VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 51326

Last change on this file since 51326 was 51326, checked in by vboxsync, 10 years ago

VBoxRecompiler.c: Enable .remstep on 64-bit windows again. We're using native calling convension there for a while now.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.2 KB
Line 
1/* $Id: VBoxRecompiler.c 51326 2014-05-21 14:31:25Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include <stdio.h> /* FILE */
24#include "osdep.h"
25#include "config.h"
26#include "cpu.h"
27#include "exec-all.h"
28#include "ioport.h"
29
30#include <VBox/vmm/rem.h>
31#include <VBox/vmm/vmapi.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/ssm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/trpm.h>
36#include <VBox/vmm/iom.h>
37#include <VBox/vmm/mm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/pdm.h>
40#include <VBox/vmm/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/vmm/hm.h>
43#include <VBox/vmm/patm.h>
44#include <VBox/vmm/csam.h>
45#include "REMInternal.h"
46#include <VBox/vmm/vm.h>
47#include <VBox/vmm/uvm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_exec_init_all(uintptr_t tb_size);
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
64extern void tlb_flush(CPUX86State *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69ram_addr_t get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83/** How remR3RunLoggingStep operates. */
84#define REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
85
86
87/** Selector flag shift between qemu and VBox.
88 * VBox shifts the qemu bits to the right. */
89#define SEL_FLAGS_SHIFT (8)
90/** Mask applied to the shifted qemu selector flags to get the attributes VBox
91 * (VT-x) needs. */
92#define SEL_FLAGS_SMASK UINT32_C(0x1F0FF)
93
94
95/*******************************************************************************
96* Internal Functions *
97*******************************************************************************/
98static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
99static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
100static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
101static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
102
103static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys);
104static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys);
105static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys);
106static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
108static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
109
110static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
111static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
112static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
113static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
114static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
115static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
116
117static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
118static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler);
119static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
120
121/*******************************************************************************
122* Global Variables *
123*******************************************************************************/
124
125/** @todo Move stats to REM::s some rainy day we have nothing do to. */
126#ifdef VBOX_WITH_STATISTICS
127static STAMPROFILEADV gStatExecuteSingleInstr;
128static STAMPROFILEADV gStatCompilationQEmu;
129static STAMPROFILEADV gStatRunCodeQEmu;
130static STAMPROFILEADV gStatTotalTimeQEmu;
131static STAMPROFILEADV gStatTimers;
132static STAMPROFILEADV gStatTBLookup;
133static STAMPROFILEADV gStatIRQ;
134static STAMPROFILEADV gStatRawCheck;
135static STAMPROFILEADV gStatMemRead;
136static STAMPROFILEADV gStatMemWrite;
137static STAMPROFILE gStatGCPhys2HCVirt;
138static STAMCOUNTER gStatCpuGetTSC;
139static STAMCOUNTER gStatRefuseTFInhibit;
140static STAMCOUNTER gStatRefuseVM86;
141static STAMCOUNTER gStatRefusePaging;
142static STAMCOUNTER gStatRefusePAE;
143static STAMCOUNTER gStatRefuseIOPLNot0;
144static STAMCOUNTER gStatRefuseIF0;
145static STAMCOUNTER gStatRefuseCode16;
146static STAMCOUNTER gStatRefuseWP0;
147static STAMCOUNTER gStatRefuseRing1or2;
148static STAMCOUNTER gStatRefuseCanExecute;
149static STAMCOUNTER gaStatRefuseStale[6];
150static STAMCOUNTER gStatREMGDTChange;
151static STAMCOUNTER gStatREMIDTChange;
152static STAMCOUNTER gStatREMLDTRChange;
153static STAMCOUNTER gStatREMTRChange;
154static STAMCOUNTER gStatSelOutOfSync[6];
155static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
156static STAMCOUNTER gStatFlushTBs;
157#endif
158/* in exec.c */
159extern uint32_t tlb_flush_count;
160extern uint32_t tb_flush_count;
161extern uint32_t tb_phys_invalidate_count;
162
163/*
164 * Global stuff.
165 */
166
167/** MMIO read callbacks. */
168CPUReadMemoryFunc *g_apfnMMIORead[3] =
169{
170 remR3MMIOReadU8,
171 remR3MMIOReadU16,
172 remR3MMIOReadU32
173};
174
175/** MMIO write callbacks. */
176CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
177{
178 remR3MMIOWriteU8,
179 remR3MMIOWriteU16,
180 remR3MMIOWriteU32
181};
182
183/** Handler read callbacks. */
184CPUReadMemoryFunc *g_apfnHandlerRead[3] =
185{
186 remR3HandlerReadU8,
187 remR3HandlerReadU16,
188 remR3HandlerReadU32
189};
190
191/** Handler write callbacks. */
192CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
193{
194 remR3HandlerWriteU8,
195 remR3HandlerWriteU16,
196 remR3HandlerWriteU32
197};
198
199
200#ifdef VBOX_WITH_DEBUGGER
201/*
202 * Debugger commands.
203 */
204static FNDBGCCMD remR3CmdDisasEnableStepping;;
205
206/** '.remstep' arguments. */
207static const DBGCVARDESC g_aArgRemStep[] =
208{
209 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
210 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
211};
212
213/** Command descriptors. */
214static const DBGCCMD g_aCmds[] =
215{
216 {
217 .pszCmd ="remstep",
218 .cArgsMin = 0,
219 .cArgsMax = 1,
220 .paArgDescs = &g_aArgRemStep[0],
221 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
222 .fFlags = 0,
223 .pfnHandler = remR3CmdDisasEnableStepping,
224 .pszSyntax = "[on/off]",
225 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
226 "If no arguments show the current state."
227 }
228};
229#endif
230
231/** Prologue code, must be in lower 4G to simplify jumps to/from generated code.
232 * @todo huh??? That cannot be the case on the mac... So, this
233 * point is probably not valid any longer. */
234uint8_t *code_gen_prologue;
235
236
237/*******************************************************************************
238* Internal Functions *
239*******************************************************************************/
240void remAbort(int rc, const char *pszTip);
241extern int testmath(void);
242
243/* Put them here to avoid unused variable warning. */
244AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
245#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
246//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
247/* Why did this have to be identical?? */
248AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
249#else
250AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
251#endif
252
253
254/**
255 * Initializes the REM.
256 *
257 * @returns VBox status code.
258 * @param pVM The VM to operate on.
259 */
260REMR3DECL(int) REMR3Init(PVM pVM)
261{
262 PREMHANDLERNOTIFICATION pCur;
263 uint32_t u32Dummy;
264 int rc;
265 unsigned i;
266
267#ifdef VBOX_ENABLE_VBOXREM64
268 LogRel(("Using 64-bit aware REM\n"));
269#endif
270
271 /*
272 * Assert sanity.
273 */
274 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
275 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
276 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
277#if 0 /* just an annoyance at the moment. */
278#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
279 Assert(!testmath());
280#endif
281#endif
282
283 /*
284 * Init some internal data members.
285 */
286 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
287 pVM->rem.s.Env.pVM = pVM;
288#ifdef CPU_RAW_MODE_INIT
289 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
290#endif
291
292 /*
293 * Initialize the REM critical section.
294 *
295 * Note: This is not a 100% safe solution as updating the internal memory state while another VCPU
296 * is executing code could be dangerous. Taking the REM lock is not an option due to the danger of
297 * deadlocks. (mostly pgm vs rem locking)
298 */
299 rc = PDMR3CritSectInit(pVM, &pVM->rem.s.CritSectRegister, RT_SRC_POS, "REM-Register");
300 AssertRCReturn(rc, rc);
301
302 /* ctx. */
303 pVM->rem.s.pCtx = NULL; /* set when executing code. */
304 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
305
306 /* ignore all notifications */
307 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
308
309 code_gen_prologue = RTMemExecAlloc(_1K);
310 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
311
312 cpu_exec_init_all(0);
313
314 /*
315 * Init the recompiler.
316 */
317 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
318 {
319 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
320 return VERR_GENERAL_FAILURE;
321 }
322 PVMCPU pVCpu = VMMGetCpu(pVM);
323 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
324 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
325
326 EMRemLock(pVM);
327 cpu_reset(&pVM->rem.s.Env);
328 EMRemUnlock(pVM);
329
330 /* allocate code buffer for single instruction emulation. */
331 pVM->rem.s.Env.cbCodeBuffer = 4096;
332 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
333 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
334
335 /* Finally, set the cpu_single_env global. */
336 cpu_single_env = &pVM->rem.s.Env;
337
338 /* Nothing is pending by default */
339 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
340
341 /*
342 * Register ram types.
343 */
344 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(g_apfnMMIORead, g_apfnMMIOWrite, &pVM->rem.s.Env);
345 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
346 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
347 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
348 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
349
350 /* stop ignoring. */
351 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
352
353 /*
354 * Register the saved state data unit.
355 */
356 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
357 NULL, NULL, NULL,
358 NULL, remR3Save, NULL,
359 NULL, remR3Load, NULL);
360 if (RT_FAILURE(rc))
361 return rc;
362
363#ifdef VBOX_WITH_DEBUGGER
364 /*
365 * Debugger commands.
366 */
367 static bool fRegisteredCmds = false;
368 if (!fRegisteredCmds)
369 {
370 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
371 if (RT_SUCCESS(rc))
372 fRegisteredCmds = true;
373 }
374#endif
375
376#ifdef VBOX_WITH_STATISTICS
377 /*
378 * Statistics.
379 */
380 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
381 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
382 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
383 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
384 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer queue processing.");
385 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling translation block lookup.");
386 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling IRQ delivery.");
387 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling remR3CanExecuteRaw calls.");
388 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
389 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
390 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory conversion (PGMR3PhysTlbGCPhys2Ptr).");
391
392 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
393
394 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
395 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
396 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
397 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
398 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
399 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
400 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
401 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
402 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
403 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
404 STAM_REG(pVM, &gaStatRefuseStale[R_ES], STAMTYPE_COUNTER, "/REM/Refuse/StaleES", STAMUNIT_OCCURENCES, "Raw mode refused because of stale ES");
405 STAM_REG(pVM, &gaStatRefuseStale[R_CS], STAMTYPE_COUNTER, "/REM/Refuse/StaleCS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale CS");
406 STAM_REG(pVM, &gaStatRefuseStale[R_SS], STAMTYPE_COUNTER, "/REM/Refuse/StaleSS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale SS");
407 STAM_REG(pVM, &gaStatRefuseStale[R_DS], STAMTYPE_COUNTER, "/REM/Refuse/StaleDS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale DS");
408 STAM_REG(pVM, &gaStatRefuseStale[R_FS], STAMTYPE_COUNTER, "/REM/Refuse/StaleFS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale FS");
409 STAM_REG(pVM, &gaStatRefuseStale[R_GS], STAMTYPE_COUNTER, "/REM/Refuse/StaleGS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale GS");
410 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
411
412 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
413 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
414 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
415 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
416
417 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
418 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
419 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
420 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
421 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
422 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
423
424 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
425 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
426 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
427 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
428 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
429 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
430
431 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
432#endif /* VBOX_WITH_STATISTICS */
433 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 4);
434 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 8);
435
436 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
437 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
438 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
439
440
441#ifdef DEBUG_ALL_LOGGING
442 loglevel = ~0;
443#endif
444
445 /*
446 * Init the handler notification lists.
447 */
448 pVM->rem.s.idxPendingList = UINT32_MAX;
449 pVM->rem.s.idxFreeList = 0;
450
451 for (i = 0 ; i < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications); i++)
452 {
453 pCur = &pVM->rem.s.aHandlerNotifications[i];
454 pCur->idxNext = i + 1;
455 pCur->idxSelf = i;
456 }
457 pCur->idxNext = UINT32_MAX; /* the last record. */
458
459 return rc;
460}
461
462
463/**
464 * Finalizes the REM initialization.
465 *
466 * This is called after all components, devices and drivers has
467 * been initialized. Its main purpose it to finish the RAM related
468 * initialization.
469 *
470 * @returns VBox status code.
471 *
472 * @param pVM The VM handle.
473 */
474REMR3DECL(int) REMR3InitFinalize(PVM pVM)
475{
476 int rc;
477
478 /*
479 * Ram size & dirty bit map.
480 */
481 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
482 pVM->rem.s.fGCPhysLastRamFixed = true;
483#ifdef RT_STRICT
484 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
485#else
486 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
487#endif
488 return rc;
489}
490
491/**
492 * Initializes ram_list.phys_dirty and ram_list.phys_dirty_size.
493 *
494 * @returns VBox status code.
495 * @param pVM The VM handle.
496 * @param fGuarded Whether to guard the map.
497 */
498static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
499{
500 int rc = VINF_SUCCESS;
501 RTGCPHYS cb;
502
503 AssertLogRelReturn(QLIST_EMPTY(&ram_list.blocks), VERR_INTERNAL_ERROR_2);
504
505 cb = pVM->rem.s.GCPhysLastRam + 1;
506 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
507 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
508 VERR_OUT_OF_RANGE);
509
510 ram_list.phys_dirty_size = cb >> PAGE_SHIFT;
511 AssertMsg(((RTGCPHYS)ram_list.phys_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
512
513 if (!fGuarded)
514 {
515 ram_list.phys_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, ram_list.phys_dirty_size);
516 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", ram_list.phys_dirty_size), VERR_NO_MEMORY);
517 }
518 else
519 {
520 /*
521 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
522 */
523 uint32_t cbBitmapAligned = RT_ALIGN_32(ram_list.phys_dirty_size, PAGE_SIZE);
524 uint32_t cbBitmapFull = RT_ALIGN_32(ram_list.phys_dirty_size, (_4G >> PAGE_SHIFT));
525 if (cbBitmapFull == cbBitmapAligned)
526 cbBitmapFull += _4G >> PAGE_SHIFT;
527 else if (cbBitmapFull - cbBitmapAligned < _64K)
528 cbBitmapFull += _64K;
529
530 ram_list.phys_dirty = RTMemPageAlloc(cbBitmapFull);
531 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
532
533 rc = RTMemProtect(ram_list.phys_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
534 if (RT_FAILURE(rc))
535 {
536 RTMemPageFree(ram_list.phys_dirty, cbBitmapFull);
537 AssertLogRelRCReturn(rc, rc);
538 }
539
540 ram_list.phys_dirty += cbBitmapAligned - ram_list.phys_dirty_size;
541 }
542
543 /* initialize it. */
544 memset(ram_list.phys_dirty, 0xff, ram_list.phys_dirty_size);
545 return rc;
546}
547
548
549/**
550 * Terminates the REM.
551 *
552 * Termination means cleaning up and freeing all resources,
553 * the VM it self is at this point powered off or suspended.
554 *
555 * @returns VBox status code.
556 * @param pVM The VM to operate on.
557 */
558REMR3DECL(int) REMR3Term(PVM pVM)
559{
560 /*
561 * Statistics.
562 */
563 STAMR3Deregister(pVM->pUVM, "/PROF/REM/*");
564 STAMR3Deregister(pVM->pUVM, "/REM/*");
565
566 return VINF_SUCCESS;
567}
568
569
570/**
571 * The VM is being reset.
572 *
573 * For the REM component this means to call the cpu_reset() and
574 * reinitialize some state variables.
575 *
576 * @param pVM VM handle.
577 */
578REMR3DECL(void) REMR3Reset(PVM pVM)
579{
580 EMRemLock(pVM); /* Only pro forma, we're in a rendezvous. */
581
582 /*
583 * Reset the REM cpu.
584 */
585 Assert(pVM->rem.s.cIgnoreAll == 0);
586 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
587 cpu_reset(&pVM->rem.s.Env);
588 pVM->rem.s.cInvalidatedPages = 0;
589 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
590 Assert(pVM->rem.s.cIgnoreAll == 0);
591
592 /* Clear raw ring 0 init state */
593 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
594
595 /* Flush the TBs the next time we execute code here. */
596 pVM->rem.s.fFlushTBs = true;
597
598 EMRemUnlock(pVM);
599}
600
601
602/**
603 * Execute state save operation.
604 *
605 * @returns VBox status code.
606 * @param pVM VM Handle.
607 * @param pSSM SSM operation handle.
608 */
609static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
610{
611 PREM pRem = &pVM->rem.s;
612
613 /*
614 * Save the required CPU Env bits.
615 * (Not much because we're never in REM when doing the save.)
616 */
617 LogFlow(("remR3Save:\n"));
618 Assert(!pRem->fInREM);
619 SSMR3PutU32(pSSM, pRem->Env.hflags);
620 SSMR3PutU32(pSSM, ~0); /* separator */
621
622 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
623 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
624 SSMR3PutU32(pSSM, pVM->rem.s.u32PendingInterrupt);
625
626 return SSMR3PutU32(pSSM, ~0); /* terminator */
627}
628
629
630/**
631 * Execute state load operation.
632 *
633 * @returns VBox status code.
634 * @param pVM VM Handle.
635 * @param pSSM SSM operation handle.
636 * @param uVersion Data layout version.
637 * @param uPass The data pass.
638 */
639static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
640{
641 uint32_t u32Dummy;
642 uint32_t fRawRing0 = false;
643 uint32_t u32Sep;
644 uint32_t i;
645 int rc;
646 PREM pRem;
647
648 LogFlow(("remR3Load:\n"));
649 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
650
651 /*
652 * Validate version.
653 */
654 if ( uVersion != REM_SAVED_STATE_VERSION
655 && uVersion != REM_SAVED_STATE_VERSION_VER1_6)
656 {
657 AssertMsgFailed(("remR3Load: Invalid version uVersion=%d!\n", uVersion));
658 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
659 }
660
661 /*
662 * Do a reset to be on the safe side...
663 */
664 REMR3Reset(pVM);
665
666 /*
667 * Ignore all ignorable notifications.
668 * (Not doing this will cause serious trouble.)
669 */
670 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
671
672 /*
673 * Load the required CPU Env bits.
674 * (Not much because we're never in REM when doing the save.)
675 */
676 pRem = &pVM->rem.s;
677 Assert(!pRem->fInREM);
678 SSMR3GetU32(pSSM, &pRem->Env.hflags);
679 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
680 {
681 /* Redundant REM CPU state has to be loaded, but can be ignored. */
682 CPUX86State_Ver16 temp;
683 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
684 }
685
686 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
687 if (RT_FAILURE(rc))
688 return rc;
689 if (u32Sep != ~0U)
690 {
691 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
692 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
693 }
694
695 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
696 SSMR3GetUInt(pSSM, &fRawRing0);
697 if (fRawRing0)
698 pRem->Env.state |= CPU_RAW_RING0;
699
700 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
701 {
702 /*
703 * Load the REM stuff.
704 */
705 /** @todo r=bird: We should just drop all these items, restoring doesn't make
706 * sense. */
707 rc = SSMR3GetU32(pSSM, (uint32_t *)&pRem->cInvalidatedPages);
708 if (RT_FAILURE(rc))
709 return rc;
710 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
711 {
712 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
713 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
714 }
715 for (i = 0; i < pRem->cInvalidatedPages; i++)
716 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
717 }
718
719 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
720 if (RT_FAILURE(rc))
721 return rc;
722
723 /* check the terminator. */
724 rc = SSMR3GetU32(pSSM, &u32Sep);
725 if (RT_FAILURE(rc))
726 return rc;
727 if (u32Sep != ~0U)
728 {
729 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
730 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
731 }
732
733 /*
734 * Get the CPUID features.
735 */
736 PVMCPU pVCpu = VMMGetCpu(pVM);
737 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
738 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
739
740 /*
741 * Stop ignoring ignorable notifications.
742 */
743 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
744
745 /*
746 * Sync the whole CPU state when executing code in the recompiler.
747 */
748 for (i = 0; i < pVM->cCpus; i++)
749 {
750 PVMCPU pVCpu = &pVM->aCpus[i];
751 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
752 }
753 return VINF_SUCCESS;
754}
755
756
757
758#undef LOG_GROUP
759#define LOG_GROUP LOG_GROUP_REM_RUN
760
761/**
762 * Single steps an instruction in recompiled mode.
763 *
764 * Before calling this function the REM state needs to be in sync with
765 * the VM. Call REMR3State() to perform the sync. It's only necessary
766 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
767 * and after calling REMR3StateBack().
768 *
769 * @returns VBox status code.
770 *
771 * @param pVM VM Handle.
772 * @param pVCpu VMCPU Handle.
773 */
774REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
775{
776 int rc, interrupt_request;
777 RTGCPTR GCPtrPC;
778 bool fBp;
779
780 /*
781 * Lock the REM - we don't wanna have anyone interrupting us
782 * while stepping - and enabled single stepping. We also ignore
783 * pending interrupts and suchlike.
784 */
785 interrupt_request = pVM->rem.s.Env.interrupt_request;
786 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
787 pVM->rem.s.Env.interrupt_request = 0;
788 cpu_single_step(&pVM->rem.s.Env, 1);
789
790 /*
791 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
792 */
793 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
794 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC, BP_GDB);
795
796 /*
797 * Execute and handle the return code.
798 * We execute without enabling the cpu tick, so on success we'll
799 * just flip it on and off to make sure it moves
800 */
801 rc = cpu_exec(&pVM->rem.s.Env);
802 if (rc == EXCP_DEBUG)
803 {
804 TMR3NotifyResume(pVM, pVCpu);
805 TMR3NotifySuspend(pVM, pVCpu);
806 rc = VINF_EM_DBG_STEPPED;
807 }
808 else
809 {
810 switch (rc)
811 {
812 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
813 case EXCP_HLT:
814 case EXCP_HALTED: rc = VINF_EM_HALT; break;
815 case EXCP_RC:
816 rc = pVM->rem.s.rc;
817 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
818 break;
819 case EXCP_EXECUTE_RAW:
820 case EXCP_EXECUTE_HM:
821 /** @todo: is it correct? No! */
822 rc = VINF_SUCCESS;
823 break;
824 default:
825 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
826 rc = VERR_INTERNAL_ERROR;
827 break;
828 }
829 }
830
831 /*
832 * Restore the stuff we changed to prevent interruption.
833 * Unlock the REM.
834 */
835 if (fBp)
836 {
837 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC, BP_GDB, NULL);
838 Assert(rc2 == 0); NOREF(rc2);
839 }
840 cpu_single_step(&pVM->rem.s.Env, 0);
841 pVM->rem.s.Env.interrupt_request = interrupt_request;
842
843 return rc;
844}
845
846
847/**
848 * Set a breakpoint using the REM facilities.
849 *
850 * @returns VBox status code.
851 * @param pVM The VM handle.
852 * @param Address The breakpoint address.
853 * @thread The emulation thread.
854 */
855REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
856{
857 VM_ASSERT_EMT(pVM);
858 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address, BP_GDB, NULL))
859 {
860 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
861 return VINF_SUCCESS;
862 }
863 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
864 return VERR_REM_NO_MORE_BP_SLOTS;
865}
866
867
868/**
869 * Clears a breakpoint set by REMR3BreakpointSet().
870 *
871 * @returns VBox status code.
872 * @param pVM The VM handle.
873 * @param Address The breakpoint address.
874 * @thread The emulation thread.
875 */
876REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
877{
878 VM_ASSERT_EMT(pVM);
879 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address, BP_GDB))
880 {
881 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
882 return VINF_SUCCESS;
883 }
884 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
885 return VERR_REM_BP_NOT_FOUND;
886}
887
888
889/**
890 * Emulate an instruction.
891 *
892 * This function executes one instruction without letting anyone
893 * interrupt it. This is intended for being called while being in
894 * raw mode and thus will take care of all the state syncing between
895 * REM and the rest.
896 *
897 * @returns VBox status code.
898 * @param pVM VM handle.
899 * @param pVCpu VMCPU Handle.
900 */
901REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
902{
903 bool fFlushTBs;
904
905 int rc, rc2;
906 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
907
908 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
909 * CPU_RAW_HM makes sure we never execute interrupt handlers in the recompiler.
910 */
911 if (HMIsEnabled(pVM))
912 pVM->rem.s.Env.state |= CPU_RAW_HM;
913
914 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
915 fFlushTBs = pVM->rem.s.fFlushTBs;
916 pVM->rem.s.fFlushTBs = false;
917
918 /*
919 * Sync the state and enable single instruction / single stepping.
920 */
921 rc = REMR3State(pVM, pVCpu);
922 pVM->rem.s.fFlushTBs = fFlushTBs;
923 if (RT_SUCCESS(rc))
924 {
925 int interrupt_request = pVM->rem.s.Env.interrupt_request;
926 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
927#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
928 cpu_single_step(&pVM->rem.s.Env, 0);
929#endif
930 Assert(!pVM->rem.s.Env.singlestep_enabled);
931
932 /*
933 * Now we set the execute single instruction flag and enter the cpu_exec loop.
934 */
935 TMNotifyStartOfExecution(pVCpu);
936 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
937 rc = cpu_exec(&pVM->rem.s.Env);
938 TMNotifyEndOfExecution(pVCpu);
939 switch (rc)
940 {
941 /*
942 * Executed without anything out of the way happening.
943 */
944 case EXCP_SINGLE_INSTR:
945 rc = VINF_EM_RESCHEDULE;
946 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
947 break;
948
949 /*
950 * If we take a trap or start servicing a pending interrupt, we might end up here.
951 * (Timer thread or some other thread wishing EMT's attention.)
952 */
953 case EXCP_INTERRUPT:
954 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
955 rc = VINF_EM_RESCHEDULE;
956 break;
957
958 /*
959 * Single step, we assume!
960 * If there was a breakpoint there we're fucked now.
961 */
962 case EXCP_DEBUG:
963 if (pVM->rem.s.Env.watchpoint_hit)
964 {
965 /** @todo deal with watchpoints */
966 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
967 rc = VINF_EM_DBG_BREAKPOINT;
968 }
969 else
970 {
971 CPUBreakpoint *pBP;
972 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
973 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
974 if (pBP->pc == GCPtrPC)
975 break;
976 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
977 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
978 }
979 break;
980
981 /*
982 * hlt instruction.
983 */
984 case EXCP_HLT:
985 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
986 rc = VINF_EM_HALT;
987 break;
988
989 /*
990 * The VM has halted.
991 */
992 case EXCP_HALTED:
993 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
994 rc = VINF_EM_HALT;
995 break;
996
997 /*
998 * Switch to RAW-mode.
999 */
1000 case EXCP_EXECUTE_RAW:
1001 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1002 rc = VINF_EM_RESCHEDULE_RAW;
1003 break;
1004
1005 /*
1006 * Switch to hardware accelerated RAW-mode.
1007 */
1008 case EXCP_EXECUTE_HM:
1009 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HM\n"));
1010 rc = VINF_EM_RESCHEDULE_HM;
1011 break;
1012
1013 /*
1014 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1015 */
1016 case EXCP_RC:
1017 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1018 rc = pVM->rem.s.rc;
1019 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1020 break;
1021
1022 /*
1023 * Figure out the rest when they arrive....
1024 */
1025 default:
1026 AssertMsgFailed(("rc=%d\n", rc));
1027 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1028 rc = VINF_EM_RESCHEDULE;
1029 break;
1030 }
1031
1032 /*
1033 * Switch back the state.
1034 */
1035 pVM->rem.s.Env.interrupt_request = interrupt_request;
1036 rc2 = REMR3StateBack(pVM, pVCpu);
1037 AssertRC(rc2);
1038 }
1039
1040 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1041 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1042 return rc;
1043}
1044
1045
1046/**
1047 * Used by REMR3Run to handle the case where CPU_EMULATE_SINGLE_STEP is set.
1048 *
1049 * @returns VBox status code.
1050 *
1051 * @param pVM The VM handle.
1052 * @param pVCpu The Virtual CPU handle.
1053 */
1054static int remR3RunLoggingStep(PVM pVM, PVMCPU pVCpu)
1055{
1056 int rc;
1057
1058 Assert(pVM->rem.s.fInREM);
1059#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1060 cpu_single_step(&pVM->rem.s.Env, 1);
1061#else
1062 Assert(!pVM->rem.s.Env.singlestep_enabled);
1063#endif
1064
1065 /*
1066 * Now we set the execute single instruction flag and enter the cpu_exec loop.
1067 */
1068 for (;;)
1069 {
1070 char szBuf[256];
1071
1072 /*
1073 * Log the current registers state and instruction.
1074 */
1075 remR3StateUpdate(pVM, pVCpu);
1076 DBGFR3Info(pVM->pUVM, "cpumguest", NULL, NULL);
1077 szBuf[0] = '\0';
1078 rc = DBGFR3DisasInstrEx(pVM->pUVM,
1079 pVCpu->idCpu,
1080 0, /* Sel */ 0, /* GCPtr */
1081 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1082 szBuf,
1083 sizeof(szBuf),
1084 NULL);
1085 if (RT_FAILURE(rc))
1086 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
1087 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
1088
1089 /*
1090 * Execute the instruction.
1091 */
1092 TMNotifyStartOfExecution(pVCpu);
1093
1094 if ( pVM->rem.s.Env.exception_index < 0
1095 || pVM->rem.s.Env.exception_index > 256)
1096 pVM->rem.s.Env.exception_index = -1; /** @todo We need to do similar stuff elsewhere, I think. */
1097
1098#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1099 pVM->rem.s.Env.interrupt_request = 0;
1100#else
1101 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
1102#endif
1103 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
1104 || pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
1105 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1106 RTLogPrintf("remR3RunLoggingStep: interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1107 pVM->rem.s.Env.interrupt_request,
1108 pVM->rem.s.Env.halted,
1109 pVM->rem.s.Env.exception_index
1110 );
1111
1112 rc = cpu_exec(&pVM->rem.s.Env);
1113
1114 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %#x interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1115 pVM->rem.s.Env.interrupt_request,
1116 pVM->rem.s.Env.halted,
1117 pVM->rem.s.Env.exception_index
1118 );
1119
1120 TMNotifyEndOfExecution(pVCpu);
1121
1122 switch (rc)
1123 {
1124#ifndef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1125 /*
1126 * The normal exit.
1127 */
1128 case EXCP_SINGLE_INSTR:
1129 if ( !VM_FF_IS_PENDING(pVM, VM_FF_ALL_REM_MASK)
1130 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1131 continue;
1132 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1133 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1134 rc = VINF_SUCCESS;
1135 break;
1136
1137#else
1138 /*
1139 * The normal exit, check for breakpoints at PC just to be sure.
1140 */
1141#endif
1142 case EXCP_DEBUG:
1143 if (pVM->rem.s.Env.watchpoint_hit)
1144 {
1145 /** @todo deal with watchpoints */
1146 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1147 rc = VINF_EM_DBG_BREAKPOINT;
1148 }
1149 else
1150 {
1151 CPUBreakpoint *pBP;
1152 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1153 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1154 if (pBP->pc == GCPtrPC)
1155 break;
1156 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1157 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1158 }
1159#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1160 if (rc == VINF_EM_DBG_STEPPED)
1161 {
1162 if ( !VM_FF_IS_PENDING(pVM, VM_FF_ALL_REM_MASK)
1163 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1164 continue;
1165
1166 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1167 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1168 rc = VINF_SUCCESS;
1169 }
1170#endif
1171 break;
1172
1173 /*
1174 * If we take a trap or start servicing a pending interrupt, we might end up here.
1175 * (Timer thread or some other thread wishing EMT's attention.)
1176 */
1177 case EXCP_INTERRUPT:
1178 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_INTERRUPT rc=VINF_SUCCESS\n");
1179 rc = VINF_SUCCESS;
1180 break;
1181
1182 /*
1183 * hlt instruction.
1184 */
1185 case EXCP_HLT:
1186 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HLT rc=VINF_EM_HALT\n");
1187 rc = VINF_EM_HALT;
1188 break;
1189
1190 /*
1191 * The VM has halted.
1192 */
1193 case EXCP_HALTED:
1194 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HALTED rc=VINF_EM_HALT\n");
1195 rc = VINF_EM_HALT;
1196 break;
1197
1198 /*
1199 * Switch to RAW-mode.
1200 */
1201 case EXCP_EXECUTE_RAW:
1202 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_RAW rc=VINF_EM_RESCHEDULE_RAW\n");
1203 rc = VINF_EM_RESCHEDULE_RAW;
1204 break;
1205
1206 /*
1207 * Switch to hardware accelerated RAW-mode.
1208 */
1209 case EXCP_EXECUTE_HM:
1210 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_HM rc=VINF_EM_RESCHEDULE_HM\n");
1211 rc = VINF_EM_RESCHEDULE_HM;
1212 break;
1213
1214 /*
1215 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1216 */
1217 case EXCP_RC:
1218 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc);
1219 rc = pVM->rem.s.rc;
1220 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1221 break;
1222
1223 /*
1224 * Figure out the rest when they arrive....
1225 */
1226 default:
1227 AssertMsgFailed(("rc=%d\n", rc));
1228 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %d rc=VINF_EM_RESCHEDULE\n", rc);
1229 rc = VINF_EM_RESCHEDULE;
1230 break;
1231 }
1232 break;
1233 }
1234
1235#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1236// cpu_single_step(&pVM->rem.s.Env, 0);
1237#else
1238 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
1239#endif
1240 return rc;
1241}
1242
1243
1244/**
1245 * Runs code in recompiled mode.
1246 *
1247 * Before calling this function the REM state needs to be in sync with
1248 * the VM. Call REMR3State() to perform the sync. It's only necessary
1249 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1250 * and after calling REMR3StateBack().
1251 *
1252 * @returns VBox status code.
1253 *
1254 * @param pVM VM Handle.
1255 * @param pVCpu VMCPU Handle.
1256 */
1257REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1258{
1259 int rc;
1260
1261 if (RT_UNLIKELY(pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP))
1262 return remR3RunLoggingStep(pVM, pVCpu);
1263
1264 Assert(pVM->rem.s.fInREM);
1265 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1266
1267 TMNotifyStartOfExecution(pVCpu);
1268 rc = cpu_exec(&pVM->rem.s.Env);
1269 TMNotifyEndOfExecution(pVCpu);
1270 switch (rc)
1271 {
1272 /*
1273 * This happens when the execution was interrupted
1274 * by an external event, like pending timers.
1275 */
1276 case EXCP_INTERRUPT:
1277 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1278 rc = VINF_SUCCESS;
1279 break;
1280
1281 /*
1282 * hlt instruction.
1283 */
1284 case EXCP_HLT:
1285 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1286 rc = VINF_EM_HALT;
1287 break;
1288
1289 /*
1290 * The VM has halted.
1291 */
1292 case EXCP_HALTED:
1293 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1294 rc = VINF_EM_HALT;
1295 break;
1296
1297 /*
1298 * Breakpoint/single step.
1299 */
1300 case EXCP_DEBUG:
1301 if (pVM->rem.s.Env.watchpoint_hit)
1302 {
1303 /** @todo deal with watchpoints */
1304 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1305 rc = VINF_EM_DBG_BREAKPOINT;
1306 }
1307 else
1308 {
1309 CPUBreakpoint *pBP;
1310 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1311 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1312 if (pBP->pc == GCPtrPC)
1313 break;
1314 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1315 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1316 }
1317 break;
1318
1319 /*
1320 * Switch to RAW-mode.
1321 */
1322 case EXCP_EXECUTE_RAW:
1323 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW pc=%RGv\n", pVM->rem.s.Env.eip));
1324 rc = VINF_EM_RESCHEDULE_RAW;
1325 break;
1326
1327 /*
1328 * Switch to hardware accelerated RAW-mode.
1329 */
1330 case EXCP_EXECUTE_HM:
1331 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HM\n"));
1332 rc = VINF_EM_RESCHEDULE_HM;
1333 break;
1334
1335 /*
1336 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1337 */
1338 case EXCP_RC:
1339 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1340 rc = pVM->rem.s.rc;
1341 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1342 break;
1343
1344 /*
1345 * Figure out the rest when they arrive....
1346 */
1347 default:
1348 AssertMsgFailed(("rc=%d\n", rc));
1349 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1350 rc = VINF_SUCCESS;
1351 break;
1352 }
1353
1354 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1355 return rc;
1356}
1357
1358
1359/**
1360 * Check if the cpu state is suitable for Raw execution.
1361 *
1362 * @returns true if RAW/HWACC mode is ok, false if we should stay in REM.
1363 *
1364 * @param env The CPU env struct.
1365 * @param eip The EIP to check this for (might differ from env->eip).
1366 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1367 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1368 *
1369 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1370 */
1371bool remR3CanExecuteRaw(CPUX86State *env, RTGCPTR eip, unsigned fFlags, int *piException)
1372{
1373 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1374 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1375 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1376 uint32_t u32CR0;
1377
1378#ifdef IEM_VERIFICATION_MODE
1379 return false;
1380#endif
1381
1382 /* Update counter. */
1383 env->pVM->rem.s.cCanExecuteRaw++;
1384
1385 /* Never when single stepping+logging guest code. */
1386 if (env->state & CPU_EMULATE_SINGLE_STEP)
1387 return false;
1388
1389 if (HMIsEnabled(env->pVM))
1390 {
1391 CPUMCTX Ctx;
1392
1393 env->state |= CPU_RAW_HM;
1394
1395 /*
1396 * The simple check first...
1397 */
1398 if (!EMIsHwVirtExecutionEnabled(env->pVM))
1399 return false;
1400
1401 /*
1402 * Create partial context for HMR3CanExecuteGuest
1403 */
1404 Ctx.cr0 = env->cr[0];
1405 Ctx.cr3 = env->cr[3];
1406 Ctx.cr4 = env->cr[4];
1407
1408 Ctx.tr.Sel = env->tr.selector;
1409 Ctx.tr.ValidSel = env->tr.selector;
1410 Ctx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1411 Ctx.tr.u64Base = env->tr.base;
1412 Ctx.tr.u32Limit = env->tr.limit;
1413 Ctx.tr.Attr.u = (env->tr.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1414
1415 Ctx.ldtr.Sel = env->ldt.selector;
1416 Ctx.ldtr.ValidSel = env->ldt.selector;
1417 Ctx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1418 Ctx.ldtr.u64Base = env->ldt.base;
1419 Ctx.ldtr.u32Limit = env->ldt.limit;
1420 Ctx.ldtr.Attr.u = (env->ldt.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1421
1422 Ctx.idtr.cbIdt = env->idt.limit;
1423 Ctx.idtr.pIdt = env->idt.base;
1424
1425 Ctx.gdtr.cbGdt = env->gdt.limit;
1426 Ctx.gdtr.pGdt = env->gdt.base;
1427
1428 Ctx.rsp = env->regs[R_ESP];
1429 Ctx.rip = env->eip;
1430
1431 Ctx.eflags.u32 = env->eflags;
1432
1433 Ctx.cs.Sel = env->segs[R_CS].selector;
1434 Ctx.cs.ValidSel = env->segs[R_CS].selector;
1435 Ctx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1436 Ctx.cs.u64Base = env->segs[R_CS].base;
1437 Ctx.cs.u32Limit = env->segs[R_CS].limit;
1438 Ctx.cs.Attr.u = (env->segs[R_CS].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1439
1440 Ctx.ds.Sel = env->segs[R_DS].selector;
1441 Ctx.ds.ValidSel = env->segs[R_DS].selector;
1442 Ctx.ds.fFlags = CPUMSELREG_FLAGS_VALID;
1443 Ctx.ds.u64Base = env->segs[R_DS].base;
1444 Ctx.ds.u32Limit = env->segs[R_DS].limit;
1445 Ctx.ds.Attr.u = (env->segs[R_DS].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1446
1447 Ctx.es.Sel = env->segs[R_ES].selector;
1448 Ctx.es.ValidSel = env->segs[R_ES].selector;
1449 Ctx.es.fFlags = CPUMSELREG_FLAGS_VALID;
1450 Ctx.es.u64Base = env->segs[R_ES].base;
1451 Ctx.es.u32Limit = env->segs[R_ES].limit;
1452 Ctx.es.Attr.u = (env->segs[R_ES].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1453
1454 Ctx.fs.Sel = env->segs[R_FS].selector;
1455 Ctx.fs.ValidSel = env->segs[R_FS].selector;
1456 Ctx.fs.fFlags = CPUMSELREG_FLAGS_VALID;
1457 Ctx.fs.u64Base = env->segs[R_FS].base;
1458 Ctx.fs.u32Limit = env->segs[R_FS].limit;
1459 Ctx.fs.Attr.u = (env->segs[R_FS].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1460
1461 Ctx.gs.Sel = env->segs[R_GS].selector;
1462 Ctx.gs.ValidSel = env->segs[R_GS].selector;
1463 Ctx.gs.fFlags = CPUMSELREG_FLAGS_VALID;
1464 Ctx.gs.u64Base = env->segs[R_GS].base;
1465 Ctx.gs.u32Limit = env->segs[R_GS].limit;
1466 Ctx.gs.Attr.u = (env->segs[R_GS].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1467
1468 Ctx.ss.Sel = env->segs[R_SS].selector;
1469 Ctx.ss.ValidSel = env->segs[R_SS].selector;
1470 Ctx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1471 Ctx.ss.u64Base = env->segs[R_SS].base;
1472 Ctx.ss.u32Limit = env->segs[R_SS].limit;
1473 Ctx.ss.Attr.u = (env->segs[R_SS].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
1474
1475 Ctx.msrEFER = env->efer;
1476
1477 /* Hardware accelerated raw-mode:
1478 *
1479 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1480 */
1481 if (HMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1482 {
1483 *piException = EXCP_EXECUTE_HM;
1484 return true;
1485 }
1486 return false;
1487 }
1488
1489 /*
1490 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1491 * or 32 bits protected mode ring 0 code
1492 *
1493 * The tests are ordered by the likelihood of being true during normal execution.
1494 */
1495 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1496 {
1497 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1498 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1499 return false;
1500 }
1501
1502#ifndef VBOX_RAW_V86
1503 if (fFlags & VM_MASK) {
1504 STAM_COUNTER_INC(&gStatRefuseVM86);
1505 Log2(("raw mode refused: VM_MASK\n"));
1506 return false;
1507 }
1508#endif
1509
1510 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1511 {
1512#ifndef DEBUG_bird
1513 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1514#endif
1515 return false;
1516 }
1517
1518 if (env->singlestep_enabled)
1519 {
1520 //Log2(("raw mode refused: Single step\n"));
1521 return false;
1522 }
1523
1524 if (!QTAILQ_EMPTY(&env->breakpoints))
1525 {
1526 //Log2(("raw mode refused: Breakpoints\n"));
1527 return false;
1528 }
1529
1530 if (!QTAILQ_EMPTY(&env->watchpoints))
1531 {
1532 //Log2(("raw mode refused: Watchpoints\n"));
1533 return false;
1534 }
1535
1536 u32CR0 = env->cr[0];
1537 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1538 {
1539 STAM_COUNTER_INC(&gStatRefusePaging);
1540 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1541 return false;
1542 }
1543
1544 if (env->cr[4] & CR4_PAE_MASK)
1545 {
1546 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1547 {
1548 STAM_COUNTER_INC(&gStatRefusePAE);
1549 return false;
1550 }
1551 }
1552
1553 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1554 {
1555 if (!EMIsRawRing3Enabled(env->pVM))
1556 return false;
1557
1558 if (!(env->eflags & IF_MASK))
1559 {
1560 STAM_COUNTER_INC(&gStatRefuseIF0);
1561 Log2(("raw mode refused: IF (RawR3)\n"));
1562 return false;
1563 }
1564
1565 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1566 {
1567 STAM_COUNTER_INC(&gStatRefuseWP0);
1568 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1569 return false;
1570 }
1571 }
1572 else
1573 {
1574 if (!EMIsRawRing0Enabled(env->pVM))
1575 return false;
1576
1577 // Let's start with pure 32 bits ring 0 code first
1578 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1579 {
1580 STAM_COUNTER_INC(&gStatRefuseCode16);
1581 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1582 return false;
1583 }
1584
1585 if (EMIsRawRing1Enabled(env->pVM))
1586 {
1587 /* Only ring 0 and 1 supervisor code. */
1588 if (((fFlags >> HF_CPL_SHIFT) & 3) == 2) /* ring 1 code is moved into ring 2, so we can't support ring-2 in that case. */
1589 {
1590 Log2(("raw r0 mode refused: CPL %d\n", (fFlags >> HF_CPL_SHIFT) & 3));
1591 return false;
1592 }
1593 }
1594 /* Only R0. */
1595 else if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1596 {
1597 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1598 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1599 return false;
1600 }
1601
1602 if (!(u32CR0 & CR0_WP_MASK))
1603 {
1604 STAM_COUNTER_INC(&gStatRefuseWP0);
1605 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1606 return false;
1607 }
1608
1609#ifdef VBOX_WITH_RAW_MODE
1610 if (PATMIsPatchGCAddr(env->pVM, eip))
1611 {
1612 Log2(("raw r0 mode forced: patch code\n"));
1613 *piException = EXCP_EXECUTE_RAW;
1614 return true;
1615 }
1616#endif
1617
1618#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1619 if (!(env->eflags & IF_MASK))
1620 {
1621 STAM_COUNTER_INC(&gStatRefuseIF0);
1622 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1623 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1624 return false;
1625 }
1626#endif
1627
1628#ifndef VBOX_WITH_RAW_RING1
1629 if (((env->eflags >> IOPL_SHIFT) & 3) != 0)
1630 {
1631 Log2(("raw r0 mode refused: IOPL %d\n", ((env->eflags >> IOPL_SHIFT) & 3)));
1632 return false;
1633 }
1634#endif
1635 env->state |= CPU_RAW_RING0;
1636 }
1637
1638 /*
1639 * Don't reschedule the first time we're called, because there might be
1640 * special reasons why we're here that is not covered by the above checks.
1641 */
1642 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1643 {
1644 Log2(("raw mode refused: first scheduling\n"));
1645 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1646 return false;
1647 }
1648
1649 /*
1650 * Stale hidden selectors means raw-mode is unsafe (being very careful).
1651 */
1652 if (env->segs[R_CS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1653 {
1654 Log2(("raw mode refused: stale CS (%#x)\n", env->segs[R_CS].selector));
1655 STAM_COUNTER_INC(&gaStatRefuseStale[R_CS]);
1656 return false;
1657 }
1658 if (env->segs[R_SS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1659 {
1660 Log2(("raw mode refused: stale SS (%#x)\n", env->segs[R_SS].selector));
1661 STAM_COUNTER_INC(&gaStatRefuseStale[R_SS]);
1662 return false;
1663 }
1664 if (env->segs[R_DS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1665 {
1666 Log2(("raw mode refused: stale DS (%#x)\n", env->segs[R_DS].selector));
1667 STAM_COUNTER_INC(&gaStatRefuseStale[R_DS]);
1668 return false;
1669 }
1670 if (env->segs[R_ES].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1671 {
1672 Log2(("raw mode refused: stale ES (%#x)\n", env->segs[R_ES].selector));
1673 STAM_COUNTER_INC(&gaStatRefuseStale[R_ES]);
1674 return false;
1675 }
1676 if (env->segs[R_FS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1677 {
1678 Log2(("raw mode refused: stale FS (%#x)\n", env->segs[R_FS].selector));
1679 STAM_COUNTER_INC(&gaStatRefuseStale[R_FS]);
1680 return false;
1681 }
1682 if (env->segs[R_GS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1683 {
1684 Log2(("raw mode refused: stale GS (%#x)\n", env->segs[R_GS].selector));
1685 STAM_COUNTER_INC(&gaStatRefuseStale[R_GS]);
1686 return false;
1687 }
1688
1689/* Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));*/
1690 *piException = EXCP_EXECUTE_RAW;
1691 return true;
1692}
1693
1694
1695#ifdef VBOX_WITH_RAW_MODE
1696/**
1697 * Fetches a code byte.
1698 *
1699 * @returns Success indicator (bool) for ease of use.
1700 * @param env The CPU environment structure.
1701 * @param GCPtrInstr Where to fetch code.
1702 * @param pu8Byte Where to store the byte on success
1703 */
1704bool remR3GetOpcode(CPUX86State *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1705{
1706 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1707 if (RT_SUCCESS(rc))
1708 return true;
1709 return false;
1710}
1711#endif /* VBOX_WITH_RAW_MODE */
1712
1713
1714/**
1715 * Flush (or invalidate if you like) page table/dir entry.
1716 *
1717 * (invlpg instruction; tlb_flush_page)
1718 *
1719 * @param env Pointer to cpu environment.
1720 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1721 */
1722void remR3FlushPage(CPUX86State *env, RTGCPTR GCPtr)
1723{
1724 PVM pVM = env->pVM;
1725 PCPUMCTX pCtx;
1726 int rc;
1727
1728 Assert(EMRemIsLockOwner(env->pVM));
1729
1730 /*
1731 * When we're replaying invlpg instructions or restoring a saved
1732 * state we disable this path.
1733 */
1734 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.cIgnoreAll)
1735 return;
1736 LogFlow(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1737 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1738
1739 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1740
1741 /*
1742 * Update the control registers before calling PGMFlushPage.
1743 */
1744 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1745 Assert(pCtx);
1746 pCtx->cr0 = env->cr[0];
1747 pCtx->cr3 = env->cr[3];
1748#ifdef VBOX_WITH_RAW_MODE
1749 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1750 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1751#endif
1752 pCtx->cr4 = env->cr[4];
1753
1754 /*
1755 * Let PGM do the rest.
1756 */
1757 Assert(env->pVCpu);
1758 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1759 if (RT_FAILURE(rc))
1760 {
1761 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1762 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1763 }
1764 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1765}
1766
1767
1768#ifndef REM_PHYS_ADDR_IN_TLB
1769/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1770void *remR3TlbGCPhys2Ptr(CPUX86State *env1, target_ulong physAddr, int fWritable)
1771{
1772 void *pv;
1773 int rc;
1774
1775
1776 /* Address must be aligned enough to fiddle with lower bits */
1777 Assert((physAddr & 0x3) == 0);
1778 /*AssertMsg((env1->a20_mask & physAddr) == physAddr, ("%llx\n", (uint64_t)physAddr));*/
1779
1780 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
1781 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1782 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
1783 Assert( rc == VINF_SUCCESS
1784 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1785 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1786 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1787 if (RT_FAILURE(rc))
1788 return (void *)1;
1789 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1790 return (void *)((uintptr_t)pv | 2);
1791 return pv;
1792}
1793#endif /* REM_PHYS_ADDR_IN_TLB */
1794
1795
1796/**
1797 * Called from tlb_protect_code in order to write monitor a code page.
1798 *
1799 * @param env Pointer to the CPU environment.
1800 * @param GCPtr Code page to monitor
1801 */
1802void remR3ProtectCode(CPUX86State *env, RTGCPTR GCPtr)
1803{
1804#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1805 Assert(env->pVM->rem.s.fInREM);
1806 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1807 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1808 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1809 && !(env->eflags & VM_MASK) /* no V86 mode */
1810 && !HMIsEnabled(env->pVM))
1811 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1812#endif
1813}
1814
1815
1816/**
1817 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1818 *
1819 * @param env Pointer to the CPU environment.
1820 * @param GCPtr Code page to monitor
1821 */
1822void remR3UnprotectCode(CPUX86State *env, RTGCPTR GCPtr)
1823{
1824 Assert(env->pVM->rem.s.fInREM);
1825#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1826 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1827 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1828 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1829 && !(env->eflags & VM_MASK) /* no V86 mode */
1830 && !HMIsEnabled(env->pVM))
1831 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1832#endif
1833}
1834
1835
1836/**
1837 * Called when the CPU is initialized, any of the CRx registers are changed or
1838 * when the A20 line is modified.
1839 *
1840 * @param env Pointer to the CPU environment.
1841 * @param fGlobal Set if the flush is global.
1842 */
1843void remR3FlushTLB(CPUX86State *env, bool fGlobal)
1844{
1845 PVM pVM = env->pVM;
1846 PCPUMCTX pCtx;
1847 Assert(EMRemIsLockOwner(pVM));
1848
1849 /*
1850 * When we're replaying invlpg instructions or restoring a saved
1851 * state we disable this path.
1852 */
1853 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.cIgnoreAll)
1854 return;
1855 Assert(pVM->rem.s.fInREM);
1856
1857 /*
1858 * The caller doesn't check cr4, so we have to do that for ourselves.
1859 */
1860 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1861 fGlobal = true;
1862 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1863
1864 /*
1865 * Update the control registers before calling PGMR3FlushTLB.
1866 */
1867 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1868 Assert(pCtx);
1869 pCtx->cr0 = env->cr[0];
1870 pCtx->cr3 = env->cr[3];
1871#ifdef VBOX_WITH_RAW_MODE
1872 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1873 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1874#endif
1875 pCtx->cr4 = env->cr[4];
1876
1877 /*
1878 * Let PGM do the rest.
1879 */
1880 Assert(env->pVCpu);
1881 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1882}
1883
1884
1885/**
1886 * Called when any of the cr0, cr4 or efer registers is updated.
1887 *
1888 * @param env Pointer to the CPU environment.
1889 */
1890void remR3ChangeCpuMode(CPUX86State *env)
1891{
1892 PVM pVM = env->pVM;
1893 uint64_t efer;
1894 PCPUMCTX pCtx;
1895 int rc;
1896
1897 /*
1898 * When we're replaying loads or restoring a saved
1899 * state this path is disabled.
1900 */
1901 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.cIgnoreAll)
1902 return;
1903 Assert(pVM->rem.s.fInREM);
1904
1905 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1906 Assert(pCtx);
1907
1908 /*
1909 * Notify PGM about WP0 being enabled (like CPUSetGuestCR0 does).
1910 */
1911 if (((env->cr[0] ^ pCtx->cr0) & X86_CR0_WP) && (env->cr[0] & X86_CR0_WP))
1912 PGMCr0WpEnabled(env->pVCpu);
1913
1914 /*
1915 * Update the control registers before calling PGMChangeMode()
1916 * as it may need to map whatever cr3 is pointing to.
1917 */
1918 pCtx->cr0 = env->cr[0];
1919 pCtx->cr3 = env->cr[3];
1920#ifdef VBOX_WITH_RAW_MODE
1921 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1922 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1923#endif
1924 pCtx->cr4 = env->cr[4];
1925#ifdef TARGET_X86_64
1926 efer = env->efer;
1927 pCtx->msrEFER = efer;
1928#else
1929 efer = 0;
1930#endif
1931 Assert(env->pVCpu);
1932 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1933 if (rc != VINF_SUCCESS)
1934 {
1935 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1936 {
1937 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1938 remR3RaiseRC(env->pVM, rc);
1939 }
1940 else
1941 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1942 }
1943}
1944
1945
1946/**
1947 * Called from compiled code to run dma.
1948 *
1949 * @param env Pointer to the CPU environment.
1950 */
1951void remR3DmaRun(CPUX86State *env)
1952{
1953 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1954 PDMR3DmaRun(env->pVM);
1955 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1956}
1957
1958
1959/**
1960 * Called from compiled code to schedule pending timers in VMM
1961 *
1962 * @param env Pointer to the CPU environment.
1963 */
1964void remR3TimersRun(CPUX86State *env)
1965{
1966 LogFlow(("remR3TimersRun:\n"));
1967 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
1968 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1969 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1970 TMR3TimerQueuesDo(env->pVM);
1971 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1972 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1973}
1974
1975
1976/**
1977 * Record trap occurrence
1978 *
1979 * @returns VBox status code
1980 * @param env Pointer to the CPU environment.
1981 * @param uTrap Trap nr
1982 * @param uErrorCode Error code
1983 * @param pvNextEIP Next EIP
1984 */
1985int remR3NotifyTrap(CPUX86State *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1986{
1987 PVM pVM = env->pVM;
1988#ifdef VBOX_WITH_STATISTICS
1989 static STAMCOUNTER s_aStatTrap[255];
1990 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1991#endif
1992
1993#ifdef VBOX_WITH_STATISTICS
1994 if (uTrap < 255)
1995 {
1996 if (!s_aRegisters[uTrap])
1997 {
1998 char szStatName[64];
1999 s_aRegisters[uTrap] = true;
2000 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
2001 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
2002 }
2003 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
2004 }
2005#endif
2006 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2007 if( uTrap < 0x20
2008 && (env->cr[0] & X86_CR0_PE)
2009 && !(env->eflags & X86_EFL_VM))
2010 {
2011#ifdef DEBUG
2012 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
2013#endif
2014 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
2015 {
2016 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2017 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
2018 return VERR_REM_TOO_MANY_TRAPS;
2019 }
2020 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
2021 {
2022 Log(("remR3NotifyTrap: uTrap=%#x set as pending\n", uTrap));
2023 pVM->rem.s.cPendingExceptions = 1;
2024 }
2025 pVM->rem.s.uPendingException = uTrap;
2026 pVM->rem.s.uPendingExcptEIP = env->eip;
2027 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2028 }
2029 else
2030 {
2031 pVM->rem.s.cPendingExceptions = 0;
2032 pVM->rem.s.uPendingException = uTrap;
2033 pVM->rem.s.uPendingExcptEIP = env->eip;
2034 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2035 }
2036 return VINF_SUCCESS;
2037}
2038
2039
2040/*
2041 * Clear current active trap
2042 *
2043 * @param pVM VM Handle.
2044 */
2045void remR3TrapClear(PVM pVM)
2046{
2047 pVM->rem.s.cPendingExceptions = 0;
2048 pVM->rem.s.uPendingException = 0;
2049 pVM->rem.s.uPendingExcptEIP = 0;
2050 pVM->rem.s.uPendingExcptCR2 = 0;
2051}
2052
2053
2054/*
2055 * Record previous call instruction addresses
2056 *
2057 * @param env Pointer to the CPU environment.
2058 */
2059void remR3RecordCall(CPUX86State *env)
2060{
2061#ifdef VBOX_WITH_RAW_MODE
2062 CSAMR3RecordCallAddress(env->pVM, env->eip);
2063#endif
2064}
2065
2066
2067/**
2068 * Syncs the internal REM state with the VM.
2069 *
2070 * This must be called before REMR3Run() is invoked whenever when the REM
2071 * state is not up to date. Calling it several times in a row is not
2072 * permitted.
2073 *
2074 * @returns VBox status code.
2075 *
2076 * @param pVM VM Handle.
2077 * @param pVCpu VMCPU Handle.
2078 *
2079 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
2080 * no do this since the majority of the callers don't want any unnecessary of events
2081 * pending that would immediately interrupt execution.
2082 */
2083REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
2084{
2085 register const CPUMCTX *pCtx;
2086 register unsigned fFlags;
2087 unsigned i;
2088 TRPMEVENT enmType;
2089 uint8_t u8TrapNo;
2090 uint32_t uCpl;
2091 int rc;
2092
2093 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
2094 Log2(("REMR3State:\n"));
2095
2096 pVM->rem.s.Env.pVCpu = pVCpu;
2097 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2098
2099 Assert(!pVM->rem.s.fInREM);
2100 pVM->rem.s.fInStateSync = true;
2101
2102 /*
2103 * If we have to flush TBs, do that immediately.
2104 */
2105 if (pVM->rem.s.fFlushTBs)
2106 {
2107 STAM_COUNTER_INC(&gStatFlushTBs);
2108 tb_flush(&pVM->rem.s.Env);
2109 pVM->rem.s.fFlushTBs = false;
2110 }
2111
2112 /*
2113 * Copy the registers which require no special handling.
2114 */
2115#ifdef TARGET_X86_64
2116 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2117 Assert(R_EAX == 0);
2118 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
2119 Assert(R_ECX == 1);
2120 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
2121 Assert(R_EDX == 2);
2122 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
2123 Assert(R_EBX == 3);
2124 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
2125 Assert(R_ESP == 4);
2126 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
2127 Assert(R_EBP == 5);
2128 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
2129 Assert(R_ESI == 6);
2130 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
2131 Assert(R_EDI == 7);
2132 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
2133 pVM->rem.s.Env.regs[8] = pCtx->r8;
2134 pVM->rem.s.Env.regs[9] = pCtx->r9;
2135 pVM->rem.s.Env.regs[10] = pCtx->r10;
2136 pVM->rem.s.Env.regs[11] = pCtx->r11;
2137 pVM->rem.s.Env.regs[12] = pCtx->r12;
2138 pVM->rem.s.Env.regs[13] = pCtx->r13;
2139 pVM->rem.s.Env.regs[14] = pCtx->r14;
2140 pVM->rem.s.Env.regs[15] = pCtx->r15;
2141
2142 pVM->rem.s.Env.eip = pCtx->rip;
2143
2144 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
2145#else
2146 Assert(R_EAX == 0);
2147 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
2148 Assert(R_ECX == 1);
2149 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
2150 Assert(R_EDX == 2);
2151 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
2152 Assert(R_EBX == 3);
2153 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
2154 Assert(R_ESP == 4);
2155 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
2156 Assert(R_EBP == 5);
2157 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
2158 Assert(R_ESI == 6);
2159 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
2160 Assert(R_EDI == 7);
2161 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
2162 pVM->rem.s.Env.eip = pCtx->eip;
2163
2164 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
2165#endif
2166
2167 pVM->rem.s.Env.cr[2] = pCtx->cr2;
2168
2169 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
2170 for (i=0;i<8;i++)
2171 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
2172
2173#ifdef HF_HALTED_MASK /** @todo remove me when we're up to date again. */
2174 /*
2175 * Clear the halted hidden flag (the interrupt waking up the CPU can
2176 * have been dispatched in raw mode).
2177 */
2178 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
2179#endif
2180
2181 /*
2182 * Replay invlpg? Only if we're not flushing the TLB.
2183 */
2184 fFlags = CPUMR3RemEnter(pVCpu, &uCpl);
2185 LogFlow(("CPUMR3RemEnter %x %x\n", fFlags, uCpl));
2186 if (pVM->rem.s.cInvalidatedPages)
2187 {
2188 if (!(fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH))
2189 {
2190 RTUINT i;
2191
2192 pVM->rem.s.fIgnoreCR3Load = true;
2193 pVM->rem.s.fIgnoreInvlPg = true;
2194 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2195 {
2196 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2197 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2198 }
2199 pVM->rem.s.fIgnoreInvlPg = false;
2200 pVM->rem.s.fIgnoreCR3Load = false;
2201 }
2202 pVM->rem.s.cInvalidatedPages = 0;
2203 }
2204
2205 /* Replay notification changes. */
2206 REMR3ReplayHandlerNotifications(pVM);
2207
2208 /* Update MSRs; before CRx registers! */
2209 pVM->rem.s.Env.efer = pCtx->msrEFER;
2210 pVM->rem.s.Env.star = pCtx->msrSTAR;
2211 pVM->rem.s.Env.pat = pCtx->msrPAT;
2212#ifdef TARGET_X86_64
2213 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
2214 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
2215 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
2216 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
2217
2218 /* Update the internal long mode activate flag according to the new EFER value. */
2219 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
2220 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
2221 else
2222 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
2223#endif
2224
2225 /* Update the inhibit IRQ mask. */
2226 pVM->rem.s.Env.hflags &= ~HF_INHIBIT_IRQ_MASK;
2227 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2228 {
2229 RTGCPTR InhibitPC = EMGetInhibitInterruptsPC(pVCpu);
2230 if (InhibitPC == pCtx->rip)
2231 pVM->rem.s.Env.hflags |= HF_INHIBIT_IRQ_MASK;
2232 else
2233 {
2234 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#1)\n", (RTGCPTR)pCtx->rip, InhibitPC));
2235 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2236 }
2237 }
2238
2239 /*
2240 * Sync the A20 gate.
2241 */
2242 bool fA20State = PGMPhysIsA20Enabled(pVCpu);
2243 if (fA20State != RT_BOOL(pVM->rem.s.Env.a20_mask & RT_BIT(20)))
2244 {
2245 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
2246 cpu_x86_set_a20(&pVM->rem.s.Env, fA20State);
2247 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
2248 }
2249
2250 /*
2251 * Registers which are rarely changed and require special handling / order when changed.
2252 */
2253 if (fFlags & ( CPUM_CHANGED_GLOBAL_TLB_FLUSH
2254 | CPUM_CHANGED_CR4
2255 | CPUM_CHANGED_CR0
2256 | CPUM_CHANGED_CR3
2257 | CPUM_CHANGED_GDTR
2258 | CPUM_CHANGED_IDTR
2259 | CPUM_CHANGED_SYSENTER_MSR
2260 | CPUM_CHANGED_LDTR
2261 | CPUM_CHANGED_CPUID
2262 | CPUM_CHANGED_FPU_REM
2263 )
2264 )
2265 {
2266 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
2267 {
2268 pVM->rem.s.fIgnoreCR3Load = true;
2269 tlb_flush(&pVM->rem.s.Env, true);
2270 pVM->rem.s.fIgnoreCR3Load = false;
2271 }
2272
2273 /* CR4 before CR0! */
2274 if (fFlags & CPUM_CHANGED_CR4)
2275 {
2276 pVM->rem.s.fIgnoreCR3Load = true;
2277 pVM->rem.s.fIgnoreCpuMode = true;
2278 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
2279 pVM->rem.s.fIgnoreCpuMode = false;
2280 pVM->rem.s.fIgnoreCR3Load = false;
2281 }
2282
2283 if (fFlags & CPUM_CHANGED_CR0)
2284 {
2285 pVM->rem.s.fIgnoreCR3Load = true;
2286 pVM->rem.s.fIgnoreCpuMode = true;
2287 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
2288 pVM->rem.s.fIgnoreCpuMode = false;
2289 pVM->rem.s.fIgnoreCR3Load = false;
2290 }
2291
2292 if (fFlags & CPUM_CHANGED_CR3)
2293 {
2294 pVM->rem.s.fIgnoreCR3Load = true;
2295 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
2296 pVM->rem.s.fIgnoreCR3Load = false;
2297 }
2298
2299 if (fFlags & CPUM_CHANGED_GDTR)
2300 {
2301 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
2302 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
2303 }
2304
2305 if (fFlags & CPUM_CHANGED_IDTR)
2306 {
2307 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
2308 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
2309 }
2310
2311 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
2312 {
2313 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
2314 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
2315 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
2316 }
2317
2318 if (fFlags & CPUM_CHANGED_LDTR)
2319 {
2320 if (pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2321 {
2322 pVM->rem.s.Env.ldt.selector = pCtx->ldtr.Sel;
2323 pVM->rem.s.Env.ldt.newselector = 0;
2324 pVM->rem.s.Env.ldt.fVBoxFlags = pCtx->ldtr.fFlags;
2325 pVM->rem.s.Env.ldt.base = pCtx->ldtr.u64Base;
2326 pVM->rem.s.Env.ldt.limit = pCtx->ldtr.u32Limit;
2327 pVM->rem.s.Env.ldt.flags = (pCtx->ldtr.Attr.u & SEL_FLAGS_SMASK) << SEL_FLAGS_SHIFT;
2328 }
2329 else
2330 {
2331 AssertFailed(); /* Shouldn't happen, see cpumR3LoadExec. */
2332 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr.Sel);
2333 }
2334 }
2335
2336 if (fFlags & CPUM_CHANGED_CPUID)
2337 {
2338 uint32_t u32Dummy;
2339
2340 /*
2341 * Get the CPUID features.
2342 */
2343 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
2344 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
2345 }
2346
2347 /* Sync FPU state after CR4, CPUID and EFER (!). */
2348 if (fFlags & CPUM_CHANGED_FPU_REM)
2349 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
2350 }
2351
2352 /*
2353 * Sync TR unconditionally to make life simpler.
2354 */
2355 pVM->rem.s.Env.tr.selector = pCtx->tr.Sel;
2356 pVM->rem.s.Env.tr.newselector = 0;
2357 pVM->rem.s.Env.tr.fVBoxFlags = pCtx->tr.fFlags;
2358 pVM->rem.s.Env.tr.base = pCtx->tr.u64Base;
2359 pVM->rem.s.Env.tr.limit = pCtx->tr.u32Limit;
2360 pVM->rem.s.Env.tr.flags = (pCtx->tr.Attr.u & SEL_FLAGS_SMASK) << SEL_FLAGS_SHIFT;
2361 /* Note! do_interrupt will fault if the busy flag is still set... */ /** @todo so fix do_interrupt then! */
2362 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
2363
2364 /*
2365 * Update selector registers.
2366 *
2367 * This must be done *after* we've synced gdt, ldt and crX registers
2368 * since we're reading the GDT/LDT om sync_seg. This will happen with
2369 * saved state which takes a quick dip into rawmode for instance.
2370 *
2371 * CPL/Stack; Note first check this one as the CPL might have changed.
2372 * The wrong CPL can cause QEmu to raise an exception in sync_seg!!
2373 */
2374 cpu_x86_set_cpl(&pVM->rem.s.Env, uCpl);
2375 /* Note! QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2376#define SYNC_IN_SREG(a_pEnv, a_SReg, a_pRemSReg, a_pVBoxSReg) \
2377 do \
2378 { \
2379 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, a_pVBoxSReg)) \
2380 { \
2381 cpu_x86_load_seg_cache(a_pEnv, R_##a_SReg, \
2382 (a_pVBoxSReg)->Sel, \
2383 (a_pVBoxSReg)->u64Base, \
2384 (a_pVBoxSReg)->u32Limit, \
2385 ((a_pVBoxSReg)->Attr.u & SEL_FLAGS_SMASK) << SEL_FLAGS_SHIFT); \
2386 (a_pRemSReg)->fVBoxFlags = (a_pVBoxSReg)->fFlags; \
2387 } \
2388 /* This only-reload-if-changed stuff is the old approach, we should ditch it. */ \
2389 else if ((a_pRemSReg)->selector != (a_pVBoxSReg)->Sel) \
2390 { \
2391 Log2(("REMR3State: " #a_SReg " changed from %04x to %04x!\n", \
2392 (a_pRemSReg)->selector, (a_pVBoxSReg)->Sel)); \
2393 sync_seg(a_pEnv, R_##a_SReg, (a_pVBoxSReg)->Sel); \
2394 if ((a_pRemSReg)->newselector) \
2395 STAM_COUNTER_INC(&gStatSelOutOfSync[R_##a_SReg]); \
2396 } \
2397 else \
2398 (a_pRemSReg)->newselector = 0; \
2399 } while (0)
2400
2401 SYNC_IN_SREG(&pVM->rem.s.Env, CS, &pVM->rem.s.Env.segs[R_CS], &pCtx->cs);
2402 SYNC_IN_SREG(&pVM->rem.s.Env, SS, &pVM->rem.s.Env.segs[R_SS], &pCtx->ss);
2403 SYNC_IN_SREG(&pVM->rem.s.Env, DS, &pVM->rem.s.Env.segs[R_DS], &pCtx->ds);
2404 SYNC_IN_SREG(&pVM->rem.s.Env, ES, &pVM->rem.s.Env.segs[R_ES], &pCtx->es);
2405 SYNC_IN_SREG(&pVM->rem.s.Env, FS, &pVM->rem.s.Env.segs[R_FS], &pCtx->fs);
2406 SYNC_IN_SREG(&pVM->rem.s.Env, GS, &pVM->rem.s.Env.segs[R_GS], &pCtx->gs);
2407 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2408 * be the same but not the base/limit. */
2409
2410 /*
2411 * Check for traps.
2412 */
2413 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2414 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2415 if (RT_SUCCESS(rc))
2416 {
2417#ifdef DEBUG
2418 if (u8TrapNo == 0x80)
2419 {
2420 remR3DumpLnxSyscall(pVCpu);
2421 remR3DumpOBsdSyscall(pVCpu);
2422 }
2423#endif
2424
2425 pVM->rem.s.Env.exception_index = u8TrapNo;
2426 if (enmType != TRPM_SOFTWARE_INT)
2427 {
2428 pVM->rem.s.Env.exception_is_int = 0;
2429#ifdef IEM_VERIFICATION_MODE /* Ugly hack, needs proper fixing. */
2430 pVM->rem.s.Env.exception_is_int = enmType == TRPM_HARDWARE_INT ? 0x42 : 0;
2431#endif
2432 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2433 }
2434 else
2435 {
2436 /*
2437 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2438 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2439 * for int03 and into.
2440 */
2441 pVM->rem.s.Env.exception_is_int = 1;
2442 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2443 /* int 3 may be generated by one-byte 0xcc */
2444 if (u8TrapNo == 3)
2445 {
2446 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2447 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2448 }
2449 /* int 4 may be generated by one-byte 0xce */
2450 else if (u8TrapNo == 4)
2451 {
2452 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2453 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2454 }
2455 }
2456
2457 /* get error code and cr2 if needed. */
2458 if (enmType == TRPM_TRAP)
2459 {
2460 switch (u8TrapNo)
2461 {
2462 case X86_XCPT_PF:
2463 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2464 /* fallthru */
2465 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2466 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2467 break;
2468
2469 case X86_XCPT_AC: case X86_XCPT_DF:
2470 default:
2471 pVM->rem.s.Env.error_code = 0;
2472 break;
2473 }
2474 }
2475 else
2476 pVM->rem.s.Env.error_code = 0;
2477
2478 /*
2479 * We can now reset the active trap since the recompiler is gonna have a go at it.
2480 */
2481 rc = TRPMResetTrap(pVCpu);
2482 AssertRC(rc);
2483 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2484 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2485 }
2486
2487 /*
2488 * Clear old interrupt request flags; Check for pending hardware interrupts.
2489 * (See @remark for why we don't check for other FFs.)
2490 */
2491 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2492 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2493 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2494 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2495
2496 /*
2497 * We're now in REM mode.
2498 */
2499 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2500 pVM->rem.s.fInREM = true;
2501 pVM->rem.s.fInStateSync = false;
2502 pVM->rem.s.cCanExecuteRaw = 0;
2503 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2504 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2505 return VINF_SUCCESS;
2506}
2507
2508
2509/**
2510 * Syncs back changes in the REM state to the the VM state.
2511 *
2512 * This must be called after invoking REMR3Run().
2513 * Calling it several times in a row is not permitted.
2514 *
2515 * @returns VBox status code.
2516 *
2517 * @param pVM VM Handle.
2518 * @param pVCpu VMCPU Handle.
2519 */
2520REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2521{
2522 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2523 Assert(pCtx);
2524 unsigned i;
2525
2526 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2527 Log2(("REMR3StateBack:\n"));
2528 Assert(pVM->rem.s.fInREM);
2529
2530 /*
2531 * Copy back the registers.
2532 * This is done in the order they are declared in the CPUMCTX structure.
2533 */
2534
2535 /** @todo FOP */
2536 /** @todo FPUIP */
2537 /** @todo CS */
2538 /** @todo FPUDP */
2539 /** @todo DS */
2540
2541 /** @todo check if FPU/XMM was actually used in the recompiler */
2542 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2543//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2544
2545#ifdef TARGET_X86_64
2546 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2547 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2548 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2549 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2550 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2551 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2552 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2553 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2554 pCtx->r8 = pVM->rem.s.Env.regs[8];
2555 pCtx->r9 = pVM->rem.s.Env.regs[9];
2556 pCtx->r10 = pVM->rem.s.Env.regs[10];
2557 pCtx->r11 = pVM->rem.s.Env.regs[11];
2558 pCtx->r12 = pVM->rem.s.Env.regs[12];
2559 pCtx->r13 = pVM->rem.s.Env.regs[13];
2560 pCtx->r14 = pVM->rem.s.Env.regs[14];
2561 pCtx->r15 = pVM->rem.s.Env.regs[15];
2562
2563 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2564
2565#else
2566 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2567 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2568 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2569 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2570 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2571 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2572 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2573
2574 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2575#endif
2576
2577#define SYNC_BACK_SREG(a_sreg, a_SREG) \
2578 do \
2579 { \
2580 pCtx->a_sreg.Sel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2581 if (!pVM->rem.s.Env.segs[R_SS].newselector) \
2582 { \
2583 pCtx->a_sreg.ValidSel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2584 pCtx->a_sreg.fFlags = CPUMSELREG_FLAGS_VALID; \
2585 pCtx->a_sreg.u64Base = pVM->rem.s.Env.segs[R_##a_SREG].base; \
2586 pCtx->a_sreg.u32Limit = pVM->rem.s.Env.segs[R_##a_SREG].limit; \
2587 /* Note! QEmu saves the 2nd dword of the descriptor; we (VT-x/AMD-V) keep only the attributes! */ \
2588 pCtx->a_sreg.Attr.u = (pVM->rem.s.Env.segs[R_##a_SREG].flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK; \
2589 } \
2590 else \
2591 { \
2592 pCtx->a_sreg.fFlags = 0; \
2593 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_##a_SREG]); \
2594 } \
2595 } while (0)
2596
2597 SYNC_BACK_SREG(es, ES);
2598 SYNC_BACK_SREG(cs, CS);
2599 SYNC_BACK_SREG(ss, SS);
2600 SYNC_BACK_SREG(ds, DS);
2601 SYNC_BACK_SREG(fs, FS);
2602 SYNC_BACK_SREG(gs, GS);
2603
2604#ifdef TARGET_X86_64
2605 pCtx->rip = pVM->rem.s.Env.eip;
2606 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2607#else
2608 pCtx->eip = pVM->rem.s.Env.eip;
2609 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2610#endif
2611
2612 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2613 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2614 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2615#ifdef VBOX_WITH_RAW_MODE
2616 if (((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
2617 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2618#endif
2619 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2620
2621 for (i = 0; i < 8; i++)
2622 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2623
2624 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2625 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2626 {
2627 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2628 STAM_COUNTER_INC(&gStatREMGDTChange);
2629#ifdef VBOX_WITH_RAW_MODE
2630 if (!HMIsEnabled(pVM))
2631 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2632#endif
2633 }
2634
2635 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2636 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2637 {
2638 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2639 STAM_COUNTER_INC(&gStatREMIDTChange);
2640#ifdef VBOX_WITH_RAW_MODE
2641 if (!HMIsEnabled(pVM))
2642 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2643#endif
2644 }
2645
2646 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2647 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2648 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2649 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2650 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK)
2651 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2652 )
2653 {
2654 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2655 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2656 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2657 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2658 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2659 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
2660 STAM_COUNTER_INC(&gStatREMLDTRChange);
2661#ifdef VBOX_WITH_RAW_MODE
2662 if (!HMIsEnabled(pVM))
2663 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2664#endif
2665 }
2666
2667 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2668 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2669 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2670 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2671 /* Qemu and AMD/Intel have different ideas about the busy flag ... */ /** @todo just fix qemu! */
2672 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & (SEL_FLAGS_SMASK & ~DESC_INTEL_UNUSABLE)
2673 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> SEL_FLAGS_SHIFT
2674 : 0)
2675 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2676 )
2677 {
2678 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2679 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2680 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2681 (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & (SEL_FLAGS_SMASK & ~DESC_INTEL_UNUSABLE)
2682 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> SEL_FLAGS_SHIFT : 0));
2683 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2684 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2685 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2686 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2687 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2688 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
2689 if (pCtx->tr.Attr.u & ~DESC_INTEL_UNUSABLE)
2690 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> SEL_FLAGS_SHIFT;
2691 STAM_COUNTER_INC(&gStatREMTRChange);
2692#ifdef VBOX_WITH_RAW_MODE
2693 if (!HMIsEnabled(pVM))
2694 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2695#endif
2696 }
2697
2698 /* Sysenter MSR */
2699 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2700 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2701 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2702
2703 /* System MSRs. */
2704 pCtx->msrEFER = pVM->rem.s.Env.efer;
2705 pCtx->msrSTAR = pVM->rem.s.Env.star;
2706 pCtx->msrPAT = pVM->rem.s.Env.pat;
2707#ifdef TARGET_X86_64
2708 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2709 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2710 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2711 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2712#endif
2713
2714 /* Inhibit interrupt flag. */
2715 if (pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK)
2716 {
2717 Log(("Settings VMCPU_FF_INHIBIT_INTERRUPTS at %RGv (REM)\n", (RTGCPTR)pCtx->rip));
2718 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
2719 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2720 }
2721 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2722 {
2723 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#2)\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
2724 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2725 }
2726
2727 remR3TrapClear(pVM);
2728
2729 /*
2730 * Check for traps.
2731 */
2732 if ( pVM->rem.s.Env.exception_index >= 0
2733 && pVM->rem.s.Env.exception_index < 256)
2734 {
2735 /* This cannot be a hardware-interrupt because exception_index < EXCP_INTERRUPT. */
2736 int rc;
2737
2738 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2739 TRPMEVENT enmType = pVM->rem.s.Env.exception_is_int ? TRPM_SOFTWARE_INT : TRPM_TRAP;
2740 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, enmType);
2741 AssertRC(rc);
2742 if (enmType == TRPM_TRAP)
2743 {
2744 switch (pVM->rem.s.Env.exception_index)
2745 {
2746 case X86_XCPT_PF:
2747 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2748 /* fallthru */
2749 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2750 case X86_XCPT_AC: case X86_XCPT_DF: /* 0 */
2751 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2752 break;
2753 }
2754 }
2755 }
2756
2757 /*
2758 * We're not longer in REM mode.
2759 */
2760 CPUMR3RemLeave(pVCpu,
2761 HMIsEnabled(pVM)
2762 || ( pVM->rem.s.Env.segs[R_SS].newselector
2763 | pVM->rem.s.Env.segs[R_GS].newselector
2764 | pVM->rem.s.Env.segs[R_FS].newselector
2765 | pVM->rem.s.Env.segs[R_ES].newselector
2766 | pVM->rem.s.Env.segs[R_DS].newselector
2767 | pVM->rem.s.Env.segs[R_CS].newselector) == 0
2768 );
2769 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2770 pVM->rem.s.fInREM = false;
2771 pVM->rem.s.pCtx = NULL;
2772 pVM->rem.s.Env.pVCpu = NULL;
2773 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2774 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2775 return VINF_SUCCESS;
2776}
2777
2778
2779/**
2780 * This is called by the disassembler when it wants to update the cpu state
2781 * before for instance doing a register dump.
2782 */
2783static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2784{
2785 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2786 unsigned i;
2787
2788 Assert(pVM->rem.s.fInREM);
2789
2790 /*
2791 * Copy back the registers.
2792 * This is done in the order they are declared in the CPUMCTX structure.
2793 */
2794
2795 /** @todo FOP */
2796 /** @todo FPUIP */
2797 /** @todo CS */
2798 /** @todo FPUDP */
2799 /** @todo DS */
2800 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2801 pCtx->fpu.MXCSR = 0;
2802 pCtx->fpu.MXCSR_MASK = 0;
2803
2804 /** @todo check if FPU/XMM was actually used in the recompiler */
2805 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2806//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2807
2808#ifdef TARGET_X86_64
2809 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2810 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2811 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2812 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2813 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2814 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2815 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2816 pCtx->r8 = pVM->rem.s.Env.regs[8];
2817 pCtx->r9 = pVM->rem.s.Env.regs[9];
2818 pCtx->r10 = pVM->rem.s.Env.regs[10];
2819 pCtx->r11 = pVM->rem.s.Env.regs[11];
2820 pCtx->r12 = pVM->rem.s.Env.regs[12];
2821 pCtx->r13 = pVM->rem.s.Env.regs[13];
2822 pCtx->r14 = pVM->rem.s.Env.regs[14];
2823 pCtx->r15 = pVM->rem.s.Env.regs[15];
2824
2825 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2826#else
2827 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2828 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2829 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2830 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2831 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2832 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2833 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2834
2835 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2836#endif
2837
2838 SYNC_BACK_SREG(es, ES);
2839 SYNC_BACK_SREG(cs, CS);
2840 SYNC_BACK_SREG(ss, SS);
2841 SYNC_BACK_SREG(ds, DS);
2842 SYNC_BACK_SREG(fs, FS);
2843 SYNC_BACK_SREG(gs, GS);
2844
2845#ifdef TARGET_X86_64
2846 pCtx->rip = pVM->rem.s.Env.eip;
2847 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2848#else
2849 pCtx->eip = pVM->rem.s.Env.eip;
2850 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2851#endif
2852
2853 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2854 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2855 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2856#ifdef VBOX_WITH_RAW_MODE
2857 if (((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
2858 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2859#endif
2860 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2861
2862 for (i = 0; i < 8; i++)
2863 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2864
2865 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2866 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2867 {
2868 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2869 STAM_COUNTER_INC(&gStatREMGDTChange);
2870#ifdef VBOX_WITH_RAW_MODE
2871 if (!HMIsEnabled(pVM))
2872 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2873#endif
2874 }
2875
2876 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2877 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2878 {
2879 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2880 STAM_COUNTER_INC(&gStatREMIDTChange);
2881#ifdef VBOX_WITH_RAW_MODE
2882 if (!HMIsEnabled(pVM))
2883 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2884#endif
2885 }
2886
2887 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2888 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2889 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2890 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2891 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK)
2892 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2893 )
2894 {
2895 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2896 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2897 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2898 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2899 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2900 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
2901 STAM_COUNTER_INC(&gStatREMLDTRChange);
2902#ifdef VBOX_WITH_RAW_MODE
2903 if (!HMIsEnabled(pVM))
2904 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2905#endif
2906 }
2907
2908 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2909 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2910 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2911 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2912 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2913 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & (SEL_FLAGS_SMASK & ~DESC_INTEL_UNUSABLE)
2914 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> SEL_FLAGS_SHIFT
2915 : 0)
2916 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2917 )
2918 {
2919 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2920 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2921 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2922 (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & (SEL_FLAGS_SMASK & ~DESC_INTEL_UNUSABLE)
2923 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> SEL_FLAGS_SHIFT : 0));
2924 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2925 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2926 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2927 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2928 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2929 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> SEL_FLAGS_SHIFT) & SEL_FLAGS_SMASK;
2930 if (pCtx->tr.Attr.u & ~DESC_INTEL_UNUSABLE)
2931 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> SEL_FLAGS_SHIFT;
2932 STAM_COUNTER_INC(&gStatREMTRChange);
2933#ifdef VBOX_WITH_RAW_MODE
2934 if (!HMIsEnabled(pVM))
2935 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2936#endif
2937 }
2938
2939 /* Sysenter MSR */
2940 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2941 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2942 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2943
2944 /* System MSRs. */
2945 pCtx->msrEFER = pVM->rem.s.Env.efer;
2946 pCtx->msrSTAR = pVM->rem.s.Env.star;
2947 pCtx->msrPAT = pVM->rem.s.Env.pat;
2948#ifdef TARGET_X86_64
2949 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2950 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2951 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2952 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2953#endif
2954
2955}
2956
2957
2958/**
2959 * Update the VMM state information if we're currently in REM.
2960 *
2961 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2962 * we're currently executing in REM and the VMM state is invalid. This method will of
2963 * course check that we're executing in REM before syncing any data over to the VMM.
2964 *
2965 * @param pVM The VM handle.
2966 * @param pVCpu The VMCPU handle.
2967 */
2968REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2969{
2970 if (pVM->rem.s.fInREM)
2971 remR3StateUpdate(pVM, pVCpu);
2972}
2973
2974
2975#undef LOG_GROUP
2976#define LOG_GROUP LOG_GROUP_REM
2977
2978
2979/**
2980 * Notify the recompiler about Address Gate 20 state change.
2981 *
2982 * This notification is required since A20 gate changes are
2983 * initialized from a device driver and the VM might just as
2984 * well be in REM mode as in RAW mode.
2985 *
2986 * @param pVM VM handle.
2987 * @param pVCpu VMCPU handle.
2988 * @param fEnable True if the gate should be enabled.
2989 * False if the gate should be disabled.
2990 */
2991REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
2992{
2993 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2994 VM_ASSERT_EMT(pVM);
2995
2996 /** @todo SMP and the A20 gate... */
2997 if (pVM->rem.s.Env.pVCpu == pVCpu)
2998 {
2999 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3000 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
3001 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3002 }
3003}
3004
3005
3006/**
3007 * Replays the handler notification changes
3008 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
3009 *
3010 * @param pVM VM handle.
3011 */
3012REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
3013{
3014 /*
3015 * Replay the flushes.
3016 */
3017 LogFlow(("REMR3ReplayHandlerNotifications:\n"));
3018 VM_ASSERT_EMT(pVM);
3019
3020 /** @todo this isn't ensuring correct replay order. */
3021 if (VM_FF_TEST_AND_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY))
3022 {
3023 uint32_t idxNext;
3024 uint32_t idxRevHead;
3025 uint32_t idxHead;
3026#ifdef VBOX_STRICT
3027 int32_t c = 0;
3028#endif
3029
3030 /* Lockless purging of pending notifications. */
3031 idxHead = ASMAtomicXchgU32(&pVM->rem.s.idxPendingList, UINT32_MAX);
3032 if (idxHead == UINT32_MAX)
3033 return;
3034 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3035
3036 /*
3037 * Reverse the list to process it in FIFO order.
3038 */
3039 idxRevHead = UINT32_MAX;
3040 do
3041 {
3042 /* Save the index of the next rec. */
3043 idxNext = pVM->rem.s.aHandlerNotifications[idxHead].idxNext;
3044 Assert(idxNext < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || idxNext == UINT32_MAX);
3045 /* Push the record onto the reversed list. */
3046 pVM->rem.s.aHandlerNotifications[idxHead].idxNext = idxRevHead;
3047 idxRevHead = idxHead;
3048 Assert(++c <= RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3049 /* Advance. */
3050 idxHead = idxNext;
3051 } while (idxHead != UINT32_MAX);
3052
3053 /*
3054 * Loop thru the list, reinserting the record into the free list as they are
3055 * processed to avoid having other EMTs running out of entries while we're flushing.
3056 */
3057 idxHead = idxRevHead;
3058 do
3059 {
3060 PREMHANDLERNOTIFICATION pCur = &pVM->rem.s.aHandlerNotifications[idxHead];
3061 uint32_t idxCur;
3062 Assert(--c >= 0);
3063
3064 switch (pCur->enmKind)
3065 {
3066 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
3067 remR3NotifyHandlerPhysicalRegister(pVM,
3068 pCur->u.PhysicalRegister.enmType,
3069 pCur->u.PhysicalRegister.GCPhys,
3070 pCur->u.PhysicalRegister.cb,
3071 pCur->u.PhysicalRegister.fHasHCHandler);
3072 break;
3073
3074 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
3075 remR3NotifyHandlerPhysicalDeregister(pVM,
3076 pCur->u.PhysicalDeregister.enmType,
3077 pCur->u.PhysicalDeregister.GCPhys,
3078 pCur->u.PhysicalDeregister.cb,
3079 pCur->u.PhysicalDeregister.fHasHCHandler,
3080 pCur->u.PhysicalDeregister.fRestoreAsRAM);
3081 break;
3082
3083 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
3084 remR3NotifyHandlerPhysicalModify(pVM,
3085 pCur->u.PhysicalModify.enmType,
3086 pCur->u.PhysicalModify.GCPhysOld,
3087 pCur->u.PhysicalModify.GCPhysNew,
3088 pCur->u.PhysicalModify.cb,
3089 pCur->u.PhysicalModify.fHasHCHandler,
3090 pCur->u.PhysicalModify.fRestoreAsRAM);
3091 break;
3092
3093 default:
3094 AssertReleaseMsgFailed(("enmKind=%d\n", pCur->enmKind));
3095 break;
3096 }
3097
3098 /*
3099 * Advance idxHead.
3100 */
3101 idxCur = idxHead;
3102 idxHead = pCur->idxNext;
3103 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || (idxHead == UINT32_MAX && c == 0));
3104
3105 /*
3106 * Put the record back into the free list.
3107 */
3108 do
3109 {
3110 idxNext = ASMAtomicUoReadU32(&pVM->rem.s.idxFreeList);
3111 ASMAtomicWriteU32(&pCur->idxNext, idxNext);
3112 ASMCompilerBarrier();
3113 } while (!ASMAtomicCmpXchgU32(&pVM->rem.s.idxFreeList, idxCur, idxNext));
3114 } while (idxHead != UINT32_MAX);
3115
3116#ifdef VBOX_STRICT
3117 if (pVM->cCpus == 1)
3118 {
3119 unsigned c;
3120 /* Check that all records are now on the free list. */
3121 for (c = 0, idxNext = pVM->rem.s.idxFreeList; idxNext != UINT32_MAX;
3122 idxNext = pVM->rem.s.aHandlerNotifications[idxNext].idxNext)
3123 c++;
3124 AssertReleaseMsg(c == RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), ("%#x != %#x, idxFreeList=%#x\n", c, RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), pVM->rem.s.idxFreeList));
3125 }
3126#endif
3127 }
3128}
3129
3130
3131/**
3132 * Notify REM about changed code page.
3133 *
3134 * @returns VBox status code.
3135 * @param pVM VM handle.
3136 * @param pVCpu VMCPU handle.
3137 * @param pvCodePage Code page address
3138 */
3139REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
3140{
3141#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
3142 int rc;
3143 RTGCPHYS PhysGC;
3144 uint64_t flags;
3145
3146 VM_ASSERT_EMT(pVM);
3147
3148 /*
3149 * Get the physical page address.
3150 */
3151 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
3152 if (rc == VINF_SUCCESS)
3153 {
3154 /*
3155 * Sync the required registers and flush the whole page.
3156 * (Easier to do the whole page than notifying it about each physical
3157 * byte that was changed.
3158 */
3159 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
3160 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
3161 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
3162 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
3163
3164 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
3165 }
3166#endif
3167 return VINF_SUCCESS;
3168}
3169
3170
3171/**
3172 * Notification about a successful MMR3PhysRegister() call.
3173 *
3174 * @param pVM VM handle.
3175 * @param GCPhys The physical address the RAM.
3176 * @param cb Size of the memory.
3177 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
3178 */
3179REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
3180{
3181 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
3182 VM_ASSERT_EMT(pVM);
3183
3184 /*
3185 * Validate input - we trust the caller.
3186 */
3187 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3188 Assert(cb);
3189 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3190 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
3191
3192 /*
3193 * Base ram? Update GCPhysLastRam.
3194 */
3195 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
3196 {
3197 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
3198 {
3199 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
3200 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
3201 }
3202 }
3203
3204 /*
3205 * Register the ram.
3206 */
3207 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3208
3209 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3210 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3211 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3212
3213 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3214}
3215
3216
3217/**
3218 * Notification about a successful MMR3PhysRomRegister() call.
3219 *
3220 * @param pVM VM handle.
3221 * @param GCPhys The physical address of the ROM.
3222 * @param cb The size of the ROM.
3223 * @param pvCopy Pointer to the ROM copy.
3224 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
3225 * This function will be called when ever the protection of the
3226 * shadow ROM changes (at reset and end of POST).
3227 */
3228REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
3229{
3230 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
3231 VM_ASSERT_EMT(pVM);
3232
3233 /*
3234 * Validate input - we trust the caller.
3235 */
3236 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3237 Assert(cb);
3238 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3239
3240 /*
3241 * Register the rom.
3242 */
3243 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3244
3245 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3246 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM), GCPhys);
3247 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3248
3249 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3250}
3251
3252
3253/**
3254 * Notification about a successful memory deregistration or reservation.
3255 *
3256 * @param pVM VM Handle.
3257 * @param GCPhys Start physical address.
3258 * @param cb The size of the range.
3259 */
3260REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
3261{
3262 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
3263 VM_ASSERT_EMT(pVM);
3264
3265 /*
3266 * Validate input - we trust the caller.
3267 */
3268 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3269 Assert(cb);
3270 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3271
3272 /*
3273 * Unassigning the memory.
3274 */
3275 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3276
3277 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3278 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3279 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3280
3281 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3282}
3283
3284
3285/**
3286 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3287 *
3288 * @param pVM VM Handle.
3289 * @param enmType Handler type.
3290 * @param GCPhys Handler range address.
3291 * @param cb Size of the handler range.
3292 * @param fHasHCHandler Set if the handler has a HC callback function.
3293 *
3294 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3295 * Handler memory type to memory which has no HC handler.
3296 */
3297static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3298{
3299 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
3300 enmType, GCPhys, cb, fHasHCHandler));
3301
3302 VM_ASSERT_EMT(pVM);
3303 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3304 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3305
3306
3307 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3308
3309 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3310 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3311 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iMMIOMemType, GCPhys);
3312 else if (fHasHCHandler)
3313 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iHandlerMemType, GCPhys);
3314 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3315
3316 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3317}
3318
3319/**
3320 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3321 *
3322 * @param pVM VM Handle.
3323 * @param enmType Handler type.
3324 * @param GCPhys Handler range address.
3325 * @param cb Size of the handler range.
3326 * @param fHasHCHandler Set if the handler has a HC callback function.
3327 *
3328 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3329 * Handler memory type to memory which has no HC handler.
3330 */
3331REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3332{
3333 REMR3ReplayHandlerNotifications(pVM);
3334
3335 remR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, cb, fHasHCHandler);
3336}
3337
3338/**
3339 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3340 *
3341 * @param pVM VM Handle.
3342 * @param enmType Handler type.
3343 * @param GCPhys Handler range address.
3344 * @param cb Size of the handler range.
3345 * @param fHasHCHandler Set if the handler has a HC callback function.
3346 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3347 */
3348static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3349{
3350 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
3351 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
3352 VM_ASSERT_EMT(pVM);
3353
3354
3355 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3356
3357 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3358 /** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3359 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3360 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3361 else if (fHasHCHandler)
3362 {
3363 if (!fRestoreAsRAM)
3364 {
3365 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3366 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3367 }
3368 else
3369 {
3370 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3371 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3372 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3373 }
3374 }
3375 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3376
3377 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3378}
3379
3380/**
3381 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3382 *
3383 * @param pVM VM Handle.
3384 * @param enmType Handler type.
3385 * @param GCPhys Handler range address.
3386 * @param cb Size of the handler range.
3387 * @param fHasHCHandler Set if the handler has a HC callback function.
3388 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3389 */
3390REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3391{
3392 REMR3ReplayHandlerNotifications(pVM);
3393 remR3NotifyHandlerPhysicalDeregister(pVM, enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM);
3394}
3395
3396
3397/**
3398 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3399 *
3400 * @param pVM VM Handle.
3401 * @param enmType Handler type.
3402 * @param GCPhysOld Old handler range address.
3403 * @param GCPhysNew New handler range address.
3404 * @param cb Size of the handler range.
3405 * @param fHasHCHandler Set if the handler has a HC callback function.
3406 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3407 */
3408static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3409{
3410 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3411 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3412 VM_ASSERT_EMT(pVM);
3413 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3414
3415 if (fHasHCHandler)
3416 {
3417 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3418
3419 /*
3420 * Reset the old page.
3421 */
3422 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3423 if (!fRestoreAsRAM)
3424 cpu_register_physical_memory_offset(GCPhysOld, cb, IO_MEM_UNASSIGNED, GCPhysOld);
3425 else
3426 {
3427 /* This is not perfect, but it'll do for PD monitoring... */
3428 Assert(cb == PAGE_SIZE);
3429 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3430 cpu_register_physical_memory_offset(GCPhysOld, cb, GCPhysOld, GCPhysOld);
3431 }
3432
3433 /*
3434 * Update the new page.
3435 */
3436 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3437 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3438 cpu_register_physical_memory_offset(GCPhysNew, cb, pVM->rem.s.iHandlerMemType, GCPhysNew);
3439 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3440
3441 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3442 }
3443}
3444
3445/**
3446 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3447 *
3448 * @param pVM VM Handle.
3449 * @param enmType Handler type.
3450 * @param GCPhysOld Old handler range address.
3451 * @param GCPhysNew New handler range address.
3452 * @param cb Size of the handler range.
3453 * @param fHasHCHandler Set if the handler has a HC callback function.
3454 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3455 */
3456REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3457{
3458 REMR3ReplayHandlerNotifications(pVM);
3459
3460 remR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM);
3461}
3462
3463/**
3464 * Checks if we're handling access to this page or not.
3465 *
3466 * @returns true if we're trapping access.
3467 * @returns false if we aren't.
3468 * @param pVM The VM handle.
3469 * @param GCPhys The physical address.
3470 *
3471 * @remark This function will only work correctly in VBOX_STRICT builds!
3472 */
3473REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3474{
3475#ifdef VBOX_STRICT
3476 ram_addr_t off;
3477 REMR3ReplayHandlerNotifications(pVM);
3478
3479 off = get_phys_page_offset(GCPhys);
3480 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3481 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3482 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3483#else
3484 return false;
3485#endif
3486}
3487
3488
3489/**
3490 * Deals with a rare case in get_phys_addr_code where the code
3491 * is being monitored.
3492 *
3493 * It could also be an MMIO page, in which case we will raise a fatal error.
3494 *
3495 * @returns The physical address corresponding to addr.
3496 * @param env The cpu environment.
3497 * @param addr The virtual address.
3498 * @param pTLBEntry The TLB entry.
3499 */
3500target_ulong remR3PhysGetPhysicalAddressCode(CPUX86State *env,
3501 target_ulong addr,
3502 CPUTLBEntry *pTLBEntry,
3503 target_phys_addr_t ioTLBEntry)
3504{
3505 PVM pVM = env->pVM;
3506
3507 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3508 {
3509 /* If code memory is being monitored, appropriate IOTLB entry will have
3510 handler IO type, and addend will provide real physical address, no
3511 matter if we store VA in TLB or not, as handlers are always passed PA */
3512 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3513 return ret;
3514 }
3515 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3516 "*** handlers\n",
3517 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3518 DBGFR3Info(pVM->pUVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3519 LogRel(("*** mmio\n"));
3520 DBGFR3Info(pVM->pUVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3521 LogRel(("*** phys\n"));
3522 DBGFR3Info(pVM->pUVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3523 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3524 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3525 AssertFatalFailed();
3526}
3527
3528/**
3529 * Read guest RAM and ROM.
3530 *
3531 * @param SrcGCPhys The source address (guest physical).
3532 * @param pvDst The destination address.
3533 * @param cb Number of bytes
3534 */
3535void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3536{
3537 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3538 VBOX_CHECK_ADDR(SrcGCPhys);
3539 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3540#ifdef VBOX_DEBUG_PHYS
3541 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3542#endif
3543 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3544}
3545
3546
3547/**
3548 * Read guest RAM and ROM, unsigned 8-bit.
3549 *
3550 * @param SrcGCPhys The source address (guest physical).
3551 */
3552RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3553{
3554 uint8_t val;
3555 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3556 VBOX_CHECK_ADDR(SrcGCPhys);
3557 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3558 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3559#ifdef VBOX_DEBUG_PHYS
3560 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3561#endif
3562 return val;
3563}
3564
3565
3566/**
3567 * Read guest RAM and ROM, signed 8-bit.
3568 *
3569 * @param SrcGCPhys The source address (guest physical).
3570 */
3571RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3572{
3573 int8_t val;
3574 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3575 VBOX_CHECK_ADDR(SrcGCPhys);
3576 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3577 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3578#ifdef VBOX_DEBUG_PHYS
3579 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3580#endif
3581 return val;
3582}
3583
3584
3585/**
3586 * Read guest RAM and ROM, unsigned 16-bit.
3587 *
3588 * @param SrcGCPhys The source address (guest physical).
3589 */
3590RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3591{
3592 uint16_t val;
3593 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3594 VBOX_CHECK_ADDR(SrcGCPhys);
3595 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3596 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3597#ifdef VBOX_DEBUG_PHYS
3598 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3599#endif
3600 return val;
3601}
3602
3603
3604/**
3605 * Read guest RAM and ROM, signed 16-bit.
3606 *
3607 * @param SrcGCPhys The source address (guest physical).
3608 */
3609RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3610{
3611 int16_t val;
3612 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3613 VBOX_CHECK_ADDR(SrcGCPhys);
3614 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3615 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3616#ifdef VBOX_DEBUG_PHYS
3617 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3618#endif
3619 return val;
3620}
3621
3622
3623/**
3624 * Read guest RAM and ROM, unsigned 32-bit.
3625 *
3626 * @param SrcGCPhys The source address (guest physical).
3627 */
3628RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3629{
3630 uint32_t val;
3631 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3632 VBOX_CHECK_ADDR(SrcGCPhys);
3633 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3634 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3635#ifdef VBOX_DEBUG_PHYS
3636 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3637#endif
3638 return val;
3639}
3640
3641
3642/**
3643 * Read guest RAM and ROM, signed 32-bit.
3644 *
3645 * @param SrcGCPhys The source address (guest physical).
3646 */
3647RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3648{
3649 int32_t val;
3650 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3651 VBOX_CHECK_ADDR(SrcGCPhys);
3652 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3653 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3654#ifdef VBOX_DEBUG_PHYS
3655 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3656#endif
3657 return val;
3658}
3659
3660
3661/**
3662 * Read guest RAM and ROM, unsigned 64-bit.
3663 *
3664 * @param SrcGCPhys The source address (guest physical).
3665 */
3666uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3667{
3668 uint64_t val;
3669 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3670 VBOX_CHECK_ADDR(SrcGCPhys);
3671 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3672 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3673#ifdef VBOX_DEBUG_PHYS
3674 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3675#endif
3676 return val;
3677}
3678
3679
3680/**
3681 * Read guest RAM and ROM, signed 64-bit.
3682 *
3683 * @param SrcGCPhys The source address (guest physical).
3684 */
3685int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3686{
3687 int64_t val;
3688 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3689 VBOX_CHECK_ADDR(SrcGCPhys);
3690 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3691 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3692#ifdef VBOX_DEBUG_PHYS
3693 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3694#endif
3695 return val;
3696}
3697
3698
3699/**
3700 * Write guest RAM.
3701 *
3702 * @param DstGCPhys The destination address (guest physical).
3703 * @param pvSrc The source address.
3704 * @param cb Number of bytes to write
3705 */
3706void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3707{
3708 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3709 VBOX_CHECK_ADDR(DstGCPhys);
3710 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3711 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3712#ifdef VBOX_DEBUG_PHYS
3713 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3714#endif
3715}
3716
3717
3718/**
3719 * Write guest RAM, unsigned 8-bit.
3720 *
3721 * @param DstGCPhys The destination address (guest physical).
3722 * @param val Value
3723 */
3724void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3725{
3726 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3727 VBOX_CHECK_ADDR(DstGCPhys);
3728 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3729 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3730#ifdef VBOX_DEBUG_PHYS
3731 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3732#endif
3733}
3734
3735
3736/**
3737 * Write guest RAM, unsigned 8-bit.
3738 *
3739 * @param DstGCPhys The destination address (guest physical).
3740 * @param val Value
3741 */
3742void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3743{
3744 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3745 VBOX_CHECK_ADDR(DstGCPhys);
3746 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3747 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3748#ifdef VBOX_DEBUG_PHYS
3749 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3750#endif
3751}
3752
3753
3754/**
3755 * Write guest RAM, unsigned 32-bit.
3756 *
3757 * @param DstGCPhys The destination address (guest physical).
3758 * @param val Value
3759 */
3760void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3761{
3762 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3763 VBOX_CHECK_ADDR(DstGCPhys);
3764 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3765 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3766#ifdef VBOX_DEBUG_PHYS
3767 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3768#endif
3769}
3770
3771
3772/**
3773 * Write guest RAM, unsigned 64-bit.
3774 *
3775 * @param DstGCPhys The destination address (guest physical).
3776 * @param val Value
3777 */
3778void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3779{
3780 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3781 VBOX_CHECK_ADDR(DstGCPhys);
3782 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3783 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3784#ifdef VBOX_DEBUG_PHYS
3785 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)DstGCPhys));
3786#endif
3787}
3788
3789#undef LOG_GROUP
3790#define LOG_GROUP LOG_GROUP_REM_MMIO
3791
3792/** Read MMIO memory. */
3793static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys)
3794{
3795 CPUX86State *env = (CPUX86State *)pvEnv;
3796 uint32_t u32 = 0;
3797 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 1);
3798 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3799 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", (RTGCPHYS)GCPhys, u32));
3800 return u32;
3801}
3802
3803/** Read MMIO memory. */
3804static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys)
3805{
3806 CPUX86State *env = (CPUX86State *)pvEnv;
3807 uint32_t u32 = 0;
3808 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 2);
3809 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3810 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", (RTGCPHYS)GCPhys, u32));
3811 return u32;
3812}
3813
3814/** Read MMIO memory. */
3815static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys)
3816{
3817 CPUX86State *env = (CPUX86State *)pvEnv;
3818 uint32_t u32 = 0;
3819 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 4);
3820 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3821 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", (RTGCPHYS)GCPhys, u32));
3822 return u32;
3823}
3824
3825/** Write to MMIO memory. */
3826static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3827{
3828 CPUX86State *env = (CPUX86State *)pvEnv;
3829 int rc;
3830 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3831 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 1);
3832 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3833}
3834
3835/** Write to MMIO memory. */
3836static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3837{
3838 CPUX86State *env = (CPUX86State *)pvEnv;
3839 int rc;
3840 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3841 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 2);
3842 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3843}
3844
3845/** Write to MMIO memory. */
3846static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3847{
3848 CPUX86State *env = (CPUX86State *)pvEnv;
3849 int rc;
3850 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3851 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 4);
3852 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3853}
3854
3855
3856#undef LOG_GROUP
3857#define LOG_GROUP LOG_GROUP_REM_HANDLER
3858
3859/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3860
3861static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3862{
3863 uint8_t u8;
3864 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3865 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3866 return u8;
3867}
3868
3869static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3870{
3871 uint16_t u16;
3872 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3873 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3874 return u16;
3875}
3876
3877static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3878{
3879 uint32_t u32;
3880 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3881 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3882 return u32;
3883}
3884
3885static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3886{
3887 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3888 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3889}
3890
3891static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3892{
3893 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3894 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3895}
3896
3897static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3898{
3899 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3900 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3901}
3902
3903/* -+- disassembly -+- */
3904
3905#undef LOG_GROUP
3906#define LOG_GROUP LOG_GROUP_REM_DISAS
3907
3908
3909/**
3910 * Enables or disables singled stepped disassembly.
3911 *
3912 * @returns VBox status code.
3913 * @param pVM VM handle.
3914 * @param fEnable To enable set this flag, to disable clear it.
3915 */
3916static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3917{
3918 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3919 VM_ASSERT_EMT(pVM);
3920
3921 if (fEnable)
3922 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3923 else
3924 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3925#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
3926 cpu_single_step(&pVM->rem.s.Env, fEnable);
3927#endif
3928 return VINF_SUCCESS;
3929}
3930
3931
3932/**
3933 * Enables or disables singled stepped disassembly.
3934 *
3935 * @returns VBox status code.
3936 * @param pVM VM handle.
3937 * @param fEnable To enable set this flag, to disable clear it.
3938 */
3939REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3940{
3941 int rc;
3942
3943 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3944 if (VM_IS_EMT(pVM))
3945 return remR3DisasEnableStepping(pVM, fEnable);
3946
3947 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3948 AssertRC(rc);
3949 return rc;
3950}
3951
3952
3953#ifdef VBOX_WITH_DEBUGGER
3954/**
3955 * External Debugger Command: .remstep [on|off|1|0]
3956 */
3957static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM,
3958 PCDBGCVAR paArgs, unsigned cArgs)
3959{
3960 int rc;
3961 PVM pVM = pUVM->pVM;
3962
3963 if (cArgs == 0)
3964 /*
3965 * Print the current status.
3966 */
3967 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping is %s\n",
3968 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3969 else
3970 {
3971 /*
3972 * Convert the argument and change the mode.
3973 */
3974 bool fEnable;
3975 rc = DBGCCmdHlpVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3976 if (RT_SUCCESS(rc))
3977 {
3978 rc = REMR3DisasEnableStepping(pVM, fEnable);
3979 if (RT_SUCCESS(rc))
3980 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping was %s\n", fEnable ? "enabled" : "disabled");
3981 else
3982 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "REMR3DisasEnableStepping");
3983 }
3984 else
3985 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToBool");
3986 }
3987 return rc;
3988}
3989#endif /* VBOX_WITH_DEBUGGER */
3990
3991
3992/**
3993 * Disassembles one instruction and prints it to the log.
3994 *
3995 * @returns Success indicator.
3996 * @param env Pointer to the recompiler CPU structure.
3997 * @param f32BitCode Indicates that whether or not the code should
3998 * be disassembled as 16 or 32 bit. If -1 the CS
3999 * selector will be inspected.
4000 * @param pszPrefix
4001 */
4002bool remR3DisasInstr(CPUX86State *env, int f32BitCode, char *pszPrefix)
4003{
4004 PVM pVM = env->pVM;
4005 const bool fLog = LogIsEnabled();
4006 const bool fLog2 = LogIs2Enabled();
4007 int rc = VINF_SUCCESS;
4008
4009 /*
4010 * Don't bother if there ain't any log output to do.
4011 */
4012 if (!fLog && !fLog2)
4013 return true;
4014
4015 /*
4016 * Update the state so DBGF reads the correct register values.
4017 */
4018 remR3StateUpdate(pVM, env->pVCpu);
4019
4020 /*
4021 * Log registers if requested.
4022 */
4023 if (fLog2)
4024 DBGFR3_INFO_LOG(pVM, "cpumguest", pszPrefix);
4025
4026 /*
4027 * Disassemble to log.
4028 */
4029 if (fLog)
4030 {
4031 PVMCPU pVCpu = VMMGetCpu(pVM);
4032 char szBuf[256];
4033 szBuf[0] = '\0';
4034 int rc = DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM,
4035 pVCpu->idCpu,
4036 0, /* Sel */ 0, /* GCPtr */
4037 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
4038 szBuf,
4039 sizeof(szBuf),
4040 NULL);
4041 if (RT_FAILURE(rc))
4042 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
4043 if (pszPrefix && *pszPrefix)
4044 RTLogPrintf("%s-CPU%d: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
4045 else
4046 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
4047 }
4048
4049 return RT_SUCCESS(rc);
4050}
4051
4052
4053/**
4054 * Disassemble recompiled code.
4055 *
4056 * @param phFileIgnored Ignored, logfile usually.
4057 * @param pvCode Pointer to the code block.
4058 * @param cb Size of the code block.
4059 */
4060void disas(FILE *phFile, void *pvCode, unsigned long cb)
4061{
4062 if (LogIs2Enabled())
4063 {
4064 unsigned off = 0;
4065 char szOutput[256];
4066 DISCPUSTATE Cpu;
4067#ifdef RT_ARCH_X86
4068 DISCPUMODE enmCpuMode = DISCPUMODE_32BIT;
4069#else
4070 DISCPUMODE enmCpuMode = DISCPUMODE_64BIT;
4071#endif
4072
4073 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4074 while (off < cb)
4075 {
4076 uint32_t cbInstr;
4077 int rc = DISInstrToStr((uint8_t const *)pvCode + off, enmCpuMode,
4078 &Cpu, &cbInstr, szOutput, sizeof(szOutput));
4079 if (RT_SUCCESS(rc))
4080 RTLogPrintf("%s", szOutput);
4081 else
4082 {
4083 RTLogPrintf("disas error %Rrc\n", rc);
4084 cbInstr = 1;
4085 }
4086 off += cbInstr;
4087 }
4088 }
4089}
4090
4091
4092/**
4093 * Disassemble guest code.
4094 *
4095 * @param phFileIgnored Ignored, logfile usually.
4096 * @param uCode The guest address of the code to disassemble. (flat?)
4097 * @param cb Number of bytes to disassemble.
4098 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4099 */
4100void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
4101{
4102 if (LogIs2Enabled())
4103 {
4104 PVM pVM = cpu_single_env->pVM;
4105 PVMCPU pVCpu = cpu_single_env->pVCpu;
4106 RTSEL cs;
4107 RTGCUINTPTR eip;
4108
4109 Assert(pVCpu);
4110
4111 /*
4112 * Update the state so DBGF reads the correct register values (flags).
4113 */
4114 remR3StateUpdate(pVM, pVCpu);
4115
4116 /*
4117 * Do the disassembling.
4118 */
4119 RTLogPrintf("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
4120 cs = cpu_single_env->segs[R_CS].selector;
4121 eip = uCode - cpu_single_env->segs[R_CS].base;
4122 for (;;)
4123 {
4124 char szBuf[256];
4125 uint32_t cbInstr;
4126 int rc = DBGFR3DisasInstrEx(pVM->pUVM,
4127 pVCpu->idCpu,
4128 cs,
4129 eip,
4130 DBGF_DISAS_FLAGS_DEFAULT_MODE,
4131 szBuf, sizeof(szBuf),
4132 &cbInstr);
4133 if (RT_SUCCESS(rc))
4134 RTLogPrintf("%llx %s\n", (uint64_t)uCode, szBuf);
4135 else
4136 {
4137 RTLogPrintf("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
4138 cbInstr = 1;
4139 }
4140
4141 /* next */
4142 if (cb <= cbInstr)
4143 break;
4144 cb -= cbInstr;
4145 uCode += cbInstr;
4146 eip += cbInstr;
4147 }
4148 }
4149}
4150
4151
4152/**
4153 * Looks up a guest symbol.
4154 *
4155 * @returns Pointer to symbol name. This is a static buffer.
4156 * @param orig_addr The address in question.
4157 */
4158const char *lookup_symbol(target_ulong orig_addr)
4159{
4160 PVM pVM = cpu_single_env->pVM;
4161 RTGCINTPTR off = 0;
4162 RTDBGSYMBOL Sym;
4163 DBGFADDRESS Addr;
4164
4165 int rc = DBGFR3AsSymbolByAddr(pVM->pUVM, DBGF_AS_GLOBAL, DBGFR3AddrFromFlat(pVM->pUVM, &Addr, orig_addr),
4166 RTDBGSYMADDR_FLAGS_LESS_OR_EQUAL, &off, &Sym, NULL /*phMod*/);
4167 if (RT_SUCCESS(rc))
4168 {
4169 static char szSym[sizeof(Sym.szName) + 48];
4170 if (!off)
4171 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4172 else if (off > 0)
4173 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4174 else
4175 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4176 return szSym;
4177 }
4178 return "<N/A>";
4179}
4180
4181
4182#undef LOG_GROUP
4183#define LOG_GROUP LOG_GROUP_REM
4184
4185
4186/* -+- FF notifications -+- */
4187
4188
4189/**
4190 * Notification about a pending interrupt.
4191 *
4192 * @param pVM VM Handle.
4193 * @param pVCpu VMCPU Handle.
4194 * @param u8Interrupt Interrupt
4195 * @thread The emulation thread.
4196 */
4197REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
4198{
4199 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4200 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4201}
4202
4203/**
4204 * Notification about a pending interrupt.
4205 *
4206 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4207 * @param pVM VM Handle.
4208 * @param pVCpu VMCPU Handle.
4209 * @thread The emulation thread.
4210 */
4211REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
4212{
4213 return pVM->rem.s.u32PendingInterrupt;
4214}
4215
4216/**
4217 * Notification about the interrupt FF being set.
4218 *
4219 * @param pVM VM Handle.
4220 * @param pVCpu VMCPU Handle.
4221 * @thread The emulation thread.
4222 */
4223REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
4224{
4225#ifndef IEM_VERIFICATION_MODE
4226 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4227 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4228 if (pVM->rem.s.fInREM)
4229 {
4230 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4231 CPU_INTERRUPT_EXTERNAL_HARD);
4232 }
4233#endif
4234}
4235
4236
4237/**
4238 * Notification about the interrupt FF being set.
4239 *
4240 * @param pVM VM Handle.
4241 * @param pVCpu VMCPU Handle.
4242 * @thread Any.
4243 */
4244REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
4245{
4246 LogFlow(("REMR3NotifyInterruptClear:\n"));
4247 if (pVM->rem.s.fInREM)
4248 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4249}
4250
4251
4252/**
4253 * Notification about pending timer(s).
4254 *
4255 * @param pVM VM Handle.
4256 * @param pVCpuDst The target cpu for this notification.
4257 * TM will not broadcast pending timer events, but use
4258 * a dedicated EMT for them. So, only interrupt REM
4259 * execution if the given CPU is executing in REM.
4260 * @thread Any.
4261 */
4262REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
4263{
4264#ifndef IEM_VERIFICATION_MODE
4265#ifndef DEBUG_bird
4266 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4267#endif
4268 if (pVM->rem.s.fInREM)
4269 {
4270 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
4271 {
4272 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
4273 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
4274 CPU_INTERRUPT_EXTERNAL_TIMER);
4275 }
4276 else
4277 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
4278 }
4279 else
4280 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
4281#endif
4282}
4283
4284
4285/**
4286 * Notification about pending DMA transfers.
4287 *
4288 * @param pVM VM Handle.
4289 * @thread Any.
4290 */
4291REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4292{
4293#ifndef IEM_VERIFICATION_MODE
4294 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4295 if (pVM->rem.s.fInREM)
4296 {
4297 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4298 CPU_INTERRUPT_EXTERNAL_DMA);
4299 }
4300#endif
4301}
4302
4303
4304/**
4305 * Notification about pending timer(s).
4306 *
4307 * @param pVM VM Handle.
4308 * @thread Any.
4309 */
4310REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4311{
4312#ifndef IEM_VERIFICATION_MODE
4313 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4314 if (pVM->rem.s.fInREM)
4315 {
4316 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4317 CPU_INTERRUPT_EXTERNAL_EXIT);
4318 }
4319#endif
4320}
4321
4322
4323/**
4324 * Notification about pending FF set by an external thread.
4325 *
4326 * @param pVM VM handle.
4327 * @thread Any.
4328 */
4329REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4330{
4331#ifndef IEM_VERIFICATION_MODE
4332 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4333 if (pVM->rem.s.fInREM)
4334 {
4335 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4336 CPU_INTERRUPT_EXTERNAL_EXIT);
4337 }
4338#endif
4339}
4340
4341
4342#ifdef VBOX_WITH_STATISTICS
4343void remR3ProfileStart(int statcode)
4344{
4345 STAMPROFILEADV *pStat;
4346 switch(statcode)
4347 {
4348 case STATS_EMULATE_SINGLE_INSTR:
4349 pStat = &gStatExecuteSingleInstr;
4350 break;
4351 case STATS_QEMU_COMPILATION:
4352 pStat = &gStatCompilationQEmu;
4353 break;
4354 case STATS_QEMU_RUN_EMULATED_CODE:
4355 pStat = &gStatRunCodeQEmu;
4356 break;
4357 case STATS_QEMU_TOTAL:
4358 pStat = &gStatTotalTimeQEmu;
4359 break;
4360 case STATS_QEMU_RUN_TIMERS:
4361 pStat = &gStatTimers;
4362 break;
4363 case STATS_TLB_LOOKUP:
4364 pStat= &gStatTBLookup;
4365 break;
4366 case STATS_IRQ_HANDLING:
4367 pStat= &gStatIRQ;
4368 break;
4369 case STATS_RAW_CHECK:
4370 pStat = &gStatRawCheck;
4371 break;
4372
4373 default:
4374 AssertMsgFailed(("unknown stat %d\n", statcode));
4375 return;
4376 }
4377 STAM_PROFILE_ADV_START(pStat, a);
4378}
4379
4380
4381void remR3ProfileStop(int statcode)
4382{
4383 STAMPROFILEADV *pStat;
4384 switch(statcode)
4385 {
4386 case STATS_EMULATE_SINGLE_INSTR:
4387 pStat = &gStatExecuteSingleInstr;
4388 break;
4389 case STATS_QEMU_COMPILATION:
4390 pStat = &gStatCompilationQEmu;
4391 break;
4392 case STATS_QEMU_RUN_EMULATED_CODE:
4393 pStat = &gStatRunCodeQEmu;
4394 break;
4395 case STATS_QEMU_TOTAL:
4396 pStat = &gStatTotalTimeQEmu;
4397 break;
4398 case STATS_QEMU_RUN_TIMERS:
4399 pStat = &gStatTimers;
4400 break;
4401 case STATS_TLB_LOOKUP:
4402 pStat= &gStatTBLookup;
4403 break;
4404 case STATS_IRQ_HANDLING:
4405 pStat= &gStatIRQ;
4406 break;
4407 case STATS_RAW_CHECK:
4408 pStat = &gStatRawCheck;
4409 break;
4410 default:
4411 AssertMsgFailed(("unknown stat %d\n", statcode));
4412 return;
4413 }
4414 STAM_PROFILE_ADV_STOP(pStat, a);
4415}
4416#endif
4417
4418/**
4419 * Raise an RC, force rem exit.
4420 *
4421 * @param pVM VM handle.
4422 * @param rc The rc.
4423 */
4424void remR3RaiseRC(PVM pVM, int rc)
4425{
4426 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4427 Assert(pVM->rem.s.fInREM);
4428 VM_ASSERT_EMT(pVM);
4429 pVM->rem.s.rc = rc;
4430 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4431}
4432
4433
4434/* -+- timers -+- */
4435
4436uint64_t cpu_get_tsc(CPUX86State *env)
4437{
4438 STAM_COUNTER_INC(&gStatCpuGetTSC);
4439 return TMCpuTickGet(env->pVCpu);
4440}
4441
4442
4443/* -+- interrupts -+- */
4444
4445void cpu_set_ferr(CPUX86State *env)
4446{
4447 int rc = PDMIsaSetIrq(env->pVM, 13, 1, 0 /*uTagSrc*/);
4448 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4449}
4450
4451int cpu_get_pic_interrupt(CPUX86State *env)
4452{
4453 uint8_t u8Interrupt;
4454 int rc;
4455
4456 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4457 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4458 * with the (a)pic.
4459 */
4460 /* Note! We assume we will go directly to the recompiler to handle the pending interrupt! */
4461 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4462 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4463 * remove this kludge. */
4464 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4465 {
4466 rc = VINF_SUCCESS;
4467 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4468 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4469 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4470 }
4471 else
4472 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4473
4474 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc pc=%04x:%08llx ~flags=%08llx\n",
4475 u8Interrupt, rc, env->segs[R_CS].selector, (uint64_t)env->eip, (uint64_t)env->eflags));
4476 if (RT_SUCCESS(rc))
4477 {
4478 if (VMCPU_FF_IS_PENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4479 env->interrupt_request |= CPU_INTERRUPT_HARD;
4480 return u8Interrupt;
4481 }
4482 return -1;
4483}
4484
4485
4486/* -+- local apic -+- */
4487
4488#if 0 /* CPUMSetGuestMsr does this now. */
4489void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4490{
4491 int rc = PDMApicSetBase(env->pVM, val);
4492 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4493}
4494#endif
4495
4496uint64_t cpu_get_apic_base(CPUX86State *env)
4497{
4498 uint64_t u64;
4499 int rc = CPUMQueryGuestMsr(env->pVCpu, MSR_IA32_APICBASE, &u64);
4500 if (RT_SUCCESS(rc))
4501 {
4502 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4503 return u64;
4504 }
4505 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4506 return 0;
4507}
4508
4509void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4510{
4511 int rc = PDMApicSetTPR(env->pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4512 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4513}
4514
4515uint8_t cpu_get_apic_tpr(CPUX86State *env)
4516{
4517 uint8_t u8;
4518 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL, NULL);
4519 if (RT_SUCCESS(rc))
4520 {
4521 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4522 return u8 >> 4; /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4523 }
4524 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4525 return 0;
4526}
4527
4528/**
4529 * Read an MSR.
4530 *
4531 * @retval 0 success.
4532 * @retval -1 failure, raise \#GP(0).
4533 * @param env The cpu state.
4534 * @param idMsr The MSR to read.
4535 * @param puValue Where to return the value.
4536 */
4537int cpu_rdmsr(CPUX86State *env, uint32_t idMsr, uint64_t *puValue)
4538{
4539 Assert(env->pVCpu);
4540 return CPUMQueryGuestMsr(env->pVCpu, idMsr, puValue) == VINF_SUCCESS ? 0 : -1;
4541}
4542
4543/**
4544 * Write to an MSR.
4545 *
4546 * @retval 0 success.
4547 * @retval -1 failure, raise \#GP(0).
4548 * @param env The cpu state.
4549 * @param idMsr The MSR to read.
4550 * @param puValue Where to return the value.
4551 */
4552int cpu_wrmsr(CPUX86State *env, uint32_t idMsr, uint64_t uValue)
4553{
4554 Assert(env->pVCpu);
4555 return CPUMSetGuestMsr(env->pVCpu, idMsr, uValue) == VINF_SUCCESS ? 0 : -1;
4556}
4557
4558/* -+- I/O Ports -+- */
4559
4560#undef LOG_GROUP
4561#define LOG_GROUP LOG_GROUP_REM_IOPORT
4562
4563void cpu_outb(CPUX86State *env, pio_addr_t addr, uint8_t val)
4564{
4565 int rc;
4566
4567 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4568 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4569
4570 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 1);
4571 if (RT_LIKELY(rc == VINF_SUCCESS))
4572 return;
4573 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4574 {
4575 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4576 remR3RaiseRC(env->pVM, rc);
4577 return;
4578 }
4579 remAbort(rc, __FUNCTION__);
4580}
4581
4582void cpu_outw(CPUX86State *env, pio_addr_t addr, uint16_t val)
4583{
4584 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4585 int rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 2);
4586 if (RT_LIKELY(rc == VINF_SUCCESS))
4587 return;
4588 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4589 {
4590 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4591 remR3RaiseRC(env->pVM, rc);
4592 return;
4593 }
4594 remAbort(rc, __FUNCTION__);
4595}
4596
4597void cpu_outl(CPUX86State *env, pio_addr_t addr, uint32_t val)
4598{
4599 int rc;
4600 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4601 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 4);
4602 if (RT_LIKELY(rc == VINF_SUCCESS))
4603 return;
4604 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4605 {
4606 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4607 remR3RaiseRC(env->pVM, rc);
4608 return;
4609 }
4610 remAbort(rc, __FUNCTION__);
4611}
4612
4613uint8_t cpu_inb(CPUX86State *env, pio_addr_t addr)
4614{
4615 uint32_t u32 = 0;
4616 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 1);
4617 if (RT_LIKELY(rc == VINF_SUCCESS))
4618 {
4619 if (/*addr != 0x61 && */addr != 0x71)
4620 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4621 return (uint8_t)u32;
4622 }
4623 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4624 {
4625 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4626 remR3RaiseRC(env->pVM, rc);
4627 return (uint8_t)u32;
4628 }
4629 remAbort(rc, __FUNCTION__);
4630 return UINT8_C(0xff);
4631}
4632
4633uint16_t cpu_inw(CPUX86State *env, pio_addr_t addr)
4634{
4635 uint32_t u32 = 0;
4636 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 2);
4637 if (RT_LIKELY(rc == VINF_SUCCESS))
4638 {
4639 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4640 return (uint16_t)u32;
4641 }
4642 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4643 {
4644 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4645 remR3RaiseRC(env->pVM, rc);
4646 return (uint16_t)u32;
4647 }
4648 remAbort(rc, __FUNCTION__);
4649 return UINT16_C(0xffff);
4650}
4651
4652uint32_t cpu_inl(CPUX86State *env, pio_addr_t addr)
4653{
4654 uint32_t u32 = 0;
4655 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 4);
4656 if (RT_LIKELY(rc == VINF_SUCCESS))
4657 {
4658 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4659 return u32;
4660 }
4661 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4662 {
4663 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4664 remR3RaiseRC(env->pVM, rc);
4665 return u32;
4666 }
4667 remAbort(rc, __FUNCTION__);
4668 return UINT32_C(0xffffffff);
4669}
4670
4671#undef LOG_GROUP
4672#define LOG_GROUP LOG_GROUP_REM
4673
4674
4675/* -+- helpers and misc other interfaces -+- */
4676
4677/**
4678 * Perform the CPUID instruction.
4679 *
4680 * @param env Pointer to the recompiler CPU structure.
4681 * @param idx The CPUID leaf (eax).
4682 * @param idxSub The CPUID sub-leaf (ecx) where applicable.
4683 * @param pvEAX Where to store eax.
4684 * @param pvEBX Where to store ebx.
4685 * @param pvECX Where to store ecx.
4686 * @param pvEDX Where to store edx.
4687 */
4688void cpu_x86_cpuid(CPUX86State *env, uint32_t idx, uint32_t idxSub,
4689 uint32_t *pEAX, uint32_t *pEBX, uint32_t *pECX, uint32_t *pEDX)
4690{
4691 NOREF(idxSub);
4692 CPUMGetGuestCpuId(env->pVCpu, idx, pEAX, pEBX, pECX, pEDX);
4693}
4694
4695
4696#if 0 /* not used */
4697/**
4698 * Interface for qemu hardware to report back fatal errors.
4699 */
4700void hw_error(const char *pszFormat, ...)
4701{
4702 /*
4703 * Bitch about it.
4704 */
4705 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4706 * this in my Odin32 tree at home! */
4707 va_list args;
4708 va_start(args, pszFormat);
4709 RTLogPrintf("fatal error in virtual hardware:");
4710 RTLogPrintfV(pszFormat, args);
4711 va_end(args);
4712 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4713
4714 /*
4715 * If we're in REM context we'll sync back the state before 'jumping' to
4716 * the EMs failure handling.
4717 */
4718 PVM pVM = cpu_single_env->pVM;
4719 if (pVM->rem.s.fInREM)
4720 REMR3StateBack(pVM);
4721 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4722 AssertMsgFailed(("EMR3FatalError returned!\n"));
4723}
4724#endif
4725
4726/**
4727 * Interface for the qemu cpu to report unhandled situation
4728 * raising a fatal VM error.
4729 */
4730void cpu_abort(CPUX86State *env, const char *pszFormat, ...)
4731{
4732 va_list va;
4733 PVM pVM;
4734 PVMCPU pVCpu;
4735 char szMsg[256];
4736
4737 /*
4738 * Bitch about it.
4739 */
4740 RTLogFlags(NULL, "nodisabled nobuffered");
4741 RTLogFlush(NULL);
4742
4743 va_start(va, pszFormat);
4744#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4745 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4746 unsigned cArgs = 0;
4747 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4748 const char *psz = strchr(pszFormat, '%');
4749 while (psz && cArgs < 6)
4750 {
4751 auArgs[cArgs++] = va_arg(va, uintptr_t);
4752 psz = strchr(psz + 1, '%');
4753 }
4754 switch (cArgs)
4755 {
4756 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4757 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4758 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4759 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4760 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4761 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4762 default:
4763 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4764 }
4765#else
4766 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4767#endif
4768 va_end(va);
4769
4770 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4771 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4772
4773 /*
4774 * If we're in REM context we'll sync back the state before 'jumping' to
4775 * the EMs failure handling.
4776 */
4777 pVM = cpu_single_env->pVM;
4778 pVCpu = cpu_single_env->pVCpu;
4779 Assert(pVCpu);
4780
4781 if (pVM->rem.s.fInREM)
4782 REMR3StateBack(pVM, pVCpu);
4783 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4784 AssertMsgFailed(("EMR3FatalError returned!\n"));
4785}
4786
4787
4788/**
4789 * Aborts the VM.
4790 *
4791 * @param rc VBox error code.
4792 * @param pszTip Hint about why/when this happened.
4793 */
4794void remAbort(int rc, const char *pszTip)
4795{
4796 PVM pVM;
4797 PVMCPU pVCpu;
4798
4799 /*
4800 * Bitch about it.
4801 */
4802 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4803 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4804
4805 /*
4806 * Jump back to where we entered the recompiler.
4807 */
4808 pVM = cpu_single_env->pVM;
4809 pVCpu = cpu_single_env->pVCpu;
4810 Assert(pVCpu);
4811
4812 if (pVM->rem.s.fInREM)
4813 REMR3StateBack(pVM, pVCpu);
4814
4815 EMR3FatalError(pVCpu, rc);
4816 AssertMsgFailed(("EMR3FatalError returned!\n"));
4817}
4818
4819
4820/**
4821 * Dumps a linux system call.
4822 * @param pVCpu VMCPU handle.
4823 */
4824void remR3DumpLnxSyscall(PVMCPU pVCpu)
4825{
4826 static const char *apsz[] =
4827 {
4828 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4829 "sys_exit",
4830 "sys_fork",
4831 "sys_read",
4832 "sys_write",
4833 "sys_open", /* 5 */
4834 "sys_close",
4835 "sys_waitpid",
4836 "sys_creat",
4837 "sys_link",
4838 "sys_unlink", /* 10 */
4839 "sys_execve",
4840 "sys_chdir",
4841 "sys_time",
4842 "sys_mknod",
4843 "sys_chmod", /* 15 */
4844 "sys_lchown16",
4845 "sys_ni_syscall", /* old break syscall holder */
4846 "sys_stat",
4847 "sys_lseek",
4848 "sys_getpid", /* 20 */
4849 "sys_mount",
4850 "sys_oldumount",
4851 "sys_setuid16",
4852 "sys_getuid16",
4853 "sys_stime", /* 25 */
4854 "sys_ptrace",
4855 "sys_alarm",
4856 "sys_fstat",
4857 "sys_pause",
4858 "sys_utime", /* 30 */
4859 "sys_ni_syscall", /* old stty syscall holder */
4860 "sys_ni_syscall", /* old gtty syscall holder */
4861 "sys_access",
4862 "sys_nice",
4863 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4864 "sys_sync",
4865 "sys_kill",
4866 "sys_rename",
4867 "sys_mkdir",
4868 "sys_rmdir", /* 40 */
4869 "sys_dup",
4870 "sys_pipe",
4871 "sys_times",
4872 "sys_ni_syscall", /* old prof syscall holder */
4873 "sys_brk", /* 45 */
4874 "sys_setgid16",
4875 "sys_getgid16",
4876 "sys_signal",
4877 "sys_geteuid16",
4878 "sys_getegid16", /* 50 */
4879 "sys_acct",
4880 "sys_umount", /* recycled never used phys() */
4881 "sys_ni_syscall", /* old lock syscall holder */
4882 "sys_ioctl",
4883 "sys_fcntl", /* 55 */
4884 "sys_ni_syscall", /* old mpx syscall holder */
4885 "sys_setpgid",
4886 "sys_ni_syscall", /* old ulimit syscall holder */
4887 "sys_olduname",
4888 "sys_umask", /* 60 */
4889 "sys_chroot",
4890 "sys_ustat",
4891 "sys_dup2",
4892 "sys_getppid",
4893 "sys_getpgrp", /* 65 */
4894 "sys_setsid",
4895 "sys_sigaction",
4896 "sys_sgetmask",
4897 "sys_ssetmask",
4898 "sys_setreuid16", /* 70 */
4899 "sys_setregid16",
4900 "sys_sigsuspend",
4901 "sys_sigpending",
4902 "sys_sethostname",
4903 "sys_setrlimit", /* 75 */
4904 "sys_old_getrlimit",
4905 "sys_getrusage",
4906 "sys_gettimeofday",
4907 "sys_settimeofday",
4908 "sys_getgroups16", /* 80 */
4909 "sys_setgroups16",
4910 "old_select",
4911 "sys_symlink",
4912 "sys_lstat",
4913 "sys_readlink", /* 85 */
4914 "sys_uselib",
4915 "sys_swapon",
4916 "sys_reboot",
4917 "old_readdir",
4918 "old_mmap", /* 90 */
4919 "sys_munmap",
4920 "sys_truncate",
4921 "sys_ftruncate",
4922 "sys_fchmod",
4923 "sys_fchown16", /* 95 */
4924 "sys_getpriority",
4925 "sys_setpriority",
4926 "sys_ni_syscall", /* old profil syscall holder */
4927 "sys_statfs",
4928 "sys_fstatfs", /* 100 */
4929 "sys_ioperm",
4930 "sys_socketcall",
4931 "sys_syslog",
4932 "sys_setitimer",
4933 "sys_getitimer", /* 105 */
4934 "sys_newstat",
4935 "sys_newlstat",
4936 "sys_newfstat",
4937 "sys_uname",
4938 "sys_iopl", /* 110 */
4939 "sys_vhangup",
4940 "sys_ni_syscall", /* old "idle" system call */
4941 "sys_vm86old",
4942 "sys_wait4",
4943 "sys_swapoff", /* 115 */
4944 "sys_sysinfo",
4945 "sys_ipc",
4946 "sys_fsync",
4947 "sys_sigreturn",
4948 "sys_clone", /* 120 */
4949 "sys_setdomainname",
4950 "sys_newuname",
4951 "sys_modify_ldt",
4952 "sys_adjtimex",
4953 "sys_mprotect", /* 125 */
4954 "sys_sigprocmask",
4955 "sys_ni_syscall", /* old "create_module" */
4956 "sys_init_module",
4957 "sys_delete_module",
4958 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4959 "sys_quotactl",
4960 "sys_getpgid",
4961 "sys_fchdir",
4962 "sys_bdflush",
4963 "sys_sysfs", /* 135 */
4964 "sys_personality",
4965 "sys_ni_syscall", /* reserved for afs_syscall */
4966 "sys_setfsuid16",
4967 "sys_setfsgid16",
4968 "sys_llseek", /* 140 */
4969 "sys_getdents",
4970 "sys_select",
4971 "sys_flock",
4972 "sys_msync",
4973 "sys_readv", /* 145 */
4974 "sys_writev",
4975 "sys_getsid",
4976 "sys_fdatasync",
4977 "sys_sysctl",
4978 "sys_mlock", /* 150 */
4979 "sys_munlock",
4980 "sys_mlockall",
4981 "sys_munlockall",
4982 "sys_sched_setparam",
4983 "sys_sched_getparam", /* 155 */
4984 "sys_sched_setscheduler",
4985 "sys_sched_getscheduler",
4986 "sys_sched_yield",
4987 "sys_sched_get_priority_max",
4988 "sys_sched_get_priority_min", /* 160 */
4989 "sys_sched_rr_get_interval",
4990 "sys_nanosleep",
4991 "sys_mremap",
4992 "sys_setresuid16",
4993 "sys_getresuid16", /* 165 */
4994 "sys_vm86",
4995 "sys_ni_syscall", /* Old sys_query_module */
4996 "sys_poll",
4997 "sys_nfsservctl",
4998 "sys_setresgid16", /* 170 */
4999 "sys_getresgid16",
5000 "sys_prctl",
5001 "sys_rt_sigreturn",
5002 "sys_rt_sigaction",
5003 "sys_rt_sigprocmask", /* 175 */
5004 "sys_rt_sigpending",
5005 "sys_rt_sigtimedwait",
5006 "sys_rt_sigqueueinfo",
5007 "sys_rt_sigsuspend",
5008 "sys_pread64", /* 180 */
5009 "sys_pwrite64",
5010 "sys_chown16",
5011 "sys_getcwd",
5012 "sys_capget",
5013 "sys_capset", /* 185 */
5014 "sys_sigaltstack",
5015 "sys_sendfile",
5016 "sys_ni_syscall", /* reserved for streams1 */
5017 "sys_ni_syscall", /* reserved for streams2 */
5018 "sys_vfork", /* 190 */
5019 "sys_getrlimit",
5020 "sys_mmap2",
5021 "sys_truncate64",
5022 "sys_ftruncate64",
5023 "sys_stat64", /* 195 */
5024 "sys_lstat64",
5025 "sys_fstat64",
5026 "sys_lchown",
5027 "sys_getuid",
5028 "sys_getgid", /* 200 */
5029 "sys_geteuid",
5030 "sys_getegid",
5031 "sys_setreuid",
5032 "sys_setregid",
5033 "sys_getgroups", /* 205 */
5034 "sys_setgroups",
5035 "sys_fchown",
5036 "sys_setresuid",
5037 "sys_getresuid",
5038 "sys_setresgid", /* 210 */
5039 "sys_getresgid",
5040 "sys_chown",
5041 "sys_setuid",
5042 "sys_setgid",
5043 "sys_setfsuid", /* 215 */
5044 "sys_setfsgid",
5045 "sys_pivot_root",
5046 "sys_mincore",
5047 "sys_madvise",
5048 "sys_getdents64", /* 220 */
5049 "sys_fcntl64",
5050 "sys_ni_syscall", /* reserved for TUX */
5051 "sys_ni_syscall",
5052 "sys_gettid",
5053 "sys_readahead", /* 225 */
5054 "sys_setxattr",
5055 "sys_lsetxattr",
5056 "sys_fsetxattr",
5057 "sys_getxattr",
5058 "sys_lgetxattr", /* 230 */
5059 "sys_fgetxattr",
5060 "sys_listxattr",
5061 "sys_llistxattr",
5062 "sys_flistxattr",
5063 "sys_removexattr", /* 235 */
5064 "sys_lremovexattr",
5065 "sys_fremovexattr",
5066 "sys_tkill",
5067 "sys_sendfile64",
5068 "sys_futex", /* 240 */
5069 "sys_sched_setaffinity",
5070 "sys_sched_getaffinity",
5071 "sys_set_thread_area",
5072 "sys_get_thread_area",
5073 "sys_io_setup", /* 245 */
5074 "sys_io_destroy",
5075 "sys_io_getevents",
5076 "sys_io_submit",
5077 "sys_io_cancel",
5078 "sys_fadvise64", /* 250 */
5079 "sys_ni_syscall",
5080 "sys_exit_group",
5081 "sys_lookup_dcookie",
5082 "sys_epoll_create",
5083 "sys_epoll_ctl", /* 255 */
5084 "sys_epoll_wait",
5085 "sys_remap_file_pages",
5086 "sys_set_tid_address",
5087 "sys_timer_create",
5088 "sys_timer_settime", /* 260 */
5089 "sys_timer_gettime",
5090 "sys_timer_getoverrun",
5091 "sys_timer_delete",
5092 "sys_clock_settime",
5093 "sys_clock_gettime", /* 265 */
5094 "sys_clock_getres",
5095 "sys_clock_nanosleep",
5096 "sys_statfs64",
5097 "sys_fstatfs64",
5098 "sys_tgkill", /* 270 */
5099 "sys_utimes",
5100 "sys_fadvise64_64",
5101 "sys_ni_syscall" /* sys_vserver */
5102 };
5103
5104 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
5105 switch (uEAX)
5106 {
5107 default:
5108 if (uEAX < RT_ELEMENTS(apsz))
5109 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5110 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
5111 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
5112 else
5113 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
5114 break;
5115
5116 }
5117}
5118
5119
5120/**
5121 * Dumps an OpenBSD system call.
5122 * @param pVCpu VMCPU handle.
5123 */
5124void remR3DumpOBsdSyscall(PVMCPU pVCpu)
5125{
5126 static const char *apsz[] =
5127 {
5128 "SYS_syscall", //0
5129 "SYS_exit", //1
5130 "SYS_fork", //2
5131 "SYS_read", //3
5132 "SYS_write", //4
5133 "SYS_open", //5
5134 "SYS_close", //6
5135 "SYS_wait4", //7
5136 "SYS_8",
5137 "SYS_link", //9
5138 "SYS_unlink", //10
5139 "SYS_11",
5140 "SYS_chdir", //12
5141 "SYS_fchdir", //13
5142 "SYS_mknod", //14
5143 "SYS_chmod", //15
5144 "SYS_chown", //16
5145 "SYS_break", //17
5146 "SYS_18",
5147 "SYS_19",
5148 "SYS_getpid", //20
5149 "SYS_mount", //21
5150 "SYS_unmount", //22
5151 "SYS_setuid", //23
5152 "SYS_getuid", //24
5153 "SYS_geteuid", //25
5154 "SYS_ptrace", //26
5155 "SYS_recvmsg", //27
5156 "SYS_sendmsg", //28
5157 "SYS_recvfrom", //29
5158 "SYS_accept", //30
5159 "SYS_getpeername", //31
5160 "SYS_getsockname", //32
5161 "SYS_access", //33
5162 "SYS_chflags", //34
5163 "SYS_fchflags", //35
5164 "SYS_sync", //36
5165 "SYS_kill", //37
5166 "SYS_38",
5167 "SYS_getppid", //39
5168 "SYS_40",
5169 "SYS_dup", //41
5170 "SYS_opipe", //42
5171 "SYS_getegid", //43
5172 "SYS_profil", //44
5173 "SYS_ktrace", //45
5174 "SYS_sigaction", //46
5175 "SYS_getgid", //47
5176 "SYS_sigprocmask", //48
5177 "SYS_getlogin", //49
5178 "SYS_setlogin", //50
5179 "SYS_acct", //51
5180 "SYS_sigpending", //52
5181 "SYS_osigaltstack", //53
5182 "SYS_ioctl", //54
5183 "SYS_reboot", //55
5184 "SYS_revoke", //56
5185 "SYS_symlink", //57
5186 "SYS_readlink", //58
5187 "SYS_execve", //59
5188 "SYS_umask", //60
5189 "SYS_chroot", //61
5190 "SYS_62",
5191 "SYS_63",
5192 "SYS_64",
5193 "SYS_65",
5194 "SYS_vfork", //66
5195 "SYS_67",
5196 "SYS_68",
5197 "SYS_sbrk", //69
5198 "SYS_sstk", //70
5199 "SYS_61",
5200 "SYS_vadvise", //72
5201 "SYS_munmap", //73
5202 "SYS_mprotect", //74
5203 "SYS_madvise", //75
5204 "SYS_76",
5205 "SYS_77",
5206 "SYS_mincore", //78
5207 "SYS_getgroups", //79
5208 "SYS_setgroups", //80
5209 "SYS_getpgrp", //81
5210 "SYS_setpgid", //82
5211 "SYS_setitimer", //83
5212 "SYS_84",
5213 "SYS_85",
5214 "SYS_getitimer", //86
5215 "SYS_87",
5216 "SYS_88",
5217 "SYS_89",
5218 "SYS_dup2", //90
5219 "SYS_91",
5220 "SYS_fcntl", //92
5221 "SYS_select", //93
5222 "SYS_94",
5223 "SYS_fsync", //95
5224 "SYS_setpriority", //96
5225 "SYS_socket", //97
5226 "SYS_connect", //98
5227 "SYS_99",
5228 "SYS_getpriority", //100
5229 "SYS_101",
5230 "SYS_102",
5231 "SYS_sigreturn", //103
5232 "SYS_bind", //104
5233 "SYS_setsockopt", //105
5234 "SYS_listen", //106
5235 "SYS_107",
5236 "SYS_108",
5237 "SYS_109",
5238 "SYS_110",
5239 "SYS_sigsuspend", //111
5240 "SYS_112",
5241 "SYS_113",
5242 "SYS_114",
5243 "SYS_115",
5244 "SYS_gettimeofday", //116
5245 "SYS_getrusage", //117
5246 "SYS_getsockopt", //118
5247 "SYS_119",
5248 "SYS_readv", //120
5249 "SYS_writev", //121
5250 "SYS_settimeofday", //122
5251 "SYS_fchown", //123
5252 "SYS_fchmod", //124
5253 "SYS_125",
5254 "SYS_setreuid", //126
5255 "SYS_setregid", //127
5256 "SYS_rename", //128
5257 "SYS_129",
5258 "SYS_130",
5259 "SYS_flock", //131
5260 "SYS_mkfifo", //132
5261 "SYS_sendto", //133
5262 "SYS_shutdown", //134
5263 "SYS_socketpair", //135
5264 "SYS_mkdir", //136
5265 "SYS_rmdir", //137
5266 "SYS_utimes", //138
5267 "SYS_139",
5268 "SYS_adjtime", //140
5269 "SYS_141",
5270 "SYS_142",
5271 "SYS_143",
5272 "SYS_144",
5273 "SYS_145",
5274 "SYS_146",
5275 "SYS_setsid", //147
5276 "SYS_quotactl", //148
5277 "SYS_149",
5278 "SYS_150",
5279 "SYS_151",
5280 "SYS_152",
5281 "SYS_153",
5282 "SYS_154",
5283 "SYS_nfssvc", //155
5284 "SYS_156",
5285 "SYS_157",
5286 "SYS_158",
5287 "SYS_159",
5288 "SYS_160",
5289 "SYS_getfh", //161
5290 "SYS_162",
5291 "SYS_163",
5292 "SYS_164",
5293 "SYS_sysarch", //165
5294 "SYS_166",
5295 "SYS_167",
5296 "SYS_168",
5297 "SYS_169",
5298 "SYS_170",
5299 "SYS_171",
5300 "SYS_172",
5301 "SYS_pread", //173
5302 "SYS_pwrite", //174
5303 "SYS_175",
5304 "SYS_176",
5305 "SYS_177",
5306 "SYS_178",
5307 "SYS_179",
5308 "SYS_180",
5309 "SYS_setgid", //181
5310 "SYS_setegid", //182
5311 "SYS_seteuid", //183
5312 "SYS_lfs_bmapv", //184
5313 "SYS_lfs_markv", //185
5314 "SYS_lfs_segclean", //186
5315 "SYS_lfs_segwait", //187
5316 "SYS_188",
5317 "SYS_189",
5318 "SYS_190",
5319 "SYS_pathconf", //191
5320 "SYS_fpathconf", //192
5321 "SYS_swapctl", //193
5322 "SYS_getrlimit", //194
5323 "SYS_setrlimit", //195
5324 "SYS_getdirentries", //196
5325 "SYS_mmap", //197
5326 "SYS___syscall", //198
5327 "SYS_lseek", //199
5328 "SYS_truncate", //200
5329 "SYS_ftruncate", //201
5330 "SYS___sysctl", //202
5331 "SYS_mlock", //203
5332 "SYS_munlock", //204
5333 "SYS_205",
5334 "SYS_futimes", //206
5335 "SYS_getpgid", //207
5336 "SYS_xfspioctl", //208
5337 "SYS_209",
5338 "SYS_210",
5339 "SYS_211",
5340 "SYS_212",
5341 "SYS_213",
5342 "SYS_214",
5343 "SYS_215",
5344 "SYS_216",
5345 "SYS_217",
5346 "SYS_218",
5347 "SYS_219",
5348 "SYS_220",
5349 "SYS_semget", //221
5350 "SYS_222",
5351 "SYS_223",
5352 "SYS_224",
5353 "SYS_msgget", //225
5354 "SYS_msgsnd", //226
5355 "SYS_msgrcv", //227
5356 "SYS_shmat", //228
5357 "SYS_229",
5358 "SYS_shmdt", //230
5359 "SYS_231",
5360 "SYS_clock_gettime", //232
5361 "SYS_clock_settime", //233
5362 "SYS_clock_getres", //234
5363 "SYS_235",
5364 "SYS_236",
5365 "SYS_237",
5366 "SYS_238",
5367 "SYS_239",
5368 "SYS_nanosleep", //240
5369 "SYS_241",
5370 "SYS_242",
5371 "SYS_243",
5372 "SYS_244",
5373 "SYS_245",
5374 "SYS_246",
5375 "SYS_247",
5376 "SYS_248",
5377 "SYS_249",
5378 "SYS_minherit", //250
5379 "SYS_rfork", //251
5380 "SYS_poll", //252
5381 "SYS_issetugid", //253
5382 "SYS_lchown", //254
5383 "SYS_getsid", //255
5384 "SYS_msync", //256
5385 "SYS_257",
5386 "SYS_258",
5387 "SYS_259",
5388 "SYS_getfsstat", //260
5389 "SYS_statfs", //261
5390 "SYS_fstatfs", //262
5391 "SYS_pipe", //263
5392 "SYS_fhopen", //264
5393 "SYS_265",
5394 "SYS_fhstatfs", //266
5395 "SYS_preadv", //267
5396 "SYS_pwritev", //268
5397 "SYS_kqueue", //269
5398 "SYS_kevent", //270
5399 "SYS_mlockall", //271
5400 "SYS_munlockall", //272
5401 "SYS_getpeereid", //273
5402 "SYS_274",
5403 "SYS_275",
5404 "SYS_276",
5405 "SYS_277",
5406 "SYS_278",
5407 "SYS_279",
5408 "SYS_280",
5409 "SYS_getresuid", //281
5410 "SYS_setresuid", //282
5411 "SYS_getresgid", //283
5412 "SYS_setresgid", //284
5413 "SYS_285",
5414 "SYS_mquery", //286
5415 "SYS_closefrom", //287
5416 "SYS_sigaltstack", //288
5417 "SYS_shmget", //289
5418 "SYS_semop", //290
5419 "SYS_stat", //291
5420 "SYS_fstat", //292
5421 "SYS_lstat", //293
5422 "SYS_fhstat", //294
5423 "SYS___semctl", //295
5424 "SYS_shmctl", //296
5425 "SYS_msgctl", //297
5426 "SYS_MAXSYSCALL", //298
5427 //299
5428 //300
5429 };
5430 uint32_t uEAX;
5431 if (!LogIsEnabled())
5432 return;
5433 uEAX = CPUMGetGuestEAX(pVCpu);
5434 switch (uEAX)
5435 {
5436 default:
5437 if (uEAX < RT_ELEMENTS(apsz))
5438 {
5439 uint32_t au32Args[8] = {0};
5440 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5441 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5442 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5443 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5444 }
5445 else
5446 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5447 break;
5448 }
5449}
5450
5451
5452#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5453/**
5454 * The Dll main entry point (stub).
5455 */
5456bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5457{
5458 return true;
5459}
5460
5461void *memcpy(void *dst, const void *src, size_t size)
5462{
5463 uint8_t*pbDst = dst, *pbSrc = src;
5464 while (size-- > 0)
5465 *pbDst++ = *pbSrc++;
5466 return dst;
5467}
5468
5469#endif
5470
5471void cpu_smm_update(CPUX86State *env)
5472{
5473}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette