2191 TRPMSetFaultAddress(pVM, pCtx->cr2);
2192 /* fallthru */
2193 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2194 case 0x11: case 0x08: /* 0 */
2195 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2196 break;
2197 }
2198
2199 }
2200
2201 /*
2202 * We're not longer in REM mode.
2203 */
2204 pVM->rem.s.fInREM = false;
2205 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2206 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2207 return VINF_SUCCESS;
2208}
2209
2210
2211/**
2212 * This is called by the disassembler when it wants to update the cpu state
2213 * before for instance doing a register dump.
2214 */
2215static void remR3StateUpdate(PVM pVM)
2216{
2217 Assert(pVM->rem.s.fInREM);
2218 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2219
2220 /*
2221 * Copy back the registers.
2222 * This is done in the order they are declared in the CPUMCTX structure.
2223 */
2224
2225 /** @todo FOP */
2226 /** @todo FPUIP */
2227 /** @todo CS */
2228 /** @todo FPUDP */
2229 /** @todo DS */
2230 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2231 pCtx->fpu.MXCSR = 0;
2232 pCtx->fpu.MXCSR_MASK = 0;
2233
2234 /** @todo check if FPU/XMM was actually used in the recompiler */
2235 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2236//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2237
2238 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2239 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2240 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2241 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2242 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2243 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2244 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2245
2246 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2247 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2248
2249 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2250 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2251 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2252 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2253 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2254
2255 pCtx->eip = pVM->rem.s.Env.eip;
2256 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2257
2258 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2259 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2260 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2261 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2262
2263 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2264 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2265 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2266 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2267 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2268 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2269 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2270 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2271
2272 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2273 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2274 {
2275 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2276 STAM_COUNTER_INC(&gStatREMGDTChange);
2277 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2278 }
2279
2280 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2281 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2282 {
2283 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2284 STAM_COUNTER_INC(&gStatREMIDTChange);
2285 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2286 }
2287
2288 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2289 {
2290 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2291 STAM_COUNTER_INC(&gStatREMLDTRChange);
2292 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2293 }
2294 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2295 {
2296 pCtx->tr = pVM->rem.s.Env.tr.selector;
2297 STAM_COUNTER_INC(&gStatREMTRChange);
2298 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2299 }
2300
2301 /** @todo These values could still be out of sync! */
2302 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2303 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2304 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2305 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2306
2307 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2308 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2309 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2310
2311 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2312 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2313 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2314
2315 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2316 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2317 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2318
2319 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2320 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2321 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2322
2323 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2324 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2325 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2326
2327 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2328 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2329 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2330
2331 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2332 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2333 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2334
2335 /* Sysenter MSR */
2336 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2337 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2338 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2339}
2340
2341
2342/**
2343 * Update the VMM state information if we're currently in REM.
2344 *
2345 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2346 * we're currently executing in REM and the VMM state is invalid. This method will of
2347 * course check that we're executing in REM before syncing any data over to the VMM.
2348 *
2349 * @param pVM The VM handle.
2350 */
2351REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2352{
2353 if (pVM->rem.s.fInREM)
2354 remR3StateUpdate(pVM);
2355}
2356
2357
2358#undef LOG_GROUP
2359#define LOG_GROUP LOG_GROUP_REM
2360
2361
2362/**
2363 * Notify the recompiler about Address Gate 20 state change.
2364 *
2365 * This notification is required since A20 gate changes are
2366 * initialized from a device driver and the VM might just as
2367 * well be in REM mode as in RAW mode.
2368 *
2369 * @param pVM VM handle.
2370 * @param fEnable True if the gate should be enabled.
2371 * False if the gate should be disabled.
2372 */
2373REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2374{
2375 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2376 VM_ASSERT_EMT(pVM);
2377 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2378}
2379
2380
2381/**
2382 * Replays the invalidated recorded pages.
2383 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2384 *
2385 * @param pVM VM handle.
2386 */
2387REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2388{
2389 VM_ASSERT_EMT(pVM);
2390
2391 /*
2392 * Sync the required registers.
2393 */
2394 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2395 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2396 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2397 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2398
2399 /*
2400 * Replay the flushes.
2401 */
2402 pVM->rem.s.fIgnoreInvlPg = true;
2403 RTUINT i;
2404 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2405 {
2406 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2407 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2408 }
2409 pVM->rem.s.fIgnoreInvlPg = false;
2410 pVM->rem.s.cInvalidatedPages = 0;
2411}
2412
2413
2414/**
2415 * Replays the invalidated recorded pages.
2416 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2417 *
2418 * @param pVM VM handle.
2419 */
2420REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2421{
2422 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2423 VM_ASSERT_EMT(pVM);
2424
2425 /*
2426 * Replay the flushes.
2427 */
2428 RTUINT i;
2429 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2430 pVM->rem.s.cHandlerNotifications = 0;
2431 for (i = 0; i < c; i++)
2432 {
2433 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2434 switch (pRec->enmKind)
2435 {
2436 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2437 REMR3NotifyHandlerPhysicalRegister(pVM,
2438 pRec->u.PhysicalRegister.enmType,
2439 pRec->u.PhysicalRegister.GCPhys,
2440 pRec->u.PhysicalRegister.cb,
2441 pRec->u.PhysicalRegister.fHasHCHandler);
2442 break;
2443
2444 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2445 REMR3NotifyHandlerPhysicalDeregister(pVM,
2446 pRec->u.PhysicalDeregister.enmType,
2447 pRec->u.PhysicalDeregister.GCPhys,
2448 pRec->u.PhysicalDeregister.cb,
2449 pRec->u.PhysicalDeregister.fHasHCHandler,
2450 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2451 break;
2452
2453 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2454 REMR3NotifyHandlerPhysicalModify(pVM,
2455 pRec->u.PhysicalModify.enmType,
2456 pRec->u.PhysicalModify.GCPhysOld,
2457 pRec->u.PhysicalModify.GCPhysNew,
2458 pRec->u.PhysicalModify.cb,
2459 pRec->u.PhysicalModify.fHasHCHandler,
2460 pRec->u.PhysicalModify.fRestoreAsRAM);
2461 break;
2462
2463 default:
2464 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2465 break;
2466 }
2467 }
2468}
2469
2470
2471/**
2472 * Notify REM about changed code page.
2473 *
2474 * @returns VBox status code.
2475 * @param pVM VM handle.
2476 * @param pvCodePage Code page address
2477 */
2478REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2479{
2480 int rc;
2481 RTGCPHYS PhysGC;
2482 uint64_t flags;
2483
2484 VM_ASSERT_EMT(pVM);
2485
2486 /*
2487 * Get the physical page address.
2488 */
2489 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2490 if (rc == VINF_SUCCESS)
2491 {
2492 /*
2493 * Sync the required registers and flush the whole page.
2494 * (Easier to do the whole page than notifying it about each physical
2495 * byte that was changed.
2496 */
2497 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2498 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2499 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2500 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2501
2502 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2503 }
2504 return VINF_SUCCESS;
2505}
2506
2507
2508/**
2509 * Notification about a successful MMR3PhysRegister() call.
2510 *
2511 * @param pVM VM handle.
2512 * @param GCPhys The physical address the RAM.
2513 * @param cb Size of the memory.
2514 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2515 */
2516REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2517{
2518 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2519 VM_ASSERT_EMT(pVM);
2520
2521 /*
2522 * Validate input - we trust the caller.
2523 */
2524 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2525 Assert(cb);
2526 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2527
2528 /*
2529 * Base ram?
2530 */
2531 if (!GCPhys)
2532 {
2533 phys_ram_size = cb;
2534 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2535#ifndef VBOX_STRICT
2536 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2537 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2538#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2539 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2540 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2541 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2542 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2543 AssertRC(rc);
2544 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2545#endif
2546 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2547 }
2548
2549 /*
2550 * Register the ram.
2551 */
2552 Assert(!pVM->rem.s.fIgnoreAll);
2553 pVM->rem.s.fIgnoreAll = true;
2554
2555#ifdef VBOX_WITH_NEW_PHYS_CODE
2556 if (fFlags & MM_RAM_FLAGS_RESERVED)
2557 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2558 else
2559 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2560#else
2561 if (!GCPhys)
2562 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2563 else
2564 {
2565 if (fFlags & MM_RAM_FLAGS_RESERVED)
2566 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2567 else
2568 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2569 }
2570#endif
2571 Assert(pVM->rem.s.fIgnoreAll);
2572 pVM->rem.s.fIgnoreAll = false;
2573}
2574
2575#ifndef VBOX_WITH_NEW_PHYS_CODE
2576
2577/**
2578 * Notification about a successful PGMR3PhysRegisterChunk() call.
2579 *
2580 * @param pVM VM handle.
2581 * @param GCPhys The physical address the RAM.
2582 * @param cb Size of the memory.
2583 * @param pvRam The HC address of the RAM.
2584 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2585 */
2586REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2587{
2588 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2589 VM_ASSERT_EMT(pVM);
2590
2591 /*
2592 * Validate input - we trust the caller.
2593 */
2594 Assert(pvRam);
2595 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2596 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2597 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2598 Assert(fFlags == 0 /* normal RAM */);
2599 Assert(!pVM->rem.s.fIgnoreAll);
2600 pVM->rem.s.fIgnoreAll = true;
2601
2602 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2603
2604 Assert(pVM->rem.s.fIgnoreAll);
2605 pVM->rem.s.fIgnoreAll = false;
2606}
2607
2608
2609/**
2610 * Grows dynamically allocated guest RAM.
2611 * Will raise a fatal error if the operation fails.
2612 *
2613 * @param physaddr The physical address.
2614 */
2615void remR3GrowDynRange(unsigned long physaddr)
2616{
2617 int rc;
2618 PVM pVM = cpu_single_env->pVM;
2619
2620 Log(("remR3GrowDynRange %VGp\n", physaddr));
2621 const RTGCPHYS GCPhys = physaddr;
2622 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2623 if (VBOX_SUCCESS(rc))
2624 return;
2625
2626 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2627 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2628 AssertFatalFailed();
2629}
2630
2631#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2632
2633/**
2634 * Notification about a successful MMR3PhysRomRegister() call.
2635 *
2636 * @param pVM VM handle.
2637 * @param GCPhys The physical address of the ROM.
2638 * @param cb The size of the ROM.
2639 * @param pvCopy Pointer to the ROM copy.
2640 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2641 * This function will be called when ever the protection of the
2642 * shadow ROM changes (at reset and end of POST).
2643 */
2644REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2645{
2646 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2647 VM_ASSERT_EMT(pVM);
2648
2649 /*
2650 * Validate input - we trust the caller.
2651 */
2652 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2653 Assert(cb);
2654 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2655 Assert(pvCopy);
2656 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2657
2658 /*
2659 * Register the rom.
2660 */
2661 Assert(!pVM->rem.s.fIgnoreAll);
2662 pVM->rem.s.fIgnoreAll = true;
2663
2664 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2665
2666 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2667
2668 Assert(pVM->rem.s.fIgnoreAll);
2669 pVM->rem.s.fIgnoreAll = false;
2670}
2671
2672
2673/**
2674 * Notification about a successful memory deregistration or reservation.
2675 *
2676 * @param pVM VM Handle.
2677 * @param GCPhys Start physical address.
2678 * @param cb The size of the range.
2679 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2680 * reserve any memory soon.
2681 */
2682REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2683{
2684 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2685 VM_ASSERT_EMT(pVM);
2686
2687 /*
2688 * Validate input - we trust the caller.
2689 */
2690 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2691 Assert(cb);
2692 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2693
2694 /*
2695 * Unassigning the memory.
2696 */
2697 Assert(!pVM->rem.s.fIgnoreAll);
2698 pVM->rem.s.fIgnoreAll = true;
2699
2700 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2701
2702 Assert(pVM->rem.s.fIgnoreAll);
2703 pVM->rem.s.fIgnoreAll = false;
2704}
2705
2706
2707/**
2708 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2709 *
2710 * @param pVM VM Handle.
2711 * @param enmType Handler type.
2712 * @param GCPhys Handler range address.
2713 * @param cb Size of the handler range.
2714 * @param fHasHCHandler Set if the handler has a HC callback function.
2715 *
2716 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2717 * Handler memory type to memory which has no HC handler.
2718 */
2719REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2720{
2721 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2722 enmType, GCPhys, cb, fHasHCHandler));
2723 VM_ASSERT_EMT(pVM);
2724 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2725 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2726
2727 if (pVM->rem.s.cHandlerNotifications)
2728 REMR3ReplayHandlerNotifications(pVM);
2729
2730 Assert(!pVM->rem.s.fIgnoreAll);
2731 pVM->rem.s.fIgnoreAll = true;
2732
2733 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2734 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2735 else if (fHasHCHandler)
2736 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2737
2738 Assert(pVM->rem.s.fIgnoreAll);
2739 pVM->rem.s.fIgnoreAll = false;
2740}
2741
2742
2743/**
2744 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2745 *
2746 * @param pVM VM Handle.
2747 * @param enmType Handler type.
2748 * @param GCPhys Handler range address.
2749 * @param cb Size of the handler range.
2750 * @param fHasHCHandler Set if the handler has a HC callback function.
2751 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2752 */
2753REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2754{
2755 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2756 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2757 VM_ASSERT_EMT(pVM);
2758
2759 if (pVM->rem.s.cHandlerNotifications)
2760 REMR3ReplayHandlerNotifications(pVM);
2761
2762 Assert(!pVM->rem.s.fIgnoreAll);
2763 pVM->rem.s.fIgnoreAll = true;
2764
2765/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2766 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2767 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2768 else if (fHasHCHandler)
2769 {
2770 if (!fRestoreAsRAM)
2771 {
2772 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2773 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2774 }
2775 else
2776 {
2777 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2778 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2779 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2780 }
2781 }
2782
2783 Assert(pVM->rem.s.fIgnoreAll);
2784 pVM->rem.s.fIgnoreAll = false;
2785}
2786
2787
2788/**
2789 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2790 *
2791 * @param pVM VM Handle.
2792 * @param enmType Handler type.
2793 * @param GCPhysOld Old handler range address.
2794 * @param GCPhysNew New handler range address.
2795 * @param cb Size of the handler range.
2796 * @param fHasHCHandler Set if the handler has a HC callback function.
2797 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2798 */
2799REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2800{
2801 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2802 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2803 VM_ASSERT_EMT(pVM);
2804 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2805
2806 if (pVM->rem.s.cHandlerNotifications)
2807 REMR3ReplayHandlerNotifications(pVM);
2808
2809 if (fHasHCHandler)
2810 {
2811 Assert(!pVM->rem.s.fIgnoreAll);
2812 pVM->rem.s.fIgnoreAll = true;
2813
2814 /*
2815 * Reset the old page.
2816 */
2817 if (!fRestoreAsRAM)
2818 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2819 else
2820 {
2821 /* This is not perfect, but it'll do for PD monitoring... */
2822 Assert(cb == PAGE_SIZE);
2823 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2824 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2825 }
2826
2827 /*
2828 * Update the new page.
2829 */
2830 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2831 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2832 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2833
2834 Assert(pVM->rem.s.fIgnoreAll);
2835 pVM->rem.s.fIgnoreAll = false;
2836 }
2837}
2838
2839
2840/**
2841 * Checks if we're handling access to this page or not.
2842 *
2843 * @returns true if we're trapping access.
2844 * @returns false if we aren't.
2845 * @param pVM The VM handle.
2846 * @param GCPhys The physical address.
2847 *
2848 * @remark This function will only work correctly in VBOX_STRICT builds!
2849 */
2850REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2851{
2852#ifdef VBOX_STRICT
2853 if (pVM->rem.s.cHandlerNotifications)
2854 REMR3ReplayHandlerNotifications(pVM);
2855
2856 unsigned long off = get_phys_page_offset(GCPhys);
2857 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2858 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2859 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2860#else
2861 return false;
2862#endif
2863}
2864
2865
2866/**
2867 * Deals with a rare case in get_phys_addr_code where the code
2868 * is being monitored.
2869 *
2870 * It could also be an MMIO page, in which case we will raise a fatal error.
2871 *
2872 * @returns The physical address corresponding to addr.
2873 * @param env The cpu environment.
2874 * @param addr The virtual address.
2875 * @param pTLBEntry The TLB entry.
2876 */
2877target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2878{
2879 PVM pVM = env->pVM;
2880 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2881 {
2882 target_ulong ret = pTLBEntry->addend + addr;
2883 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2884 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2885 return ret;
2886 }
2887 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2888 "*** handlers\n",
2889 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2890 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2891 LogRel(("*** mmio\n"));
2892 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2893 LogRel(("*** phys\n"));
2894 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2895 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2896 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2897 AssertFatalFailed();
2898}
2899
2900
2901/** Validate the physical address passed to the read functions.
2902 * Useful for finding non-guest-ram reads/writes. */
2903#if 1 /* disable if it becomes bothersome... */
2904# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2905#else
2906# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2907#endif
2908
2909/**
2910 * Read guest RAM and ROM.
2911 *
2912 * @param SrcGCPhys The source address (guest physical).
2913 * @param pvDst The destination address.
2914 * @param cb Number of bytes
2915 */
2916void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2917{
2918 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2919 VBOX_CHECK_ADDR(SrcGCPhys);
2920 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2921 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2922}
2923
2924
2925/**
2926 * Read guest RAM and ROM, unsigned 8-bit.
2927 *
2928 * @param SrcGCPhys The source address (guest physical).
2929 */
2930uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
2931{
2932 uint8_t val;
2933 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2934 VBOX_CHECK_ADDR(SrcGCPhys);
2935 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2936 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2937 return val;
2938}
2939
2940
2941/**
2942 * Read guest RAM and ROM, signed 8-bit.
2943 *
2944 * @param SrcGCPhys The source address (guest physical).
2945 */
2946int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
2947{
2948 int8_t val;
2949 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2950 VBOX_CHECK_ADDR(SrcGCPhys);
2951 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2952 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2953 return val;
2954}
2955
2956
2957/**
2958 * Read guest RAM and ROM, unsigned 16-bit.
2959 *
2960 * @param SrcGCPhys The source address (guest physical).
2961 */
2962uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
2963{
2964 uint16_t val;
2965 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2966 VBOX_CHECK_ADDR(SrcGCPhys);
2967 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2968 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2969 return val;
2970}
2971
2972
2973/**
2974 * Read guest RAM and ROM, signed 16-bit.
2975 *
2976 * @param SrcGCPhys The source address (guest physical).
2977 */
2978int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
2979{
2980 uint16_t val;
2981 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2982 VBOX_CHECK_ADDR(SrcGCPhys);
2983 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2984 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2985 return val;
2986}
2987
2988
2989/**
2990 * Read guest RAM and ROM, unsigned 32-bit.
2991 *
2992 * @param SrcGCPhys The source address (guest physical).
2993 */
2994uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
2995{
2996 uint32_t val;
2997 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2998 VBOX_CHECK_ADDR(SrcGCPhys);
2999 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3000 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3001 return val;
3002}
3003
3004
3005/**
3006 * Read guest RAM and ROM, signed 32-bit.
3007 *
3008 * @param SrcGCPhys The source address (guest physical).
3009 */
3010int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3011{
3012 int32_t val;
3013 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3014 VBOX_CHECK_ADDR(SrcGCPhys);
3015 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3016 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3017 return val;
3018}
3019
3020
3021/**
3022 * Read guest RAM and ROM, unsigned 64-bit.
3023 *
3024 * @param SrcGCPhys The source address (guest physical).
3025 */
3026uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3027{
3028 uint64_t val;
3029 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3030 VBOX_CHECK_ADDR(SrcGCPhys);
3031 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3032 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3033 return val;
3034}
3035
3036
3037/**
3038 * Write guest RAM.
3039 *
3040 * @param DstGCPhys The destination address (guest physical).
3041 * @param pvSrc The source address.
3042 * @param cb Number of bytes to write
3043 */
3044void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3045{
3046 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3047 VBOX_CHECK_ADDR(DstGCPhys);
3048 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3049 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3050}
3051
3052
3053/**
3054 * Write guest RAM, unsigned 8-bit.
3055 *
3056 * @param DstGCPhys The destination address (guest physical).
3057 * @param val Value
3058 */
3059void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3060{
3061 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3062 VBOX_CHECK_ADDR(DstGCPhys);
3063 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3064 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3065}
3066
3067
3068/**
3069 * Write guest RAM, unsigned 8-bit.
3070 *
3071 * @param DstGCPhys The destination address (guest physical).
3072 * @param val Value
3073 */
3074void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3075{
3076 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3077 VBOX_CHECK_ADDR(DstGCPhys);
3078 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3079 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3080}
3081
3082
3083/**
3084 * Write guest RAM, unsigned 32-bit.
3085 *
3086 * @param DstGCPhys The destination address (guest physical).
3087 * @param val Value
3088 */
3089void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3090{
3091 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3092 VBOX_CHECK_ADDR(DstGCPhys);
3093 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3094 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3095}
3096
3097
3098/**
3099 * Write guest RAM, unsigned 64-bit.
3100 *
3101 * @param DstGCPhys The destination address (guest physical).
3102 * @param val Value
3103 */
3104void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3105{
3106 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3107 VBOX_CHECK_ADDR(DstGCPhys);
3108 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3109 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3110}
3111
3112#undef LOG_GROUP
3113#define LOG_GROUP LOG_GROUP_REM_MMIO
3114
3115/** Read MMIO memory. */
3116static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3117{
3118 uint32_t u32 = 0;
3119 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3120 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3121 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3122 return u32;
3123}
3124
3125/** Read MMIO memory. */
3126static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3127{
3128 uint32_t u32 = 0;
3129 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3130 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3131 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3132 return u32;
3133}
3134
3135/** Read MMIO memory. */
3136static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3137{
3138 uint32_t u32 = 0;
3139 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3140 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3141 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3142 return u32;
3143}
3144
3145/** Write to MMIO memory. */
3146static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3147{
3148 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3149 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3150 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3151}
3152
3153/** Write to MMIO memory. */
3154static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3155{
3156 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3157 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3158 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3159}
3160
3161/** Write to MMIO memory. */
3162static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3163{
3164 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3165 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3166 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3167}
3168
3169
3170#undef LOG_GROUP
3171#define LOG_GROUP LOG_GROUP_REM_HANDLER
3172
3173/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3174
3175static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3176{
3177 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3178 uint8_t u8;
3179 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3180 return u8;
3181}
3182
3183static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3184{
3185 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3186 uint16_t u16;
3187 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3188 return u16;
3189}
3190
3191static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3192{
3193 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3194 uint32_t u32;
3195 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3196 return u32;
3197}
3198
3199static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3200{
3201 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3202 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3203}
3204
3205static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3206{
3207 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3208 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3209}
3210
3211static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3212{
3213 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3214 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3215}
3216
3217/* -+- disassembly -+- */
3218
3219#undef LOG_GROUP
3220#define LOG_GROUP LOG_GROUP_REM_DISAS
3221
3222
3223/**
3224 * Enables or disables singled stepped disassembly.
3225 *
3226 * @returns VBox status code.
3227 * @param pVM VM handle.
3228 * @param fEnable To enable set this flag, to disable clear it.
3229 */
3230static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3231{
3232 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3233 VM_ASSERT_EMT(pVM);
3234
3235 if (fEnable)
3236 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3237 else
3238 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3239 return VINF_SUCCESS;
3240}
3241
3242
3243/**
3244 * Enables or disables singled stepped disassembly.
3245 *
3246 * @returns VBox status code.
3247 * @param pVM VM handle.
3248 * @param fEnable To enable set this flag, to disable clear it.
3249 */
3250REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3251{
3252 PVMREQ pReq;
3253 int rc;
3254
3255 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3256 if (VM_IS_EMT(pVM))
3257 return remR3DisasEnableStepping(pVM, fEnable);
3258
3259 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3260 AssertRC(rc);
3261 if (VBOX_SUCCESS(rc))
3262 rc = pReq->iStatus;
3263 VMR3ReqFree(pReq);
3264 return rc;
3265}
3266
3267
3268#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3269/**
3270 * External Debugger Command: .remstep [on|off|1|0]
3271 */
3272static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3273{
3274 bool fEnable;
3275 int rc;
3276
3277 /* print status */
3278 if (cArgs == 0)
3279 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3280 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3281
3282 /* convert the argument and change the mode. */
3283 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3284 if (VBOX_FAILURE(rc))
3285 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3286 rc = REMR3DisasEnableStepping(pVM, fEnable);
3287 if (VBOX_FAILURE(rc))
3288 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3289 return rc;
3290}
3291#endif
3292
3293
3294/**
3295 * Disassembles n instructions and prints them to the log.
3296 *
3297 * @returns Success indicator.
3298 * @param env Pointer to the recompiler CPU structure.
3299 * @param f32BitCode Indicates that whether or not the code should
3300 * be disassembled as 16 or 32 bit. If -1 the CS
3301 * selector will be inspected.
3302 * @param nrInstructions Nr of instructions to disassemble
3303 * @param pszPrefix
3304 * @remark not currently used for anything but ad-hoc debugging.
3305 */
3306bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3307{
3308 int i;
3309
3310 /*
3311 * Determin 16/32 bit mode.
3312 */
3313 if (f32BitCode == -1)
3314 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3315
3316 /*
3317 * Convert cs:eip to host context address.
3318 * We don't care to much about cross page correctness presently.
3319 */
3320 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3321 void *pvPC;
3322 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3323 {
3324 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3325
3326 /* convert eip to physical address. */
3327 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3328 GCPtrPC,
3329 env->cr[3],
3330 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3331 &pvPC);
3332 if (VBOX_FAILURE(rc))
3333 {
3334 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3335 return false;
3336 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3337 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3338 }
3339 }
3340 else
3341 {
3342 /* physical address */
3343 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3344 if (VBOX_FAILURE(rc))
3345 return false;
3346 }
3347
3348 /*
3349 * Disassemble.
3350 */
3351 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3352 DISCPUSTATE Cpu;
3353 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3354 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3355 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3356 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3357 //Cpu.dwUserData[2] = GCPtrPC;
3358
3359 for (i=0;i<nrInstructions;i++)
3360 {
3361 char szOutput[256];
3362 uint32_t cbOp;
3363 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3364 return false;
3365 if (pszPrefix)
3366 Log(("%s: %s", pszPrefix, szOutput));
3367 else
3368 Log(("%s", szOutput));
3369
3370 pvPC += cbOp;
3371 }
3372 return true;
3373}
3374
3375
3376/** @todo need to test the new code, using the old code in the mean while. */
3377#define USE_OLD_DUMP_AND_DISASSEMBLY
3378
3379/**
3380 * Disassembles one instruction and prints it to the log.
3381 *
3382 * @returns Success indicator.
3383 * @param env Pointer to the recompiler CPU structure.
3384 * @param f32BitCode Indicates that whether or not the code should
3385 * be disassembled as 16 or 32 bit. If -1 the CS
3386 * selector will be inspected.
3387 * @param pszPrefix
3388 */
3389bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3390{
3391#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3392 PVM pVM = env->pVM;
3393
3394 /*
3395 * Determin 16/32 bit mode.
3396 */
3397 if (f32BitCode == -1)
3398 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3399
3400 /*
3401 * Log registers
3402 */
3403 if (LogIs2Enabled())
3404 {
3405 remR3StateUpdate(pVM);
3406 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3407 }
3408
3409 /*
3410 * Convert cs:eip to host context address.
3411 * We don't care to much about cross page correctness presently.
3412 */
3413 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3414 void *pvPC;
3415 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3416 {
3417 /* convert eip to physical address. */
3418 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3419 GCPtrPC,
3420 env->cr[3],
3421 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3422 &pvPC);
3423 if (VBOX_FAILURE(rc))
3424 {
3425 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3426 return false;
3427 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3428 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3429 }
3430 }
3431 else
3432 {
3433
3434 /* physical address */
3435 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3436 if (VBOX_FAILURE(rc))
3437 return false;
3438 }
3439
3440 /*
3441 * Disassemble.
3442 */
3443 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3444 DISCPUSTATE Cpu;
3445 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3446 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3447 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3448 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3449 //Cpu.dwUserData[2] = GCPtrPC;
3450 char szOutput[256];
3451 uint32_t cbOp;
3452 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3453 return false;
3454
3455 if (!f32BitCode)
3456 {
3457 if (pszPrefix)
3458 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3459 else
3460 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3461 }
3462 else
3463 {
3464 if (pszPrefix)
3465 Log(("%s: %s", pszPrefix, szOutput));
3466 else
3467 Log(("%s", szOutput));
3468 }
3469 return true;
3470
3471#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3472 PVM pVM = env->pVM;
3473 const bool fLog = LogIsEnabled();
3474 const bool fLog2 = LogIs2Enabled();
3475 int rc = VINF_SUCCESS;
3476
3477 /*
3478 * Don't bother if there ain't any log output to do.
3479 */
3480 if (!fLog && !fLog2)
3481 return true;
3482
3483 /*
3484 * Update the state so DBGF reads the correct register values.
3485 */
3486 remR3StateUpdate(pVM);
3487
3488 /*
3489 * Log registers if requested.
3490 */
3491 if (!fLog2)
3492 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3493
3494 /*
3495 * Disassemble to log.
3496 */
3497 if (fLog)
3498 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3499
3500 return VBOX_SUCCESS(rc);
3501#endif
3502}
3503
3504
3505/**
3506 * Disassemble recompiled code.
3507 *
3508 * @param phFileIgnored Ignored, logfile usually.
3509 * @param pvCode Pointer to the code block.
3510 * @param cb Size of the code block.
3511 */
3512void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3513{
3514 if (LogIs2Enabled())
3515 {
3516 unsigned off = 0;
3517 char szOutput[256];
3518 DISCPUSTATE Cpu;
3519
3520 memset(&Cpu, 0, sizeof(Cpu));
3521#ifdef RT_ARCH_X86
3522 Cpu.mode = CPUMODE_32BIT;
3523#else
3524 Cpu.mode = CPUMODE_64BIT;
3525#endif
3526
3527 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3528 while (off < cb)
3529 {
3530 uint32_t cbInstr;
3531 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3532 RTLogPrintf("%s", szOutput);
3533 else
3534 {
3535 RTLogPrintf("disas error\n");
3536 cbInstr = 1;
3537#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3538 break;
3539#endif
3540 }
3541 off += cbInstr;
3542 }
3543 }
3544 NOREF(phFileIgnored);
3545}
3546
3547
3548/**
3549 * Disassemble guest code.
3550 *
3551 * @param phFileIgnored Ignored, logfile usually.
3552 * @param uCode The guest address of the code to disassemble. (flat?)
3553 * @param cb Number of bytes to disassemble.
3554 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3555 */
3556void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3557{
3558 if (LogIs2Enabled())
3559 {
3560 PVM pVM = cpu_single_env->pVM;
3561
3562 /*
3563 * Update the state so DBGF reads the correct register values (flags).
3564 */
3565 remR3StateUpdate(pVM);
3566
3567 /*
3568 * Do the disassembling.
3569 */
3570 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3571 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3572 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3573 for (;;)
3574 {
3575 char szBuf[256];
3576 uint32_t cbInstr;
3577 int rc = DBGFR3DisasInstrEx(pVM,
3578 cs,
3579 eip,
3580 0,
3581 szBuf, sizeof(szBuf),
3582 &cbInstr);
3583 if (VBOX_SUCCESS(rc))
3584 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3585 else
3586 {
3587 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3588 cbInstr = 1;
3589 }
3590
3591 /* next */
3592 if (cb <= cbInstr)
3593 break;
3594 cb -= cbInstr;
3595 uCode += cbInstr;
3596 eip += cbInstr;
3597 }
3598 }
3599 NOREF(phFileIgnored);
3600}
3601
3602
3603/**
3604 * Looks up a guest symbol.
3605 *
3606 * @returns Pointer to symbol name. This is a static buffer.
3607 * @param orig_addr The address in question.
3608 */
3609const char *lookup_symbol(target_ulong orig_addr)
3610{
3611 RTGCINTPTR off = 0;
3612 DBGFSYMBOL Sym;
3613 PVM pVM = cpu_single_env->pVM;
3614 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3615 if (VBOX_SUCCESS(rc))
3616 {
3617 static char szSym[sizeof(Sym.szName) + 48];
3618 if (!off)
3619 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3620 else if (off > 0)
3621 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3622 else
3623 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3624 return szSym;
3625 }
3626 return "<N/A>";
3627}
3628
3629
3630#undef LOG_GROUP
3631#define LOG_GROUP LOG_GROUP_REM
3632
3633
3634/* -+- FF notifications -+- */
3635
3636
3637/**
3638 * Notification about a pending interrupt.
3639 *
3640 * @param pVM VM Handle.
3641 * @param u8Interrupt Interrupt
3642 * @thread The emulation thread.
3643 */
3644REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3645{
3646 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3647 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3648}
3649
3650/**
3651 * Notification about a pending interrupt.
3652 *
3653 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3654 * @param pVM VM Handle.
3655 * @thread The emulation thread.
3656 */
3657REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3658{
3659 return pVM->rem.s.u32PendingInterrupt;
3660}
3661
3662/**
3663 * Notification about the interrupt FF being set.
3664 *
3665 * @param pVM VM Handle.
3666 * @thread The emulation thread.
3667 */
3668REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3669{
3670 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3671 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3672 if (pVM->rem.s.fInREM)
3673 {
3674 if (VM_IS_EMT(pVM))
3675 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3676 else
3677 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3678 }
3679}
3680
3681
3682/**
3683 * Notification about the interrupt FF being set.
3684 *
3685 * @param pVM VM Handle.
3686 * @thread The emulation thread.
3687 */
3688REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3689{
3690 LogFlow(("REMR3NotifyInterruptClear:\n"));
3691 VM_ASSERT_EMT(pVM);
3692 if (pVM->rem.s.fInREM)
3693 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3694}
3695
3696
3697/**
3698 * Notification about pending timer(s).
3699 *
3700 * @param pVM VM Handle.
3701 * @thread Any.
3702 */
3703REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3704{
3705#ifndef DEBUG_bird
3706 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3707#endif
3708 if (pVM->rem.s.fInREM)
3709 {
3710 if (VM_IS_EMT(pVM))
3711 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3712 else
3713 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3714 }
3715}
3716
3717
3718/**
3719 * Notification about pending DMA transfers.
3720 *
3721 * @param pVM VM Handle.
3722 * @thread Any.
3723 */
3724REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3725{
3726 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3727 if (pVM->rem.s.fInREM)
3728 {
3729 if (VM_IS_EMT(pVM))
3730 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3731 else
3732 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3733 }
3734}
3735
3736
3737/**
3738 * Notification about pending timer(s).
3739 *
3740 * @param pVM VM Handle.
3741 * @thread Any.
3742 */
3743REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3744{
3745 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3746 if (pVM->rem.s.fInREM)
3747 {
3748 if (VM_IS_EMT(pVM))
3749 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3750 else
3751 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3752 }
3753}
3754
3755
3756/**
3757 * Notification about pending FF set by an external thread.
3758 *
3759 * @param pVM VM handle.
3760 * @thread Any.
3761 */
3762REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3763{
3764 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3765 if (pVM->rem.s.fInREM)
3766 {
3767 if (VM_IS_EMT(pVM))
3768 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3769 else
3770 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3771 }
3772}
3773
3774
3775#ifdef VBOX_WITH_STATISTICS
3776void remR3ProfileStart(int statcode)
3777{
3778 STAMPROFILEADV *pStat;
3779 switch(statcode)
3780 {
3781 case STATS_EMULATE_SINGLE_INSTR:
3782 pStat = &gStatExecuteSingleInstr;
3783 break;
3784 case STATS_QEMU_COMPILATION:
3785 pStat = &gStatCompilationQEmu;
3786 break;
3787 case STATS_QEMU_RUN_EMULATED_CODE:
3788 pStat = &gStatRunCodeQEmu;
3789 break;
3790 case STATS_QEMU_TOTAL:
3791 pStat = &gStatTotalTimeQEmu;
3792 break;
3793 case STATS_QEMU_RUN_TIMERS:
3794 pStat = &gStatTimers;
3795 break;
3796 case STATS_TLB_LOOKUP:
3797 pStat= &gStatTBLookup;
3798 break;
3799 case STATS_IRQ_HANDLING:
3800 pStat= &gStatIRQ;
3801 break;
3802 case STATS_RAW_CHECK:
3803 pStat = &gStatRawCheck;
3804 break;
3805
3806 default:
3807 AssertMsgFailed(("unknown stat %d\n", statcode));
3808 return;
3809 }
3810 STAM_PROFILE_ADV_START(pStat, a);
3811}
3812
3813
3814void remR3ProfileStop(int statcode)
3815{
3816 STAMPROFILEADV *pStat;
3817 switch(statcode)
3818 {
3819 case STATS_EMULATE_SINGLE_INSTR:
3820 pStat = &gStatExecuteSingleInstr;
3821 break;
3822 case STATS_QEMU_COMPILATION:
3823 pStat = &gStatCompilationQEmu;
3824 break;
3825 case STATS_QEMU_RUN_EMULATED_CODE:
3826 pStat = &gStatRunCodeQEmu;
3827 break;
3828 case STATS_QEMU_TOTAL:
3829 pStat = &gStatTotalTimeQEmu;
3830 break;
3831 case STATS_QEMU_RUN_TIMERS:
3832 pStat = &gStatTimers;
3833 break;
3834 case STATS_TLB_LOOKUP:
3835 pStat= &gStatTBLookup;
3836 break;
3837 case STATS_IRQ_HANDLING:
3838 pStat= &gStatIRQ;
3839 break;
3840 case STATS_RAW_CHECK:
3841 pStat = &gStatRawCheck;
3842 break;
3843 default:
3844 AssertMsgFailed(("unknown stat %d\n", statcode));
3845 return;
3846 }
3847 STAM_PROFILE_ADV_STOP(pStat, a);
3848}
3849#endif
3850
3851/**
3852 * Raise an RC, force rem exit.
3853 *
3854 * @param pVM VM handle.
3855 * @param rc The rc.
3856 */
3857void remR3RaiseRC(PVM pVM, int rc)
3858{
3859 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3860 Assert(pVM->rem.s.fInREM);
3861 VM_ASSERT_EMT(pVM);
3862 pVM->rem.s.rc = rc;
3863 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3864}
3865
3866
3867/* -+- timers -+- */
3868
3869uint64_t cpu_get_tsc(CPUX86State *env)
3870{
3871 STAM_COUNTER_INC(&gStatCpuGetTSC);
3872 return TMCpuTickGet(env->pVM);
3873}
3874
3875
3876/* -+- interrupts -+- */
3877
3878void cpu_set_ferr(CPUX86State *env)
3879{
3880 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3881 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3882}
3883
3884int cpu_get_pic_interrupt(CPUState *env)
3885{
3886 uint8_t u8Interrupt;
3887 int rc;
3888
3889 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3890 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3891 * with the (a)pic.
3892 */
3893 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3894 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3895 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3896 * remove this kludge. */
3897 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3898 {
3899 rc = VINF_SUCCESS;
3900 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3901 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3902 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3903 }
3904 else
3905 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3906
3907 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3908 if (VBOX_SUCCESS(rc))
3909 {
3910 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3911 env->interrupt_request |= CPU_INTERRUPT_HARD;
3912 return u8Interrupt;
3913 }
3914 return -1;
3915}
3916
3917
3918/* -+- local apic -+- */
3919
3920void cpu_set_apic_base(CPUX86State *env, uint64_t val)
3921{
3922 int rc = PDMApicSetBase(env->pVM, val);
3923 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
3924}
3925
3926uint64_t cpu_get_apic_base(CPUX86State *env)
3927{
3928 uint64_t u64;
3929 int rc = PDMApicGetBase(env->pVM, &u64);
3930 if (VBOX_SUCCESS(rc))
3931 {
3932 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
3933 return u64;
3934 }
3935 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
3936 return 0;
3937}
3938
3939void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
3940{
3941 int rc = PDMApicSetTPR(env->pVM, val);
3942 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
3943}
3944
3945uint8_t cpu_get_apic_tpr(CPUX86State *env)
3946{
3947 uint8_t u8;
3948 int rc = PDMApicGetTPR(env->pVM, &u8);
3949 if (VBOX_SUCCESS(rc))
3950 {
3951 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
3952 return u8;
3953 }
3954 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
3955 return 0;
3956}
3957
3958
3959/* -+- I/O Ports -+- */
3960
3961#undef LOG_GROUP
3962#define LOG_GROUP LOG_GROUP_REM_IOPORT
3963
3964void cpu_outb(CPUState *env, int addr, int val)
3965{
3966 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
3967 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
3968
3969 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
3970 if (RT_LIKELY(rc == VINF_SUCCESS))
3971 return;
3972 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3973 {
3974 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3975 remR3RaiseRC(env->pVM, rc);
3976 return;
3977 }
3978 remAbort(rc, __FUNCTION__);
3979}
3980
3981void cpu_outw(CPUState *env, int addr, int val)
3982{
3983 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
3984 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
3985 if (RT_LIKELY(rc == VINF_SUCCESS))
3986 return;
3987 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3988 {
3989 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3990 remR3RaiseRC(env->pVM, rc);
3991 return;
3992 }
3993 remAbort(rc, __FUNCTION__);
3994}
3995
3996void cpu_outl(CPUState *env, int addr, int val)
3997{
3998 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
3999 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4000 if (RT_LIKELY(rc == VINF_SUCCESS))
4001 return;
4002 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4003 {
4004 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4005 remR3RaiseRC(env->pVM, rc);
4006 return;
4007 }
4008 remAbort(rc, __FUNCTION__);
4009}
4010
4011int cpu_inb(CPUState *env, int addr)
4012{
4013 uint32_t u32 = 0;
4014 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4015 if (RT_LIKELY(rc == VINF_SUCCESS))
4016 {
4017 if (/*addr != 0x61 && */addr != 0x71)
4018 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4019 return (int)u32;
4020 }
4021 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4022 {
4023 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4024 remR3RaiseRC(env->pVM, rc);
4025 return (int)u32;
4026 }
4027 remAbort(rc, __FUNCTION__);
4028 return 0xff;
4029}
4030
4031int cpu_inw(CPUState *env, int addr)
4032{
4033 uint32_t u32 = 0;
4034 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4035 if (RT_LIKELY(rc == VINF_SUCCESS))
4036 {
4037 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4038 return (int)u32;
4039 }
4040 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4041 {
4042 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4043 remR3RaiseRC(env->pVM, rc);
4044 return (int)u32;
4045 }
4046 remAbort(rc, __FUNCTION__);
4047 return 0xffff;
4048}
4049
4050int cpu_inl(CPUState *env, int addr)
4051{
4052 uint32_t u32 = 0;
4053 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4054 if (RT_LIKELY(rc == VINF_SUCCESS))
4055 {
4056//if (addr==0x01f0 && u32 == 0x6b6d)
4057// loglevel = ~0;
4058 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4059 return (int)u32;
4060 }
4061 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4062 {
4063 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4064 remR3RaiseRC(env->pVM, rc);
4065 return (int)u32;
4066 }
4067 remAbort(rc, __FUNCTION__);
4068 return 0xffffffff;
4069}
4070
4071#undef LOG_GROUP
4072#define LOG_GROUP LOG_GROUP_REM
4073
4074
4075/* -+- helpers and misc other interfaces -+- */
4076
4077/**
4078 * Perform the CPUID instruction.
4079 *
4080 * ASMCpuId cannot be invoked from some source files where this is used because of global
4081 * register allocations.
4082 *
4083 * @param env Pointer to the recompiler CPU structure.
4084 * @param uOperator CPUID operation (eax).
4085 * @param pvEAX Where to store eax.
4086 * @param pvEBX Where to store ebx.
4087 * @param pvECX Where to store ecx.
4088 * @param pvEDX Where to store edx.
4089 */
4090void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4091{
4092 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4093}
4094
4095
4096#if 0 /* not used */
4097/**
4098 * Interface for qemu hardware to report back fatal errors.
4099 */
4100void hw_error(const char *pszFormat, ...)
4101{
4102 /*
4103 * Bitch about it.
4104 */
4105 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4106 * this in my Odin32 tree at home! */
4107 va_list args;
4108 va_start(args, pszFormat);
4109 RTLogPrintf("fatal error in virtual hardware:");
4110 RTLogPrintfV(pszFormat, args);
4111 va_end(args);
4112 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4113
4114 /*
4115 * If we're in REM context we'll sync back the state before 'jumping' to
4116 * the EMs failure handling.
4117 */
4118 PVM pVM = cpu_single_env->pVM;
4119 if (pVM->rem.s.fInREM)
4120 REMR3StateBack(pVM);
4121 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4122 AssertMsgFailed(("EMR3FatalError returned!\n"));
4123}
4124#endif
4125
4126/**
4127 * Interface for the qemu cpu to report unhandled situation
4128 * raising a fatal VM error.
4129 */
4130void cpu_abort(CPUState *env, const char *pszFormat, ...)
4131{
4132 /*
4133 * Bitch about it.
4134 */
4135 RTLogFlags(NULL, "nodisabled nobuffered");
4136 va_list args;
4137 va_start(args, pszFormat);
4138 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4139 va_end(args);
4140 va_start(args, pszFormat);
4141 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4142 va_end(args);
4143
4144 /*
4145 * If we're in REM context we'll sync back the state before 'jumping' to
4146 * the EMs failure handling.
4147 */
4148 PVM pVM = cpu_single_env->pVM;
4149 if (pVM->rem.s.fInREM)
4150 REMR3StateBack(pVM);
4151 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4152 AssertMsgFailed(("EMR3FatalError returned!\n"));
4153}
4154
4155
4156/**
4157 * Aborts the VM.
4158 *
4159 * @param rc VBox error code.
4160 * @param pszTip Hint about why/when this happend.
4161 */
4162static void remAbort(int rc, const char *pszTip)
4163{
4164 /*
4165 * Bitch about it.
4166 */
4167 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4168 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4169
4170 /*
4171 * Jump back to where we entered the recompiler.
4172 */
4173 PVM pVM = cpu_single_env->pVM;
4174 if (pVM->rem.s.fInREM)
4175 REMR3StateBack(pVM);
4176 EMR3FatalError(pVM, rc);
4177 AssertMsgFailed(("EMR3FatalError returned!\n"));
4178}
4179
4180
4181/**
4182 * Dumps a linux system call.
4183 * @param pVM VM handle.
4184 */
4185void remR3DumpLnxSyscall(PVM pVM)
4186{
4187 static const char *apsz[] =
4188 {
4189 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4190 "sys_exit",
4191 "sys_fork",
4192 "sys_read",
4193 "sys_write",
4194 "sys_open", /* 5 */
4195 "sys_close",
4196 "sys_waitpid",
4197 "sys_creat",
4198 "sys_link",
4199 "sys_unlink", /* 10 */
4200 "sys_execve",
4201 "sys_chdir",
4202 "sys_time",
4203 "sys_mknod",
4204 "sys_chmod", /* 15 */
4205 "sys_lchown16",
4206 "sys_ni_syscall", /* old break syscall holder */
4207 "sys_stat",
4208 "sys_lseek",
4209 "sys_getpid", /* 20 */
4210 "sys_mount",
4211 "sys_oldumount",
4212 "sys_setuid16",
4213 "sys_getuid16",
4214 "sys_stime", /* 25 */
4215 "sys_ptrace",
4216 "sys_alarm",
4217 "sys_fstat",
4218 "sys_pause",
4219 "sys_utime", /* 30 */
4220 "sys_ni_syscall", /* old stty syscall holder */
4221 "sys_ni_syscall", /* old gtty syscall holder */
4222 "sys_access",
4223 "sys_nice",
4224 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4225 "sys_sync",
4226 "sys_kill",
4227 "sys_rename",
4228 "sys_mkdir",
4229 "sys_rmdir", /* 40 */
4230 "sys_dup",
4231 "sys_pipe",
4232 "sys_times",
4233 "sys_ni_syscall", /* old prof syscall holder */
4234 "sys_brk", /* 45 */
4235 "sys_setgid16",
4236 "sys_getgid16",
4237 "sys_signal",
4238 "sys_geteuid16",
4239 "sys_getegid16", /* 50 */
4240 "sys_acct",
4241 "sys_umount", /* recycled never used phys() */
4242 "sys_ni_syscall", /* old lock syscall holder */
4243 "sys_ioctl",
4244 "sys_fcntl", /* 55 */
4245 "sys_ni_syscall", /* old mpx syscall holder */
4246 "sys_setpgid",
4247 "sys_ni_syscall", /* old ulimit syscall holder */
4248 "sys_olduname",
4249 "sys_umask", /* 60 */
4250 "sys_chroot",
4251 "sys_ustat",
4252 "sys_dup2",
4253 "sys_getppid",
4254 "sys_getpgrp", /* 65 */
4255 "sys_setsid",
4256 "sys_sigaction",
4257 "sys_sgetmask",
4258 "sys_ssetmask",
4259 "sys_setreuid16", /* 70 */
4260 "sys_setregid16",
4261 "sys_sigsuspend",
4262 "sys_sigpending",
4263 "sys_sethostname",
4264 "sys_setrlimit", /* 75 */
4265 "sys_old_getrlimit",
4266 "sys_getrusage",
4267 "sys_gettimeofday",
4268 "sys_settimeofday",
4269 "sys_getgroups16", /* 80 */
4270 "sys_setgroups16",
4271 "old_select",
4272 "sys_symlink",
4273 "sys_lstat",
4274 "sys_readlink", /* 85 */
4275 "sys_uselib",
4276 "sys_swapon",
4277 "sys_reboot",
4278 "old_readdir",
4279 "old_mmap", /* 90 */
4280 "sys_munmap",
4281 "sys_truncate",
4282 "sys_ftruncate",
4283 "sys_fchmod",
4284 "sys_fchown16", /* 95 */
4285 "sys_getpriority",
4286 "sys_setpriority",
4287 "sys_ni_syscall", /* old profil syscall holder */
4288 "sys_statfs",
4289 "sys_fstatfs", /* 100 */
4290 "sys_ioperm",
4291 "sys_socketcall",
4292 "sys_syslog",
4293 "sys_setitimer",
4294 "sys_getitimer", /* 105 */
4295 "sys_newstat",
4296 "sys_newlstat",
4297 "sys_newfstat",
4298 "sys_uname",
4299 "sys_iopl", /* 110 */
4300 "sys_vhangup",
4301 "sys_ni_syscall", /* old "idle" system call */
4302 "sys_vm86old",
4303 "sys_wait4",
4304 "sys_swapoff", /* 115 */
4305 "sys_sysinfo",
4306 "sys_ipc",
4307 "sys_fsync",
4308 "sys_sigreturn",
4309 "sys_clone", /* 120 */
4310 "sys_setdomainname",
4311 "sys_newuname",
4312 "sys_modify_ldt",
4313 "sys_adjtimex",
4314 "sys_mprotect", /* 125 */
4315 "sys_sigprocmask",
4316 "sys_ni_syscall", /* old "create_module" */
4317 "sys_init_module",
4318 "sys_delete_module",
4319 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4320 "sys_quotactl",
4321 "sys_getpgid",
4322 "sys_fchdir",
4323 "sys_bdflush",
4324 "sys_sysfs", /* 135 */
4325 "sys_personality",
4326 "sys_ni_syscall", /* reserved for afs_syscall */
4327 "sys_setfsuid16",
4328 "sys_setfsgid16",
4329 "sys_llseek", /* 140 */
4330 "sys_getdents",
4331 "sys_select",
4332 "sys_flock",
4333 "sys_msync",
4334 "sys_readv", /* 145 */
4335 "sys_writev",
4336 "sys_getsid",
4337 "sys_fdatasync",
4338 "sys_sysctl",
4339 "sys_mlock", /* 150 */
4340 "sys_munlock",
4341 "sys_mlockall",
4342 "sys_munlockall",
4343 "sys_sched_setparam",
4344 "sys_sched_getparam", /* 155 */
4345 "sys_sched_setscheduler",
4346 "sys_sched_getscheduler",
4347 "sys_sched_yield",
4348 "sys_sched_get_priority_max",
4349 "sys_sched_get_priority_min", /* 160 */
4350 "sys_sched_rr_get_interval",
4351 "sys_nanosleep",
4352 "sys_mremap",
4353 "sys_setresuid16",
4354 "sys_getresuid16", /* 165 */
4355 "sys_vm86",
4356 "sys_ni_syscall", /* Old sys_query_module */
4357 "sys_poll",
4358 "sys_nfsservctl",
4359 "sys_setresgid16", /* 170 */
4360 "sys_getresgid16",
4361 "sys_prctl",
4362 "sys_rt_sigreturn",
4363 "sys_rt_sigaction",
4364 "sys_rt_sigprocmask", /* 175 */
4365 "sys_rt_sigpending",
4366 "sys_rt_sigtimedwait",
4367 "sys_rt_sigqueueinfo",
4368 "sys_rt_sigsuspend",
4369 "sys_pread64", /* 180 */
4370 "sys_pwrite64",
4371 "sys_chown16",
4372 "sys_getcwd",
4373 "sys_capget",
4374 "sys_capset", /* 185 */
4375 "sys_sigaltstack",
4376 "sys_sendfile",
4377 "sys_ni_syscall", /* reserved for streams1 */
4378 "sys_ni_syscall", /* reserved for streams2 */
4379 "sys_vfork", /* 190 */
4380 "sys_getrlimit",
4381 "sys_mmap2",
4382 "sys_truncate64",
4383 "sys_ftruncate64",
4384 "sys_stat64", /* 195 */
4385 "sys_lstat64",
4386 "sys_fstat64",
4387 "sys_lchown",
4388 "sys_getuid",
4389 "sys_getgid", /* 200 */
4390 "sys_geteuid",
4391 "sys_getegid",
4392 "sys_setreuid",
4393 "sys_setregid",
4394 "sys_getgroups", /* 205 */
4395 "sys_setgroups",
4396 "sys_fchown",
4397 "sys_setresuid",
4398 "sys_getresuid",
4399 "sys_setresgid", /* 210 */
4400 "sys_getresgid",
4401 "sys_chown",
4402 "sys_setuid",
4403 "sys_setgid",
4404 "sys_setfsuid", /* 215 */
4405 "sys_setfsgid",
4406 "sys_pivot_root",
4407 "sys_mincore",
4408 "sys_madvise",
4409 "sys_getdents64", /* 220 */
4410 "sys_fcntl64",
4411 "sys_ni_syscall", /* reserved for TUX */
4412 "sys_ni_syscall",
4413 "sys_gettid",
4414 "sys_readahead", /* 225 */
4415 "sys_setxattr",
4416 "sys_lsetxattr",
4417 "sys_fsetxattr",
4418 "sys_getxattr",
4419 "sys_lgetxattr", /* 230 */
4420 "sys_fgetxattr",
4421 "sys_listxattr",
4422 "sys_llistxattr",
4423 "sys_flistxattr",
4424 "sys_removexattr", /* 235 */
4425 "sys_lremovexattr",
4426 "sys_fremovexattr",
4427 "sys_tkill",
4428 "sys_sendfile64",
4429 "sys_futex", /* 240 */
4430 "sys_sched_setaffinity",
4431 "sys_sched_getaffinity",
4432 "sys_set_thread_area",
4433 "sys_get_thread_area",
4434 "sys_io_setup", /* 245 */
4435 "sys_io_destroy",
4436 "sys_io_getevents",
4437 "sys_io_submit",
4438 "sys_io_cancel",
4439 "sys_fadvise64", /* 250 */
4440 "sys_ni_syscall",
4441 "sys_exit_group",
4442 "sys_lookup_dcookie",
4443 "sys_epoll_create",
4444 "sys_epoll_ctl", /* 255 */
4445 "sys_epoll_wait",
4446 "sys_remap_file_pages",
4447 "sys_set_tid_address",
4448 "sys_timer_create",
4449 "sys_timer_settime", /* 260 */
4450 "sys_timer_gettime",
4451 "sys_timer_getoverrun",
4452 "sys_timer_delete",
4453 "sys_clock_settime",
4454 "sys_clock_gettime", /* 265 */
4455 "sys_clock_getres",
4456 "sys_clock_nanosleep",
4457 "sys_statfs64",
4458 "sys_fstatfs64",
4459 "sys_tgkill", /* 270 */
4460 "sys_utimes",
4461 "sys_fadvise64_64",
4462 "sys_ni_syscall" /* sys_vserver */
4463 };
4464
4465 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4466 switch (uEAX)
4467 {
4468 default:
4469 if (uEAX < ELEMENTS(apsz))
4470 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4471 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4472 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4473 else
4474 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4475 break;
4476
4477 }
4478}
4479
4480
4481/**
4482 * Dumps an OpenBSD system call.
4483 * @param pVM VM handle.
4484 */
4485void remR3DumpOBsdSyscall(PVM pVM)
4486{
4487 static const char *apsz[] =
4488 {
4489 "SYS_syscall", //0
4490 "SYS_exit", //1
4491 "SYS_fork", //2
4492 "SYS_read", //3
4493 "SYS_write", //4
4494 "SYS_open", //5
4495 "SYS_close", //6
4496 "SYS_wait4", //7
4497 "SYS_8",
4498 "SYS_link", //9
4499 "SYS_unlink", //10
4500 "SYS_11",
4501 "SYS_chdir", //12
4502 "SYS_fchdir", //13
4503 "SYS_mknod", //14
4504 "SYS_chmod", //15
4505 "SYS_chown", //16
4506 "SYS_break", //17
4507 "SYS_18",
4508 "SYS_19",
4509 "SYS_getpid", //20
4510 "SYS_mount", //21
4511 "SYS_unmount", //22
4512 "SYS_setuid", //23
4513 "SYS_getuid", //24
4514 "SYS_geteuid", //25
4515 "SYS_ptrace", //26
4516 "SYS_recvmsg", //27
4517 "SYS_sendmsg", //28
4518 "SYS_recvfrom", //29
4519 "SYS_accept", //30
4520 "SYS_getpeername", //31
4521 "SYS_getsockname", //32
4522 "SYS_access", //33
4523 "SYS_chflags", //34
4524 "SYS_fchflags", //35
4525 "SYS_sync", //36
4526 "SYS_kill", //37
4527 "SYS_38",
4528 "SYS_getppid", //39
4529 "SYS_40",
4530 "SYS_dup", //41
4531 "SYS_opipe", //42
4532 "SYS_getegid", //43
4533 "SYS_profil", //44
4534 "SYS_ktrace", //45
4535 "SYS_sigaction", //46
4536 "SYS_getgid", //47
4537 "SYS_sigprocmask", //48
4538 "SYS_getlogin", //49
4539 "SYS_setlogin", //50
4540 "SYS_acct", //51
4541 "SYS_sigpending", //52
4542 "SYS_osigaltstack", //53
4543 "SYS_ioctl", //54
4544 "SYS_reboot", //55
4545 "SYS_revoke", //56
4546 "SYS_symlink", //57
4547 "SYS_readlink", //58
4548 "SYS_execve", //59
4549 "SYS_umask", //60
4550 "SYS_chroot", //61
4551 "SYS_62",
4552 "SYS_63",
4553 "SYS_64",
4554 "SYS_65",
4555 "SYS_vfork", //66
4556 "SYS_67",
4557 "SYS_68",
4558 "SYS_sbrk", //69
4559 "SYS_sstk", //70
4560 "SYS_61",
4561 "SYS_vadvise", //72
4562 "SYS_munmap", //73
4563 "SYS_mprotect", //74
4564 "SYS_madvise", //75
4565 "SYS_76",
4566 "SYS_77",
4567 "SYS_mincore", //78
4568 "SYS_getgroups", //79
4569 "SYS_setgroups", //80
4570 "SYS_getpgrp", //81
4571 "SYS_setpgid", //82
4572 "SYS_setitimer", //83
4573 "SYS_84",
4574 "SYS_85",
4575 "SYS_getitimer", //86
4576 "SYS_87",
4577 "SYS_88",
4578 "SYS_89",
4579 "SYS_dup2", //90
4580 "SYS_91",
4581 "SYS_fcntl", //92
4582 "SYS_select", //93
4583 "SYS_94",
4584 "SYS_fsync", //95
4585 "SYS_setpriority", //96
4586 "SYS_socket", //97
4587 "SYS_connect", //98
4588 "SYS_99",
4589 "SYS_getpriority", //100
4590 "SYS_101",
4591 "SYS_102",
4592 "SYS_sigreturn", //103
4593 "SYS_bind", //104
4594 "SYS_setsockopt", //105
4595 "SYS_listen", //106
4596 "SYS_107",
4597 "SYS_108",
4598 "SYS_109",
4599 "SYS_110",
4600 "SYS_sigsuspend", //111
4601 "SYS_112",
4602 "SYS_113",
4603 "SYS_114",
4604 "SYS_115",
4605 "SYS_gettimeofday", //116
4606 "SYS_getrusage", //117
4607 "SYS_getsockopt", //118
4608 "SYS_119",
4609 "SYS_readv", //120
4610 "SYS_writev", //121
4611 "SYS_settimeofday", //122
4612 "SYS_fchown", //123
4613 "SYS_fchmod", //124
4614 "SYS_125",
4615 "SYS_setreuid", //126
4616 "SYS_setregid", //127
4617 "SYS_rename", //128
4618 "SYS_129",
4619 "SYS_130",
4620 "SYS_flock", //131
4621 "SYS_mkfifo", //132
4622 "SYS_sendto", //133
4623 "SYS_shutdown", //134
4624 "SYS_socketpair", //135
4625 "SYS_mkdir", //136
4626 "SYS_rmdir", //137
4627 "SYS_utimes", //138
4628 "SYS_139",
4629 "SYS_adjtime", //140
4630 "SYS_141",
4631 "SYS_142",
4632 "SYS_143",
4633 "SYS_144",
4634 "SYS_145",
4635 "SYS_146",
4636 "SYS_setsid", //147
4637 "SYS_quotactl", //148
4638 "SYS_149",
4639 "SYS_150",
4640 "SYS_151",
4641 "SYS_152",
4642 "SYS_153",
4643 "SYS_154",
4644 "SYS_nfssvc", //155
4645 "SYS_156",
4646 "SYS_157",
4647 "SYS_158",
4648 "SYS_159",
4649 "SYS_160",
4650 "SYS_getfh", //161
4651 "SYS_162",
4652 "SYS_163",
4653 "SYS_164",
4654 "SYS_sysarch", //165
4655 "SYS_166",
4656 "SYS_167",
4657 "SYS_168",
4658 "SYS_169",
4659 "SYS_170",
4660 "SYS_171",
4661 "SYS_172",
4662 "SYS_pread", //173
4663 "SYS_pwrite", //174
4664 "SYS_175",
4665 "SYS_176",
4666 "SYS_177",
4667 "SYS_178",
4668 "SYS_179",
4669 "SYS_180",
4670 "SYS_setgid", //181
4671 "SYS_setegid", //182
4672 "SYS_seteuid", //183
4673 "SYS_lfs_bmapv", //184
4674 "SYS_lfs_markv", //185
4675 "SYS_lfs_segclean", //186
4676 "SYS_lfs_segwait", //187
4677 "SYS_188",
4678 "SYS_189",
4679 "SYS_190",
4680 "SYS_pathconf", //191
4681 "SYS_fpathconf", //192
4682 "SYS_swapctl", //193
4683 "SYS_getrlimit", //194
4684 "SYS_setrlimit", //195
4685 "SYS_getdirentries", //196
4686 "SYS_mmap", //197
4687 "SYS___syscall", //198
4688 "SYS_lseek", //199
4689 "SYS_truncate", //200
4690 "SYS_ftruncate", //201
4691 "SYS___sysctl", //202
4692 "SYS_mlock", //203
4693 "SYS_munlock", //204
4694 "SYS_205",
4695 "SYS_futimes", //206
4696 "SYS_getpgid", //207
4697 "SYS_xfspioctl", //208
4698 "SYS_209",
4699 "SYS_210",
4700 "SYS_211",
4701 "SYS_212",
4702 "SYS_213",
4703 "SYS_214",
4704 "SYS_215",
4705 "SYS_216",
4706 "SYS_217",
4707 "SYS_218",
4708 "SYS_219",
4709 "SYS_220",
4710 "SYS_semget", //221
4711 "SYS_222",
4712 "SYS_223",
4713 "SYS_224",
4714 "SYS_msgget", //225
4715 "SYS_msgsnd", //226
4716 "SYS_msgrcv", //227
4717 "SYS_shmat", //228
4718 "SYS_229",
4719 "SYS_shmdt", //230
4720 "SYS_231",
4721 "SYS_clock_gettime", //232
4722 "SYS_clock_settime", //233
4723 "SYS_clock_getres", //234
4724 "SYS_235",
4725 "SYS_236",
4726 "SYS_237",
4727 "SYS_238",
4728 "SYS_239",
4729 "SYS_nanosleep", //240
4730 "SYS_241",
4731 "SYS_242",
4732 "SYS_243",
4733 "SYS_244",
4734 "SYS_245",
4735 "SYS_246",
4736 "SYS_247",
4737 "SYS_248",
4738 "SYS_249",
4739 "SYS_minherit", //250
4740 "SYS_rfork", //251
4741 "SYS_poll", //252
4742 "SYS_issetugid", //253
4743 "SYS_lchown", //254
4744 "SYS_getsid", //255
4745 "SYS_msync", //256
4746 "SYS_257",
4747 "SYS_258",
4748 "SYS_259",
4749 "SYS_getfsstat", //260
4750 "SYS_statfs", //261
4751 "SYS_fstatfs", //262
4752 "SYS_pipe", //263
4753 "SYS_fhopen", //264
4754 "SYS_265",
4755 "SYS_fhstatfs", //266
4756 "SYS_preadv", //267
4757 "SYS_pwritev", //268
4758 "SYS_kqueue", //269
4759 "SYS_kevent", //270
4760 "SYS_mlockall", //271
4761 "SYS_munlockall", //272
4762 "SYS_getpeereid", //273
4763 "SYS_274",
4764 "SYS_275",
4765 "SYS_276",
4766 "SYS_277",
4767 "SYS_278",
4768 "SYS_279",
4769 "SYS_280",
4770 "SYS_getresuid", //281
4771 "SYS_setresuid", //282
4772 "SYS_getresgid", //283
4773 "SYS_setresgid", //284
4774 "SYS_285",
4775 "SYS_mquery", //286
4776 "SYS_closefrom", //287
4777 "SYS_sigaltstack", //288
4778 "SYS_shmget", //289
4779 "SYS_semop", //290
4780 "SYS_stat", //291
4781 "SYS_fstat", //292
4782 "SYS_lstat", //293
4783 "SYS_fhstat", //294
4784 "SYS___semctl", //295
4785 "SYS_shmctl", //296
4786 "SYS_msgctl", //297
4787 "SYS_MAXSYSCALL", //298
4788 //299
4789 //300
4790 };
4791 uint32_t uEAX;
4792 if (!LogIsEnabled())
4793 return;
4794 uEAX = CPUMGetGuestEAX(pVM);
4795 switch (uEAX)
4796 {
4797 default:
4798 if (uEAX < ELEMENTS(apsz))
4799 {
4800 uint32_t au32Args[8] = {0};
4801 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4802 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4803 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4804 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4805 }
4806 else
4807 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4808 break;
4809 }
4810}
4811
4812
4813#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4814/**
4815 * The Dll main entry point (stub).
4816 */
4817bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4818{
4819 return true;
4820}
4821
4822void *memcpy(void *dst, const void *src, size_t size)
4823{
4824 uint8_t*pbDst = dst, *pbSrc = src;
4825 while (size-- > 0)
4826 *pbDst++ = *pbSrc++;
4827 return dst;
4828}
4829
4830#endif
4831
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette