VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 1806

Last change on this file since 1806 was 1337, checked in by vboxsync, 18 years ago

Forbid execution of v86 code with IF=0.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 153.8 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** The log level of the recompiler. */
110#if 1
111extern int loglevel;
112#else
113int loglevel = ~0;
114FILE *logfile = NULL;
115#endif
116
117
118/** @todo Move stats to REM::s some rainy day we have nothing do to. */
119#ifdef VBOX_WITH_STATISTICS
120static STAMPROFILEADV gStatExecuteSingleInstr;
121static STAMPROFILEADV gStatCompilationQEmu;
122static STAMPROFILEADV gStatRunCodeQEmu;
123static STAMPROFILEADV gStatTotalTimeQEmu;
124static STAMPROFILEADV gStatTimers;
125static STAMPROFILEADV gStatTBLookup;
126static STAMPROFILEADV gStatIRQ;
127static STAMPROFILEADV gStatRawCheck;
128static STAMPROFILEADV gStatMemRead;
129static STAMPROFILEADV gStatMemWrite;
130static STAMCOUNTER gStatRefuseTFInhibit;
131static STAMCOUNTER gStatRefuseVM86;
132static STAMCOUNTER gStatRefusePaging;
133static STAMCOUNTER gStatRefusePAE;
134static STAMCOUNTER gStatRefuseIOPLNot0;
135static STAMCOUNTER gStatRefuseIF0;
136static STAMCOUNTER gStatRefuseCode16;
137static STAMCOUNTER gStatRefuseWP0;
138static STAMCOUNTER gStatRefuseRing1or2;
139static STAMCOUNTER gStatRefuseCanExecute;
140static STAMCOUNTER gStatREMGDTChange;
141static STAMCOUNTER gStatREMIDTChange;
142static STAMCOUNTER gStatREMLDTRChange;
143static STAMCOUNTER gStatREMTRChange;
144static STAMCOUNTER gStatSelOutOfSync[6];
145static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
146#endif
147
148/*
149 * Global stuff.
150 */
151
152/** MMIO read callbacks. */
153CPUReadMemoryFunc *g_apfnMMIORead[3] =
154{
155 remR3MMIOReadU8,
156 remR3MMIOReadU16,
157 remR3MMIOReadU32
158};
159
160/** MMIO write callbacks. */
161CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
162{
163 remR3MMIOWriteU8,
164 remR3MMIOWriteU16,
165 remR3MMIOWriteU32
166};
167
168/** Handler read callbacks. */
169CPUReadMemoryFunc *g_apfnHandlerRead[3] =
170{
171 remR3HandlerReadU8,
172 remR3HandlerReadU16,
173 remR3HandlerReadU32
174};
175
176/** Handler write callbacks. */
177CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
178{
179 remR3HandlerWriteU8,
180 remR3HandlerWriteU16,
181 remR3HandlerWriteU32
182};
183
184#ifndef PGM_DYNAMIC_RAM_ALLOC
185/* Guest physical RAM base. Not to be used in external code. */
186static uint8_t *phys_ram_base;
187#endif
188
189/*
190 * Instance stuff.
191 */
192/** Pointer to the cpu state. */
193CPUState *cpu_single_env;
194
195
196#ifdef VBOX_WITH_DEBUGGER
197/*
198 * Debugger commands.
199 */
200static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
201
202/** '.remstep' arguments. */
203static const DBGCVARDESC g_aArgRemStep[] =
204{
205 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
206 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
207};
208
209/** Command descriptors. */
210static const DBGCCMD g_aCmds[] =
211{
212 {
213 .pszCmd ="remstep",
214 .cArgsMin = 0,
215 .cArgsMax = 1,
216 .paArgDescs = &g_aArgRemStep[0],
217 .cArgDescs = ELEMENTS(g_aArgRemStep),
218 .pResultDesc = NULL,
219 .fFlags = 0,
220 .pfnHandler = remR3CmdDisasEnableStepping,
221 .pszSyntax = "[on/off]",
222 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
223 "If no arguments show the current state."
224 }
225};
226#endif
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
238//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if 0 /* not merged yet */
253 Assert(!testmath());
254#endif
255
256 /*
257 * Init some internal data members.
258 */
259 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
260 pVM->rem.s.Env.pVM = pVM;
261#ifdef CPU_RAW_MODE_INIT
262 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
263#endif
264
265 /* ctx. */
266 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
267 if (VBOX_FAILURE(rc))
268 {
269 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
270 return rc;
271 }
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /*
275 * Init the recompiler.
276 */
277 if (!cpu_x86_init(&pVM->rem.s.Env))
278 {
279 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
280 return VERR_GENERAL_FAILURE;
281 }
282 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
283
284 /* allocate code buffer for single instruction emulation. */
285 pVM->rem.s.Env.cbCodeBuffer = 4096;
286 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
287 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
288
289 /* finally, set the cpu_single_env global. */
290 cpu_single_env = &pVM->rem.s.Env;
291
292 /* Nothing is pending by default */
293 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
294
295#ifdef DEBUG_bird
296 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
297#endif
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /*
309 * Register the saved state data unit.
310 */
311 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
312 NULL, remR3Save, NULL,
313 NULL, remR3Load, NULL);
314 if (VBOX_FAILURE(rc))
315 return rc;
316
317#ifdef VBOX_WITH_DEBUGGER
318 /*
319 * Debugger commands.
320 */
321 static bool fRegisteredCmds = false;
322 if (!fRegisteredCmds)
323 {
324 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
325 if (VBOX_SUCCESS(rc))
326 fRegisteredCmds = true;
327 }
328#endif
329
330#ifdef VBOX_WITH_STATISTICS
331 /*
332 * Statistics.
333 */
334 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
335 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
336 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
337 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
338 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
339 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
343 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344
345 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
346 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
347 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
348 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
349 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
350 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
351 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
352 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
353 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
354 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
355
356 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
357 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
358 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
359 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
360
361 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
362 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
367
368 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
374
375#endif
376 return rc;
377}
378
379
380/**
381 * Terminates the REM.
382 *
383 * Termination means cleaning up and freeing all resources,
384 * the VM it self is at this point powered off or suspended.
385 *
386 * @returns VBox status code.
387 * @param pVM The VM to operate on.
388 */
389REMR3DECL(int) REMR3Term(PVM pVM)
390{
391 return VINF_SUCCESS;
392}
393
394
395/**
396 * The VM is being reset.
397 *
398 * For the REM component this means to call the cpu_reset() and
399 * reinitialize some state variables.
400 *
401 * @param pVM VM handle.
402 */
403REMR3DECL(void) REMR3Reset(PVM pVM)
404{
405 pVM->rem.s.fIgnoreCR3Load = true;
406 pVM->rem.s.fIgnoreInvlPg = true;
407 pVM->rem.s.fIgnoreCpuMode = true;
408
409 /*
410 * Reset the REM cpu.
411 */
412 cpu_reset(&pVM->rem.s.Env);
413 pVM->rem.s.cInvalidatedPages = 0;
414
415 pVM->rem.s.fIgnoreCR3Load = false;
416 pVM->rem.s.fIgnoreInvlPg = false;
417 pVM->rem.s.fIgnoreCpuMode = false;
418}
419
420
421/**
422 * Execute state save operation.
423 *
424 * @returns VBox status code.
425 * @param pVM VM Handle.
426 * @param pSSM SSM operation handle.
427 */
428static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
429{
430 LogFlow(("remR3Save:\n"));
431
432 /*
433 * Save the required CPU Env bits.
434 * (Not much because we're never in REM when doing the save.)
435 */
436 PREM pRem = &pVM->rem.s;
437 Assert(!pRem->fInREM);
438 SSMR3PutU32(pSSM, pRem->Env.hflags);
439 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
440 SSMR3PutU32(pSSM, ~0); /* separator */
441
442 /*
443 * Save the REM stuff.
444 */
445 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
446 unsigned i;
447 for (i = 0; i < pRem->cInvalidatedPages; i++)
448 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
449
450 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
451
452 return SSMR3PutU32(pSSM, ~0); /* terminator */
453}
454
455
456/**
457 * Execute state load operation.
458 *
459 * @returns VBox status code.
460 * @param pVM VM Handle.
461 * @param pSSM SSM operation handle.
462 * @param u32Version Data layout version.
463 */
464static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
465{
466 uint32_t u32Dummy;
467 LogFlow(("remR3Load:\n"));
468
469 /*
470 * Validate version.
471 */
472 if (u32Version != REM_SAVED_STATE_VERSION)
473 {
474 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
475 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
476 }
477
478 /*
479 * Do a reset to be on the safe side...
480 */
481 REMR3Reset(pVM);
482
483 /*
484 * Ignore all ignorable notifications.
485 * Not doing this will cause big trouble.
486 */
487 pVM->rem.s.fIgnoreCR3Load = true;
488 pVM->rem.s.fIgnoreInvlPg = true;
489 pVM->rem.s.fIgnoreCpuMode = true;
490
491 /*
492 * Load the required CPU Env bits.
493 * (Not much because we're never in REM when doing the save.)
494 */
495 PREM pRem = &pVM->rem.s;
496 Assert(!pRem->fInREM);
497 SSMR3GetU32(pSSM, &pRem->Env.hflags);
498 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
499 uint32_t u32Sep;
500 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
501 if (VBOX_FAILURE(rc))
502 return rc;
503 if (u32Sep != ~0)
504 {
505 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
506 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
507 }
508
509 /*
510 * Load the REM stuff.
511 */
512 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
513 if (VBOX_FAILURE(rc))
514 return rc;
515 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
516 {
517 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
518 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
519 }
520 unsigned i;
521 for (i = 0; i < pRem->cInvalidatedPages; i++)
522 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
523
524 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
525 if (VBOX_FAILURE(rc))
526 return rc;
527
528 /* check the terminator. */
529 rc = SSMR3GetU32(pSSM, &u32Sep);
530 if (VBOX_FAILURE(rc))
531 return rc;
532 if (u32Sep != ~0)
533 {
534 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
535 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
536 }
537
538 /*
539 * Get the CPUID features.
540 */
541 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
542
543 /*
544 * Sync the Load Flush the TLB
545 */
546 tlb_flush(&pRem->Env, 1);
547
548#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
549 /*
550 * Clear all lazy flags (only FPU sync for now).
551 */
552 CPUMGetAndClearFPUUsedREM(pVM);
553#endif
554
555 /*
556 * Stop ignoring ignornable notifications.
557 */
558 pVM->rem.s.fIgnoreCpuMode = false;
559 pVM->rem.s.fIgnoreInvlPg = false;
560 pVM->rem.s.fIgnoreCR3Load = false;
561
562 return VINF_SUCCESS;
563}
564
565
566
567#undef LOG_GROUP
568#define LOG_GROUP LOG_GROUP_REM_RUN
569
570/**
571 * Single steps an instruction in recompiled mode.
572 *
573 * Before calling this function the REM state needs to be in sync with
574 * the VM. Call REMR3State() to perform the sync. It's only necessary
575 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
576 * and after calling REMR3StateBack().
577 *
578 * @returns VBox status code.
579 *
580 * @param pVM VM Handle.
581 */
582REMR3DECL(int) REMR3Step(PVM pVM)
583{
584 /*
585 * Lock the REM - we don't wanna have anyone interrupting us
586 * while stepping - and enabled single stepping. We also ignore
587 * pending interrupts and suchlike.
588 */
589 int interrupt_request = pVM->rem.s.Env.interrupt_request;
590 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
591 pVM->rem.s.Env.interrupt_request = 0;
592 cpu_single_step(&pVM->rem.s.Env, 1);
593
594 /*
595 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
596 */
597 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
598 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
599
600 /*
601 * Execute and handle the return code.
602 * We execute without enabling the cpu tick, so on success we'll
603 * just flip it on and off to make sure it moves
604 */
605 int rc = cpu_exec(&pVM->rem.s.Env);
606 if (rc == EXCP_DEBUG)
607 {
608 TMCpuTickResume(pVM);
609 TMCpuTickPause(pVM);
610 TMVirtualResume(pVM);
611 TMVirtualPause(pVM);
612 rc = VINF_EM_DBG_STEPPED;
613 }
614 else
615 {
616 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
617 switch (rc)
618 {
619 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
620 case EXCP_HLT: rc = VINF_EM_HALT; break;
621 case EXCP_RC:
622 rc = pVM->rem.s.rc;
623 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
624 break;
625 default:
626 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
627 rc = VERR_INTERNAL_ERROR;
628 break;
629 }
630 }
631
632 /*
633 * Restore the stuff we changed to prevent interruption.
634 * Unlock the REM.
635 */
636 if (fBp)
637 {
638 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
639 Assert(rc2 == 0); NOREF(rc2);
640 }
641 cpu_single_step(&pVM->rem.s.Env, 0);
642 pVM->rem.s.Env.interrupt_request = interrupt_request;
643
644 return rc;
645}
646
647
648/**
649 * Set a breakpoint using the REM facilities.
650 *
651 * @returns VBox status code.
652 * @param pVM The VM handle.
653 * @param Address The breakpoint address.
654 * @thread The emulation thread.
655 */
656REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
657{
658 VM_ASSERT_EMT(pVM);
659 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
660 {
661 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
662 return VINF_SUCCESS;
663 }
664 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
665 return VERR_REM_NO_MORE_BP_SLOTS;
666}
667
668
669/**
670 * Clears a breakpoint set by REMR3BreakpointSet().
671 *
672 * @returns VBox status code.
673 * @param pVM The VM handle.
674 * @param Address The breakpoint address.
675 * @thread The emulation thread.
676 */
677REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
678{
679 VM_ASSERT_EMT(pVM);
680 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
681 {
682 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
683 return VINF_SUCCESS;
684 }
685 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
686 return VERR_REM_BP_NOT_FOUND;
687}
688
689
690/**
691 * Emulate an instruction.
692 *
693 * This function executes one instruction without letting anyone
694 * interrupt it. This is intended for being called while being in
695 * raw mode and thus will take care of all the state syncing between
696 * REM and the rest.
697 *
698 * @returns VBox status code.
699 * @param pVM VM handle.
700 */
701REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
702{
703 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
704
705 /*
706 * Sync the state and enable single instruction / single stepping.
707 */
708 int rc = REMR3State(pVM);
709 if (VBOX_SUCCESS(rc))
710 {
711 int interrupt_request = pVM->rem.s.Env.interrupt_request;
712 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
713 Assert(!pVM->rem.s.Env.singlestep_enabled);
714#if 1
715
716 /*
717 * Now we set the execute single instruction flag and enter the cpu_exec loop.
718 */
719 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
720 rc = cpu_exec(&pVM->rem.s.Env);
721 switch (rc)
722 {
723 /*
724 * Executed without anything out of the way happening.
725 */
726 case EXCP_SINGLE_INSTR:
727 rc = VINF_EM_RESCHEDULE;
728 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
729 break;
730
731 /*
732 * If we take a trap or start servicing a pending interrupt, we might end up here.
733 * (Timer thread or some other thread wishing EMT's attention.)
734 */
735 case EXCP_INTERRUPT:
736 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
737 rc = VINF_EM_RESCHEDULE;
738 break;
739
740 /*
741 * Single step, we assume!
742 * If there was a breakpoint there we're fucked now.
743 */
744 case EXCP_DEBUG:
745 {
746 /* breakpoint or single step? */
747 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
748 int iBP;
749 rc = VINF_EM_DBG_STEPPED;
750 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
751 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
752 {
753 rc = VINF_EM_DBG_BREAKPOINT;
754 break;
755 }
756 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
757 break;
758 }
759
760 /*
761 * hlt instruction.
762 */
763 case EXCP_HLT:
764 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
765 rc = VINF_EM_HALT;
766 break;
767
768 /*
769 * Switch to RAW-mode.
770 */
771 case EXCP_EXECUTE_RAW:
772 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
773 rc = VINF_EM_RESCHEDULE_RAW;
774 break;
775
776 /*
777 * Switch to hardware accelerated RAW-mode.
778 */
779 case EXCP_EXECUTE_HWACC:
780 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
781 rc = VINF_EM_RESCHEDULE_HWACC;
782 break;
783
784 /*
785 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
786 */
787 case EXCP_RC:
788 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
789 rc = pVM->rem.s.rc;
790 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
791 break;
792
793 /*
794 * Figure out the rest when they arrive....
795 */
796 default:
797 AssertMsgFailed(("rc=%d\n", rc));
798 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
799 rc = VINF_EM_RESCHEDULE;
800 break;
801 }
802
803 /*
804 * Switch back the state.
805 */
806#else
807 pVM->rem.s.Env.interrupt_request = 0;
808 cpu_single_step(&pVM->rem.s.Env, 1);
809
810 /*
811 * Execute and handle the return code.
812 * We execute without enabling the cpu tick, so on success we'll
813 * just flip it on and off to make sure it moves.
814 *
815 * (We do not use emulate_single_instr() because that doesn't enter the
816 * right way in will cause serious trouble if a longjmp was attempted.)
817 */
818 #ifdef DEBUG_bird
819 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
820 #endif
821 int cTimesMax = 16384;
822 uint32_t eip = pVM->rem.s.Env.eip;
823 do
824 {
825 rc = cpu_exec(&pVM->rem.s.Env);
826 } while ( eip == pVM->rem.s.Env.eip
827 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
828 && --cTimesMax > 0);
829 switch (rc)
830 {
831 /*
832 * Single step, we assume!
833 * If there was a breakpoint there we're fucked now.
834 */
835 case EXCP_DEBUG:
836 {
837 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
838 rc = VINF_EM_RESCHEDULE;
839 break;
840 }
841
842 /*
843 * We cannot be interrupted!
844 */
845 case EXCP_INTERRUPT:
846 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
847 rc = VERR_INTERNAL_ERROR;
848 break;
849
850 /*
851 * hlt instruction.
852 */
853 case EXCP_HLT:
854 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
855 rc = VINF_EM_HALT;
856 break;
857
858 /*
859 * Switch to RAW-mode.
860 */
861 case EXCP_EXECUTE_RAW:
862 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
863 rc = VINF_EM_RESCHEDULE_RAW;
864 break;
865
866 /*
867 * Switch to hardware accelerated RAW-mode.
868 */
869 case EXCP_EXECUTE_HWACC:
870 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
871 rc = VINF_EM_RESCHEDULE_HWACC;
872 break;
873
874 /*
875 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
876 */
877 case EXCP_RC:
878 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
879 rc = pVM->rem.s.rc;
880 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
881 break;
882
883 /*
884 * Figure out the rest when they arrive....
885 */
886 default:
887 AssertMsgFailed(("rc=%d\n", rc));
888 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
889 rc = VINF_SUCCESS;
890 break;
891 }
892
893 /*
894 * Switch back the state.
895 */
896 cpu_single_step(&pVM->rem.s.Env, 0);
897#endif
898 pVM->rem.s.Env.interrupt_request = interrupt_request;
899 int rc2 = REMR3StateBack(pVM);
900 AssertRC(rc2);
901 }
902
903 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
904 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
905 return rc;
906}
907
908
909/**
910 * Runs code in recompiled mode.
911 *
912 * Before calling this function the REM state needs to be in sync with
913 * the VM. Call REMR3State() to perform the sync. It's only necessary
914 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
915 * and after calling REMR3StateBack().
916 *
917 * @returns VBox status code.
918 *
919 * @param pVM VM Handle.
920 */
921REMR3DECL(int) REMR3Run(PVM pVM)
922{
923 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
924 Assert(pVM->rem.s.fInREM);
925////Keyboard / tb stuff:
926//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
927// && pVM->rem.s.Env.eip >= 0xe860
928// && pVM->rem.s.Env.eip <= 0xe880)
929// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
930////A20:
931//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
932// && pVM->rem.s.Env.eip >= 0x970
933// && pVM->rem.s.Env.eip <= 0x9a0)
934// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
935////Speaker (port 61h)
936//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
937// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
938// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
939// )
940// )
941// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
942//DBGFR3InfoLog(pVM, "timers", NULL);
943
944
945 int rc = cpu_exec(&pVM->rem.s.Env);
946 switch (rc)
947 {
948 /*
949 * This happens when the execution was interrupted
950 * by an external event, like pending timers.
951 */
952 case EXCP_INTERRUPT:
953 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
954 rc = VINF_SUCCESS;
955 break;
956
957 /*
958 * hlt instruction.
959 */
960 case EXCP_HLT:
961 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
962 rc = VINF_EM_HALT;
963 break;
964
965 /*
966 * Breakpoint/single step.
967 */
968 case EXCP_DEBUG:
969 {
970#if 0//def DEBUG_bird
971 static int iBP = 0;
972 printf("howdy, breakpoint! iBP=%d\n", iBP);
973 switch (iBP)
974 {
975 case 0:
976 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
977 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
978 //pVM->rem.s.Env.interrupt_request = 0;
979 //pVM->rem.s.Env.exception_index = -1;
980 //g_fInterruptDisabled = 1;
981 rc = VINF_SUCCESS;
982 asm("int3");
983 break;
984 default:
985 asm("int3");
986 break;
987 }
988 iBP++;
989#else
990 /* breakpoint or single step? */
991 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
992 int iBP;
993 rc = VINF_EM_DBG_STEPPED;
994 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
995 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
996 {
997 rc = VINF_EM_DBG_BREAKPOINT;
998 break;
999 }
1000 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1001#endif
1002 break;
1003 }
1004
1005 /*
1006 * Switch to RAW-mode.
1007 */
1008 case EXCP_EXECUTE_RAW:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1010 rc = VINF_EM_RESCHEDULE_RAW;
1011 break;
1012
1013 /*
1014 * Switch to hardware accelerated RAW-mode.
1015 */
1016 case EXCP_EXECUTE_HWACC:
1017 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1018 rc = VINF_EM_RESCHEDULE_HWACC;
1019 break;
1020
1021 /*
1022 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1023 */
1024 case EXCP_RC:
1025 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1026 rc = pVM->rem.s.rc;
1027 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1028 break;
1029
1030 /*
1031 * Figure out the rest when they arrive....
1032 */
1033 default:
1034 AssertMsgFailed(("rc=%d\n", rc));
1035 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1036 rc = VINF_SUCCESS;
1037 break;
1038 }
1039
1040 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1041 return rc;
1042}
1043
1044
1045/**
1046 * Check if the cpu state is suitable for Raw execution.
1047 *
1048 * @returns boolean
1049 * @param env The CPU env struct.
1050 * @param eip The EIP to check this for (might differ from env->eip).
1051 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1052 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1053 *
1054 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1055 */
1056bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1057{
1058 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1059 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1060 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1061
1062 /* Update counter. */
1063 env->pVM->rem.s.cCanExecuteRaw++;
1064
1065 if (HWACCMIsEnabled(env->pVM))
1066 {
1067 env->state |= CPU_RAW_HWACC;
1068
1069 /*
1070 * Create partial context for HWACCMR3CanExecuteGuest
1071 */
1072 CPUMCTX Ctx;
1073 Ctx.cr0 = env->cr[0];
1074 Ctx.cr3 = env->cr[3];
1075 Ctx.cr4 = env->cr[4];
1076
1077 Ctx.tr = env->tr.selector;
1078 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1079 Ctx.trHid.u32Limit = env->tr.limit;
1080 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1081
1082 Ctx.idtr.cbIdt = env->idt.limit;
1083 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1084
1085 Ctx.eflags.u32 = env->eflags;
1086
1087 Ctx.cs = env->segs[R_CS].selector;
1088 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1089 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1090 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1091
1092 Ctx.ss = env->segs[R_SS].selector;
1093 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1094 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1095 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1096
1097 /* Hardware accelerated raw-mode:
1098 *
1099 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1100 */
1101 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1102 {
1103 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1104 return true;
1105 }
1106 return false;
1107 }
1108
1109 /*
1110 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1111 * or 32 bits protected mode ring 0 code
1112 *
1113 * The tests are ordered by the likelyhood of being true during normal execution.
1114 */
1115 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1116 {
1117 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1118 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1119 return false;
1120 }
1121
1122#ifndef VBOX_RAW_V86
1123 if (fFlags & VM_MASK) {
1124 STAM_COUNTER_INC(&gStatRefuseVM86);
1125 Log2(("raw mode refused: VM_MASK\n"));
1126 return false;
1127 }
1128#endif
1129
1130 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1131 {
1132#ifndef DEBUG_bird
1133 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1134#endif
1135 return false;
1136 }
1137
1138 if (env->singlestep_enabled)
1139 {
1140 //Log2(("raw mode refused: Single step\n"));
1141 return false;
1142 }
1143
1144 if (env->nb_breakpoints > 0)
1145 {
1146 //Log2(("raw mode refused: Breakpoints\n"));
1147 return false;
1148 }
1149
1150 uint32_t u32CR0 = env->cr[0];
1151 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1152 {
1153 STAM_COUNTER_INC(&gStatRefusePaging);
1154 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1155 return false;
1156 }
1157
1158 if (env->cr[4] & CR4_PAE_MASK)
1159 {
1160 STAM_COUNTER_INC(&gStatRefusePAE);
1161 //Log2(("raw mode refused: PAE\n"));
1162 return false;
1163 }
1164
1165 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1166 {
1167 if (!EMIsRawRing3Enabled(env->pVM))
1168 return false;
1169
1170 if (!(env->eflags & IF_MASK))
1171 {
1172 STAM_COUNTER_INC(&gStatRefuseIF0);
1173 Log2(("raw mode refused: IF (RawR3)\n"));
1174 return false;
1175 }
1176
1177 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1178 {
1179 STAM_COUNTER_INC(&gStatRefuseWP0);
1180 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1181 return false;
1182 }
1183 }
1184 else
1185 {
1186 if (!EMIsRawRing0Enabled(env->pVM))
1187 return false;
1188
1189 // Let's start with pure 32 bits ring 0 code first
1190 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1191 {
1192 STAM_COUNTER_INC(&gStatRefuseCode16);
1193 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1194 return false;
1195 }
1196
1197 // Only R0
1198 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1199 {
1200 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1201 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1202 return false;
1203 }
1204
1205 if (!(u32CR0 & CR0_WP_MASK))
1206 {
1207 STAM_COUNTER_INC(&gStatRefuseWP0);
1208 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1209 return false;
1210 }
1211
1212 if (PATMIsPatchGCAddr(env->pVM, eip))
1213 {
1214 Log2(("raw r0 mode forced: patch code\n"));
1215 *pExceptionIndex = EXCP_EXECUTE_RAW;
1216 return true;
1217 }
1218
1219#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1220 if (!(env->eflags & IF_MASK))
1221 {
1222 STAM_COUNTER_INC(&gStatRefuseIF0);
1223 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1224 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1225 return false;
1226 }
1227#endif
1228
1229 env->state |= CPU_RAW_RING0;
1230 }
1231
1232 /*
1233 * Don't reschedule the first time we're called, because there might be
1234 * special reasons why we're here that is not covered by the above checks.
1235 */
1236 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1237 {
1238 Log2(("raw mode refused: first scheduling\n"));
1239 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1240 return false;
1241 }
1242
1243 Assert(PGMPhysIsA20Enabled(env->pVM));
1244 *pExceptionIndex = EXCP_EXECUTE_RAW;
1245 return true;
1246}
1247
1248
1249/**
1250 * Fetches a code byte.
1251 *
1252 * @returns Success indicator (bool) for ease of use.
1253 * @param env The CPU environment structure.
1254 * @param GCPtrInstr Where to fetch code.
1255 * @param pu8Byte Where to store the byte on success
1256 */
1257bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1258{
1259 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1260 if (VBOX_SUCCESS(rc))
1261 return true;
1262 return false;
1263}
1264
1265
1266/**
1267 * Flush (or invalidate if you like) page table/dir entry.
1268 *
1269 * (invlpg instruction; tlb_flush_page)
1270 *
1271 * @param env Pointer to cpu environment.
1272 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1273 */
1274void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1275{
1276 PVM pVM = env->pVM;
1277
1278 /*
1279 * When we're replaying invlpg instructions or restoring a saved
1280 * state we disable this path.
1281 */
1282 if (pVM->rem.s.fIgnoreInvlPg)
1283 return;
1284 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1285
1286 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1287
1288 /*
1289 * Update the control registers before calling PGMFlushPage.
1290 */
1291 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1292 pCtx->cr0 = env->cr[0];
1293 pCtx->cr3 = env->cr[3];
1294 pCtx->cr4 = env->cr[4];
1295
1296 /*
1297 * Let PGM do the rest.
1298 */
1299 int rc = PGMInvalidatePage(pVM, GCPtr);
1300 if (VBOX_FAILURE(rc))
1301 {
1302 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1303 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1304 }
1305 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1306}
1307
1308/**
1309 * Set page table/dir entry. (called from tlb_set_page)
1310 *
1311 * @param env Pointer to cpu environment.
1312 */
1313void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1314{
1315 uint32_t virt_addr, addend;
1316
1317 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1318
1319 if (prot & PAGE_WRITE)
1320 {
1321 addend = pWrite->addend;
1322 virt_addr = pWrite->address;
1323 }
1324 else
1325 if (prot & PAGE_READ)
1326 {
1327 addend = pRead->addend;
1328 virt_addr = pRead->address;
1329 }
1330 else
1331 {
1332 // Should never happen!
1333 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1334 return;
1335 }
1336
1337 // Clear IO_* flags (TODO: are they actually useful for us??)
1338 virt_addr &= ~0xFFF;
1339
1340 /*
1341 * Update the control registers before calling PGMFlushPage.
1342 */
1343 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1344 pCtx->cr0 = env->cr[0];
1345 pCtx->cr3 = env->cr[3];
1346 pCtx->cr4 = env->cr[4];
1347
1348 /*
1349 * Let PGM do the rest.
1350 */
1351 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1352 if (VBOX_FAILURE(rc))
1353 {
1354 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1355 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1356 }
1357}
1358
1359/**
1360 * Called from tlb_protect_code in order to write monitor a code page.
1361 *
1362 * @param env Pointer to the CPU environment.
1363 * @param GCPtr Code page to monitor
1364 */
1365void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1366{
1367 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1368 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1369 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1370 && !(env->eflags & VM_MASK) /* no V86 mode */
1371 && !HWACCMIsEnabled(env->pVM))
1372 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1373}
1374
1375/**
1376 * Called when the CPU is initialized, any of the CRx registers are changed or
1377 * when the A20 line is modified.
1378 *
1379 * @param env Pointer to the CPU environment.
1380 * @param fGlobal Set if the flush is global.
1381 */
1382void remR3FlushTLB(CPUState *env, bool fGlobal)
1383{
1384 PVM pVM = env->pVM;
1385
1386 /*
1387 * When we're replaying invlpg instructions or restoring a saved
1388 * state we disable this path.
1389 */
1390 if (pVM->rem.s.fIgnoreCR3Load)
1391 return;
1392
1393 /*
1394 * The caller doesn't check cr4, so we have to do that for ourselves.
1395 */
1396 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1397 fGlobal = true;
1398 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1399
1400 /*
1401 * Update the control registers before calling PGMR3FlushTLB.
1402 */
1403 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1404 pCtx->cr0 = env->cr[0];
1405 pCtx->cr3 = env->cr[3];
1406 pCtx->cr4 = env->cr[4];
1407
1408 /*
1409 * Let PGM do the rest.
1410 */
1411 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1412}
1413
1414
1415/**
1416 * Called when any of the cr0, cr4 or efer registers is updated.
1417 *
1418 * @param env Pointer to the CPU environment.
1419 */
1420void remR3ChangeCpuMode(CPUState *env)
1421{
1422 int rc;
1423 PVM pVM = env->pVM;
1424
1425 /*
1426 * When we're replaying loads or restoring a saved
1427 * state this path is disabled.
1428 */
1429 if (pVM->rem.s.fIgnoreCpuMode)
1430 return;
1431
1432 /*
1433 * Update the control registers before calling PGMR3ChangeMode()
1434 * as it may need to map whatever cr3 is pointing to.
1435 */
1436 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1437 pCtx->cr0 = env->cr[0];
1438 pCtx->cr3 = env->cr[3];
1439 pCtx->cr4 = env->cr[4];
1440
1441#ifdef TARGET_X86_64
1442 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1443 if (rc != VINF_SUCCESS)
1444 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1445#else
1446 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1447 if (rc != VINF_SUCCESS)
1448 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1449#endif
1450}
1451
1452
1453/**
1454 * Called from compiled code to run dma.
1455 *
1456 * @param env Pointer to the CPU environment.
1457 */
1458void remR3DmaRun(CPUState *env)
1459{
1460 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1461 PDMR3DmaRun(env->pVM);
1462 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1463}
1464
1465/**
1466 * Called from compiled code to schedule pending timers in VMM
1467 *
1468 * @param env Pointer to the CPU environment.
1469 */
1470void remR3TimersRun(CPUState *env)
1471{
1472 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1473 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1474 TMR3TimerQueuesDo(env->pVM);
1475 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1476 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1477}
1478
1479/**
1480 * Record trap occurance
1481 *
1482 * @returns VBox status code
1483 * @param env Pointer to the CPU environment.
1484 * @param uTrap Trap nr
1485 * @param uErrorCode Error code
1486 * @param pvNextEIP Next EIP
1487 */
1488int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1489{
1490 PVM pVM = (PVM)env->pVM;
1491#ifdef VBOX_WITH_STATISTICS
1492 static STAMCOUNTER aStatTrap[255];
1493 static bool aRegisters[ELEMENTS(aStatTrap)];
1494#endif
1495
1496#ifdef VBOX_WITH_STATISTICS
1497 if (uTrap < 255)
1498 {
1499 if (!aRegisters[uTrap])
1500 {
1501 aRegisters[uTrap] = true;
1502 char szStatName[64];
1503 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1504 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1505 }
1506 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1507 }
1508#endif
1509 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1510 if(uTrap < 0x20)
1511 {
1512 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1513
1514 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1515 {
1516 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1517 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1518 return VERR_REM_TOO_MANY_TRAPS;
1519 }
1520 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1521 pVM->rem.s.cPendingExceptions = 1;
1522 pVM->rem.s.uPendingException = uTrap;
1523 pVM->rem.s.uPendingExcptEIP = env->eip;
1524 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1525 }
1526 else
1527 {
1528 pVM->rem.s.cPendingExceptions = 0;
1529 pVM->rem.s.uPendingException = uTrap;
1530 pVM->rem.s.uPendingExcptEIP = env->eip;
1531 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1532 }
1533 return VINF_SUCCESS;
1534}
1535
1536/*
1537 * Clear current active trap
1538 *
1539 * @param pVM VM Handle.
1540 */
1541void remR3TrapClear(PVM pVM)
1542{
1543 pVM->rem.s.cPendingExceptions = 0;
1544 pVM->rem.s.uPendingException = 0;
1545 pVM->rem.s.uPendingExcptEIP = 0;
1546 pVM->rem.s.uPendingExcptCR2 = 0;
1547}
1548
1549
1550/**
1551 * Syncs the internal REM state with the VM.
1552 *
1553 * This must be called before REMR3Run() is invoked whenever when the REM
1554 * state is not up to date. Calling it several times in a row is not
1555 * permitted.
1556 *
1557 * @returns VBox status code.
1558 *
1559 * @param pVM VM Handle.
1560 *
1561 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1562 * no do this since the majority of the callers don't want any unnecessary of events
1563 * pending that would immediatly interrupt execution.
1564 */
1565REMR3DECL(int) REMR3State(PVM pVM)
1566{
1567 Assert(!pVM->rem.s.fInREM);
1568 Log2(("REMR3State:\n"));
1569 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1570 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1571 register unsigned fFlags;
1572
1573 /*
1574 * Copy the registers which requires no special handling.
1575 */
1576 Assert(R_EAX == 0);
1577 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1578 Assert(R_ECX == 1);
1579 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1580 Assert(R_EDX == 2);
1581 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1582 Assert(R_EBX == 3);
1583 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1584 Assert(R_ESP == 4);
1585 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1586 Assert(R_EBP == 5);
1587 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1588 Assert(R_ESI == 6);
1589 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1590 Assert(R_EDI == 7);
1591 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1592 pVM->rem.s.Env.eip = pCtx->eip;
1593
1594 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1595
1596 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1597
1598 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1599 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1600 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1601 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1602 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1603 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1604 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1605 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1606 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1607
1608 /*
1609 * Replay invlpg?
1610 */
1611 if (pVM->rem.s.cInvalidatedPages)
1612 {
1613 pVM->rem.s.fIgnoreInvlPg = true;
1614 RTUINT i;
1615 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1616 {
1617 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1618 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1619 }
1620 pVM->rem.s.fIgnoreInvlPg = false;
1621 pVM->rem.s.cInvalidatedPages = 0;
1622 }
1623
1624 /*
1625 * Registers which are seldomly changed and require special handling / order when changed.
1626 */
1627 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1628 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1629 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1630 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1631 {
1632 if (fFlags & CPUM_CHANGED_FPU_REM)
1633 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1634
1635 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1636 {
1637 pVM->rem.s.fIgnoreCR3Load = true;
1638 tlb_flush(&pVM->rem.s.Env, true);
1639 pVM->rem.s.fIgnoreCR3Load = false;
1640 }
1641
1642 if (fFlags & CPUM_CHANGED_CR4)
1643 {
1644 pVM->rem.s.fIgnoreCR3Load = true;
1645 pVM->rem.s.fIgnoreCpuMode = true;
1646 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1647 pVM->rem.s.fIgnoreCpuMode = false;
1648 pVM->rem.s.fIgnoreCR3Load = false;
1649 }
1650
1651 if (fFlags & CPUM_CHANGED_CR0)
1652 {
1653 pVM->rem.s.fIgnoreCR3Load = true;
1654 pVM->rem.s.fIgnoreCpuMode = true;
1655 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1656 pVM->rem.s.fIgnoreCpuMode = false;
1657 pVM->rem.s.fIgnoreCR3Load = false;
1658 }
1659
1660 if (fFlags & CPUM_CHANGED_CR3)
1661 {
1662 pVM->rem.s.fIgnoreCR3Load = true;
1663 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1664 pVM->rem.s.fIgnoreCR3Load = false;
1665 }
1666
1667 if (fFlags & CPUM_CHANGED_GDTR)
1668 {
1669 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1670 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1671 }
1672
1673 if (fFlags & CPUM_CHANGED_IDTR)
1674 {
1675 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1676 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1677 }
1678
1679 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1680 {
1681 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1682 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1683 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1684 }
1685
1686 if (fFlags & CPUM_CHANGED_LDTR)
1687 {
1688 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1689 {
1690 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1691 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1692 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1693 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1694 }
1695 else
1696 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1697 }
1698
1699 if (fFlags & CPUM_CHANGED_TR)
1700 {
1701 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1702 {
1703 pVM->rem.s.Env.tr.selector = pCtx->tr;
1704 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1705 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1706 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1707 }
1708 else
1709 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1710
1711 /** @note do_interrupt will fault if the busy flag is still set.... */
1712 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1713 }
1714 }
1715
1716 /*
1717 * Update selector registers.
1718 * This must be done *after* we've synced gdt, ldt and crX registers
1719 * since we're reading the GDT/LDT om sync_seg. This will happen with
1720 * saved state which takes a quick dip into rawmode for instance.
1721 */
1722 /*
1723 * Stack; Note first check this one as the CPL might have changed. The
1724 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1725 */
1726
1727 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1728 {
1729 /* The hidden selector registers are valid in the CPU context. */
1730 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1731
1732 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1733 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1734 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1735 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1736 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1737 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1738
1739 /* Set current CPL. */
1740 if (pCtx->eflags.Bits.u1VM == 1)
1741 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1742 else
1743 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1744 }
1745 else
1746 {
1747 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1748 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1749 {
1750 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1751
1752 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1753 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1754#ifdef VBOX_WITH_STATISTICS
1755 if (pVM->rem.s.Env.segs[R_SS].newselector)
1756 {
1757 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1758 }
1759#endif
1760 }
1761 else
1762 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1763
1764 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1765 {
1766 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1767 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1768#ifdef VBOX_WITH_STATISTICS
1769 if (pVM->rem.s.Env.segs[R_ES].newselector)
1770 {
1771 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1772 }
1773#endif
1774 }
1775 else
1776 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1777
1778 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1779 {
1780 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1781 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1782#ifdef VBOX_WITH_STATISTICS
1783 if (pVM->rem.s.Env.segs[R_CS].newselector)
1784 {
1785 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1786 }
1787#endif
1788 }
1789 else
1790 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1791
1792 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1793 {
1794 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1795 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1796#ifdef VBOX_WITH_STATISTICS
1797 if (pVM->rem.s.Env.segs[R_DS].newselector)
1798 {
1799 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1800 }
1801#endif
1802 }
1803 else
1804 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1805
1806 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1807 * be the same but not the base/limit. */
1808 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1809 {
1810 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1811 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1812#ifdef VBOX_WITH_STATISTICS
1813 if (pVM->rem.s.Env.segs[R_FS].newselector)
1814 {
1815 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1816 }
1817#endif
1818 }
1819 else
1820 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1821
1822 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1823 {
1824 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1825 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1826#ifdef VBOX_WITH_STATISTICS
1827 if (pVM->rem.s.Env.segs[R_GS].newselector)
1828 {
1829 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1830 }
1831#endif
1832 }
1833 else
1834 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1835 }
1836
1837 /*
1838 * Check for traps.
1839 */
1840 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1841 bool fIsSoftwareInterrupt;
1842 uint8_t u8TrapNo;
1843 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1844 if (VBOX_SUCCESS(rc))
1845 {
1846 #ifdef DEBUG
1847 if (u8TrapNo == 0x80)
1848 {
1849 remR3DumpLnxSyscall(pVM);
1850 remR3DumpOBsdSyscall(pVM);
1851 }
1852 #endif
1853
1854 pVM->rem.s.Env.exception_index = u8TrapNo;
1855 if (!fIsSoftwareInterrupt)
1856 {
1857 pVM->rem.s.Env.exception_is_int = 0;
1858 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1859 }
1860 else
1861 {
1862 /*
1863 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1864 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1865 * for int03 and into.
1866 */
1867 pVM->rem.s.Env.exception_is_int = 1;
1868 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1869 /* int 3 may be generated by one-byte 0xcc */
1870 if (u8TrapNo == 3)
1871 {
1872 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1873 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1874 }
1875 /* int 4 may be generated by one-byte 0xce */
1876 else if (u8TrapNo == 4)
1877 {
1878 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1879 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1880 }
1881 }
1882
1883 /* get error code and cr2 if needed. */
1884 switch (u8TrapNo)
1885 {
1886 case 0x0e:
1887 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1888 /* fallthru */
1889 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1890 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1891 break;
1892
1893 case 0x11: case 0x08:
1894 default:
1895 pVM->rem.s.Env.error_code = 0;
1896 break;
1897 }
1898
1899 /*
1900 * We can now reset the active trap since the recompiler is gonna have a go at it.
1901 */
1902 rc = TRPMResetTrap(pVM);
1903 AssertRC(rc);
1904 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1905 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1906 }
1907
1908 /*
1909 * Clear old interrupt request flags; Check for pending hardware interrupts.
1910 * (See @remark for why we don't check for other FFs.)
1911 */
1912 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1913 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1914 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1915 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1916
1917 /*
1918 * We're now in REM mode.
1919 */
1920 pVM->rem.s.fInREM = true;
1921 pVM->rem.s.cCanExecuteRaw = 0;
1922 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1923 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1924 return VINF_SUCCESS;
1925}
1926
1927
1928/**
1929 * Syncs back changes in the REM state to the the VM state.
1930 *
1931 * This must be called after invoking REMR3Run().
1932 * Calling it several times in a row is not permitted.
1933 *
1934 * @returns VBox status code.
1935 *
1936 * @param pVM VM Handle.
1937 */
1938REMR3DECL(int) REMR3StateBack(PVM pVM)
1939{
1940 Log2(("REMR3StateBack:\n"));
1941 Assert(pVM->rem.s.fInREM);
1942 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1943 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1944
1945 /*
1946 * Copy back the registers.
1947 * This is done in the order they are declared in the CPUMCTX structure.
1948 */
1949
1950 /** @todo FOP */
1951 /** @todo FPUIP */
1952 /** @todo CS */
1953 /** @todo FPUDP */
1954 /** @todo DS */
1955 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1956 pCtx->fpu.MXCSR = 0;
1957 pCtx->fpu.MXCSR_MASK = 0;
1958
1959 /** @todo check if FPU/XMM was actually used in the recompiler */
1960 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
1961//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
1962
1963 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
1964 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
1965 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
1966 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
1967 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
1968 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
1969 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
1970
1971 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
1972 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
1973
1974#ifdef VBOX_WITH_STATISTICS
1975 if (pVM->rem.s.Env.segs[R_SS].newselector)
1976 {
1977 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
1978 }
1979 if (pVM->rem.s.Env.segs[R_GS].newselector)
1980 {
1981 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
1982 }
1983 if (pVM->rem.s.Env.segs[R_FS].newselector)
1984 {
1985 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
1986 }
1987 if (pVM->rem.s.Env.segs[R_ES].newselector)
1988 {
1989 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
1990 }
1991 if (pVM->rem.s.Env.segs[R_DS].newselector)
1992 {
1993 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
1994 }
1995 if (pVM->rem.s.Env.segs[R_CS].newselector)
1996 {
1997 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
1998 }
1999#endif
2000 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2001 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2002 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2003 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2004 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2005
2006 pCtx->eip = pVM->rem.s.Env.eip;
2007 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2008
2009 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2010 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2011 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2012 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2013
2014 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2015 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2016 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2017 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2018 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2019 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2020 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2021 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2022
2023 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2024 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2025 {
2026 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2027 STAM_COUNTER_INC(&gStatREMGDTChange);
2028 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2029 }
2030
2031 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2032 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2033 {
2034 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2035 STAM_COUNTER_INC(&gStatREMIDTChange);
2036 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2037 }
2038
2039 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2040 {
2041 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2042 STAM_COUNTER_INC(&gStatREMLDTRChange);
2043 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2044 }
2045 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2046 {
2047 pCtx->tr = pVM->rem.s.Env.tr.selector;
2048 STAM_COUNTER_INC(&gStatREMTRChange);
2049 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2050 }
2051
2052 /** @todo These values could still be out of sync! */
2053 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2054 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2055 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2056 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2057
2058 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2059 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2060 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2061
2062 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2063 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2064 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2065
2066 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2067 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2068 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2069
2070 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2071 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2072 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2073
2074 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2075 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2076 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2077
2078 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2079 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2080 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2081
2082 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2083 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2084 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2085
2086 /* Sysenter MSR */
2087 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2088 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2089 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2090
2091 remR3TrapClear(pVM);
2092
2093 /*
2094 * Check for traps.
2095 */
2096 if ( pVM->rem.s.Env.exception_index >= 0
2097 && pVM->rem.s.Env.exception_index < 256)
2098 {
2099 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2100 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2101 AssertRC(rc);
2102 switch (pVM->rem.s.Env.exception_index)
2103 {
2104 case 0x0e:
2105 TRPMSetFaultAddress(pVM, pCtx->cr2);
2106 /* fallthru */
2107 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2108 case 0x11: case 0x08: /* 0 */
2109 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2110 break;
2111 }
2112
2113 }
2114
2115 /*
2116 * We're not longer in REM mode.
2117 */
2118 pVM->rem.s.fInREM = false;
2119 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2120 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2121 return VINF_SUCCESS;
2122}
2123
2124
2125/**
2126 * This is called by the disassembler when it wants to update the cpu state
2127 * before for instance doing a register dump.
2128 */
2129static void remR3StateUpdate(PVM pVM)
2130{
2131 Assert(pVM->rem.s.fInREM);
2132 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2133
2134 /*
2135 * Copy back the registers.
2136 * This is done in the order they are declared in the CPUMCTX structure.
2137 */
2138
2139 /** @todo FOP */
2140 /** @todo FPUIP */
2141 /** @todo CS */
2142 /** @todo FPUDP */
2143 /** @todo DS */
2144 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2145 pCtx->fpu.MXCSR = 0;
2146 pCtx->fpu.MXCSR_MASK = 0;
2147
2148 /** @todo check if FPU/XMM was actually used in the recompiler */
2149 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2150//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2151
2152 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2153 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2154 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2155 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2156 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2157 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2158 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2159
2160 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2161 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2162
2163 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2164 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2165 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2166 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2167 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2168
2169 pCtx->eip = pVM->rem.s.Env.eip;
2170 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2171
2172 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2173 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2174 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2175 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2176
2177 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2178 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2179 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2180 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2181 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2182 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2183 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2184 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2185
2186 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2187 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2188 {
2189 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2190 STAM_COUNTER_INC(&gStatREMGDTChange);
2191 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2192 }
2193
2194 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2195 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2196 {
2197 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2198 STAM_COUNTER_INC(&gStatREMIDTChange);
2199 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2200 }
2201
2202 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2203 {
2204 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2205 STAM_COUNTER_INC(&gStatREMLDTRChange);
2206 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2207 }
2208 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2209 {
2210 pCtx->tr = pVM->rem.s.Env.tr.selector;
2211 STAM_COUNTER_INC(&gStatREMTRChange);
2212 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2213 }
2214
2215 /** @todo These values could still be out of sync! */
2216 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2217 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2218 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2219 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2220
2221 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2222 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2223 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2224
2225 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2226 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2227 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2228
2229 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2230 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2231 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2232
2233 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2234 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2235 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2236
2237 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2238 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2239 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2240
2241 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2242 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2243 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2244
2245 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2246 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2247 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2248
2249 /* Sysenter MSR */
2250 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2251 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2252 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2253}
2254
2255
2256/**
2257 * Update the VMM state information if we're currently in REM.
2258 *
2259 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2260 * we're currently executing in REM and the VMM state is invalid. This method will of
2261 * course check that we're executing in REM before syncing any data over to the VMM.
2262 *
2263 * @param pVM The VM handle.
2264 */
2265REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2266{
2267 if (pVM->rem.s.fInREM)
2268 remR3StateUpdate(pVM);
2269}
2270
2271
2272#undef LOG_GROUP
2273#define LOG_GROUP LOG_GROUP_REM
2274
2275
2276/**
2277 * Notify the recompiler about Address Gate 20 state change.
2278 *
2279 * This notification is required since A20 gate changes are
2280 * initialized from a device driver and the VM might just as
2281 * well be in REM mode as in RAW mode.
2282 *
2283 * @param pVM VM handle.
2284 * @param fEnable True if the gate should be enabled.
2285 * False if the gate should be disabled.
2286 */
2287REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2288{
2289 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2290 VM_ASSERT_EMT(pVM);
2291 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2292}
2293
2294
2295/**
2296 * Replays the invalidated recorded pages.
2297 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2298 *
2299 * @param pVM VM handle.
2300 */
2301REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2302{
2303 VM_ASSERT_EMT(pVM);
2304
2305 /*
2306 * Sync the required registers.
2307 */
2308 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2309 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2310 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2311 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2312
2313 /*
2314 * Replay the flushes.
2315 */
2316 pVM->rem.s.fIgnoreInvlPg = true;
2317 RTUINT i;
2318 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2319 {
2320 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2321 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2322 }
2323 pVM->rem.s.fIgnoreInvlPg = false;
2324 pVM->rem.s.cInvalidatedPages = 0;
2325}
2326
2327
2328/**
2329 * Replays the invalidated recorded pages.
2330 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2331 *
2332 * @param pVM VM handle.
2333 */
2334REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2335{
2336 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2337 VM_ASSERT_EMT(pVM);
2338
2339 /*
2340 * Replay the flushes.
2341 */
2342 RTUINT i;
2343 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2344 pVM->rem.s.cHandlerNotifications = 0;
2345 for (i = 0; i < c; i++)
2346 {
2347 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2348 switch (pRec->enmKind)
2349 {
2350 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2351 REMR3NotifyHandlerPhysicalRegister(pVM,
2352 pRec->u.PhysicalRegister.enmType,
2353 pRec->u.PhysicalRegister.GCPhys,
2354 pRec->u.PhysicalRegister.cb,
2355 pRec->u.PhysicalRegister.fHasHCHandler);
2356 break;
2357
2358 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2359 REMR3NotifyHandlerPhysicalDeregister(pVM,
2360 pRec->u.PhysicalDeregister.enmType,
2361 pRec->u.PhysicalDeregister.GCPhys,
2362 pRec->u.PhysicalDeregister.cb,
2363 pRec->u.PhysicalDeregister.fHasHCHandler,
2364 pRec->u.PhysicalDeregister.pvHCPtr);
2365 break;
2366
2367 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2368 REMR3NotifyHandlerPhysicalModify(pVM,
2369 pRec->u.PhysicalModify.enmType,
2370 pRec->u.PhysicalModify.GCPhysOld,
2371 pRec->u.PhysicalModify.GCPhysNew,
2372 pRec->u.PhysicalModify.cb,
2373 pRec->u.PhysicalModify.fHasHCHandler,
2374 pRec->u.PhysicalModify.pvHCPtr);
2375 break;
2376
2377 default:
2378 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2379 break;
2380 }
2381 }
2382}
2383
2384
2385/**
2386 * Notify REM about changed code page.
2387 *
2388 * @returns VBox status code.
2389 * @param pVM VM handle.
2390 * @param pvCodePage Code page address
2391 */
2392REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2393{
2394 int rc;
2395 RTGCPHYS PhysGC;
2396 uint64_t flags;
2397
2398 VM_ASSERT_EMT(pVM);
2399
2400 /*
2401 * Get the physical page address.
2402 */
2403 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2404 if (rc == VINF_SUCCESS)
2405 {
2406 /*
2407 * Sync the required registers and flush the whole page.
2408 * (Easier to do the whole page than notifying it about each physical
2409 * byte that was changed.
2410 */
2411 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2412 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2413 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2414 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2415
2416 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2417 }
2418 return VINF_SUCCESS;
2419}
2420
2421/**
2422 * Notification about a successful MMR3PhysRegister() call.
2423 *
2424 * @param pVM VM handle.
2425 * @param GCPhys The physical address the RAM.
2426 * @param cb Size of the memory.
2427 * @param pvRam The HC address of the RAM.
2428 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2429 */
2430REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2431{
2432 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2433 VM_ASSERT_EMT(pVM);
2434
2435 /*
2436 * Validate input - we trust the caller.
2437 */
2438 Assert(!GCPhys || pvRam);
2439 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2440 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2441 Assert(cb);
2442 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2443
2444 /*
2445 * Base ram?
2446 */
2447 if (!GCPhys)
2448 {
2449#ifndef PGM_DYNAMIC_RAM_ALLOC
2450 AssertRelease(!phys_ram_base);
2451 phys_ram_base = pvRam;
2452#endif
2453 phys_ram_size = cb;
2454 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2455 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2456 }
2457#ifndef PGM_DYNAMIC_RAM_ALLOC
2458 AssertRelease(phys_ram_base);
2459#endif
2460
2461 /*
2462 * Register the ram.
2463 */
2464#ifdef PGM_DYNAMIC_RAM_ALLOC
2465 if (!GCPhys)
2466 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2467 else
2468 {
2469 uint32_t i;
2470
2471 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2472
2473 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2474 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2475 {
2476 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2477 {
2478 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2479 pVM->rem.s.aPhysReg[i].cb = cb;
2480 break;
2481 }
2482 }
2483 if (i == pVM->rem.s.cPhysRegistrations)
2484 {
2485 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2486 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2487 pVM->rem.s.aPhysReg[i].cb = cb;
2488 pVM->rem.s.cPhysRegistrations++;
2489 }
2490 }
2491#else
2492 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2493 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2494#endif
2495}
2496
2497
2498/**
2499 * Notification about a successful PGMR3PhysRegisterChunk() call.
2500 *
2501 * @param pVM VM handle.
2502 * @param GCPhys The physical address the RAM.
2503 * @param cb Size of the memory.
2504 * @param pvRam The HC address of the RAM.
2505 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2506 */
2507REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2508{
2509 uint32_t idx;
2510
2511 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2512 VM_ASSERT_EMT(pVM);
2513
2514 /*
2515 * Validate input - we trust the caller.
2516 */
2517 Assert(pvRam);
2518 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2519 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2520 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2521 Assert(fFlags == 0 /* normal RAM */);
2522
2523 if (!pVM->rem.s.paHCVirtToGCPhys)
2524 {
2525 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2526
2527 Assert(phys_ram_size);
2528
2529 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2530 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2531 }
2532 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2533
2534 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2535 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2536 {
2537 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2538 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2539 }
2540 else
2541 {
2542 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2543 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2544 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2545 }
2546 /* Does the region spawn two chunks? */
2547 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2548 {
2549 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2550 {
2551 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2552 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2553 }
2554 else
2555 {
2556 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2557 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2558 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2559 }
2560 }
2561 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2562}
2563
2564/**
2565 * Convert GC physical address to HC virt
2566 *
2567 * @returns The HC virt address corresponding to addr.
2568 * @param env The cpu environment.
2569 * @param addr The physical address.
2570 */
2571void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2572{
2573#ifdef PGM_DYNAMIC_RAM_ALLOC
2574 PVM pVM = ((CPUState *)env)->pVM;
2575 uint32_t i;
2576
2577 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2578 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2579 {
2580 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2581 if (off < pVM->rem.s.aPhysReg[i].cb)
2582 {
2583 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2584 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2585 }
2586 }
2587 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2588 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2589 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2590#else
2591 return phys_ram_base + addr;
2592#endif
2593}
2594
2595/**
2596 * Convert GC physical address to HC virt
2597 *
2598 * @returns The HC virt address corresponding to addr.
2599 * @param env The cpu environment.
2600 * @param addr The physical address.
2601 */
2602target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2603{
2604#ifdef PGM_DYNAMIC_RAM_ALLOC
2605 PVM pVM = ((CPUState *)env)->pVM;
2606 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2607 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2608 RTHCUINTPTR off;
2609 RTUINT i;
2610
2611 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2612
2613 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2614 && off < PGM_DYNAMIC_CHUNK_SIZE)
2615 {
2616 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2617 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2618 }
2619
2620 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2621 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2622 && off < PGM_DYNAMIC_CHUNK_SIZE)
2623 {
2624 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2625 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2626 }
2627
2628 /* Must be externally registered RAM/ROM range */
2629 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2630 {
2631 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2632 if (off < pVM->rem.s.aPhysReg[i].cb)
2633 {
2634 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2635 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2636 }
2637 }
2638 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2639 return 0;
2640#else
2641 return (target_ulong)addr - (target_ulong)phys_ram_base;
2642#endif
2643}
2644
2645/**
2646 * Grows dynamically allocated guest RAM.
2647 * Will raise a fatal error if the operation fails.
2648 *
2649 * @param physaddr The physical address.
2650 */
2651void remR3GrowDynRange(unsigned long physaddr)
2652{
2653 int rc;
2654 PVM pVM = cpu_single_env->pVM;
2655
2656 Log(("remR3GrowDynRange %VGp\n", physaddr));
2657 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2658 if (VBOX_SUCCESS(rc))
2659 return;
2660
2661 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2662 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2663 AssertFatalFailed();
2664}
2665
2666/**
2667 * Notification about a successful MMR3PhysRomRegister() call.
2668 *
2669 * @param pVM VM handle.
2670 * @param GCPhys The physical address of the ROM.
2671 * @param cb The size of the ROM.
2672 * @param pvCopy Pointer to the ROM copy.
2673 */
2674REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2675{
2676#ifdef PGM_DYNAMIC_RAM_ALLOC
2677 uint32_t i;
2678#endif
2679 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2680 VM_ASSERT_EMT(pVM);
2681
2682 /*
2683 * Validate input - we trust the caller.
2684 */
2685 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2686 Assert(cb);
2687 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2688 Assert(pvCopy);
2689 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2690
2691 /*
2692 * Register the rom.
2693 */
2694#ifdef PGM_DYNAMIC_RAM_ALLOC
2695 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2696 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2697 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2698 {
2699 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2700 {
2701 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2702 pVM->rem.s.aPhysReg[i].cb = cb;
2703 break;
2704 }
2705 }
2706 if (i == pVM->rem.s.cPhysRegistrations)
2707 {
2708 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2709 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2710 pVM->rem.s.aPhysReg[i].cb = cb;
2711 pVM->rem.s.cPhysRegistrations++;
2712 }
2713#else
2714 AssertRelease(phys_ram_base);
2715 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2716#endif
2717 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2718}
2719
2720
2721/**
2722 * Notification about a successful MMR3PhysRegister() call.
2723 *
2724 * @param pVM VM Handle.
2725 * @param GCPhys Start physical address.
2726 * @param cb The size of the range.
2727 */
2728REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2729{
2730 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2731 VM_ASSERT_EMT(pVM);
2732
2733 /*
2734 * Validate input - we trust the caller.
2735 */
2736 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2737 Assert(cb);
2738 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2739
2740 /*
2741 * Unassigning the memory.
2742 */
2743 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2744}
2745
2746
2747/**
2748 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2749 *
2750 * @param pVM VM Handle.
2751 * @param enmType Handler type.
2752 * @param GCPhys Handler range address.
2753 * @param cb Size of the handler range.
2754 * @param fHasHCHandler Set if the handler has a HC callback function.
2755 *
2756 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2757 * Handler memory type to memory which has no HC handler.
2758 */
2759REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2760{
2761 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2762 enmType, GCPhys, cb, fHasHCHandler));
2763 VM_ASSERT_EMT(pVM);
2764 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2765 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2766
2767 if (pVM->rem.s.cHandlerNotifications)
2768 REMR3ReplayHandlerNotifications(pVM);
2769
2770 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2771 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2772 else if (fHasHCHandler)
2773 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2774}
2775
2776
2777/**
2778 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2779 *
2780 * @param pVM VM Handle.
2781 * @param enmType Handler type.
2782 * @param GCPhys Handler range address.
2783 * @param cb Size of the handler range.
2784 * @param fHasHCHandler Set if the handler has a HC callback function.
2785 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2786 */
2787REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2788{
2789 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2790 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2791 VM_ASSERT_EMT(pVM);
2792
2793 if (pVM->rem.s.cHandlerNotifications)
2794 REMR3ReplayHandlerNotifications(pVM);
2795
2796 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2797 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2798 else if (fHasHCHandler)
2799 {
2800 if (!pvHCPtr)
2801 {
2802 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2803 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2804 }
2805 else
2806 {
2807 /* This is not prefect, but it'll do for PD monitoring... */
2808 Assert(cb == PAGE_SIZE);
2809 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2810 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2811#ifdef PGM_DYNAMIC_RAM_ALLOC
2812 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2813#else
2814 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2815#endif
2816 }
2817 }
2818}
2819
2820
2821/**
2822 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2823 *
2824 * @param pVM VM Handle.
2825 * @param enmType Handler type.
2826 * @param GCPhysOld Old handler range address.
2827 * @param GCPhysNew New handler range address.
2828 * @param cb Size of the handler range.
2829 * @param fHasHCHandler Set if the handler has a HC callback function.
2830 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2831 */
2832REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2833{
2834 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2835 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2836 VM_ASSERT_EMT(pVM);
2837 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2838
2839 if (pVM->rem.s.cHandlerNotifications)
2840 REMR3ReplayHandlerNotifications(pVM);
2841
2842 if (fHasHCHandler)
2843 {
2844 /*
2845 * Reset the old page.
2846 */
2847 if (!pvHCPtr)
2848 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2849 else
2850 {
2851 /* This is not prefect, but it'll do for PD monitoring... */
2852 Assert(cb == PAGE_SIZE);
2853 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2854 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2855#ifdef PGM_DYNAMIC_RAM_ALLOC
2856 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2857#else
2858 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2859#endif
2860 }
2861
2862 /*
2863 * Update the new page.
2864 */
2865 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2866 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2867 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2868 }
2869}
2870
2871
2872/**
2873 * Checks if we're handling access to this page or not.
2874 *
2875 * @returns true if we're trapping access.
2876 * @returns false if we aren't.
2877 * @param pVM The VM handle.
2878 * @param GCPhys The physical address.
2879 *
2880 * @remark This function will only work correctly in VBOX_STRICT builds!
2881 */
2882REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2883{
2884#ifdef VBOX_STRICT
2885 if (pVM->rem.s.cHandlerNotifications)
2886 REMR3ReplayHandlerNotifications(pVM);
2887
2888 unsigned long off = get_phys_page_offset(GCPhys);
2889 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2890 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2891 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2892#else
2893 return false;
2894#endif
2895}
2896
2897
2898/**
2899 * Deals with a rare case in get_phys_addr_code where the code
2900 * is being monitored.
2901 *
2902 * It could also be an MMIO page, in which case we will raise a fatal error.
2903 *
2904 * @returns The physical address corresponding to addr.
2905 * @param env The cpu environment.
2906 * @param addr The virtual address.
2907 * @param pTLBEntry The TLB entry.
2908 */
2909target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2910{
2911 PVM pVM = env->pVM;
2912 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2913 {
2914 target_ulong ret = pTLBEntry->addend + addr;
2915 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2916 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2917 return ret;
2918 }
2919 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2920 "*** handlers\n",
2921 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2922 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2923 LogRel(("*** mmio\n"));
2924 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2925 LogRel(("*** phys\n"));
2926 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2927 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2928 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2929 AssertFatalFailed();
2930}
2931
2932/**
2933 * Read guest RAM and ROM.
2934 *
2935 * @param pbSrcPhys The source address. Relative to guest RAM.
2936 * @param pvDst The destination address.
2937 * @param cb Number of bytes
2938 */
2939void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2940{
2941 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2942
2943 /*
2944 * Calc the physical address ('off') and check that it's within the RAM.
2945 * ROM is accessed this way, even if it's not part of the RAM.
2946 */
2947 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2948 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2949 if (off < (uintptr_t)phys_ram_size)
2950 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2951 else
2952 {
2953 /* ROM range outside physical RAM, HC address passed directly */
2954 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2955 memcpy(pvDst, pbSrcPhys, cb);
2956 }
2957 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2958}
2959
2960/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2961 * It could be an idea to inline these wrapper functions... */
2962
2963/**
2964 * Read guest RAM and ROM.
2965 *
2966 * @param pbSrcPhys The source address. Relative to guest RAM.
2967 */
2968uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
2969{
2970 uint8_t val;
2971
2972 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2973
2974 /*
2975 * Calc the physical address ('off') and check that it's within the RAM.
2976 * ROM is accessed this way, even if it's not part of the RAM.
2977 */
2978 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2979 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2980 if (off < (uintptr_t)phys_ram_size)
2981 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
2982 else
2983 {
2984 /* ROM range outside physical RAM, HC address passed directly */
2985 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2986 val = *pbSrcPhys;
2987 }
2988 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2989 return val;
2990}
2991
2992/**
2993 * Read guest RAM and ROM.
2994 *
2995 * @param pbSrcPhys The source address. Relative to guest RAM.
2996 */
2997int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
2998{
2999 int8_t val;
3000
3001 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3002
3003 /*
3004 * Calc the physical address ('off') and check that it's within the RAM.
3005 * ROM is accessed this way, even if it's not part of the RAM.
3006 */
3007 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3008 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3009 if (off < (uintptr_t)phys_ram_size)
3010 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3011 else
3012 {
3013 /* ROM range outside physical RAM, HC address passed directly */
3014 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3015 val = *(int8_t *)pbSrcPhys;
3016 }
3017 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3018 return val;
3019}
3020
3021/**
3022 * Read guest RAM and ROM.
3023 *
3024 * @param pbSrcPhys The source address. Relative to guest RAM.
3025 */
3026uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3027{
3028 uint16_t val;
3029
3030 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3031
3032 /*
3033 * Calc the physical address ('off') and check that it's within the RAM.
3034 * ROM is accessed this way, even if it's not part of the RAM.
3035 */
3036 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3037 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3038 if (off < (uintptr_t)phys_ram_size)
3039 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3040 else
3041 {
3042 /* ROM range outside physical RAM, HC address passed directly */
3043 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3044 val = *(uint16_t *)pbSrcPhys;
3045 }
3046 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3047 return val;
3048}
3049
3050/**
3051 * Read guest RAM and ROM.
3052 *
3053 * @param pbSrcPhys The source address. Relative to guest RAM.
3054 */
3055int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3056{
3057 int16_t val;
3058
3059 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3060
3061 /*
3062 * Calc the physical address ('off') and check that it's within the RAM.
3063 * ROM is accessed this way, even if it's not part of the RAM.
3064 */
3065 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3066 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3067 if (off < (uintptr_t)phys_ram_size)
3068 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3069 else
3070 {
3071 /* ROM range outside physical RAM, HC address passed directly */
3072 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3073 val = *(int16_t *)pbSrcPhys;
3074 }
3075 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3076 return val;
3077}
3078
3079/**
3080 * Read guest RAM and ROM.
3081 *
3082 * @param pbSrcPhys The source address. Relative to guest RAM.
3083 */
3084uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3085{
3086 uint32_t val;
3087
3088 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3089
3090 /*
3091 * Calc the physical address ('off') and check that it's within the RAM.
3092 * ROM is accessed this way, even if it's not part of the RAM.
3093 */
3094 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3095 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3096 if (off < (uintptr_t)phys_ram_size)
3097 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3098 else
3099 {
3100 /* ROM range outside physical RAM, HC address passed directly */
3101 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3102 val = *(uint32_t *)pbSrcPhys;
3103 }
3104 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3105 return val;
3106}
3107
3108/**
3109 * Read guest RAM and ROM.
3110 *
3111 * @param pbSrcPhys The source address. Relative to guest RAM.
3112 */
3113int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3114{
3115 int32_t val;
3116
3117 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3118
3119 /*
3120 * Calc the physical address ('off') and check that it's within the RAM.
3121 * ROM is accessed this way, even if it's not part of the RAM.
3122 */
3123 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3124 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3125 if (off < (uintptr_t)phys_ram_size)
3126 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3127 else
3128 {
3129 /* ROM range outside physical RAM, HC address passed directly */
3130 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3131 val = *(int32_t *)pbSrcPhys;
3132 }
3133 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3134 return val;
3135}
3136
3137/**
3138 * Write guest RAM.
3139 *
3140 * @param pbDstPhys The destination address. Relative to guest RAM.
3141 * @param pvSrc The source address.
3142 * @param cb Number of bytes to write
3143 */
3144void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3145{
3146 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3147 /*
3148 * Calc the physical address ('off') and check that it's within the RAM.
3149 */
3150 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3151 if (off < (uintptr_t)phys_ram_size)
3152 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3153 else
3154 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3155 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3156}
3157
3158
3159/**
3160 * Write guest RAM.
3161 *
3162 * @param pbDstPhys The destination address. Relative to guest RAM.
3163 * @param val Value
3164 */
3165void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3166{
3167 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3168 /*
3169 * Calc the physical address ('off') and check that it's within the RAM.
3170 */
3171 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3172 if (off < (uintptr_t)phys_ram_size)
3173 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3174 else
3175 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3176 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3177}
3178
3179/**
3180 * Write guest RAM.
3181 *
3182 * @param pbDstPhys The destination address. Relative to guest RAM.
3183 * @param val Value
3184 */
3185void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3186{
3187 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3188 /*
3189 * Calc the physical address ('off') and check that it's within the RAM.
3190 */
3191 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3192 if (off < (uintptr_t)phys_ram_size)
3193 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3194 else
3195 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3196 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3197}
3198
3199/**
3200 * Write guest RAM.
3201 *
3202 * @param pbDstPhys The destination address. Relative to guest RAM.
3203 * @param val Value
3204 */
3205void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3206{
3207 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3208 /*
3209 * Calc the physical address ('off') and check that it's within the RAM.
3210 */
3211 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3212 if (off < (uintptr_t)phys_ram_size)
3213 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3214 else
3215 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3216 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3217}
3218
3219
3220
3221#undef LOG_GROUP
3222#define LOG_GROUP LOG_GROUP_REM_MMIO
3223
3224/** Read MMIO memory. */
3225static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3226{
3227 uint32_t u32 = 0;
3228 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3229 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3230 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3231 return u32;
3232}
3233
3234/** Read MMIO memory. */
3235static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3236{
3237 uint32_t u32 = 0;
3238 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3239 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3240 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3241 return u32;
3242}
3243
3244/** Read MMIO memory. */
3245static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3246{
3247 uint32_t u32 = 0;
3248 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3249 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3250 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3251 return u32;
3252}
3253
3254/** Write to MMIO memory. */
3255static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3256{
3257 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3258 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3259 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3260}
3261
3262/** Write to MMIO memory. */
3263static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3264{
3265 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3266 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3267 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3268}
3269
3270/** Write to MMIO memory. */
3271static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3272{
3273 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3274 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3275 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3276}
3277
3278
3279#undef LOG_GROUP
3280#define LOG_GROUP LOG_GROUP_REM_HANDLER
3281
3282/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3283
3284static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3285{
3286 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3287 uint8_t u8;
3288 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3289 return u8;
3290}
3291
3292static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3293{
3294 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3295 uint16_t u16;
3296 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3297 return u16;
3298}
3299
3300static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3301{
3302 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3303 uint32_t u32;
3304 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3305 return u32;
3306}
3307
3308static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3309{
3310 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3311 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3312}
3313
3314static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3315{
3316 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3317 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3318}
3319
3320static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3321{
3322 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3323 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3324}
3325
3326/* -+- disassembly -+- */
3327
3328#undef LOG_GROUP
3329#define LOG_GROUP LOG_GROUP_REM_DISAS
3330
3331
3332/**
3333 * Enables or disables singled stepped disassembly.
3334 *
3335 * @returns VBox status code.
3336 * @param pVM VM handle.
3337 * @param fEnable To enable set this flag, to disable clear it.
3338 */
3339static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3340{
3341 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3342 VM_ASSERT_EMT(pVM);
3343
3344 if (fEnable)
3345 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3346 else
3347 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3348 return VINF_SUCCESS;
3349}
3350
3351
3352/**
3353 * Enables or disables singled stepped disassembly.
3354 *
3355 * @returns VBox status code.
3356 * @param pVM VM handle.
3357 * @param fEnable To enable set this flag, to disable clear it.
3358 */
3359REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3360{
3361 PVMREQ pReq;
3362 int rc;
3363
3364 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3365 if (VM_IS_EMT(pVM))
3366 return remR3DisasEnableStepping(pVM, fEnable);
3367
3368 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3369 AssertRC(rc);
3370 if (VBOX_SUCCESS(rc))
3371 rc = pReq->iStatus;
3372 VMR3ReqFree(pReq);
3373 return rc;
3374}
3375
3376
3377#ifdef VBOX_WITH_DEBUGGER
3378/**
3379 * External Debugger Command: .remstep [on|off|1|0]
3380 */
3381static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3382{
3383 bool fEnable;
3384 int rc;
3385
3386 /* print status */
3387 if (cArgs == 0)
3388 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3389 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3390
3391 /* convert the argument and change the mode. */
3392 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3393 if (VBOX_FAILURE(rc))
3394 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3395 rc = REMR3DisasEnableStepping(pVM, fEnable);
3396 if (VBOX_FAILURE(rc))
3397 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3398 return rc;
3399}
3400#endif
3401
3402
3403/**
3404 * Disassembles n instructions and prints them to the log.
3405 *
3406 * @returns Success indicator.
3407 * @param env Pointer to the recompiler CPU structure.
3408 * @param f32BitCode Indicates that whether or not the code should
3409 * be disassembled as 16 or 32 bit. If -1 the CS
3410 * selector will be inspected.
3411 * @param nrInstructions Nr of instructions to disassemble
3412 * @param pszPrefix
3413 * @remark not currently used for anything but ad-hoc debugging.
3414 */
3415bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3416{
3417 int i;
3418
3419 /*
3420 * Determin 16/32 bit mode.
3421 */
3422 if (f32BitCode == -1)
3423 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3424
3425 /*
3426 * Convert cs:eip to host context address.
3427 * We don't care to much about cross page correctness presently.
3428 */
3429 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3430 void *pvPC;
3431 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3432 {
3433 /* convert eip to physical address. */
3434 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3435 GCPtrPC,
3436 env->cr[3],
3437 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3438 &pvPC);
3439 if (VBOX_FAILURE(rc))
3440 {
3441 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3442 return false;
3443 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3444 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3445 }
3446 }
3447 else
3448 {
3449 /* physical address */
3450 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3451 if (VBOX_FAILURE(rc))
3452 return false;
3453 }
3454
3455 /*
3456 * Disassemble.
3457 */
3458 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3459 DISCPUSTATE Cpu;
3460 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3461 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3462 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3463 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3464 //Cpu.dwUserData[2] = GCPtrPC;
3465
3466 for (i=0;i<nrInstructions;i++)
3467 {
3468 char szOutput[256];
3469 uint32_t cbOp;
3470 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3471 return false;
3472 if (pszPrefix)
3473 Log(("%s: %s", pszPrefix, szOutput));
3474 else
3475 Log(("%s", szOutput));
3476
3477 pvPC += cbOp;
3478 }
3479 return true;
3480}
3481
3482
3483/** @todo need to test the new code, using the old code in the mean while. */
3484#define USE_OLD_DUMP_AND_DISASSEMBLY
3485
3486/**
3487 * Disassembles one instruction and prints it to the log.
3488 *
3489 * @returns Success indicator.
3490 * @param env Pointer to the recompiler CPU structure.
3491 * @param f32BitCode Indicates that whether or not the code should
3492 * be disassembled as 16 or 32 bit. If -1 the CS
3493 * selector will be inspected.
3494 * @param pszPrefix
3495 */
3496bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3497{
3498#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3499 PVM pVM = env->pVM;
3500
3501 /*
3502 * Determin 16/32 bit mode.
3503 */
3504 if (f32BitCode == -1)
3505 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3506
3507 /*
3508 * Log registers
3509 */
3510 if (LogIs2Enabled())
3511 {
3512 remR3StateUpdate(pVM);
3513 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3514 }
3515
3516 /*
3517 * Convert cs:eip to host context address.
3518 * We don't care to much about cross page correctness presently.
3519 */
3520 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3521 void *pvPC;
3522 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3523 {
3524 /* convert eip to physical address. */
3525 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3526 GCPtrPC,
3527 env->cr[3],
3528 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3529 &pvPC);
3530 if (VBOX_FAILURE(rc))
3531 {
3532 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3533 return false;
3534 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3535 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3536 }
3537 }
3538 else
3539 {
3540
3541 /* physical address */
3542 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3543 if (VBOX_FAILURE(rc))
3544 return false;
3545 }
3546
3547 /*
3548 * Disassemble.
3549 */
3550 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3551 DISCPUSTATE Cpu;
3552 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3553 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3554 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3555 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3556 //Cpu.dwUserData[2] = GCPtrPC;
3557 char szOutput[256];
3558 uint32_t cbOp;
3559 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3560 return false;
3561
3562 if (!f32BitCode)
3563 {
3564 if (pszPrefix)
3565 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3566 else
3567 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3568 }
3569 else
3570 {
3571 if (pszPrefix)
3572 Log(("%s: %s", pszPrefix, szOutput));
3573 else
3574 Log(("%s", szOutput));
3575 }
3576 return true;
3577
3578#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3579 PVM pVM = env->pVM;
3580 const bool fLog = LogIsEnabled();
3581 const bool fLog2 = LogIs2Enabled();
3582 int rc = VINF_SUCCESS;
3583
3584 /*
3585 * Don't bother if there ain't any log output to do.
3586 */
3587 if (!fLog && !fLog2)
3588 return true;
3589
3590 /*
3591 * Update the state so DBGF reads the correct register values.
3592 */
3593 remR3StateUpdate(pVM);
3594
3595 /*
3596 * Log registers if requested.
3597 */
3598 if (!fLog2)
3599 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3600
3601 /*
3602 * Disassemble to log.
3603 */
3604 if (fLog)
3605 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3606
3607 return VBOX_SUCCESS(rc);
3608#endif
3609}
3610
3611
3612/**
3613 * Disassemble recompiled code.
3614 *
3615 * @param phFileIgnored Ignored, logfile usually.
3616 * @param pvCode Pointer to the code block.
3617 * @param cb Size of the code block.
3618 */
3619void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3620{
3621 if (LogIs2Enabled())
3622 {
3623 unsigned off = 0;
3624 char szOutput[256];
3625 DISCPUSTATE Cpu = {0};
3626 Cpu.mode = CPUMODE_32BIT;
3627
3628 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3629 while (off < cb)
3630 {
3631 uint32_t cbInstr;
3632 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3633 RTLogPrintf("%s", szOutput);
3634 else
3635 {
3636 RTLogPrintf("disas error\n");
3637 cbInstr = 1;
3638 }
3639 off += cbInstr;
3640 }
3641 }
3642 NOREF(phFileIgnored);
3643}
3644
3645
3646/**
3647 * Disassemble guest code.
3648 *
3649 * @param phFileIgnored Ignored, logfile usually.
3650 * @param uCode The guest address of the code to disassemble. (flat?)
3651 * @param cb Number of bytes to disassemble.
3652 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3653 */
3654void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3655{
3656 if (LogIs2Enabled())
3657 {
3658 PVM pVM = cpu_single_env->pVM;
3659
3660 /*
3661 * Update the state so DBGF reads the correct register values (flags).
3662 */
3663 remR3StateUpdate(pVM);
3664
3665 /*
3666 * Do the disassembling.
3667 */
3668 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3669 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3670 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3671 for (;;)
3672 {
3673 char szBuf[256];
3674 size_t cbInstr;
3675 int rc = DBGFR3DisasInstrEx(pVM,
3676 cs,
3677 eip,
3678 0,
3679 szBuf, sizeof(szBuf),
3680 &cbInstr);
3681 if (VBOX_SUCCESS(rc))
3682 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3683 else
3684 {
3685 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3686 cbInstr = 1;
3687 }
3688
3689 /* next */
3690 if (cb <= cbInstr)
3691 break;
3692 cb -= cbInstr;
3693 uCode += cbInstr;
3694 eip += cbInstr;
3695 }
3696 }
3697 NOREF(phFileIgnored);
3698}
3699
3700
3701/**
3702 * Looks up a guest symbol.
3703 *
3704 * @returns Pointer to symbol name. This is a static buffer.
3705 * @param orig_addr The address in question.
3706 */
3707const char *lookup_symbol(target_ulong orig_addr)
3708{
3709 RTGCINTPTR off = 0;
3710 DBGFSYMBOL Sym;
3711 PVM pVM = cpu_single_env->pVM;
3712 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3713 if (VBOX_SUCCESS(rc))
3714 {
3715 static char szSym[sizeof(Sym.szName) + 48];
3716 if (!off)
3717 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3718 else if (off > 0)
3719 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3720 else
3721 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3722 return szSym;
3723 }
3724 return "<N/A>";
3725}
3726
3727
3728#undef LOG_GROUP
3729#define LOG_GROUP LOG_GROUP_REM
3730
3731
3732/* -+- FF notifications -+- */
3733
3734
3735/**
3736 * Notification about a pending interrupt.
3737 *
3738 * @param pVM VM Handle.
3739 * @param u8Interrupt Interrupt
3740 * @thread The emulation thread.
3741 */
3742REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3743{
3744 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3745 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3746}
3747
3748/**
3749 * Notification about a pending interrupt.
3750 *
3751 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3752 * @param pVM VM Handle.
3753 * @thread The emulation thread.
3754 */
3755REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3756{
3757 return pVM->rem.s.u32PendingInterrupt;
3758}
3759
3760/**
3761 * Notification about the interrupt FF being set.
3762 *
3763 * @param pVM VM Handle.
3764 * @thread The emulation thread.
3765 */
3766REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3767{
3768 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3769 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3770 if (pVM->rem.s.fInREM)
3771 {
3772 if (VM_IS_EMT(pVM))
3773 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3774 else
3775 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3776 }
3777}
3778
3779
3780/**
3781 * Notification about the interrupt FF being set.
3782 *
3783 * @param pVM VM Handle.
3784 * @thread The emulation thread.
3785 */
3786REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3787{
3788 LogFlow(("REMR3NotifyInterruptClear:\n"));
3789 VM_ASSERT_EMT(pVM);
3790 if (pVM->rem.s.fInREM)
3791 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3792}
3793
3794
3795/**
3796 * Notification about pending timer(s).
3797 *
3798 * @param pVM VM Handle.
3799 * @thread Any.
3800 */
3801REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3802{
3803#ifndef DEBUG_bird
3804 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3805#endif
3806 if (pVM->rem.s.fInREM)
3807 {
3808 if (VM_IS_EMT(pVM))
3809 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3810 else
3811 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3812 }
3813}
3814
3815
3816/**
3817 * Notification about pending DMA transfers.
3818 *
3819 * @param pVM VM Handle.
3820 * @thread Any.
3821 */
3822REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3823{
3824 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3825 if (pVM->rem.s.fInREM)
3826 {
3827 if (VM_IS_EMT(pVM))
3828 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3829 else
3830 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3831 }
3832}
3833
3834
3835/**
3836 * Notification about pending timer(s).
3837 *
3838 * @param pVM VM Handle.
3839 * @thread Any.
3840 */
3841REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3842{
3843 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3844 if (pVM->rem.s.fInREM)
3845 {
3846 if (VM_IS_EMT(pVM))
3847 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3848 else
3849 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3850 }
3851}
3852
3853
3854/**
3855 * Notification about pending FF set by an external thread.
3856 *
3857 * @param pVM VM handle.
3858 * @thread Any.
3859 */
3860REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3861{
3862 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3863 if (pVM->rem.s.fInREM)
3864 {
3865 if (VM_IS_EMT(pVM))
3866 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3867 else
3868 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3869 }
3870}
3871
3872
3873#ifdef VBOX_WITH_STATISTICS
3874void remR3ProfileStart(int statcode)
3875{
3876 STAMPROFILEADV *pStat;
3877 switch(statcode)
3878 {
3879 case STATS_EMULATE_SINGLE_INSTR:
3880 pStat = &gStatExecuteSingleInstr;
3881 break;
3882 case STATS_QEMU_COMPILATION:
3883 pStat = &gStatCompilationQEmu;
3884 break;
3885 case STATS_QEMU_RUN_EMULATED_CODE:
3886 pStat = &gStatRunCodeQEmu;
3887 break;
3888 case STATS_QEMU_TOTAL:
3889 pStat = &gStatTotalTimeQEmu;
3890 break;
3891 case STATS_QEMU_RUN_TIMERS:
3892 pStat = &gStatTimers;
3893 break;
3894 case STATS_TLB_LOOKUP:
3895 pStat= &gStatTBLookup;
3896 break;
3897 case STATS_IRQ_HANDLING:
3898 pStat= &gStatIRQ;
3899 break;
3900 case STATS_RAW_CHECK:
3901 pStat = &gStatRawCheck;
3902 break;
3903
3904 default:
3905 AssertMsgFailed(("unknown stat %d\n", statcode));
3906 return;
3907 }
3908 STAM_PROFILE_ADV_START(pStat, a);
3909}
3910
3911
3912void remR3ProfileStop(int statcode)
3913{
3914 STAMPROFILEADV *pStat;
3915 switch(statcode)
3916 {
3917 case STATS_EMULATE_SINGLE_INSTR:
3918 pStat = &gStatExecuteSingleInstr;
3919 break;
3920 case STATS_QEMU_COMPILATION:
3921 pStat = &gStatCompilationQEmu;
3922 break;
3923 case STATS_QEMU_RUN_EMULATED_CODE:
3924 pStat = &gStatRunCodeQEmu;
3925 break;
3926 case STATS_QEMU_TOTAL:
3927 pStat = &gStatTotalTimeQEmu;
3928 break;
3929 case STATS_QEMU_RUN_TIMERS:
3930 pStat = &gStatTimers;
3931 break;
3932 case STATS_TLB_LOOKUP:
3933 pStat= &gStatTBLookup;
3934 break;
3935 case STATS_IRQ_HANDLING:
3936 pStat= &gStatIRQ;
3937 break;
3938 case STATS_RAW_CHECK:
3939 pStat = &gStatRawCheck;
3940 break;
3941 default:
3942 AssertMsgFailed(("unknown stat %d\n", statcode));
3943 return;
3944 }
3945 STAM_PROFILE_ADV_STOP(pStat, a);
3946}
3947#endif
3948
3949/**
3950 * Raise an RC, force rem exit.
3951 *
3952 * @param pVM VM handle.
3953 * @param rc The rc.
3954 */
3955void remR3RaiseRC(PVM pVM, int rc)
3956{
3957 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3958 Assert(pVM->rem.s.fInREM);
3959 VM_ASSERT_EMT(pVM);
3960 pVM->rem.s.rc = rc;
3961 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3962}
3963
3964
3965/* -+- timers -+- */
3966
3967uint64_t cpu_get_tsc(CPUX86State *env)
3968{
3969 return TMCpuTickGet(env->pVM);
3970}
3971
3972
3973/* -+- interrupts -+- */
3974
3975void cpu_set_ferr(CPUX86State *env)
3976{
3977 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3978 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3979}
3980
3981int cpu_get_pic_interrupt(CPUState *env)
3982{
3983 uint8_t u8Interrupt;
3984 int rc;
3985
3986 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3987 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3988 * with the (a)pic.
3989 */
3990 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3991 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3992 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3993 * remove this kludge. */
3994 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3995 {
3996 rc = VINF_SUCCESS;
3997 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3998 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3999 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4000 }
4001 else
4002 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4003
4004 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4005 if (VBOX_SUCCESS(rc))
4006 {
4007 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4008 env->interrupt_request |= CPU_INTERRUPT_HARD;
4009 return u8Interrupt;
4010 }
4011 return -1;
4012}
4013
4014
4015/* -+- local apic -+- */
4016
4017void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4018{
4019 int rc = PDMApicSetBase(env->pVM, val);
4020 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4021}
4022
4023uint64_t cpu_get_apic_base(CPUX86State *env)
4024{
4025 uint64_t u64;
4026 int rc = PDMApicGetBase(env->pVM, &u64);
4027 if (VBOX_SUCCESS(rc))
4028 {
4029 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4030 return u64;
4031 }
4032 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4033 return 0;
4034}
4035
4036void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4037{
4038 int rc = PDMApicSetTPR(env->pVM, val);
4039 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4040}
4041
4042uint8_t cpu_get_apic_tpr(CPUX86State *env)
4043{
4044 uint8_t u8;
4045 int rc = PDMApicGetTPR(env->pVM, &u8);
4046 if (VBOX_SUCCESS(rc))
4047 {
4048 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4049 return u8;
4050 }
4051 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4052 return 0;
4053}
4054
4055
4056/* -+- I/O Ports -+- */
4057
4058#undef LOG_GROUP
4059#define LOG_GROUP LOG_GROUP_REM_IOPORT
4060
4061void cpu_outb(CPUState *env, int addr, int val)
4062{
4063 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4064 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4065
4066 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4067 if (rc == VINF_SUCCESS)
4068 return;
4069 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4070 {
4071 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4072 remR3RaiseRC(env->pVM, rc);
4073 return;
4074 }
4075 remAbort(rc, __FUNCTION__);
4076}
4077
4078void cpu_outw(CPUState *env, int addr, int val)
4079{
4080 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4081 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4082 if (rc == VINF_SUCCESS)
4083 return;
4084 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4085 {
4086 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4087 remR3RaiseRC(env->pVM, rc);
4088 return;
4089 }
4090 remAbort(rc, __FUNCTION__);
4091}
4092
4093void cpu_outl(CPUState *env, int addr, int val)
4094{
4095 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4096 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4097 if (rc == VINF_SUCCESS)
4098 return;
4099 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4100 {
4101 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4102 remR3RaiseRC(env->pVM, rc);
4103 return;
4104 }
4105 remAbort(rc, __FUNCTION__);
4106}
4107
4108int cpu_inb(CPUState *env, int addr)
4109{
4110 uint32_t u32 = 0;
4111 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4112 if (rc == VINF_SUCCESS)
4113 {
4114 if (/*addr != 0x61 && */addr != 0x71)
4115 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4116 return (int)u32;
4117 }
4118 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4119 {
4120 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4121 remR3RaiseRC(env->pVM, rc);
4122 return (int)u32;
4123 }
4124 remAbort(rc, __FUNCTION__);
4125 return 0xff;
4126}
4127
4128int cpu_inw(CPUState *env, int addr)
4129{
4130 uint32_t u32 = 0;
4131 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4132 if (rc == VINF_SUCCESS)
4133 {
4134 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4135 return (int)u32;
4136 }
4137 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4138 {
4139 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4140 remR3RaiseRC(env->pVM, rc);
4141 return (int)u32;
4142 }
4143 remAbort(rc, __FUNCTION__);
4144 return 0xffff;
4145}
4146
4147int cpu_inl(CPUState *env, int addr)
4148{
4149 uint32_t u32 = 0;
4150 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4151 if (rc == VINF_SUCCESS)
4152 {
4153//if (addr==0x01f0 && u32 == 0x6b6d)
4154// loglevel = ~0;
4155 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4156 return (int)u32;
4157 }
4158 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4159 {
4160 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4161 remR3RaiseRC(env->pVM, rc);
4162 return (int)u32;
4163 }
4164 remAbort(rc, __FUNCTION__);
4165 return 0xffffffff;
4166}
4167
4168#undef LOG_GROUP
4169#define LOG_GROUP LOG_GROUP_REM
4170
4171
4172/* -+- helpers and misc other interfaces -+- */
4173
4174/**
4175 * Perform the CPUID instruction.
4176 *
4177 * ASMCpuId cannot be invoked from some source files where this is used because of global
4178 * register allocations.
4179 *
4180 * @param env Pointer to the recompiler CPU structure.
4181 * @param uOperator CPUID operation (eax).
4182 * @param pvEAX Where to store eax.
4183 * @param pvEBX Where to store ebx.
4184 * @param pvECX Where to store ecx.
4185 * @param pvEDX Where to store edx.
4186 */
4187void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4188{
4189 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4190}
4191
4192
4193#if 0 /* not used */
4194/**
4195 * Interface for qemu hardware to report back fatal errors.
4196 */
4197void hw_error(const char *pszFormat, ...)
4198{
4199 /*
4200 * Bitch about it.
4201 */
4202 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4203 * this in my Odin32 tree at home! */
4204 va_list args;
4205 va_start(args, pszFormat);
4206 RTLogPrintf("fatal error in virtual hardware:");
4207 RTLogPrintfV(pszFormat, args);
4208 va_end(args);
4209 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4210
4211 /*
4212 * If we're in REM context we'll sync back the state before 'jumping' to
4213 * the EMs failure handling.
4214 */
4215 PVM pVM = cpu_single_env->pVM;
4216 if (pVM->rem.s.fInREM)
4217 REMR3StateBack(pVM);
4218 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4219 AssertMsgFailed(("EMR3FatalError returned!\n"));
4220}
4221#endif
4222
4223/**
4224 * Interface for the qemu cpu to report unhandled situation
4225 * raising a fatal VM error.
4226 */
4227void cpu_abort(CPUState *env, const char *pszFormat, ...)
4228{
4229 /*
4230 * Bitch about it.
4231 */
4232 RTLogFlags(NULL, "nodisabled nobuffered");
4233 va_list args;
4234 va_start(args, pszFormat);
4235 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4236 va_end(args);
4237 va_start(args, pszFormat);
4238 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4239 va_end(args);
4240
4241 /*
4242 * If we're in REM context we'll sync back the state before 'jumping' to
4243 * the EMs failure handling.
4244 */
4245 PVM pVM = cpu_single_env->pVM;
4246 if (pVM->rem.s.fInREM)
4247 REMR3StateBack(pVM);
4248 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4249 AssertMsgFailed(("EMR3FatalError returned!\n"));
4250}
4251
4252
4253/**
4254 * Aborts the VM.
4255 *
4256 * @param rc VBox error code.
4257 * @param pszTip Hint about why/when this happend.
4258 */
4259static void remAbort(int rc, const char *pszTip)
4260{
4261 /*
4262 * Bitch about it.
4263 */
4264 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4265 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4266
4267 /*
4268 * Jump back to where we entered the recompiler.
4269 */
4270 PVM pVM = cpu_single_env->pVM;
4271 if (pVM->rem.s.fInREM)
4272 REMR3StateBack(pVM);
4273 EMR3FatalError(pVM, rc);
4274 AssertMsgFailed(("EMR3FatalError returned!\n"));
4275}
4276
4277
4278/**
4279 * Dumps a linux system call.
4280 * @param pVM VM handle.
4281 */
4282void remR3DumpLnxSyscall(PVM pVM)
4283{
4284 static const char *apsz[] =
4285 {
4286 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4287 "sys_exit",
4288 "sys_fork",
4289 "sys_read",
4290 "sys_write",
4291 "sys_open", /* 5 */
4292 "sys_close",
4293 "sys_waitpid",
4294 "sys_creat",
4295 "sys_link",
4296 "sys_unlink", /* 10 */
4297 "sys_execve",
4298 "sys_chdir",
4299 "sys_time",
4300 "sys_mknod",
4301 "sys_chmod", /* 15 */
4302 "sys_lchown16",
4303 "sys_ni_syscall", /* old break syscall holder */
4304 "sys_stat",
4305 "sys_lseek",
4306 "sys_getpid", /* 20 */
4307 "sys_mount",
4308 "sys_oldumount",
4309 "sys_setuid16",
4310 "sys_getuid16",
4311 "sys_stime", /* 25 */
4312 "sys_ptrace",
4313 "sys_alarm",
4314 "sys_fstat",
4315 "sys_pause",
4316 "sys_utime", /* 30 */
4317 "sys_ni_syscall", /* old stty syscall holder */
4318 "sys_ni_syscall", /* old gtty syscall holder */
4319 "sys_access",
4320 "sys_nice",
4321 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4322 "sys_sync",
4323 "sys_kill",
4324 "sys_rename",
4325 "sys_mkdir",
4326 "sys_rmdir", /* 40 */
4327 "sys_dup",
4328 "sys_pipe",
4329 "sys_times",
4330 "sys_ni_syscall", /* old prof syscall holder */
4331 "sys_brk", /* 45 */
4332 "sys_setgid16",
4333 "sys_getgid16",
4334 "sys_signal",
4335 "sys_geteuid16",
4336 "sys_getegid16", /* 50 */
4337 "sys_acct",
4338 "sys_umount", /* recycled never used phys() */
4339 "sys_ni_syscall", /* old lock syscall holder */
4340 "sys_ioctl",
4341 "sys_fcntl", /* 55 */
4342 "sys_ni_syscall", /* old mpx syscall holder */
4343 "sys_setpgid",
4344 "sys_ni_syscall", /* old ulimit syscall holder */
4345 "sys_olduname",
4346 "sys_umask", /* 60 */
4347 "sys_chroot",
4348 "sys_ustat",
4349 "sys_dup2",
4350 "sys_getppid",
4351 "sys_getpgrp", /* 65 */
4352 "sys_setsid",
4353 "sys_sigaction",
4354 "sys_sgetmask",
4355 "sys_ssetmask",
4356 "sys_setreuid16", /* 70 */
4357 "sys_setregid16",
4358 "sys_sigsuspend",
4359 "sys_sigpending",
4360 "sys_sethostname",
4361 "sys_setrlimit", /* 75 */
4362 "sys_old_getrlimit",
4363 "sys_getrusage",
4364 "sys_gettimeofday",
4365 "sys_settimeofday",
4366 "sys_getgroups16", /* 80 */
4367 "sys_setgroups16",
4368 "old_select",
4369 "sys_symlink",
4370 "sys_lstat",
4371 "sys_readlink", /* 85 */
4372 "sys_uselib",
4373 "sys_swapon",
4374 "sys_reboot",
4375 "old_readdir",
4376 "old_mmap", /* 90 */
4377 "sys_munmap",
4378 "sys_truncate",
4379 "sys_ftruncate",
4380 "sys_fchmod",
4381 "sys_fchown16", /* 95 */
4382 "sys_getpriority",
4383 "sys_setpriority",
4384 "sys_ni_syscall", /* old profil syscall holder */
4385 "sys_statfs",
4386 "sys_fstatfs", /* 100 */
4387 "sys_ioperm",
4388 "sys_socketcall",
4389 "sys_syslog",
4390 "sys_setitimer",
4391 "sys_getitimer", /* 105 */
4392 "sys_newstat",
4393 "sys_newlstat",
4394 "sys_newfstat",
4395 "sys_uname",
4396 "sys_iopl", /* 110 */
4397 "sys_vhangup",
4398 "sys_ni_syscall", /* old "idle" system call */
4399 "sys_vm86old",
4400 "sys_wait4",
4401 "sys_swapoff", /* 115 */
4402 "sys_sysinfo",
4403 "sys_ipc",
4404 "sys_fsync",
4405 "sys_sigreturn",
4406 "sys_clone", /* 120 */
4407 "sys_setdomainname",
4408 "sys_newuname",
4409 "sys_modify_ldt",
4410 "sys_adjtimex",
4411 "sys_mprotect", /* 125 */
4412 "sys_sigprocmask",
4413 "sys_ni_syscall", /* old "create_module" */
4414 "sys_init_module",
4415 "sys_delete_module",
4416 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4417 "sys_quotactl",
4418 "sys_getpgid",
4419 "sys_fchdir",
4420 "sys_bdflush",
4421 "sys_sysfs", /* 135 */
4422 "sys_personality",
4423 "sys_ni_syscall", /* reserved for afs_syscall */
4424 "sys_setfsuid16",
4425 "sys_setfsgid16",
4426 "sys_llseek", /* 140 */
4427 "sys_getdents",
4428 "sys_select",
4429 "sys_flock",
4430 "sys_msync",
4431 "sys_readv", /* 145 */
4432 "sys_writev",
4433 "sys_getsid",
4434 "sys_fdatasync",
4435 "sys_sysctl",
4436 "sys_mlock", /* 150 */
4437 "sys_munlock",
4438 "sys_mlockall",
4439 "sys_munlockall",
4440 "sys_sched_setparam",
4441 "sys_sched_getparam", /* 155 */
4442 "sys_sched_setscheduler",
4443 "sys_sched_getscheduler",
4444 "sys_sched_yield",
4445 "sys_sched_get_priority_max",
4446 "sys_sched_get_priority_min", /* 160 */
4447 "sys_sched_rr_get_interval",
4448 "sys_nanosleep",
4449 "sys_mremap",
4450 "sys_setresuid16",
4451 "sys_getresuid16", /* 165 */
4452 "sys_vm86",
4453 "sys_ni_syscall", /* Old sys_query_module */
4454 "sys_poll",
4455 "sys_nfsservctl",
4456 "sys_setresgid16", /* 170 */
4457 "sys_getresgid16",
4458 "sys_prctl",
4459 "sys_rt_sigreturn",
4460 "sys_rt_sigaction",
4461 "sys_rt_sigprocmask", /* 175 */
4462 "sys_rt_sigpending",
4463 "sys_rt_sigtimedwait",
4464 "sys_rt_sigqueueinfo",
4465 "sys_rt_sigsuspend",
4466 "sys_pread64", /* 180 */
4467 "sys_pwrite64",
4468 "sys_chown16",
4469 "sys_getcwd",
4470 "sys_capget",
4471 "sys_capset", /* 185 */
4472 "sys_sigaltstack",
4473 "sys_sendfile",
4474 "sys_ni_syscall", /* reserved for streams1 */
4475 "sys_ni_syscall", /* reserved for streams2 */
4476 "sys_vfork", /* 190 */
4477 "sys_getrlimit",
4478 "sys_mmap2",
4479 "sys_truncate64",
4480 "sys_ftruncate64",
4481 "sys_stat64", /* 195 */
4482 "sys_lstat64",
4483 "sys_fstat64",
4484 "sys_lchown",
4485 "sys_getuid",
4486 "sys_getgid", /* 200 */
4487 "sys_geteuid",
4488 "sys_getegid",
4489 "sys_setreuid",
4490 "sys_setregid",
4491 "sys_getgroups", /* 205 */
4492 "sys_setgroups",
4493 "sys_fchown",
4494 "sys_setresuid",
4495 "sys_getresuid",
4496 "sys_setresgid", /* 210 */
4497 "sys_getresgid",
4498 "sys_chown",
4499 "sys_setuid",
4500 "sys_setgid",
4501 "sys_setfsuid", /* 215 */
4502 "sys_setfsgid",
4503 "sys_pivot_root",
4504 "sys_mincore",
4505 "sys_madvise",
4506 "sys_getdents64", /* 220 */
4507 "sys_fcntl64",
4508 "sys_ni_syscall", /* reserved for TUX */
4509 "sys_ni_syscall",
4510 "sys_gettid",
4511 "sys_readahead", /* 225 */
4512 "sys_setxattr",
4513 "sys_lsetxattr",
4514 "sys_fsetxattr",
4515 "sys_getxattr",
4516 "sys_lgetxattr", /* 230 */
4517 "sys_fgetxattr",
4518 "sys_listxattr",
4519 "sys_llistxattr",
4520 "sys_flistxattr",
4521 "sys_removexattr", /* 235 */
4522 "sys_lremovexattr",
4523 "sys_fremovexattr",
4524 "sys_tkill",
4525 "sys_sendfile64",
4526 "sys_futex", /* 240 */
4527 "sys_sched_setaffinity",
4528 "sys_sched_getaffinity",
4529 "sys_set_thread_area",
4530 "sys_get_thread_area",
4531 "sys_io_setup", /* 245 */
4532 "sys_io_destroy",
4533 "sys_io_getevents",
4534 "sys_io_submit",
4535 "sys_io_cancel",
4536 "sys_fadvise64", /* 250 */
4537 "sys_ni_syscall",
4538 "sys_exit_group",
4539 "sys_lookup_dcookie",
4540 "sys_epoll_create",
4541 "sys_epoll_ctl", /* 255 */
4542 "sys_epoll_wait",
4543 "sys_remap_file_pages",
4544 "sys_set_tid_address",
4545 "sys_timer_create",
4546 "sys_timer_settime", /* 260 */
4547 "sys_timer_gettime",
4548 "sys_timer_getoverrun",
4549 "sys_timer_delete",
4550 "sys_clock_settime",
4551 "sys_clock_gettime", /* 265 */
4552 "sys_clock_getres",
4553 "sys_clock_nanosleep",
4554 "sys_statfs64",
4555 "sys_fstatfs64",
4556 "sys_tgkill", /* 270 */
4557 "sys_utimes",
4558 "sys_fadvise64_64",
4559 "sys_ni_syscall" /* sys_vserver */
4560 };
4561
4562 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4563 switch (uEAX)
4564 {
4565 default:
4566 if (uEAX < ELEMENTS(apsz))
4567 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4568 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4569 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4570 else
4571 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4572 break;
4573
4574 }
4575}
4576
4577
4578/**
4579 * Dumps an OpenBSD system call.
4580 * @param pVM VM handle.
4581 */
4582void remR3DumpOBsdSyscall(PVM pVM)
4583{
4584 static const char *apsz[] =
4585 {
4586 "SYS_syscall", //0
4587 "SYS_exit", //1
4588 "SYS_fork", //2
4589 "SYS_read", //3
4590 "SYS_write", //4
4591 "SYS_open", //5
4592 "SYS_close", //6
4593 "SYS_wait4", //7
4594 "SYS_8",
4595 "SYS_link", //9
4596 "SYS_unlink", //10
4597 "SYS_11",
4598 "SYS_chdir", //12
4599 "SYS_fchdir", //13
4600 "SYS_mknod", //14
4601 "SYS_chmod", //15
4602 "SYS_chown", //16
4603 "SYS_break", //17
4604 "SYS_18",
4605 "SYS_19",
4606 "SYS_getpid", //20
4607 "SYS_mount", //21
4608 "SYS_unmount", //22
4609 "SYS_setuid", //23
4610 "SYS_getuid", //24
4611 "SYS_geteuid", //25
4612 "SYS_ptrace", //26
4613 "SYS_recvmsg", //27
4614 "SYS_sendmsg", //28
4615 "SYS_recvfrom", //29
4616 "SYS_accept", //30
4617 "SYS_getpeername", //31
4618 "SYS_getsockname", //32
4619 "SYS_access", //33
4620 "SYS_chflags", //34
4621 "SYS_fchflags", //35
4622 "SYS_sync", //36
4623 "SYS_kill", //37
4624 "SYS_38",
4625 "SYS_getppid", //39
4626 "SYS_40",
4627 "SYS_dup", //41
4628 "SYS_opipe", //42
4629 "SYS_getegid", //43
4630 "SYS_profil", //44
4631 "SYS_ktrace", //45
4632 "SYS_sigaction", //46
4633 "SYS_getgid", //47
4634 "SYS_sigprocmask", //48
4635 "SYS_getlogin", //49
4636 "SYS_setlogin", //50
4637 "SYS_acct", //51
4638 "SYS_sigpending", //52
4639 "SYS_osigaltstack", //53
4640 "SYS_ioctl", //54
4641 "SYS_reboot", //55
4642 "SYS_revoke", //56
4643 "SYS_symlink", //57
4644 "SYS_readlink", //58
4645 "SYS_execve", //59
4646 "SYS_umask", //60
4647 "SYS_chroot", //61
4648 "SYS_62",
4649 "SYS_63",
4650 "SYS_64",
4651 "SYS_65",
4652 "SYS_vfork", //66
4653 "SYS_67",
4654 "SYS_68",
4655 "SYS_sbrk", //69
4656 "SYS_sstk", //70
4657 "SYS_61",
4658 "SYS_vadvise", //72
4659 "SYS_munmap", //73
4660 "SYS_mprotect", //74
4661 "SYS_madvise", //75
4662 "SYS_76",
4663 "SYS_77",
4664 "SYS_mincore", //78
4665 "SYS_getgroups", //79
4666 "SYS_setgroups", //80
4667 "SYS_getpgrp", //81
4668 "SYS_setpgid", //82
4669 "SYS_setitimer", //83
4670 "SYS_84",
4671 "SYS_85",
4672 "SYS_getitimer", //86
4673 "SYS_87",
4674 "SYS_88",
4675 "SYS_89",
4676 "SYS_dup2", //90
4677 "SYS_91",
4678 "SYS_fcntl", //92
4679 "SYS_select", //93
4680 "SYS_94",
4681 "SYS_fsync", //95
4682 "SYS_setpriority", //96
4683 "SYS_socket", //97
4684 "SYS_connect", //98
4685 "SYS_99",
4686 "SYS_getpriority", //100
4687 "SYS_101",
4688 "SYS_102",
4689 "SYS_sigreturn", //103
4690 "SYS_bind", //104
4691 "SYS_setsockopt", //105
4692 "SYS_listen", //106
4693 "SYS_107",
4694 "SYS_108",
4695 "SYS_109",
4696 "SYS_110",
4697 "SYS_sigsuspend", //111
4698 "SYS_112",
4699 "SYS_113",
4700 "SYS_114",
4701 "SYS_115",
4702 "SYS_gettimeofday", //116
4703 "SYS_getrusage", //117
4704 "SYS_getsockopt", //118
4705 "SYS_119",
4706 "SYS_readv", //120
4707 "SYS_writev", //121
4708 "SYS_settimeofday", //122
4709 "SYS_fchown", //123
4710 "SYS_fchmod", //124
4711 "SYS_125",
4712 "SYS_setreuid", //126
4713 "SYS_setregid", //127
4714 "SYS_rename", //128
4715 "SYS_129",
4716 "SYS_130",
4717 "SYS_flock", //131
4718 "SYS_mkfifo", //132
4719 "SYS_sendto", //133
4720 "SYS_shutdown", //134
4721 "SYS_socketpair", //135
4722 "SYS_mkdir", //136
4723 "SYS_rmdir", //137
4724 "SYS_utimes", //138
4725 "SYS_139",
4726 "SYS_adjtime", //140
4727 "SYS_141",
4728 "SYS_142",
4729 "SYS_143",
4730 "SYS_144",
4731 "SYS_145",
4732 "SYS_146",
4733 "SYS_setsid", //147
4734 "SYS_quotactl", //148
4735 "SYS_149",
4736 "SYS_150",
4737 "SYS_151",
4738 "SYS_152",
4739 "SYS_153",
4740 "SYS_154",
4741 "SYS_nfssvc", //155
4742 "SYS_156",
4743 "SYS_157",
4744 "SYS_158",
4745 "SYS_159",
4746 "SYS_160",
4747 "SYS_getfh", //161
4748 "SYS_162",
4749 "SYS_163",
4750 "SYS_164",
4751 "SYS_sysarch", //165
4752 "SYS_166",
4753 "SYS_167",
4754 "SYS_168",
4755 "SYS_169",
4756 "SYS_170",
4757 "SYS_171",
4758 "SYS_172",
4759 "SYS_pread", //173
4760 "SYS_pwrite", //174
4761 "SYS_175",
4762 "SYS_176",
4763 "SYS_177",
4764 "SYS_178",
4765 "SYS_179",
4766 "SYS_180",
4767 "SYS_setgid", //181
4768 "SYS_setegid", //182
4769 "SYS_seteuid", //183
4770 "SYS_lfs_bmapv", //184
4771 "SYS_lfs_markv", //185
4772 "SYS_lfs_segclean", //186
4773 "SYS_lfs_segwait", //187
4774 "SYS_188",
4775 "SYS_189",
4776 "SYS_190",
4777 "SYS_pathconf", //191
4778 "SYS_fpathconf", //192
4779 "SYS_swapctl", //193
4780 "SYS_getrlimit", //194
4781 "SYS_setrlimit", //195
4782 "SYS_getdirentries", //196
4783 "SYS_mmap", //197
4784 "SYS___syscall", //198
4785 "SYS_lseek", //199
4786 "SYS_truncate", //200
4787 "SYS_ftruncate", //201
4788 "SYS___sysctl", //202
4789 "SYS_mlock", //203
4790 "SYS_munlock", //204
4791 "SYS_205",
4792 "SYS_futimes", //206
4793 "SYS_getpgid", //207
4794 "SYS_xfspioctl", //208
4795 "SYS_209",
4796 "SYS_210",
4797 "SYS_211",
4798 "SYS_212",
4799 "SYS_213",
4800 "SYS_214",
4801 "SYS_215",
4802 "SYS_216",
4803 "SYS_217",
4804 "SYS_218",
4805 "SYS_219",
4806 "SYS_220",
4807 "SYS_semget", //221
4808 "SYS_222",
4809 "SYS_223",
4810 "SYS_224",
4811 "SYS_msgget", //225
4812 "SYS_msgsnd", //226
4813 "SYS_msgrcv", //227
4814 "SYS_shmat", //228
4815 "SYS_229",
4816 "SYS_shmdt", //230
4817 "SYS_231",
4818 "SYS_clock_gettime", //232
4819 "SYS_clock_settime", //233
4820 "SYS_clock_getres", //234
4821 "SYS_235",
4822 "SYS_236",
4823 "SYS_237",
4824 "SYS_238",
4825 "SYS_239",
4826 "SYS_nanosleep", //240
4827 "SYS_241",
4828 "SYS_242",
4829 "SYS_243",
4830 "SYS_244",
4831 "SYS_245",
4832 "SYS_246",
4833 "SYS_247",
4834 "SYS_248",
4835 "SYS_249",
4836 "SYS_minherit", //250
4837 "SYS_rfork", //251
4838 "SYS_poll", //252
4839 "SYS_issetugid", //253
4840 "SYS_lchown", //254
4841 "SYS_getsid", //255
4842 "SYS_msync", //256
4843 "SYS_257",
4844 "SYS_258",
4845 "SYS_259",
4846 "SYS_getfsstat", //260
4847 "SYS_statfs", //261
4848 "SYS_fstatfs", //262
4849 "SYS_pipe", //263
4850 "SYS_fhopen", //264
4851 "SYS_265",
4852 "SYS_fhstatfs", //266
4853 "SYS_preadv", //267
4854 "SYS_pwritev", //268
4855 "SYS_kqueue", //269
4856 "SYS_kevent", //270
4857 "SYS_mlockall", //271
4858 "SYS_munlockall", //272
4859 "SYS_getpeereid", //273
4860 "SYS_274",
4861 "SYS_275",
4862 "SYS_276",
4863 "SYS_277",
4864 "SYS_278",
4865 "SYS_279",
4866 "SYS_280",
4867 "SYS_getresuid", //281
4868 "SYS_setresuid", //282
4869 "SYS_getresgid", //283
4870 "SYS_setresgid", //284
4871 "SYS_285",
4872 "SYS_mquery", //286
4873 "SYS_closefrom", //287
4874 "SYS_sigaltstack", //288
4875 "SYS_shmget", //289
4876 "SYS_semop", //290
4877 "SYS_stat", //291
4878 "SYS_fstat", //292
4879 "SYS_lstat", //293
4880 "SYS_fhstat", //294
4881 "SYS___semctl", //295
4882 "SYS_shmctl", //296
4883 "SYS_msgctl", //297
4884 "SYS_MAXSYSCALL", //298
4885 //299
4886 //300
4887 };
4888 uint32_t uEAX;
4889#ifndef DEBUG_bird
4890 if (!LogIsEnabled())
4891 return;
4892#endif
4893 uEAX = CPUMGetGuestEAX(pVM);
4894 switch (uEAX)
4895 {
4896 default:
4897 if (uEAX < ELEMENTS(apsz))
4898 {
4899 uint32_t au32Args[8] = {0};
4900 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4901 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4902 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4903 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4904 }
4905 else
4906 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4907 break;
4908 }
4909}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette