VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 12427

Last change on this file since 12427 was 12427, checked in by vboxsync, 16 years ago

Minor 64 bits guest execution issues.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.7 KB
Line 
1/* $Id: VBoxRecompiler.c 12427 2008-09-12 14:53:22Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140static STAMCOUNTER gStatFlushTBs;
141#endif
142
143/*
144 * Global stuff.
145 */
146
147/** MMIO read callbacks. */
148CPUReadMemoryFunc *g_apfnMMIORead[3] =
149{
150 remR3MMIOReadU8,
151 remR3MMIOReadU16,
152 remR3MMIOReadU32
153};
154
155/** MMIO write callbacks. */
156CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
157{
158 remR3MMIOWriteU8,
159 remR3MMIOWriteU16,
160 remR3MMIOWriteU32
161};
162
163/** Handler read callbacks. */
164CPUReadMemoryFunc *g_apfnHandlerRead[3] =
165{
166 remR3HandlerReadU8,
167 remR3HandlerReadU16,
168 remR3HandlerReadU32
169};
170
171/** Handler write callbacks. */
172CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
173{
174 remR3HandlerWriteU8,
175 remR3HandlerWriteU16,
176 remR3HandlerWriteU32
177};
178
179
180#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
181/*
182 * Debugger commands.
183 */
184static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
185
186/** '.remstep' arguments. */
187static const DBGCVARDESC g_aArgRemStep[] =
188{
189 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
190 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
191};
192
193/** Command descriptors. */
194static const DBGCCMD g_aCmds[] =
195{
196 {
197 .pszCmd ="remstep",
198 .cArgsMin = 0,
199 .cArgsMax = 1,
200 .paArgDescs = &g_aArgRemStep[0],
201 .cArgDescs = ELEMENTS(g_aArgRemStep),
202 .pResultDesc = NULL,
203 .fFlags = 0,
204 .pfnHandler = remR3CmdDisasEnableStepping,
205 .pszSyntax = "[on/off]",
206 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
207 "If no arguments show the current state."
208 }
209};
210#endif
211
212
213/* Instantiate the structure signatures. */
214#define REM_STRUCT_OP 0
215#include "Sun/structs.h"
216
217
218
219/*******************************************************************************
220* Internal Functions *
221*******************************************************************************/
222static void remAbort(int rc, const char *pszTip);
223extern int testmath(void);
224
225/* Put them here to avoid unused variable warning. */
226AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
227#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
228//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
229/* Why did this have to be identical?? */
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#else
232AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
233#endif
234
235
236/**
237 * Initializes the REM.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM to operate on.
241 */
242REMR3DECL(int) REMR3Init(PVM pVM)
243{
244 uint32_t u32Dummy;
245 unsigned i;
246
247 /*
248 * Assert sanity.
249 */
250 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
251 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
252 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
253#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
254 Assert(!testmath());
255#endif
256 ASSERT_STRUCT_TABLE(Misc);
257 ASSERT_STRUCT_TABLE(TLB);
258 ASSERT_STRUCT_TABLE(SegmentCache);
259 ASSERT_STRUCT_TABLE(XMMReg);
260 ASSERT_STRUCT_TABLE(MMXReg);
261 ASSERT_STRUCT_TABLE(float_status);
262 ASSERT_STRUCT_TABLE(float32u);
263 ASSERT_STRUCT_TABLE(float64u);
264 ASSERT_STRUCT_TABLE(floatx80u);
265 ASSERT_STRUCT_TABLE(CPUState);
266
267 /*
268 * Init some internal data members.
269 */
270 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
271 pVM->rem.s.Env.pVM = pVM;
272#ifdef CPU_RAW_MODE_INIT
273 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
274#endif
275
276 /* ctx. */
277 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
278 if (VBOX_FAILURE(rc))
279 {
280 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
281 return rc;
282 }
283 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
284
285 /* ignore all notifications */
286 pVM->rem.s.fIgnoreAll = true;
287
288 /*
289 * Init the recompiler.
290 */
291 if (!cpu_x86_init(&pVM->rem.s.Env))
292 {
293 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
294 return VERR_GENERAL_FAILURE;
295 }
296 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
297 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
298
299 /* allocate code buffer for single instruction emulation. */
300 pVM->rem.s.Env.cbCodeBuffer = 4096;
301 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
302 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
303
304 /* finally, set the cpu_single_env global. */
305 cpu_single_env = &pVM->rem.s.Env;
306
307 /* Nothing is pending by default */
308 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
309
310 /*
311 * Register ram types.
312 */
313 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
315 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
317 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
318
319 /* stop ignoring. */
320 pVM->rem.s.fIgnoreAll = false;
321
322 /*
323 * Register the saved state data unit.
324 */
325 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
326 NULL, remR3Save, NULL,
327 NULL, remR3Load, NULL);
328 if (VBOX_FAILURE(rc))
329 return rc;
330
331#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
332 /*
333 * Debugger commands.
334 */
335 static bool fRegisteredCmds = false;
336 if (!fRegisteredCmds)
337 {
338 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
339 if (VBOX_SUCCESS(rc))
340 fRegisteredCmds = true;
341 }
342#endif
343
344#ifdef VBOX_WITH_STATISTICS
345 /*
346 * Statistics.
347 */
348 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
349 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
350 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
351 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
352 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
358 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
360
361 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
362
363 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
364 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
365 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
366 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
367 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
368 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
369 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
370 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
371 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
372 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
373 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
374
375 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
376 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
377 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
378 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
379
380 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
393
394
395#endif
396
397#ifdef DEBUG_ALL_LOGGING
398 loglevel = ~0;
399#endif
400
401 return rc;
402}
403
404
405/**
406 * Terminates the REM.
407 *
408 * Termination means cleaning up and freeing all resources,
409 * the VM it self is at this point powered off or suspended.
410 *
411 * @returns VBox status code.
412 * @param pVM The VM to operate on.
413 */
414REMR3DECL(int) REMR3Term(PVM pVM)
415{
416 return VINF_SUCCESS;
417}
418
419
420/**
421 * The VM is being reset.
422 *
423 * For the REM component this means to call the cpu_reset() and
424 * reinitialize some state variables.
425 *
426 * @param pVM VM handle.
427 */
428REMR3DECL(void) REMR3Reset(PVM pVM)
429{
430 /*
431 * Reset the REM cpu.
432 */
433 pVM->rem.s.fIgnoreAll = true;
434 cpu_reset(&pVM->rem.s.Env);
435 pVM->rem.s.cInvalidatedPages = 0;
436 pVM->rem.s.fIgnoreAll = false;
437
438 /* Clear raw ring 0 init state */
439 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
440}
441
442
443/**
444 * Execute state save operation.
445 *
446 * @returns VBox status code.
447 * @param pVM VM Handle.
448 * @param pSSM SSM operation handle.
449 */
450static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
451{
452 LogFlow(("remR3Save:\n"));
453
454 /*
455 * Save the required CPU Env bits.
456 * (Not much because we're never in REM when doing the save.)
457 */
458 PREM pRem = &pVM->rem.s;
459 Assert(!pRem->fInREM);
460 SSMR3PutU32(pSSM, pRem->Env.hflags);
461 SSMR3PutU32(pSSM, ~0); /* separator */
462
463 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
464 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
465 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
466
467 return SSMR3PutU32(pSSM, ~0); /* terminator */
468}
469
470
471/**
472 * Execute state load operation.
473 *
474 * @returns VBox status code.
475 * @param pVM VM Handle.
476 * @param pSSM SSM operation handle.
477 * @param u32Version Data layout version.
478 */
479static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
480{
481 uint32_t u32Dummy;
482 uint32_t fRawRing0 = false;
483 LogFlow(("remR3Load:\n"));
484
485 /*
486 * Validate version.
487 */
488 if ( u32Version != REM_SAVED_STATE_VERSION
489 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
490 {
491 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
492 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
493 }
494
495 /*
496 * Do a reset to be on the safe side...
497 */
498 REMR3Reset(pVM);
499
500 /*
501 * Ignore all ignorable notifications.
502 * (Not doing this will cause serious trouble.)
503 */
504 pVM->rem.s.fIgnoreAll = true;
505
506 /*
507 * Load the required CPU Env bits.
508 * (Not much because we're never in REM when doing the save.)
509 */
510 PREM pRem = &pVM->rem.s;
511 Assert(!pRem->fInREM);
512 SSMR3GetU32(pSSM, &pRem->Env.hflags);
513 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
514 {
515 /* Redundant REM CPU state has to be loaded, but can be ignored. */
516 CPUX86State_Ver16 temp;
517 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
518 }
519
520 uint32_t u32Sep;
521 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
522 if (VBOX_FAILURE(rc))
523 return rc;
524 if (u32Sep != ~0)
525 {
526 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
527 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
528 }
529
530 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
531 SSMR3GetUInt(pSSM, &fRawRing0);
532 if (fRawRing0)
533 pRem->Env.state |= CPU_RAW_RING0;
534
535 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
536 {
537 /*
538 * Load the REM stuff.
539 */
540 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
541 if (VBOX_FAILURE(rc))
542 return rc;
543 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
544 {
545 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
546 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
547 }
548 unsigned i;
549 for (i = 0; i < pRem->cInvalidatedPages; i++)
550 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
551 }
552
553 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
554 if (VBOX_FAILURE(rc))
555 return rc;
556
557 /* check the terminator. */
558 rc = SSMR3GetU32(pSSM, &u32Sep);
559 if (VBOX_FAILURE(rc))
560 return rc;
561 if (u32Sep != ~0)
562 {
563 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
564 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
565 }
566
567 /*
568 * Get the CPUID features.
569 */
570 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
571 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
572
573 /*
574 * Sync the Load Flush the TLB
575 */
576 tlb_flush(&pRem->Env, 1);
577
578 /*
579 * Stop ignoring ignornable notifications.
580 */
581 pVM->rem.s.fIgnoreAll = false;
582
583 /*
584 * Sync the whole CPU state when executing code in the recompiler.
585 */
586 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
587 return VINF_SUCCESS;
588}
589
590
591
592#undef LOG_GROUP
593#define LOG_GROUP LOG_GROUP_REM_RUN
594
595/**
596 * Single steps an instruction in recompiled mode.
597 *
598 * Before calling this function the REM state needs to be in sync with
599 * the VM. Call REMR3State() to perform the sync. It's only necessary
600 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
601 * and after calling REMR3StateBack().
602 *
603 * @returns VBox status code.
604 *
605 * @param pVM VM Handle.
606 */
607REMR3DECL(int) REMR3Step(PVM pVM)
608{
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 int interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 int rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
730
731 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
732 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
733 */
734 if (HWACCMIsEnabled(pVM))
735 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
736
737 /*
738 * Sync the state and enable single instruction / single stepping.
739 */
740 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
741 if (VBOX_SUCCESS(rc))
742 {
743 int interrupt_request = pVM->rem.s.Env.interrupt_request;
744 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
745 Assert(!pVM->rem.s.Env.singlestep_enabled);
746#if 1
747
748 /*
749 * Now we set the execute single instruction flag and enter the cpu_exec loop.
750 */
751 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
752 rc = cpu_exec(&pVM->rem.s.Env);
753 switch (rc)
754 {
755 /*
756 * Executed without anything out of the way happening.
757 */
758 case EXCP_SINGLE_INSTR:
759 rc = VINF_EM_RESCHEDULE;
760 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
761 break;
762
763 /*
764 * If we take a trap or start servicing a pending interrupt, we might end up here.
765 * (Timer thread or some other thread wishing EMT's attention.)
766 */
767 case EXCP_INTERRUPT:
768 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
769 rc = VINF_EM_RESCHEDULE;
770 break;
771
772 /*
773 * Single step, we assume!
774 * If there was a breakpoint there we're fucked now.
775 */
776 case EXCP_DEBUG:
777 {
778 /* breakpoint or single step? */
779 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
780 int iBP;
781 rc = VINF_EM_DBG_STEPPED;
782 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
783 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
784 {
785 rc = VINF_EM_DBG_BREAKPOINT;
786 break;
787 }
788 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
789 break;
790 }
791
792 /*
793 * hlt instruction.
794 */
795 case EXCP_HLT:
796 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
797 rc = VINF_EM_HALT;
798 break;
799
800 /*
801 * The VM has halted.
802 */
803 case EXCP_HALTED:
804 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
805 rc = VINF_EM_HALT;
806 break;
807
808 /*
809 * Switch to RAW-mode.
810 */
811 case EXCP_EXECUTE_RAW:
812 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
813 rc = VINF_EM_RESCHEDULE_RAW;
814 break;
815
816 /*
817 * Switch to hardware accelerated RAW-mode.
818 */
819 case EXCP_EXECUTE_HWACC:
820 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
821 rc = VINF_EM_RESCHEDULE_HWACC;
822 break;
823
824 /*
825 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
826 */
827 case EXCP_RC:
828 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
829 rc = pVM->rem.s.rc;
830 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
831 break;
832
833 /*
834 * Figure out the rest when they arrive....
835 */
836 default:
837 AssertMsgFailed(("rc=%d\n", rc));
838 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
839 rc = VINF_EM_RESCHEDULE;
840 break;
841 }
842
843 /*
844 * Switch back the state.
845 */
846#else
847 pVM->rem.s.Env.interrupt_request = 0;
848 cpu_single_step(&pVM->rem.s.Env, 1);
849
850 /*
851 * Execute and handle the return code.
852 * We execute without enabling the cpu tick, so on success we'll
853 * just flip it on and off to make sure it moves.
854 *
855 * (We do not use emulate_single_instr() because that doesn't enter the
856 * right way in will cause serious trouble if a longjmp was attempted.)
857 */
858# ifdef DEBUG_bird
859 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
860# endif
861 int cTimesMax = 16384;
862 uint32_t eip = pVM->rem.s.Env.eip;
863 do
864 {
865 rc = cpu_exec(&pVM->rem.s.Env);
866
867 } while ( eip == pVM->rem.s.Env.eip
868 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
869 && --cTimesMax > 0);
870 switch (rc)
871 {
872 /*
873 * Single step, we assume!
874 * If there was a breakpoint there we're fucked now.
875 */
876 case EXCP_DEBUG:
877 {
878 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
879 rc = VINF_EM_RESCHEDULE;
880 break;
881 }
882
883 /*
884 * We cannot be interrupted!
885 */
886 case EXCP_INTERRUPT:
887 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
888 rc = VERR_INTERNAL_ERROR;
889 break;
890
891 /*
892 * hlt instruction.
893 */
894 case EXCP_HLT:
895 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
896 rc = VINF_EM_HALT;
897 break;
898
899 /*
900 * The VM has halted.
901 */
902 case EXCP_HALTED:
903 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
904 rc = VINF_EM_HALT;
905 break;
906
907 /*
908 * Switch to RAW-mode.
909 */
910 case EXCP_EXECUTE_RAW:
911 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
912 rc = VINF_EM_RESCHEDULE_RAW;
913 break;
914
915 /*
916 * Switch to hardware accelerated RAW-mode.
917 */
918 case EXCP_EXECUTE_HWACC:
919 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
920 rc = VINF_EM_RESCHEDULE_HWACC;
921 break;
922
923 /*
924 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
925 */
926 case EXCP_RC:
927 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
928 rc = pVM->rem.s.rc;
929 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
930 break;
931
932 /*
933 * Figure out the rest when they arrive....
934 */
935 default:
936 AssertMsgFailed(("rc=%d\n", rc));
937 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
938 rc = VINF_SUCCESS;
939 break;
940 }
941
942 /*
943 * Switch back the state.
944 */
945 cpu_single_step(&pVM->rem.s.Env, 0);
946#endif
947 pVM->rem.s.Env.interrupt_request = interrupt_request;
948 int rc2 = REMR3StateBack(pVM);
949 AssertRC(rc2);
950 }
951
952 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
953 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
954 return rc;
955}
956
957
958/**
959 * Runs code in recompiled mode.
960 *
961 * Before calling this function the REM state needs to be in sync with
962 * the VM. Call REMR3State() to perform the sync. It's only necessary
963 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
964 * and after calling REMR3StateBack().
965 *
966 * @returns VBox status code.
967 *
968 * @param pVM VM Handle.
969 */
970REMR3DECL(int) REMR3Run(PVM pVM)
971{
972 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
973 Assert(pVM->rem.s.fInREM);
974
975 int rc = cpu_exec(&pVM->rem.s.Env);
976 switch (rc)
977 {
978 /*
979 * This happens when the execution was interrupted
980 * by an external event, like pending timers.
981 */
982 case EXCP_INTERRUPT:
983 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
984 rc = VINF_SUCCESS;
985 break;
986
987 /*
988 * hlt instruction.
989 */
990 case EXCP_HLT:
991 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
992 rc = VINF_EM_HALT;
993 break;
994
995 /*
996 * The VM has halted.
997 */
998 case EXCP_HALTED:
999 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1000 rc = VINF_EM_HALT;
1001 break;
1002
1003 /*
1004 * Breakpoint/single step.
1005 */
1006 case EXCP_DEBUG:
1007 {
1008#if 0//def DEBUG_bird
1009 static int iBP = 0;
1010 printf("howdy, breakpoint! iBP=%d\n", iBP);
1011 switch (iBP)
1012 {
1013 case 0:
1014 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1015 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1016 //pVM->rem.s.Env.interrupt_request = 0;
1017 //pVM->rem.s.Env.exception_index = -1;
1018 //g_fInterruptDisabled = 1;
1019 rc = VINF_SUCCESS;
1020 asm("int3");
1021 break;
1022 default:
1023 asm("int3");
1024 break;
1025 }
1026 iBP++;
1027#else
1028 /* breakpoint or single step? */
1029 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1030 int iBP;
1031 rc = VINF_EM_DBG_STEPPED;
1032 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1033 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1034 {
1035 rc = VINF_EM_DBG_BREAKPOINT;
1036 break;
1037 }
1038 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1039#endif
1040 break;
1041 }
1042
1043 /*
1044 * Switch to RAW-mode.
1045 */
1046 case EXCP_EXECUTE_RAW:
1047 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1048 rc = VINF_EM_RESCHEDULE_RAW;
1049 break;
1050
1051 /*
1052 * Switch to hardware accelerated RAW-mode.
1053 */
1054 case EXCP_EXECUTE_HWACC:
1055 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1056 rc = VINF_EM_RESCHEDULE_HWACC;
1057 break;
1058
1059 /*
1060 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1061 */
1062 case EXCP_RC:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1064 rc = pVM->rem.s.rc;
1065 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1066 break;
1067
1068 /*
1069 * Figure out the rest when they arrive....
1070 */
1071 default:
1072 AssertMsgFailed(("rc=%d\n", rc));
1073 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1074 rc = VINF_SUCCESS;
1075 break;
1076 }
1077
1078 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1079 return rc;
1080}
1081
1082
1083/**
1084 * Check if the cpu state is suitable for Raw execution.
1085 *
1086 * @returns boolean
1087 * @param env The CPU env struct.
1088 * @param eip The EIP to check this for (might differ from env->eip).
1089 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1090 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1091 *
1092 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1093 */
1094bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1095{
1096 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1097 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1098 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1099
1100 /* Update counter. */
1101 env->pVM->rem.s.cCanExecuteRaw++;
1102
1103 if (HWACCMIsEnabled(env->pVM))
1104 {
1105 env->state |= CPU_RAW_HWACC;
1106
1107 /*
1108 * Create partial context for HWACCMR3CanExecuteGuest
1109 */
1110 CPUMCTX Ctx;
1111 Ctx.cr0 = env->cr[0];
1112 Ctx.cr3 = env->cr[3];
1113 Ctx.cr4 = env->cr[4];
1114
1115 Ctx.tr = env->tr.selector;
1116 Ctx.trHid.u64Base = env->tr.base;
1117 Ctx.trHid.u32Limit = env->tr.limit;
1118 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1119
1120 Ctx.idtr.cbIdt = env->idt.limit;
1121 Ctx.idtr.pIdt = env->idt.base;
1122
1123 Ctx.eflags.u32 = env->eflags;
1124
1125 Ctx.cs = env->segs[R_CS].selector;
1126 Ctx.csHid.u64Base = env->segs[R_CS].base;
1127 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1128 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1129
1130 Ctx.ss = env->segs[R_SS].selector;
1131 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1132 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1133 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1134
1135 Ctx.msrEFER = env->efer;
1136
1137 /* Hardware accelerated raw-mode:
1138 *
1139 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1140 */
1141 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1142 {
1143 *piException = EXCP_EXECUTE_HWACC;
1144 return true;
1145 }
1146 return false;
1147 }
1148
1149 /*
1150 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1151 * or 32 bits protected mode ring 0 code
1152 *
1153 * The tests are ordered by the likelyhood of being true during normal execution.
1154 */
1155 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1156 {
1157 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1158 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1159 return false;
1160 }
1161
1162#ifndef VBOX_RAW_V86
1163 if (fFlags & VM_MASK) {
1164 STAM_COUNTER_INC(&gStatRefuseVM86);
1165 Log2(("raw mode refused: VM_MASK\n"));
1166 return false;
1167 }
1168#endif
1169
1170 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1171 {
1172#ifndef DEBUG_bird
1173 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1174#endif
1175 return false;
1176 }
1177
1178 if (env->singlestep_enabled)
1179 {
1180 //Log2(("raw mode refused: Single step\n"));
1181 return false;
1182 }
1183
1184 if (env->nb_breakpoints > 0)
1185 {
1186 //Log2(("raw mode refused: Breakpoints\n"));
1187 return false;
1188 }
1189
1190 uint32_t u32CR0 = env->cr[0];
1191 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1192 {
1193 STAM_COUNTER_INC(&gStatRefusePaging);
1194 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1195 return false;
1196 }
1197
1198 if (env->cr[4] & CR4_PAE_MASK)
1199 {
1200 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1201 {
1202 STAM_COUNTER_INC(&gStatRefusePAE);
1203 return false;
1204 }
1205 }
1206
1207 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1208 {
1209 if (!EMIsRawRing3Enabled(env->pVM))
1210 return false;
1211
1212 if (!(env->eflags & IF_MASK))
1213 {
1214 STAM_COUNTER_INC(&gStatRefuseIF0);
1215 Log2(("raw mode refused: IF (RawR3)\n"));
1216 return false;
1217 }
1218
1219 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1220 {
1221 STAM_COUNTER_INC(&gStatRefuseWP0);
1222 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1223 return false;
1224 }
1225 }
1226 else
1227 {
1228 if (!EMIsRawRing0Enabled(env->pVM))
1229 return false;
1230
1231 // Let's start with pure 32 bits ring 0 code first
1232 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1233 {
1234 STAM_COUNTER_INC(&gStatRefuseCode16);
1235 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1236 return false;
1237 }
1238
1239 // Only R0
1240 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1241 {
1242 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1243 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1244 return false;
1245 }
1246
1247 if (!(u32CR0 & CR0_WP_MASK))
1248 {
1249 STAM_COUNTER_INC(&gStatRefuseWP0);
1250 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1251 return false;
1252 }
1253
1254 if (PATMIsPatchGCAddr(env->pVM, eip))
1255 {
1256 Log2(("raw r0 mode forced: patch code\n"));
1257 *piException = EXCP_EXECUTE_RAW;
1258 return true;
1259 }
1260
1261#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1262 if (!(env->eflags & IF_MASK))
1263 {
1264 STAM_COUNTER_INC(&gStatRefuseIF0);
1265 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1266 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1267 return false;
1268 }
1269#endif
1270
1271 env->state |= CPU_RAW_RING0;
1272 }
1273
1274 /*
1275 * Don't reschedule the first time we're called, because there might be
1276 * special reasons why we're here that is not covered by the above checks.
1277 */
1278 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1279 {
1280 Log2(("raw mode refused: first scheduling\n"));
1281 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1282 return false;
1283 }
1284
1285 Assert(PGMPhysIsA20Enabled(env->pVM));
1286 *piException = EXCP_EXECUTE_RAW;
1287 return true;
1288}
1289
1290
1291/**
1292 * Fetches a code byte.
1293 *
1294 * @returns Success indicator (bool) for ease of use.
1295 * @param env The CPU environment structure.
1296 * @param GCPtrInstr Where to fetch code.
1297 * @param pu8Byte Where to store the byte on success
1298 */
1299bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1300{
1301 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1302 if (VBOX_SUCCESS(rc))
1303 return true;
1304 return false;
1305}
1306
1307
1308/**
1309 * Flush (or invalidate if you like) page table/dir entry.
1310 *
1311 * (invlpg instruction; tlb_flush_page)
1312 *
1313 * @param env Pointer to cpu environment.
1314 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1315 */
1316void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1317{
1318 PVM pVM = env->pVM;
1319
1320 /*
1321 * When we're replaying invlpg instructions or restoring a saved
1322 * state we disable this path.
1323 */
1324 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1325 return;
1326 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1327 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1328
1329 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1330
1331 /*
1332 * Update the control registers before calling PGMFlushPage.
1333 */
1334 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1335 pCtx->cr0 = env->cr[0];
1336 pCtx->cr3 = env->cr[3];
1337 pCtx->cr4 = env->cr[4];
1338
1339 /*
1340 * Let PGM do the rest.
1341 */
1342 int rc = PGMInvalidatePage(pVM, GCPtr);
1343 if (VBOX_FAILURE(rc))
1344 {
1345 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1346 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1347 }
1348 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1349}
1350
1351
1352/**
1353 * Called from tlb_protect_code in order to write monitor a code page.
1354 *
1355 * @param env Pointer to the CPU environment.
1356 * @param GCPtr Code page to monitor
1357 */
1358void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1359{
1360#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1361 Assert(env->pVM->rem.s.fInREM);
1362 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1363 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1364 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1365 && !(env->eflags & VM_MASK) /* no V86 mode */
1366 && !HWACCMIsEnabled(env->pVM))
1367 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1368#endif
1369}
1370
1371/**
1372 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1373 *
1374 * @param env Pointer to the CPU environment.
1375 * @param GCPtr Code page to monitor
1376 */
1377void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1378{
1379 Assert(env->pVM->rem.s.fInREM);
1380#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1381 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1382 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1383 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1384 && !(env->eflags & VM_MASK) /* no V86 mode */
1385 && !HWACCMIsEnabled(env->pVM))
1386 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1387#endif
1388}
1389
1390
1391/**
1392 * Called when the CPU is initialized, any of the CRx registers are changed or
1393 * when the A20 line is modified.
1394 *
1395 * @param env Pointer to the CPU environment.
1396 * @param fGlobal Set if the flush is global.
1397 */
1398void remR3FlushTLB(CPUState *env, bool fGlobal)
1399{
1400 PVM pVM = env->pVM;
1401
1402 /*
1403 * When we're replaying invlpg instructions or restoring a saved
1404 * state we disable this path.
1405 */
1406 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1407 return;
1408 Assert(pVM->rem.s.fInREM);
1409
1410 /*
1411 * The caller doesn't check cr4, so we have to do that for ourselves.
1412 */
1413 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1414 fGlobal = true;
1415 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1416
1417 /*
1418 * Update the control registers before calling PGMR3FlushTLB.
1419 */
1420 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1421 pCtx->cr0 = env->cr[0];
1422 pCtx->cr3 = env->cr[3];
1423 pCtx->cr4 = env->cr[4];
1424
1425 /*
1426 * Let PGM do the rest.
1427 */
1428 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1429}
1430
1431
1432/**
1433 * Called when any of the cr0, cr4 or efer registers is updated.
1434 *
1435 * @param env Pointer to the CPU environment.
1436 */
1437void remR3ChangeCpuMode(CPUState *env)
1438{
1439 int rc;
1440 PVM pVM = env->pVM;
1441
1442 /*
1443 * When we're replaying loads or restoring a saved
1444 * state this path is disabled.
1445 */
1446 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1447 return;
1448 Assert(pVM->rem.s.fInREM);
1449
1450 /*
1451 * Update the control registers before calling PGMChangeMode()
1452 * as it may need to map whatever cr3 is pointing to.
1453 */
1454 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1455 pCtx->cr0 = env->cr[0];
1456 pCtx->cr3 = env->cr[3];
1457 pCtx->cr4 = env->cr[4];
1458
1459#ifdef TARGET_X86_64
1460 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1461 if (rc != VINF_SUCCESS)
1462 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1463#else
1464 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1465 if (rc != VINF_SUCCESS)
1466 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1467#endif
1468}
1469
1470
1471/**
1472 * Called from compiled code to run dma.
1473 *
1474 * @param env Pointer to the CPU environment.
1475 */
1476void remR3DmaRun(CPUState *env)
1477{
1478 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1479 PDMR3DmaRun(env->pVM);
1480 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1481}
1482
1483
1484/**
1485 * Called from compiled code to schedule pending timers in VMM
1486 *
1487 * @param env Pointer to the CPU environment.
1488 */
1489void remR3TimersRun(CPUState *env)
1490{
1491 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1492 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1493 TMR3TimerQueuesDo(env->pVM);
1494 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1495 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1496}
1497
1498
1499/**
1500 * Record trap occurance
1501 *
1502 * @returns VBox status code
1503 * @param env Pointer to the CPU environment.
1504 * @param uTrap Trap nr
1505 * @param uErrorCode Error code
1506 * @param pvNextEIP Next EIP
1507 */
1508int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1509{
1510 PVM pVM = env->pVM;
1511#ifdef VBOX_WITH_STATISTICS
1512 static STAMCOUNTER s_aStatTrap[255];
1513 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1514#endif
1515
1516#ifdef VBOX_WITH_STATISTICS
1517 if (uTrap < 255)
1518 {
1519 if (!s_aRegisters[uTrap])
1520 {
1521 s_aRegisters[uTrap] = true;
1522 char szStatName[64];
1523 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1524 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1525 }
1526 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1527 }
1528#endif
1529 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1530 if( uTrap < 0x20
1531 && (env->cr[0] & X86_CR0_PE)
1532 && !(env->eflags & X86_EFL_VM))
1533 {
1534#ifdef DEBUG
1535 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1536#endif
1537 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1538 {
1539 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1540 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1541 return VERR_REM_TOO_MANY_TRAPS;
1542 }
1543 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1544 pVM->rem.s.cPendingExceptions = 1;
1545 pVM->rem.s.uPendingException = uTrap;
1546 pVM->rem.s.uPendingExcptEIP = env->eip;
1547 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1548 }
1549 else
1550 {
1551 pVM->rem.s.cPendingExceptions = 0;
1552 pVM->rem.s.uPendingException = uTrap;
1553 pVM->rem.s.uPendingExcptEIP = env->eip;
1554 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1555 }
1556 return VINF_SUCCESS;
1557}
1558
1559
1560/*
1561 * Clear current active trap
1562 *
1563 * @param pVM VM Handle.
1564 */
1565void remR3TrapClear(PVM pVM)
1566{
1567 pVM->rem.s.cPendingExceptions = 0;
1568 pVM->rem.s.uPendingException = 0;
1569 pVM->rem.s.uPendingExcptEIP = 0;
1570 pVM->rem.s.uPendingExcptCR2 = 0;
1571}
1572
1573
1574/*
1575 * Record previous call instruction addresses
1576 *
1577 * @param env Pointer to the CPU environment.
1578 */
1579void remR3RecordCall(CPUState *env)
1580{
1581 CSAMR3RecordCallAddress(env->pVM, env->eip);
1582}
1583
1584
1585/**
1586 * Syncs the internal REM state with the VM.
1587 *
1588 * This must be called before REMR3Run() is invoked whenever when the REM
1589 * state is not up to date. Calling it several times in a row is not
1590 * permitted.
1591 *
1592 * @returns VBox status code.
1593 *
1594 * @param pVM VM Handle.
1595 * @param fFlushTBs Flush all translation blocks before executing code
1596 *
1597 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1598 * no do this since the majority of the callers don't want any unnecessary of events
1599 * pending that would immediatly interrupt execution.
1600 */
1601REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1602{
1603 Log2(("REMR3State:\n"));
1604 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1605 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1606 register unsigned fFlags;
1607 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1608
1609 Assert(!pVM->rem.s.fInREM);
1610 pVM->rem.s.fInStateSync = true;
1611
1612 if (fFlushTBs)
1613 {
1614 STAM_COUNTER_INC(&gStatFlushTBs);
1615 tb_flush(&pVM->rem.s.Env);
1616 }
1617
1618 /*
1619 * Copy the registers which require no special handling.
1620 */
1621#ifdef TARGET_X86_64
1622 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1623 Assert(R_EAX == 0);
1624 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1625 Assert(R_ECX == 1);
1626 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1627 Assert(R_EDX == 2);
1628 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1629 Assert(R_EBX == 3);
1630 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1631 Assert(R_ESP == 4);
1632 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1633 Assert(R_EBP == 5);
1634 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1635 Assert(R_ESI == 6);
1636 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1637 Assert(R_EDI == 7);
1638 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1639 pVM->rem.s.Env.regs[8] = pCtx->r8;
1640 pVM->rem.s.Env.regs[9] = pCtx->r9;
1641 pVM->rem.s.Env.regs[10] = pCtx->r10;
1642 pVM->rem.s.Env.regs[11] = pCtx->r11;
1643 pVM->rem.s.Env.regs[12] = pCtx->r12;
1644 pVM->rem.s.Env.regs[13] = pCtx->r13;
1645 pVM->rem.s.Env.regs[14] = pCtx->r14;
1646 pVM->rem.s.Env.regs[15] = pCtx->r15;
1647
1648 pVM->rem.s.Env.eip = pCtx->rip;
1649
1650 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1651#else
1652 Assert(R_EAX == 0);
1653 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1654 Assert(R_ECX == 1);
1655 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1656 Assert(R_EDX == 2);
1657 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1658 Assert(R_EBX == 3);
1659 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1660 Assert(R_ESP == 4);
1661 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1662 Assert(R_EBP == 5);
1663 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1664 Assert(R_ESI == 6);
1665 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1666 Assert(R_EDI == 7);
1667 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1668 pVM->rem.s.Env.eip = pCtx->eip;
1669
1670 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1671#endif
1672
1673 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1674
1675 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1676 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1677 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1678 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1679 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1680 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1681 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1682 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1683 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1684
1685 /*
1686 * Clear the halted hidden flag (the interrupt waking up the CPU can
1687 * have been dispatched in raw mode).
1688 */
1689 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1690
1691 /*
1692 * Replay invlpg?
1693 */
1694 if (pVM->rem.s.cInvalidatedPages)
1695 {
1696 pVM->rem.s.fIgnoreInvlPg = true;
1697 RTUINT i;
1698 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1699 {
1700 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1701 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1702 }
1703 pVM->rem.s.fIgnoreInvlPg = false;
1704 pVM->rem.s.cInvalidatedPages = 0;
1705 }
1706
1707 /* Replay notification changes? */
1708 if (pVM->rem.s.cHandlerNotifications)
1709 REMR3ReplayHandlerNotifications(pVM);
1710
1711 /* Update MSRs; before CRx registers! */
1712 pVM->rem.s.Env.efer = pCtx->msrEFER;
1713 pVM->rem.s.Env.star = pCtx->msrSTAR;
1714 pVM->rem.s.Env.pat = pCtx->msrPAT;
1715#ifdef TARGET_X86_64
1716 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1717 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1718 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1719 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1720
1721 /* Update the internal long mode activate flag according to the new EFER value. */
1722 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1723 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1724 else
1725 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1726#endif
1727
1728
1729 /*
1730 * Registers which are rarely changed and require special handling / order when changed.
1731 */
1732 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1733 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1734 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1735 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1736 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1737 {
1738 if (fFlags & CPUM_CHANGED_FPU_REM)
1739 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1740
1741 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1742 {
1743 pVM->rem.s.fIgnoreCR3Load = true;
1744 tlb_flush(&pVM->rem.s.Env, true);
1745 pVM->rem.s.fIgnoreCR3Load = false;
1746 }
1747
1748 /* CR4 before CR0! */
1749 if (fFlags & CPUM_CHANGED_CR4)
1750 {
1751 pVM->rem.s.fIgnoreCR3Load = true;
1752 pVM->rem.s.fIgnoreCpuMode = true;
1753 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1754 pVM->rem.s.fIgnoreCpuMode = false;
1755 pVM->rem.s.fIgnoreCR3Load = false;
1756 }
1757
1758 if (fFlags & CPUM_CHANGED_CR0)
1759 {
1760 pVM->rem.s.fIgnoreCR3Load = true;
1761 pVM->rem.s.fIgnoreCpuMode = true;
1762 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1763 pVM->rem.s.fIgnoreCpuMode = false;
1764 pVM->rem.s.fIgnoreCR3Load = false;
1765 }
1766
1767 if (fFlags & CPUM_CHANGED_CR3)
1768 {
1769 pVM->rem.s.fIgnoreCR3Load = true;
1770 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1771 pVM->rem.s.fIgnoreCR3Load = false;
1772 }
1773
1774 if (fFlags & CPUM_CHANGED_GDTR)
1775 {
1776 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1777 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1778 }
1779
1780 if (fFlags & CPUM_CHANGED_IDTR)
1781 {
1782 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1783 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1784 }
1785
1786 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1787 {
1788 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1789 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1790 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1791 }
1792
1793 if (fFlags & CPUM_CHANGED_LDTR)
1794 {
1795 if (fHiddenSelRegsValid)
1796 {
1797 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1798 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1799 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1800 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1801 }
1802 else
1803 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1804 }
1805
1806 if (fFlags & CPUM_CHANGED_TR)
1807 {
1808 if (fHiddenSelRegsValid)
1809 {
1810 pVM->rem.s.Env.tr.selector = pCtx->tr;
1811 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1812 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1813 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1814 }
1815 else
1816 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1817
1818 /** @note do_interrupt will fault if the busy flag is still set.... */
1819 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1820 }
1821
1822 if (fFlags & CPUM_CHANGED_CPUID)
1823 {
1824 uint32_t u32Dummy;
1825
1826 /*
1827 * Get the CPUID features.
1828 */
1829 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1830 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1831 }
1832 }
1833
1834 /*
1835 * Update selector registers.
1836 * This must be done *after* we've synced gdt, ldt and crX registers
1837 * since we're reading the GDT/LDT om sync_seg. This will happen with
1838 * saved state which takes a quick dip into rawmode for instance.
1839 */
1840 /*
1841 * Stack; Note first check this one as the CPL might have changed. The
1842 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1843 */
1844
1845 if (fHiddenSelRegsValid)
1846 {
1847 /* The hidden selector registers are valid in the CPU context. */
1848 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1849
1850 /* Set current CPL */
1851 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1852
1853 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1854 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1855 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1856 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1857 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1858 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1859 }
1860 else
1861 {
1862 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1863 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1864 {
1865 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1866
1867 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1868 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1869#ifdef VBOX_WITH_STATISTICS
1870 if (pVM->rem.s.Env.segs[R_SS].newselector)
1871 {
1872 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1873 }
1874#endif
1875 }
1876 else
1877 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1878
1879 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1880 {
1881 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1882 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1883#ifdef VBOX_WITH_STATISTICS
1884 if (pVM->rem.s.Env.segs[R_ES].newselector)
1885 {
1886 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1887 }
1888#endif
1889 }
1890 else
1891 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1892
1893 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1894 {
1895 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1896 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1897#ifdef VBOX_WITH_STATISTICS
1898 if (pVM->rem.s.Env.segs[R_CS].newselector)
1899 {
1900 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1901 }
1902#endif
1903 }
1904 else
1905 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1906
1907 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1908 {
1909 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1910 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1911#ifdef VBOX_WITH_STATISTICS
1912 if (pVM->rem.s.Env.segs[R_DS].newselector)
1913 {
1914 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1915 }
1916#endif
1917 }
1918 else
1919 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1920
1921 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1922 * be the same but not the base/limit. */
1923 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1924 {
1925 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1926 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1927#ifdef VBOX_WITH_STATISTICS
1928 if (pVM->rem.s.Env.segs[R_FS].newselector)
1929 {
1930 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1931 }
1932#endif
1933 }
1934 else
1935 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1936
1937 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1938 {
1939 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1940 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1941#ifdef VBOX_WITH_STATISTICS
1942 if (pVM->rem.s.Env.segs[R_GS].newselector)
1943 {
1944 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1945 }
1946#endif
1947 }
1948 else
1949 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1950 }
1951
1952 /*
1953 * Check for traps.
1954 */
1955 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1956 TRPMEVENT enmType;
1957 uint8_t u8TrapNo;
1958 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1959 if (VBOX_SUCCESS(rc))
1960 {
1961#ifdef DEBUG
1962 if (u8TrapNo == 0x80)
1963 {
1964 remR3DumpLnxSyscall(pVM);
1965 remR3DumpOBsdSyscall(pVM);
1966 }
1967#endif
1968
1969 pVM->rem.s.Env.exception_index = u8TrapNo;
1970 if (enmType != TRPM_SOFTWARE_INT)
1971 {
1972 pVM->rem.s.Env.exception_is_int = 0;
1973 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1974 }
1975 else
1976 {
1977 /*
1978 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1979 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1980 * for int03 and into.
1981 */
1982 pVM->rem.s.Env.exception_is_int = 1;
1983 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1984 /* int 3 may be generated by one-byte 0xcc */
1985 if (u8TrapNo == 3)
1986 {
1987 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1988 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1989 }
1990 /* int 4 may be generated by one-byte 0xce */
1991 else if (u8TrapNo == 4)
1992 {
1993 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
1994 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1995 }
1996 }
1997
1998 /* get error code and cr2 if needed. */
1999 switch (u8TrapNo)
2000 {
2001 case 0x0e:
2002 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2003 /* fallthru */
2004 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2005 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2006 break;
2007
2008 case 0x11: case 0x08:
2009 default:
2010 pVM->rem.s.Env.error_code = 0;
2011 break;
2012 }
2013
2014 /*
2015 * We can now reset the active trap since the recompiler is gonna have a go at it.
2016 */
2017 rc = TRPMResetTrap(pVM);
2018 AssertRC(rc);
2019 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2020 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2021 }
2022
2023 /*
2024 * Clear old interrupt request flags; Check for pending hardware interrupts.
2025 * (See @remark for why we don't check for other FFs.)
2026 */
2027 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2028 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2029 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2030 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2031
2032 /*
2033 * We're now in REM mode.
2034 */
2035 pVM->rem.s.fInREM = true;
2036 pVM->rem.s.fInStateSync = false;
2037 pVM->rem.s.cCanExecuteRaw = 0;
2038 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2039 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2040 return VINF_SUCCESS;
2041}
2042
2043
2044/**
2045 * Syncs back changes in the REM state to the the VM state.
2046 *
2047 * This must be called after invoking REMR3Run().
2048 * Calling it several times in a row is not permitted.
2049 *
2050 * @returns VBox status code.
2051 *
2052 * @param pVM VM Handle.
2053 */
2054REMR3DECL(int) REMR3StateBack(PVM pVM)
2055{
2056 Log2(("REMR3StateBack:\n"));
2057 Assert(pVM->rem.s.fInREM);
2058 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2059 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2060
2061 /*
2062 * Copy back the registers.
2063 * This is done in the order they are declared in the CPUMCTX structure.
2064 */
2065
2066 /** @todo FOP */
2067 /** @todo FPUIP */
2068 /** @todo CS */
2069 /** @todo FPUDP */
2070 /** @todo DS */
2071 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2072 pCtx->fpu.MXCSR = 0;
2073 pCtx->fpu.MXCSR_MASK = 0;
2074
2075 /** @todo check if FPU/XMM was actually used in the recompiler */
2076 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2077//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2078
2079#ifdef TARGET_X86_64
2080 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2081 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2082 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2083 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2084 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2085 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2086 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2087 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2088 pCtx->r8 = pVM->rem.s.Env.regs[8];
2089 pCtx->r9 = pVM->rem.s.Env.regs[9];
2090 pCtx->r10 = pVM->rem.s.Env.regs[10];
2091 pCtx->r11 = pVM->rem.s.Env.regs[11];
2092 pCtx->r12 = pVM->rem.s.Env.regs[12];
2093 pCtx->r13 = pVM->rem.s.Env.regs[13];
2094 pCtx->r14 = pVM->rem.s.Env.regs[14];
2095 pCtx->r15 = pVM->rem.s.Env.regs[15];
2096
2097 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2098
2099#else
2100 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2101 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2102 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2103 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2104 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2105 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2106 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2107
2108 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2109#endif
2110
2111 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2112
2113#ifdef VBOX_WITH_STATISTICS
2114 if (pVM->rem.s.Env.segs[R_SS].newselector)
2115 {
2116 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2117 }
2118 if (pVM->rem.s.Env.segs[R_GS].newselector)
2119 {
2120 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2121 }
2122 if (pVM->rem.s.Env.segs[R_FS].newselector)
2123 {
2124 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2125 }
2126 if (pVM->rem.s.Env.segs[R_ES].newselector)
2127 {
2128 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2129 }
2130 if (pVM->rem.s.Env.segs[R_DS].newselector)
2131 {
2132 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2133 }
2134 if (pVM->rem.s.Env.segs[R_CS].newselector)
2135 {
2136 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2137 }
2138#endif
2139 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2140 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2141 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2142 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2143 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2144
2145#ifdef TARGET_X86_64
2146 pCtx->rip = pVM->rem.s.Env.eip;
2147 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2148#else
2149 pCtx->eip = pVM->rem.s.Env.eip;
2150 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2151#endif
2152
2153 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2154 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2155 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2156 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2157
2158 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2159 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2160 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2161 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2162 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2163 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2164 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2165 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2166
2167 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2168 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2169 {
2170 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2171 STAM_COUNTER_INC(&gStatREMGDTChange);
2172 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2173 }
2174
2175 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2176 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2177 {
2178 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2179 STAM_COUNTER_INC(&gStatREMIDTChange);
2180 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2181 }
2182
2183 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2184 {
2185 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2186 STAM_COUNTER_INC(&gStatREMLDTRChange);
2187 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2188 }
2189 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2190 {
2191 pCtx->tr = pVM->rem.s.Env.tr.selector;
2192 STAM_COUNTER_INC(&gStatREMTRChange);
2193 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2194 }
2195
2196 /** @todo These values could still be out of sync! */
2197 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2198 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2199 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2200 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2201
2202 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2203 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2204 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2205
2206 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2207 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2208 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2209
2210 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2211 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2212 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2213
2214 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2215 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2216 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2217
2218 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2219 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2220 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2221
2222 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2223 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2224 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2225
2226 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2227 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2228 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2229
2230 /* Sysenter MSR */
2231 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2232 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2233 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2234
2235 /* System MSRs. */
2236 pCtx->msrEFER = pVM->rem.s.Env.efer;
2237 pCtx->msrSTAR = pVM->rem.s.Env.star;
2238 pCtx->msrPAT = pVM->rem.s.Env.pat;
2239#ifdef TARGET_X86_64
2240 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2241 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2242 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2243 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2244#endif
2245
2246 remR3TrapClear(pVM);
2247
2248 /*
2249 * Check for traps.
2250 */
2251 if ( pVM->rem.s.Env.exception_index >= 0
2252 && pVM->rem.s.Env.exception_index < 256)
2253 {
2254 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2255 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2256 AssertRC(rc);
2257 switch (pVM->rem.s.Env.exception_index)
2258 {
2259 case 0x0e:
2260 TRPMSetFaultAddress(pVM, pCtx->cr2);
2261 /* fallthru */
2262 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2263 case 0x11: case 0x08: /* 0 */
2264 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2265 break;
2266 }
2267
2268 }
2269
2270 /*
2271 * We're not longer in REM mode.
2272 */
2273 pVM->rem.s.fInREM = false;
2274 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2275 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2276 return VINF_SUCCESS;
2277}
2278
2279
2280/**
2281 * This is called by the disassembler when it wants to update the cpu state
2282 * before for instance doing a register dump.
2283 */
2284static void remR3StateUpdate(PVM pVM)
2285{
2286 Assert(pVM->rem.s.fInREM);
2287 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2288
2289 /*
2290 * Copy back the registers.
2291 * This is done in the order they are declared in the CPUMCTX structure.
2292 */
2293
2294 /** @todo FOP */
2295 /** @todo FPUIP */
2296 /** @todo CS */
2297 /** @todo FPUDP */
2298 /** @todo DS */
2299 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2300 pCtx->fpu.MXCSR = 0;
2301 pCtx->fpu.MXCSR_MASK = 0;
2302
2303 /** @todo check if FPU/XMM was actually used in the recompiler */
2304 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2305//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2306
2307#ifdef TARGET_X86_64
2308 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2309 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2310 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2311 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2312 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2313 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2314 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2315 pCtx->r8 = pVM->rem.s.Env.regs[8];
2316 pCtx->r9 = pVM->rem.s.Env.regs[9];
2317 pCtx->r10 = pVM->rem.s.Env.regs[10];
2318 pCtx->r11 = pVM->rem.s.Env.regs[11];
2319 pCtx->r12 = pVM->rem.s.Env.regs[12];
2320 pCtx->r13 = pVM->rem.s.Env.regs[13];
2321 pCtx->r14 = pVM->rem.s.Env.regs[14];
2322 pCtx->r15 = pVM->rem.s.Env.regs[15];
2323
2324 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2325#else
2326 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2327 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2328 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2329 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2330 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2331 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2332 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2333
2334 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2335#endif
2336
2337 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2338
2339 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2340 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2341 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2342 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2343 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2344
2345#ifdef TARGET_X86_64
2346 pCtx->rip = pVM->rem.s.Env.eip;
2347 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2348#else
2349 pCtx->eip = pVM->rem.s.Env.eip;
2350 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2351#endif
2352
2353 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2354 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2355 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2356 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2357
2358 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2359 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2360 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2361 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2362 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2363 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2364 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2365 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2366
2367 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2368 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2369 {
2370 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2371 STAM_COUNTER_INC(&gStatREMGDTChange);
2372 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2373 }
2374
2375 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2376 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2377 {
2378 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2379 STAM_COUNTER_INC(&gStatREMIDTChange);
2380 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2381 }
2382
2383 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2384 {
2385 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2386 STAM_COUNTER_INC(&gStatREMLDTRChange);
2387 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2388 }
2389 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2390 {
2391 pCtx->tr = pVM->rem.s.Env.tr.selector;
2392 STAM_COUNTER_INC(&gStatREMTRChange);
2393 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2394 }
2395
2396 /** @todo These values could still be out of sync! */
2397 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2398 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2399 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2400 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2401
2402 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2403 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2404 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2405
2406 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2407 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2408 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2409
2410 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2411 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2412 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2413
2414 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2415 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2416 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2417
2418 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2419 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2420 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2421
2422 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2423 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2424 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2425
2426 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2427 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2428 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2429
2430 /* Sysenter MSR */
2431 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2432 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2433 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2434
2435 /* System MSRs. */
2436 pCtx->msrEFER = pVM->rem.s.Env.efer;
2437 pCtx->msrSTAR = pVM->rem.s.Env.star;
2438 pCtx->msrPAT = pVM->rem.s.Env.pat;
2439#ifdef TARGET_X86_64
2440 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2441 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2442 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2443 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2444#endif
2445
2446}
2447
2448
2449/**
2450 * Update the VMM state information if we're currently in REM.
2451 *
2452 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2453 * we're currently executing in REM and the VMM state is invalid. This method will of
2454 * course check that we're executing in REM before syncing any data over to the VMM.
2455 *
2456 * @param pVM The VM handle.
2457 */
2458REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2459{
2460 if (pVM->rem.s.fInREM)
2461 remR3StateUpdate(pVM);
2462}
2463
2464
2465#undef LOG_GROUP
2466#define LOG_GROUP LOG_GROUP_REM
2467
2468
2469/**
2470 * Notify the recompiler about Address Gate 20 state change.
2471 *
2472 * This notification is required since A20 gate changes are
2473 * initialized from a device driver and the VM might just as
2474 * well be in REM mode as in RAW mode.
2475 *
2476 * @param pVM VM handle.
2477 * @param fEnable True if the gate should be enabled.
2478 * False if the gate should be disabled.
2479 */
2480REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2481{
2482 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2483 VM_ASSERT_EMT(pVM);
2484
2485 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2486 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2487
2488 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2489
2490 pVM->rem.s.fIgnoreAll = fSaved;
2491}
2492
2493
2494/**
2495 * Replays the invalidated recorded pages.
2496 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2497 *
2498 * @param pVM VM handle.
2499 */
2500REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2501{
2502 VM_ASSERT_EMT(pVM);
2503
2504 /*
2505 * Sync the required registers.
2506 */
2507 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2508 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2509 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2510 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2511
2512 /*
2513 * Replay the flushes.
2514 */
2515 pVM->rem.s.fIgnoreInvlPg = true;
2516 RTUINT i;
2517 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2518 {
2519 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2520 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2521 }
2522 pVM->rem.s.fIgnoreInvlPg = false;
2523 pVM->rem.s.cInvalidatedPages = 0;
2524}
2525
2526
2527/**
2528 * Replays the handler notification changes
2529 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2530 *
2531 * @param pVM VM handle.
2532 */
2533REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2534{
2535 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2536 VM_ASSERT_EMT(pVM);
2537
2538 /*
2539 * Replay the flushes.
2540 */
2541 RTUINT i;
2542 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2543 pVM->rem.s.cHandlerNotifications = 0;
2544 for (i = 0; i < c; i++)
2545 {
2546 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2547 switch (pRec->enmKind)
2548 {
2549 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2550 REMR3NotifyHandlerPhysicalRegister(pVM,
2551 pRec->u.PhysicalRegister.enmType,
2552 pRec->u.PhysicalRegister.GCPhys,
2553 pRec->u.PhysicalRegister.cb,
2554 pRec->u.PhysicalRegister.fHasHCHandler);
2555 break;
2556
2557 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2558 REMR3NotifyHandlerPhysicalDeregister(pVM,
2559 pRec->u.PhysicalDeregister.enmType,
2560 pRec->u.PhysicalDeregister.GCPhys,
2561 pRec->u.PhysicalDeregister.cb,
2562 pRec->u.PhysicalDeregister.fHasHCHandler,
2563 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2564 break;
2565
2566 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2567 REMR3NotifyHandlerPhysicalModify(pVM,
2568 pRec->u.PhysicalModify.enmType,
2569 pRec->u.PhysicalModify.GCPhysOld,
2570 pRec->u.PhysicalModify.GCPhysNew,
2571 pRec->u.PhysicalModify.cb,
2572 pRec->u.PhysicalModify.fHasHCHandler,
2573 pRec->u.PhysicalModify.fRestoreAsRAM);
2574 break;
2575
2576 default:
2577 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2578 break;
2579 }
2580 }
2581 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2582}
2583
2584
2585/**
2586 * Notify REM about changed code page.
2587 *
2588 * @returns VBox status code.
2589 * @param pVM VM handle.
2590 * @param pvCodePage Code page address
2591 */
2592REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2593{
2594 int rc;
2595 RTGCPHYS PhysGC;
2596 uint64_t flags;
2597
2598 VM_ASSERT_EMT(pVM);
2599
2600#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2601 /*
2602 * Get the physical page address.
2603 */
2604 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2605 if (rc == VINF_SUCCESS)
2606 {
2607 /*
2608 * Sync the required registers and flush the whole page.
2609 * (Easier to do the whole page than notifying it about each physical
2610 * byte that was changed.
2611 */
2612 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2613 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2614 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2615 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2616
2617 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2618 }
2619#endif
2620 return VINF_SUCCESS;
2621}
2622
2623
2624/**
2625 * Notification about a successful MMR3PhysRegister() call.
2626 *
2627 * @param pVM VM handle.
2628 * @param GCPhys The physical address the RAM.
2629 * @param cb Size of the memory.
2630 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2631 */
2632REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2633{
2634 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2635 VM_ASSERT_EMT(pVM);
2636
2637 /*
2638 * Validate input - we trust the caller.
2639 */
2640 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2641 Assert(cb);
2642 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2643
2644 /*
2645 * Base ram?
2646 */
2647 if (!GCPhys)
2648 {
2649 phys_ram_size = cb;
2650 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2651#ifndef VBOX_STRICT
2652 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2653 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2654#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2655 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2656 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2657 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2658 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2659 AssertRC(rc);
2660 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2661#endif
2662 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2663 }
2664
2665 /*
2666 * Register the ram.
2667 */
2668 Assert(!pVM->rem.s.fIgnoreAll);
2669 pVM->rem.s.fIgnoreAll = true;
2670
2671#ifdef VBOX_WITH_NEW_PHYS_CODE
2672 if (fFlags & MM_RAM_FLAGS_RESERVED)
2673 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2674 else
2675 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2676#else
2677 if (!GCPhys)
2678 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2679 else
2680 {
2681 if (fFlags & MM_RAM_FLAGS_RESERVED)
2682 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2683 else
2684 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2685 }
2686#endif
2687 Assert(pVM->rem.s.fIgnoreAll);
2688 pVM->rem.s.fIgnoreAll = false;
2689}
2690
2691#ifndef VBOX_WITH_NEW_PHYS_CODE
2692
2693/**
2694 * Notification about a successful PGMR3PhysRegisterChunk() call.
2695 *
2696 * @param pVM VM handle.
2697 * @param GCPhys The physical address the RAM.
2698 * @param cb Size of the memory.
2699 * @param pvRam The HC address of the RAM.
2700 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2701 */
2702REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2703{
2704 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2705 VM_ASSERT_EMT(pVM);
2706
2707 /*
2708 * Validate input - we trust the caller.
2709 */
2710 Assert(pvRam);
2711 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2712 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2713 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2714 Assert(fFlags == 0 /* normal RAM */);
2715 Assert(!pVM->rem.s.fIgnoreAll);
2716 pVM->rem.s.fIgnoreAll = true;
2717
2718 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2719
2720 Assert(pVM->rem.s.fIgnoreAll);
2721 pVM->rem.s.fIgnoreAll = false;
2722}
2723
2724
2725/**
2726 * Grows dynamically allocated guest RAM.
2727 * Will raise a fatal error if the operation fails.
2728 *
2729 * @param physaddr The physical address.
2730 */
2731void remR3GrowDynRange(unsigned long physaddr)
2732{
2733 int rc;
2734 PVM pVM = cpu_single_env->pVM;
2735
2736 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2737 const RTGCPHYS GCPhys = physaddr;
2738 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2739 if (VBOX_SUCCESS(rc))
2740 return;
2741
2742 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2743 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2744 AssertFatalFailed();
2745}
2746
2747#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2748
2749/**
2750 * Notification about a successful MMR3PhysRomRegister() call.
2751 *
2752 * @param pVM VM handle.
2753 * @param GCPhys The physical address of the ROM.
2754 * @param cb The size of the ROM.
2755 * @param pvCopy Pointer to the ROM copy.
2756 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2757 * This function will be called when ever the protection of the
2758 * shadow ROM changes (at reset and end of POST).
2759 */
2760REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2761{
2762 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2763 VM_ASSERT_EMT(pVM);
2764
2765 /*
2766 * Validate input - we trust the caller.
2767 */
2768 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2769 Assert(cb);
2770 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2771 Assert(pvCopy);
2772 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2773
2774 /*
2775 * Register the rom.
2776 */
2777 Assert(!pVM->rem.s.fIgnoreAll);
2778 pVM->rem.s.fIgnoreAll = true;
2779
2780 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2781
2782 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2783
2784 Assert(pVM->rem.s.fIgnoreAll);
2785 pVM->rem.s.fIgnoreAll = false;
2786}
2787
2788
2789/**
2790 * Notification about a successful memory deregistration or reservation.
2791 *
2792 * @param pVM VM Handle.
2793 * @param GCPhys Start physical address.
2794 * @param cb The size of the range.
2795 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2796 * reserve any memory soon.
2797 */
2798REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2799{
2800 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2801 VM_ASSERT_EMT(pVM);
2802
2803 /*
2804 * Validate input - we trust the caller.
2805 */
2806 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2807 Assert(cb);
2808 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2809
2810 /*
2811 * Unassigning the memory.
2812 */
2813 Assert(!pVM->rem.s.fIgnoreAll);
2814 pVM->rem.s.fIgnoreAll = true;
2815
2816 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2817
2818 Assert(pVM->rem.s.fIgnoreAll);
2819 pVM->rem.s.fIgnoreAll = false;
2820}
2821
2822
2823/**
2824 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2825 *
2826 * @param pVM VM Handle.
2827 * @param enmType Handler type.
2828 * @param GCPhys Handler range address.
2829 * @param cb Size of the handler range.
2830 * @param fHasHCHandler Set if the handler has a HC callback function.
2831 *
2832 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2833 * Handler memory type to memory which has no HC handler.
2834 */
2835REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2836{
2837 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2838 enmType, GCPhys, cb, fHasHCHandler));
2839 VM_ASSERT_EMT(pVM);
2840 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2841 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2842
2843 if (pVM->rem.s.cHandlerNotifications)
2844 REMR3ReplayHandlerNotifications(pVM);
2845
2846 Assert(!pVM->rem.s.fIgnoreAll);
2847 pVM->rem.s.fIgnoreAll = true;
2848
2849 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2850 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2851 else if (fHasHCHandler)
2852 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2853
2854 Assert(pVM->rem.s.fIgnoreAll);
2855 pVM->rem.s.fIgnoreAll = false;
2856}
2857
2858
2859/**
2860 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2861 *
2862 * @param pVM VM Handle.
2863 * @param enmType Handler type.
2864 * @param GCPhys Handler range address.
2865 * @param cb Size of the handler range.
2866 * @param fHasHCHandler Set if the handler has a HC callback function.
2867 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2868 */
2869REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2870{
2871 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2872 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2873 VM_ASSERT_EMT(pVM);
2874
2875 if (pVM->rem.s.cHandlerNotifications)
2876 REMR3ReplayHandlerNotifications(pVM);
2877
2878 Assert(!pVM->rem.s.fIgnoreAll);
2879 pVM->rem.s.fIgnoreAll = true;
2880
2881/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2882 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2883 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2884 else if (fHasHCHandler)
2885 {
2886 if (!fRestoreAsRAM)
2887 {
2888 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2889 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2890 }
2891 else
2892 {
2893 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2894 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2895 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2896 }
2897 }
2898
2899 Assert(pVM->rem.s.fIgnoreAll);
2900 pVM->rem.s.fIgnoreAll = false;
2901}
2902
2903
2904/**
2905 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2906 *
2907 * @param pVM VM Handle.
2908 * @param enmType Handler type.
2909 * @param GCPhysOld Old handler range address.
2910 * @param GCPhysNew New handler range address.
2911 * @param cb Size of the handler range.
2912 * @param fHasHCHandler Set if the handler has a HC callback function.
2913 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2914 */
2915REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2916{
2917 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2918 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2919 VM_ASSERT_EMT(pVM);
2920 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2921
2922 if (pVM->rem.s.cHandlerNotifications)
2923 REMR3ReplayHandlerNotifications(pVM);
2924
2925 if (fHasHCHandler)
2926 {
2927 Assert(!pVM->rem.s.fIgnoreAll);
2928 pVM->rem.s.fIgnoreAll = true;
2929
2930 /*
2931 * Reset the old page.
2932 */
2933 if (!fRestoreAsRAM)
2934 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2935 else
2936 {
2937 /* This is not perfect, but it'll do for PD monitoring... */
2938 Assert(cb == PAGE_SIZE);
2939 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2940 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2941 }
2942
2943 /*
2944 * Update the new page.
2945 */
2946 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2947 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2948 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2949
2950 Assert(pVM->rem.s.fIgnoreAll);
2951 pVM->rem.s.fIgnoreAll = false;
2952 }
2953}
2954
2955
2956/**
2957 * Checks if we're handling access to this page or not.
2958 *
2959 * @returns true if we're trapping access.
2960 * @returns false if we aren't.
2961 * @param pVM The VM handle.
2962 * @param GCPhys The physical address.
2963 *
2964 * @remark This function will only work correctly in VBOX_STRICT builds!
2965 */
2966REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2967{
2968#ifdef VBOX_STRICT
2969 if (pVM->rem.s.cHandlerNotifications)
2970 REMR3ReplayHandlerNotifications(pVM);
2971
2972 unsigned long off = get_phys_page_offset(GCPhys);
2973 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2974 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2975 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2976#else
2977 return false;
2978#endif
2979}
2980
2981
2982/**
2983 * Deals with a rare case in get_phys_addr_code where the code
2984 * is being monitored.
2985 *
2986 * It could also be an MMIO page, in which case we will raise a fatal error.
2987 *
2988 * @returns The physical address corresponding to addr.
2989 * @param env The cpu environment.
2990 * @param addr The virtual address.
2991 * @param pTLBEntry The TLB entry.
2992 */
2993target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2994{
2995 PVM pVM = env->pVM;
2996 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2997 {
2998 target_ulong ret = pTLBEntry->addend + addr;
2999 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3000 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3001 return ret;
3002 }
3003 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3004 "*** handlers\n",
3005 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3006 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3007 LogRel(("*** mmio\n"));
3008 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3009 LogRel(("*** phys\n"));
3010 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3011 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3012 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3013 AssertFatalFailed();
3014}
3015
3016
3017/** Validate the physical address passed to the read functions.
3018 * Useful for finding non-guest-ram reads/writes. */
3019#if 0 //1 /* disable if it becomes bothersome... */
3020# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3021#else
3022# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3023#endif
3024
3025/**
3026 * Read guest RAM and ROM.
3027 *
3028 * @param SrcGCPhys The source address (guest physical).
3029 * @param pvDst The destination address.
3030 * @param cb Number of bytes
3031 */
3032void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3033{
3034 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3035 VBOX_CHECK_ADDR(SrcGCPhys);
3036 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3037 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3038}
3039
3040
3041/**
3042 * Read guest RAM and ROM, unsigned 8-bit.
3043 *
3044 * @param SrcGCPhys The source address (guest physical).
3045 */
3046uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3047{
3048 uint8_t val;
3049 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3050 VBOX_CHECK_ADDR(SrcGCPhys);
3051 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3052 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3053 return val;
3054}
3055
3056
3057/**
3058 * Read guest RAM and ROM, signed 8-bit.
3059 *
3060 * @param SrcGCPhys The source address (guest physical).
3061 */
3062int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3063{
3064 int8_t val;
3065 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3066 VBOX_CHECK_ADDR(SrcGCPhys);
3067 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3068 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3069 return val;
3070}
3071
3072
3073/**
3074 * Read guest RAM and ROM, unsigned 16-bit.
3075 *
3076 * @param SrcGCPhys The source address (guest physical).
3077 */
3078uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3079{
3080 uint16_t val;
3081 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3082 VBOX_CHECK_ADDR(SrcGCPhys);
3083 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3084 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3085 return val;
3086}
3087
3088
3089/**
3090 * Read guest RAM and ROM, signed 16-bit.
3091 *
3092 * @param SrcGCPhys The source address (guest physical).
3093 */
3094int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3095{
3096 uint16_t val;
3097 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3098 VBOX_CHECK_ADDR(SrcGCPhys);
3099 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3100 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3101 return val;
3102}
3103
3104
3105/**
3106 * Read guest RAM and ROM, unsigned 32-bit.
3107 *
3108 * @param SrcGCPhys The source address (guest physical).
3109 */
3110uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3111{
3112 uint32_t val;
3113 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3114 VBOX_CHECK_ADDR(SrcGCPhys);
3115 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3116 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3117 return val;
3118}
3119
3120
3121/**
3122 * Read guest RAM and ROM, signed 32-bit.
3123 *
3124 * @param SrcGCPhys The source address (guest physical).
3125 */
3126int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3127{
3128 int32_t val;
3129 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3130 VBOX_CHECK_ADDR(SrcGCPhys);
3131 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3132 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3133 return val;
3134}
3135
3136
3137/**
3138 * Read guest RAM and ROM, unsigned 64-bit.
3139 *
3140 * @param SrcGCPhys The source address (guest physical).
3141 */
3142uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3143{
3144 uint64_t val;
3145 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3146 VBOX_CHECK_ADDR(SrcGCPhys);
3147 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3148 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3149 return val;
3150}
3151
3152
3153/**
3154 * Write guest RAM.
3155 *
3156 * @param DstGCPhys The destination address (guest physical).
3157 * @param pvSrc The source address.
3158 * @param cb Number of bytes to write
3159 */
3160void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3161{
3162 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3163 VBOX_CHECK_ADDR(DstGCPhys);
3164 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3165 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3166}
3167
3168
3169/**
3170 * Write guest RAM, unsigned 8-bit.
3171 *
3172 * @param DstGCPhys The destination address (guest physical).
3173 * @param val Value
3174 */
3175void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3176{
3177 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3178 VBOX_CHECK_ADDR(DstGCPhys);
3179 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3180 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3181}
3182
3183
3184/**
3185 * Write guest RAM, unsigned 8-bit.
3186 *
3187 * @param DstGCPhys The destination address (guest physical).
3188 * @param val Value
3189 */
3190void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3191{
3192 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3193 VBOX_CHECK_ADDR(DstGCPhys);
3194 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3195 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3196}
3197
3198
3199/**
3200 * Write guest RAM, unsigned 32-bit.
3201 *
3202 * @param DstGCPhys The destination address (guest physical).
3203 * @param val Value
3204 */
3205void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3206{
3207 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3208 VBOX_CHECK_ADDR(DstGCPhys);
3209 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3210 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3211}
3212
3213
3214/**
3215 * Write guest RAM, unsigned 64-bit.
3216 *
3217 * @param DstGCPhys The destination address (guest physical).
3218 * @param val Value
3219 */
3220void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3221{
3222 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3223 VBOX_CHECK_ADDR(DstGCPhys);
3224 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3225 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3226}
3227
3228#undef LOG_GROUP
3229#define LOG_GROUP LOG_GROUP_REM_MMIO
3230
3231/** Read MMIO memory. */
3232static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3233{
3234 uint32_t u32 = 0;
3235 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3236 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3237 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3238 return u32;
3239}
3240
3241/** Read MMIO memory. */
3242static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3243{
3244 uint32_t u32 = 0;
3245 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3246 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3247 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3248 return u32;
3249}
3250
3251/** Read MMIO memory. */
3252static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3253{
3254 uint32_t u32 = 0;
3255 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3256 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3257 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3258 return u32;
3259}
3260
3261/** Write to MMIO memory. */
3262static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3263{
3264 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3265 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3266 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3267}
3268
3269/** Write to MMIO memory. */
3270static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3271{
3272 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3273 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3274 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3275}
3276
3277/** Write to MMIO memory. */
3278static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3279{
3280 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3281 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3282 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3283}
3284
3285
3286#undef LOG_GROUP
3287#define LOG_GROUP LOG_GROUP_REM_HANDLER
3288
3289/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3290
3291static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3292{
3293 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3294 uint8_t u8;
3295 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3296 return u8;
3297}
3298
3299static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3300{
3301 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3302 uint16_t u16;
3303 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3304 return u16;
3305}
3306
3307static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3308{
3309 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3310 uint32_t u32;
3311 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3312 return u32;
3313}
3314
3315static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3316{
3317 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3318 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3319}
3320
3321static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3322{
3323 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3324 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3325}
3326
3327static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3328{
3329 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3330 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3331}
3332
3333/* -+- disassembly -+- */
3334
3335#undef LOG_GROUP
3336#define LOG_GROUP LOG_GROUP_REM_DISAS
3337
3338
3339/**
3340 * Enables or disables singled stepped disassembly.
3341 *
3342 * @returns VBox status code.
3343 * @param pVM VM handle.
3344 * @param fEnable To enable set this flag, to disable clear it.
3345 */
3346static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3347{
3348 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3349 VM_ASSERT_EMT(pVM);
3350
3351 if (fEnable)
3352 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3353 else
3354 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3355 return VINF_SUCCESS;
3356}
3357
3358
3359/**
3360 * Enables or disables singled stepped disassembly.
3361 *
3362 * @returns VBox status code.
3363 * @param pVM VM handle.
3364 * @param fEnable To enable set this flag, to disable clear it.
3365 */
3366REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3367{
3368 PVMREQ pReq;
3369 int rc;
3370
3371 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3372 if (VM_IS_EMT(pVM))
3373 return remR3DisasEnableStepping(pVM, fEnable);
3374
3375 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3376 AssertRC(rc);
3377 if (VBOX_SUCCESS(rc))
3378 rc = pReq->iStatus;
3379 VMR3ReqFree(pReq);
3380 return rc;
3381}
3382
3383
3384#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3385/**
3386 * External Debugger Command: .remstep [on|off|1|0]
3387 */
3388static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3389{
3390 bool fEnable;
3391 int rc;
3392
3393 /* print status */
3394 if (cArgs == 0)
3395 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3396 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3397
3398 /* convert the argument and change the mode. */
3399 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3400 if (VBOX_FAILURE(rc))
3401 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3402 rc = REMR3DisasEnableStepping(pVM, fEnable);
3403 if (VBOX_FAILURE(rc))
3404 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3405 return rc;
3406}
3407#endif
3408
3409
3410/**
3411 * Disassembles n instructions and prints them to the log.
3412 *
3413 * @returns Success indicator.
3414 * @param env Pointer to the recompiler CPU structure.
3415 * @param f32BitCode Indicates that whether or not the code should
3416 * be disassembled as 16 or 32 bit. If -1 the CS
3417 * selector will be inspected.
3418 * @param nrInstructions Nr of instructions to disassemble
3419 * @param pszPrefix
3420 * @remark not currently used for anything but ad-hoc debugging.
3421 */
3422bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3423{
3424 int i;
3425
3426 /*
3427 * Determin 16/32 bit mode.
3428 */
3429 if (f32BitCode == -1)
3430 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3431
3432 /*
3433 * Convert cs:eip to host context address.
3434 * We don't care to much about cross page correctness presently.
3435 */
3436 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3437 void *pvPC;
3438 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3439 {
3440 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3441
3442 /* convert eip to physical address. */
3443 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3444 GCPtrPC,
3445 env->cr[3],
3446 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3447 &pvPC);
3448 if (VBOX_FAILURE(rc))
3449 {
3450 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3451 return false;
3452 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3453 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3454 }
3455 }
3456 else
3457 {
3458 /* physical address */
3459 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3460 if (VBOX_FAILURE(rc))
3461 return false;
3462 }
3463
3464 /*
3465 * Disassemble.
3466 */
3467 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3468 DISCPUSTATE Cpu;
3469 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3470 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3471 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3472 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3473 //Cpu.dwUserData[2] = GCPtrPC;
3474
3475 for (i=0;i<nrInstructions;i++)
3476 {
3477 char szOutput[256];
3478 uint32_t cbOp;
3479 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3480 return false;
3481 if (pszPrefix)
3482 Log(("%s: %s", pszPrefix, szOutput));
3483 else
3484 Log(("%s", szOutput));
3485
3486 pvPC += cbOp;
3487 }
3488 return true;
3489}
3490
3491
3492/** @todo need to test the new code, using the old code in the mean while. */
3493#define USE_OLD_DUMP_AND_DISASSEMBLY
3494
3495/**
3496 * Disassembles one instruction and prints it to the log.
3497 *
3498 * @returns Success indicator.
3499 * @param env Pointer to the recompiler CPU structure.
3500 * @param f32BitCode Indicates that whether or not the code should
3501 * be disassembled as 16 or 32 bit. If -1 the CS
3502 * selector will be inspected.
3503 * @param pszPrefix
3504 */
3505bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3506{
3507#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3508 PVM pVM = env->pVM;
3509
3510 /* Doesn't work in long mode. */
3511 if (env->hflags & HF_LMA_MASK)
3512 return false;
3513
3514 /*
3515 * Determin 16/32 bit mode.
3516 */
3517 if (f32BitCode == -1)
3518 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3519
3520 /*
3521 * Log registers
3522 */
3523 if (LogIs2Enabled())
3524 {
3525 remR3StateUpdate(pVM);
3526 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3527 }
3528
3529 /*
3530 * Convert cs:eip to host context address.
3531 * We don't care to much about cross page correctness presently.
3532 */
3533 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3534 void *pvPC;
3535 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3536 {
3537 /* convert eip to physical address. */
3538 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3539 GCPtrPC,
3540 env->cr[3],
3541 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3542 &pvPC);
3543 if (VBOX_FAILURE(rc))
3544 {
3545 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3546 return false;
3547 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3548 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3549 }
3550 }
3551 else
3552 {
3553
3554 /* physical address */
3555 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3556 if (VBOX_FAILURE(rc))
3557 return false;
3558 }
3559
3560 /*
3561 * Disassemble.
3562 */
3563 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3564 DISCPUSTATE Cpu;
3565 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3566 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3567 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3568 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3569 //Cpu.dwUserData[2] = GCPtrPC;
3570 char szOutput[256];
3571 uint32_t cbOp;
3572 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3573 return false;
3574
3575 if (!f32BitCode)
3576 {
3577 if (pszPrefix)
3578 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3579 else
3580 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3581 }
3582 else
3583 {
3584 if (pszPrefix)
3585 Log(("%s: %s", pszPrefix, szOutput));
3586 else
3587 Log(("%s", szOutput));
3588 }
3589 return true;
3590
3591#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3592 PVM pVM = env->pVM;
3593 const bool fLog = LogIsEnabled();
3594 const bool fLog2 = LogIs2Enabled();
3595 int rc = VINF_SUCCESS;
3596
3597 /*
3598 * Don't bother if there ain't any log output to do.
3599 */
3600 if (!fLog && !fLog2)
3601 return true;
3602
3603 /*
3604 * Update the state so DBGF reads the correct register values.
3605 */
3606 remR3StateUpdate(pVM);
3607
3608 /*
3609 * Log registers if requested.
3610 */
3611 if (!fLog2)
3612 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3613
3614 /*
3615 * Disassemble to log.
3616 */
3617 if (fLog)
3618 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3619
3620 return VBOX_SUCCESS(rc);
3621#endif
3622}
3623
3624
3625/**
3626 * Disassemble recompiled code.
3627 *
3628 * @param phFileIgnored Ignored, logfile usually.
3629 * @param pvCode Pointer to the code block.
3630 * @param cb Size of the code block.
3631 */
3632void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3633{
3634 if (LogIs2Enabled())
3635 {
3636 unsigned off = 0;
3637 char szOutput[256];
3638 DISCPUSTATE Cpu;
3639
3640 memset(&Cpu, 0, sizeof(Cpu));
3641#ifdef RT_ARCH_X86
3642 Cpu.mode = CPUMODE_32BIT;
3643#else
3644 Cpu.mode = CPUMODE_64BIT;
3645#endif
3646
3647 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3648 while (off < cb)
3649 {
3650 uint32_t cbInstr;
3651 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3652 RTLogPrintf("%s", szOutput);
3653 else
3654 {
3655 RTLogPrintf("disas error\n");
3656 cbInstr = 1;
3657#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3658 break;
3659#endif
3660 }
3661 off += cbInstr;
3662 }
3663 }
3664 NOREF(phFileIgnored);
3665}
3666
3667
3668/**
3669 * Disassemble guest code.
3670 *
3671 * @param phFileIgnored Ignored, logfile usually.
3672 * @param uCode The guest address of the code to disassemble. (flat?)
3673 * @param cb Number of bytes to disassemble.
3674 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3675 */
3676void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3677{
3678 if (LogIs2Enabled())
3679 {
3680 PVM pVM = cpu_single_env->pVM;
3681
3682 /*
3683 * Update the state so DBGF reads the correct register values (flags).
3684 */
3685 remR3StateUpdate(pVM);
3686
3687 /*
3688 * Do the disassembling.
3689 */
3690 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3691 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3692 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3693 for (;;)
3694 {
3695 char szBuf[256];
3696 uint32_t cbInstr;
3697 int rc = DBGFR3DisasInstrEx(pVM,
3698 cs,
3699 eip,
3700 0,
3701 szBuf, sizeof(szBuf),
3702 &cbInstr);
3703 if (VBOX_SUCCESS(rc))
3704 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3705 else
3706 {
3707 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3708 cbInstr = 1;
3709 }
3710
3711 /* next */
3712 if (cb <= cbInstr)
3713 break;
3714 cb -= cbInstr;
3715 uCode += cbInstr;
3716 eip += cbInstr;
3717 }
3718 }
3719 NOREF(phFileIgnored);
3720}
3721
3722
3723/**
3724 * Looks up a guest symbol.
3725 *
3726 * @returns Pointer to symbol name. This is a static buffer.
3727 * @param orig_addr The address in question.
3728 */
3729const char *lookup_symbol(target_ulong orig_addr)
3730{
3731 RTGCINTPTR off = 0;
3732 DBGFSYMBOL Sym;
3733 PVM pVM = cpu_single_env->pVM;
3734 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3735 if (VBOX_SUCCESS(rc))
3736 {
3737 static char szSym[sizeof(Sym.szName) + 48];
3738 if (!off)
3739 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3740 else if (off > 0)
3741 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3742 else
3743 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3744 return szSym;
3745 }
3746 return "<N/A>";
3747}
3748
3749
3750#undef LOG_GROUP
3751#define LOG_GROUP LOG_GROUP_REM
3752
3753
3754/* -+- FF notifications -+- */
3755
3756
3757/**
3758 * Notification about a pending interrupt.
3759 *
3760 * @param pVM VM Handle.
3761 * @param u8Interrupt Interrupt
3762 * @thread The emulation thread.
3763 */
3764REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3765{
3766 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3767 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3768}
3769
3770/**
3771 * Notification about a pending interrupt.
3772 *
3773 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3774 * @param pVM VM Handle.
3775 * @thread The emulation thread.
3776 */
3777REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3778{
3779 return pVM->rem.s.u32PendingInterrupt;
3780}
3781
3782/**
3783 * Notification about the interrupt FF being set.
3784 *
3785 * @param pVM VM Handle.
3786 * @thread The emulation thread.
3787 */
3788REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3789{
3790 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3791 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3792 if (pVM->rem.s.fInREM)
3793 {
3794 if (VM_IS_EMT(pVM))
3795 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3796 else
3797 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3798 }
3799}
3800
3801
3802/**
3803 * Notification about the interrupt FF being set.
3804 *
3805 * @param pVM VM Handle.
3806 * @thread Any.
3807 */
3808REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3809{
3810 LogFlow(("REMR3NotifyInterruptClear:\n"));
3811 if (pVM->rem.s.fInREM)
3812 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3813}
3814
3815
3816/**
3817 * Notification about pending timer(s).
3818 *
3819 * @param pVM VM Handle.
3820 * @thread Any.
3821 */
3822REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3823{
3824#ifndef DEBUG_bird
3825 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3826#endif
3827 if (pVM->rem.s.fInREM)
3828 {
3829 if (VM_IS_EMT(pVM))
3830 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3831 else
3832 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3833 }
3834}
3835
3836
3837/**
3838 * Notification about pending DMA transfers.
3839 *
3840 * @param pVM VM Handle.
3841 * @thread Any.
3842 */
3843REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3844{
3845 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3846 if (pVM->rem.s.fInREM)
3847 {
3848 if (VM_IS_EMT(pVM))
3849 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3850 else
3851 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3852 }
3853}
3854
3855
3856/**
3857 * Notification about pending timer(s).
3858 *
3859 * @param pVM VM Handle.
3860 * @thread Any.
3861 */
3862REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3863{
3864 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3865 if (pVM->rem.s.fInREM)
3866 {
3867 if (VM_IS_EMT(pVM))
3868 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3869 else
3870 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3871 }
3872}
3873
3874
3875/**
3876 * Notification about pending FF set by an external thread.
3877 *
3878 * @param pVM VM handle.
3879 * @thread Any.
3880 */
3881REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3882{
3883 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3884 if (pVM->rem.s.fInREM)
3885 {
3886 if (VM_IS_EMT(pVM))
3887 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3888 else
3889 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3890 }
3891}
3892
3893
3894#ifdef VBOX_WITH_STATISTICS
3895void remR3ProfileStart(int statcode)
3896{
3897 STAMPROFILEADV *pStat;
3898 switch(statcode)
3899 {
3900 case STATS_EMULATE_SINGLE_INSTR:
3901 pStat = &gStatExecuteSingleInstr;
3902 break;
3903 case STATS_QEMU_COMPILATION:
3904 pStat = &gStatCompilationQEmu;
3905 break;
3906 case STATS_QEMU_RUN_EMULATED_CODE:
3907 pStat = &gStatRunCodeQEmu;
3908 break;
3909 case STATS_QEMU_TOTAL:
3910 pStat = &gStatTotalTimeQEmu;
3911 break;
3912 case STATS_QEMU_RUN_TIMERS:
3913 pStat = &gStatTimers;
3914 break;
3915 case STATS_TLB_LOOKUP:
3916 pStat= &gStatTBLookup;
3917 break;
3918 case STATS_IRQ_HANDLING:
3919 pStat= &gStatIRQ;
3920 break;
3921 case STATS_RAW_CHECK:
3922 pStat = &gStatRawCheck;
3923 break;
3924
3925 default:
3926 AssertMsgFailed(("unknown stat %d\n", statcode));
3927 return;
3928 }
3929 STAM_PROFILE_ADV_START(pStat, a);
3930}
3931
3932
3933void remR3ProfileStop(int statcode)
3934{
3935 STAMPROFILEADV *pStat;
3936 switch(statcode)
3937 {
3938 case STATS_EMULATE_SINGLE_INSTR:
3939 pStat = &gStatExecuteSingleInstr;
3940 break;
3941 case STATS_QEMU_COMPILATION:
3942 pStat = &gStatCompilationQEmu;
3943 break;
3944 case STATS_QEMU_RUN_EMULATED_CODE:
3945 pStat = &gStatRunCodeQEmu;
3946 break;
3947 case STATS_QEMU_TOTAL:
3948 pStat = &gStatTotalTimeQEmu;
3949 break;
3950 case STATS_QEMU_RUN_TIMERS:
3951 pStat = &gStatTimers;
3952 break;
3953 case STATS_TLB_LOOKUP:
3954 pStat= &gStatTBLookup;
3955 break;
3956 case STATS_IRQ_HANDLING:
3957 pStat= &gStatIRQ;
3958 break;
3959 case STATS_RAW_CHECK:
3960 pStat = &gStatRawCheck;
3961 break;
3962 default:
3963 AssertMsgFailed(("unknown stat %d\n", statcode));
3964 return;
3965 }
3966 STAM_PROFILE_ADV_STOP(pStat, a);
3967}
3968#endif
3969
3970/**
3971 * Raise an RC, force rem exit.
3972 *
3973 * @param pVM VM handle.
3974 * @param rc The rc.
3975 */
3976void remR3RaiseRC(PVM pVM, int rc)
3977{
3978 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3979 Assert(pVM->rem.s.fInREM);
3980 VM_ASSERT_EMT(pVM);
3981 pVM->rem.s.rc = rc;
3982 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3983}
3984
3985
3986/* -+- timers -+- */
3987
3988uint64_t cpu_get_tsc(CPUX86State *env)
3989{
3990 STAM_COUNTER_INC(&gStatCpuGetTSC);
3991 return TMCpuTickGet(env->pVM);
3992}
3993
3994
3995/* -+- interrupts -+- */
3996
3997void cpu_set_ferr(CPUX86State *env)
3998{
3999 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4000 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4001}
4002
4003int cpu_get_pic_interrupt(CPUState *env)
4004{
4005 uint8_t u8Interrupt;
4006 int rc;
4007
4008 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4009 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4010 * with the (a)pic.
4011 */
4012 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4013 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4014 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4015 * remove this kludge. */
4016 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4017 {
4018 rc = VINF_SUCCESS;
4019 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4020 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4021 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4022 }
4023 else
4024 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4025
4026 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4027 if (VBOX_SUCCESS(rc))
4028 {
4029 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4030 env->interrupt_request |= CPU_INTERRUPT_HARD;
4031 return u8Interrupt;
4032 }
4033 return -1;
4034}
4035
4036
4037/* -+- local apic -+- */
4038
4039void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4040{
4041 int rc = PDMApicSetBase(env->pVM, val);
4042 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4043}
4044
4045uint64_t cpu_get_apic_base(CPUX86State *env)
4046{
4047 uint64_t u64;
4048 int rc = PDMApicGetBase(env->pVM, &u64);
4049 if (VBOX_SUCCESS(rc))
4050 {
4051 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4052 return u64;
4053 }
4054 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4055 return 0;
4056}
4057
4058void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4059{
4060 int rc = PDMApicSetTPR(env->pVM, val);
4061 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4062}
4063
4064uint8_t cpu_get_apic_tpr(CPUX86State *env)
4065{
4066 uint8_t u8;
4067 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4068 if (VBOX_SUCCESS(rc))
4069 {
4070 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4071 return u8;
4072 }
4073 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4074 return 0;
4075}
4076
4077
4078/* -+- I/O Ports -+- */
4079
4080#undef LOG_GROUP
4081#define LOG_GROUP LOG_GROUP_REM_IOPORT
4082
4083void cpu_outb(CPUState *env, int addr, int val)
4084{
4085 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4086 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4087
4088 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4089 if (RT_LIKELY(rc == VINF_SUCCESS))
4090 return;
4091 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4092 {
4093 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4094 remR3RaiseRC(env->pVM, rc);
4095 return;
4096 }
4097 remAbort(rc, __FUNCTION__);
4098}
4099
4100void cpu_outw(CPUState *env, int addr, int val)
4101{
4102 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4103 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4104 if (RT_LIKELY(rc == VINF_SUCCESS))
4105 return;
4106 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4107 {
4108 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4109 remR3RaiseRC(env->pVM, rc);
4110 return;
4111 }
4112 remAbort(rc, __FUNCTION__);
4113}
4114
4115void cpu_outl(CPUState *env, int addr, int val)
4116{
4117 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4118 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4119 if (RT_LIKELY(rc == VINF_SUCCESS))
4120 return;
4121 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4122 {
4123 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4124 remR3RaiseRC(env->pVM, rc);
4125 return;
4126 }
4127 remAbort(rc, __FUNCTION__);
4128}
4129
4130int cpu_inb(CPUState *env, int addr)
4131{
4132 uint32_t u32 = 0;
4133 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4134 if (RT_LIKELY(rc == VINF_SUCCESS))
4135 {
4136 if (/*addr != 0x61 && */addr != 0x71)
4137 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4138 return (int)u32;
4139 }
4140 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4141 {
4142 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4143 remR3RaiseRC(env->pVM, rc);
4144 return (int)u32;
4145 }
4146 remAbort(rc, __FUNCTION__);
4147 return 0xff;
4148}
4149
4150int cpu_inw(CPUState *env, int addr)
4151{
4152 uint32_t u32 = 0;
4153 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4154 if (RT_LIKELY(rc == VINF_SUCCESS))
4155 {
4156 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4157 return (int)u32;
4158 }
4159 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4160 {
4161 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4162 remR3RaiseRC(env->pVM, rc);
4163 return (int)u32;
4164 }
4165 remAbort(rc, __FUNCTION__);
4166 return 0xffff;
4167}
4168
4169int cpu_inl(CPUState *env, int addr)
4170{
4171 uint32_t u32 = 0;
4172 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4173 if (RT_LIKELY(rc == VINF_SUCCESS))
4174 {
4175//if (addr==0x01f0 && u32 == 0x6b6d)
4176// loglevel = ~0;
4177 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4178 return (int)u32;
4179 }
4180 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4181 {
4182 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4183 remR3RaiseRC(env->pVM, rc);
4184 return (int)u32;
4185 }
4186 remAbort(rc, __FUNCTION__);
4187 return 0xffffffff;
4188}
4189
4190#undef LOG_GROUP
4191#define LOG_GROUP LOG_GROUP_REM
4192
4193
4194/* -+- helpers and misc other interfaces -+- */
4195
4196/**
4197 * Perform the CPUID instruction.
4198 *
4199 * ASMCpuId cannot be invoked from some source files where this is used because of global
4200 * register allocations.
4201 *
4202 * @param env Pointer to the recompiler CPU structure.
4203 * @param uOperator CPUID operation (eax).
4204 * @param pvEAX Where to store eax.
4205 * @param pvEBX Where to store ebx.
4206 * @param pvECX Where to store ecx.
4207 * @param pvEDX Where to store edx.
4208 */
4209void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4210{
4211 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4212}
4213
4214
4215#if 0 /* not used */
4216/**
4217 * Interface for qemu hardware to report back fatal errors.
4218 */
4219void hw_error(const char *pszFormat, ...)
4220{
4221 /*
4222 * Bitch about it.
4223 */
4224 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4225 * this in my Odin32 tree at home! */
4226 va_list args;
4227 va_start(args, pszFormat);
4228 RTLogPrintf("fatal error in virtual hardware:");
4229 RTLogPrintfV(pszFormat, args);
4230 va_end(args);
4231 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4232
4233 /*
4234 * If we're in REM context we'll sync back the state before 'jumping' to
4235 * the EMs failure handling.
4236 */
4237 PVM pVM = cpu_single_env->pVM;
4238 if (pVM->rem.s.fInREM)
4239 REMR3StateBack(pVM);
4240 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4241 AssertMsgFailed(("EMR3FatalError returned!\n"));
4242}
4243#endif
4244
4245/**
4246 * Interface for the qemu cpu to report unhandled situation
4247 * raising a fatal VM error.
4248 */
4249void cpu_abort(CPUState *env, const char *pszFormat, ...)
4250{
4251 /*
4252 * Bitch about it.
4253 */
4254 RTLogFlags(NULL, "nodisabled nobuffered");
4255 va_list args;
4256 va_start(args, pszFormat);
4257 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4258 va_end(args);
4259 va_start(args, pszFormat);
4260 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4261 va_end(args);
4262
4263 /*
4264 * If we're in REM context we'll sync back the state before 'jumping' to
4265 * the EMs failure handling.
4266 */
4267 PVM pVM = cpu_single_env->pVM;
4268 if (pVM->rem.s.fInREM)
4269 REMR3StateBack(pVM);
4270 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4271 AssertMsgFailed(("EMR3FatalError returned!\n"));
4272}
4273
4274
4275/**
4276 * Aborts the VM.
4277 *
4278 * @param rc VBox error code.
4279 * @param pszTip Hint about why/when this happend.
4280 */
4281static void remAbort(int rc, const char *pszTip)
4282{
4283 /*
4284 * Bitch about it.
4285 */
4286 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4287 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4288
4289 /*
4290 * Jump back to where we entered the recompiler.
4291 */
4292 PVM pVM = cpu_single_env->pVM;
4293 if (pVM->rem.s.fInREM)
4294 REMR3StateBack(pVM);
4295 EMR3FatalError(pVM, rc);
4296 AssertMsgFailed(("EMR3FatalError returned!\n"));
4297}
4298
4299
4300/**
4301 * Dumps a linux system call.
4302 * @param pVM VM handle.
4303 */
4304void remR3DumpLnxSyscall(PVM pVM)
4305{
4306 static const char *apsz[] =
4307 {
4308 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4309 "sys_exit",
4310 "sys_fork",
4311 "sys_read",
4312 "sys_write",
4313 "sys_open", /* 5 */
4314 "sys_close",
4315 "sys_waitpid",
4316 "sys_creat",
4317 "sys_link",
4318 "sys_unlink", /* 10 */
4319 "sys_execve",
4320 "sys_chdir",
4321 "sys_time",
4322 "sys_mknod",
4323 "sys_chmod", /* 15 */
4324 "sys_lchown16",
4325 "sys_ni_syscall", /* old break syscall holder */
4326 "sys_stat",
4327 "sys_lseek",
4328 "sys_getpid", /* 20 */
4329 "sys_mount",
4330 "sys_oldumount",
4331 "sys_setuid16",
4332 "sys_getuid16",
4333 "sys_stime", /* 25 */
4334 "sys_ptrace",
4335 "sys_alarm",
4336 "sys_fstat",
4337 "sys_pause",
4338 "sys_utime", /* 30 */
4339 "sys_ni_syscall", /* old stty syscall holder */
4340 "sys_ni_syscall", /* old gtty syscall holder */
4341 "sys_access",
4342 "sys_nice",
4343 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4344 "sys_sync",
4345 "sys_kill",
4346 "sys_rename",
4347 "sys_mkdir",
4348 "sys_rmdir", /* 40 */
4349 "sys_dup",
4350 "sys_pipe",
4351 "sys_times",
4352 "sys_ni_syscall", /* old prof syscall holder */
4353 "sys_brk", /* 45 */
4354 "sys_setgid16",
4355 "sys_getgid16",
4356 "sys_signal",
4357 "sys_geteuid16",
4358 "sys_getegid16", /* 50 */
4359 "sys_acct",
4360 "sys_umount", /* recycled never used phys() */
4361 "sys_ni_syscall", /* old lock syscall holder */
4362 "sys_ioctl",
4363 "sys_fcntl", /* 55 */
4364 "sys_ni_syscall", /* old mpx syscall holder */
4365 "sys_setpgid",
4366 "sys_ni_syscall", /* old ulimit syscall holder */
4367 "sys_olduname",
4368 "sys_umask", /* 60 */
4369 "sys_chroot",
4370 "sys_ustat",
4371 "sys_dup2",
4372 "sys_getppid",
4373 "sys_getpgrp", /* 65 */
4374 "sys_setsid",
4375 "sys_sigaction",
4376 "sys_sgetmask",
4377 "sys_ssetmask",
4378 "sys_setreuid16", /* 70 */
4379 "sys_setregid16",
4380 "sys_sigsuspend",
4381 "sys_sigpending",
4382 "sys_sethostname",
4383 "sys_setrlimit", /* 75 */
4384 "sys_old_getrlimit",
4385 "sys_getrusage",
4386 "sys_gettimeofday",
4387 "sys_settimeofday",
4388 "sys_getgroups16", /* 80 */
4389 "sys_setgroups16",
4390 "old_select",
4391 "sys_symlink",
4392 "sys_lstat",
4393 "sys_readlink", /* 85 */
4394 "sys_uselib",
4395 "sys_swapon",
4396 "sys_reboot",
4397 "old_readdir",
4398 "old_mmap", /* 90 */
4399 "sys_munmap",
4400 "sys_truncate",
4401 "sys_ftruncate",
4402 "sys_fchmod",
4403 "sys_fchown16", /* 95 */
4404 "sys_getpriority",
4405 "sys_setpriority",
4406 "sys_ni_syscall", /* old profil syscall holder */
4407 "sys_statfs",
4408 "sys_fstatfs", /* 100 */
4409 "sys_ioperm",
4410 "sys_socketcall",
4411 "sys_syslog",
4412 "sys_setitimer",
4413 "sys_getitimer", /* 105 */
4414 "sys_newstat",
4415 "sys_newlstat",
4416 "sys_newfstat",
4417 "sys_uname",
4418 "sys_iopl", /* 110 */
4419 "sys_vhangup",
4420 "sys_ni_syscall", /* old "idle" system call */
4421 "sys_vm86old",
4422 "sys_wait4",
4423 "sys_swapoff", /* 115 */
4424 "sys_sysinfo",
4425 "sys_ipc",
4426 "sys_fsync",
4427 "sys_sigreturn",
4428 "sys_clone", /* 120 */
4429 "sys_setdomainname",
4430 "sys_newuname",
4431 "sys_modify_ldt",
4432 "sys_adjtimex",
4433 "sys_mprotect", /* 125 */
4434 "sys_sigprocmask",
4435 "sys_ni_syscall", /* old "create_module" */
4436 "sys_init_module",
4437 "sys_delete_module",
4438 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4439 "sys_quotactl",
4440 "sys_getpgid",
4441 "sys_fchdir",
4442 "sys_bdflush",
4443 "sys_sysfs", /* 135 */
4444 "sys_personality",
4445 "sys_ni_syscall", /* reserved for afs_syscall */
4446 "sys_setfsuid16",
4447 "sys_setfsgid16",
4448 "sys_llseek", /* 140 */
4449 "sys_getdents",
4450 "sys_select",
4451 "sys_flock",
4452 "sys_msync",
4453 "sys_readv", /* 145 */
4454 "sys_writev",
4455 "sys_getsid",
4456 "sys_fdatasync",
4457 "sys_sysctl",
4458 "sys_mlock", /* 150 */
4459 "sys_munlock",
4460 "sys_mlockall",
4461 "sys_munlockall",
4462 "sys_sched_setparam",
4463 "sys_sched_getparam", /* 155 */
4464 "sys_sched_setscheduler",
4465 "sys_sched_getscheduler",
4466 "sys_sched_yield",
4467 "sys_sched_get_priority_max",
4468 "sys_sched_get_priority_min", /* 160 */
4469 "sys_sched_rr_get_interval",
4470 "sys_nanosleep",
4471 "sys_mremap",
4472 "sys_setresuid16",
4473 "sys_getresuid16", /* 165 */
4474 "sys_vm86",
4475 "sys_ni_syscall", /* Old sys_query_module */
4476 "sys_poll",
4477 "sys_nfsservctl",
4478 "sys_setresgid16", /* 170 */
4479 "sys_getresgid16",
4480 "sys_prctl",
4481 "sys_rt_sigreturn",
4482 "sys_rt_sigaction",
4483 "sys_rt_sigprocmask", /* 175 */
4484 "sys_rt_sigpending",
4485 "sys_rt_sigtimedwait",
4486 "sys_rt_sigqueueinfo",
4487 "sys_rt_sigsuspend",
4488 "sys_pread64", /* 180 */
4489 "sys_pwrite64",
4490 "sys_chown16",
4491 "sys_getcwd",
4492 "sys_capget",
4493 "sys_capset", /* 185 */
4494 "sys_sigaltstack",
4495 "sys_sendfile",
4496 "sys_ni_syscall", /* reserved for streams1 */
4497 "sys_ni_syscall", /* reserved for streams2 */
4498 "sys_vfork", /* 190 */
4499 "sys_getrlimit",
4500 "sys_mmap2",
4501 "sys_truncate64",
4502 "sys_ftruncate64",
4503 "sys_stat64", /* 195 */
4504 "sys_lstat64",
4505 "sys_fstat64",
4506 "sys_lchown",
4507 "sys_getuid",
4508 "sys_getgid", /* 200 */
4509 "sys_geteuid",
4510 "sys_getegid",
4511 "sys_setreuid",
4512 "sys_setregid",
4513 "sys_getgroups", /* 205 */
4514 "sys_setgroups",
4515 "sys_fchown",
4516 "sys_setresuid",
4517 "sys_getresuid",
4518 "sys_setresgid", /* 210 */
4519 "sys_getresgid",
4520 "sys_chown",
4521 "sys_setuid",
4522 "sys_setgid",
4523 "sys_setfsuid", /* 215 */
4524 "sys_setfsgid",
4525 "sys_pivot_root",
4526 "sys_mincore",
4527 "sys_madvise",
4528 "sys_getdents64", /* 220 */
4529 "sys_fcntl64",
4530 "sys_ni_syscall", /* reserved for TUX */
4531 "sys_ni_syscall",
4532 "sys_gettid",
4533 "sys_readahead", /* 225 */
4534 "sys_setxattr",
4535 "sys_lsetxattr",
4536 "sys_fsetxattr",
4537 "sys_getxattr",
4538 "sys_lgetxattr", /* 230 */
4539 "sys_fgetxattr",
4540 "sys_listxattr",
4541 "sys_llistxattr",
4542 "sys_flistxattr",
4543 "sys_removexattr", /* 235 */
4544 "sys_lremovexattr",
4545 "sys_fremovexattr",
4546 "sys_tkill",
4547 "sys_sendfile64",
4548 "sys_futex", /* 240 */
4549 "sys_sched_setaffinity",
4550 "sys_sched_getaffinity",
4551 "sys_set_thread_area",
4552 "sys_get_thread_area",
4553 "sys_io_setup", /* 245 */
4554 "sys_io_destroy",
4555 "sys_io_getevents",
4556 "sys_io_submit",
4557 "sys_io_cancel",
4558 "sys_fadvise64", /* 250 */
4559 "sys_ni_syscall",
4560 "sys_exit_group",
4561 "sys_lookup_dcookie",
4562 "sys_epoll_create",
4563 "sys_epoll_ctl", /* 255 */
4564 "sys_epoll_wait",
4565 "sys_remap_file_pages",
4566 "sys_set_tid_address",
4567 "sys_timer_create",
4568 "sys_timer_settime", /* 260 */
4569 "sys_timer_gettime",
4570 "sys_timer_getoverrun",
4571 "sys_timer_delete",
4572 "sys_clock_settime",
4573 "sys_clock_gettime", /* 265 */
4574 "sys_clock_getres",
4575 "sys_clock_nanosleep",
4576 "sys_statfs64",
4577 "sys_fstatfs64",
4578 "sys_tgkill", /* 270 */
4579 "sys_utimes",
4580 "sys_fadvise64_64",
4581 "sys_ni_syscall" /* sys_vserver */
4582 };
4583
4584 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4585 switch (uEAX)
4586 {
4587 default:
4588 if (uEAX < ELEMENTS(apsz))
4589 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4590 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4591 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4592 else
4593 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4594 break;
4595
4596 }
4597}
4598
4599
4600/**
4601 * Dumps an OpenBSD system call.
4602 * @param pVM VM handle.
4603 */
4604void remR3DumpOBsdSyscall(PVM pVM)
4605{
4606 static const char *apsz[] =
4607 {
4608 "SYS_syscall", //0
4609 "SYS_exit", //1
4610 "SYS_fork", //2
4611 "SYS_read", //3
4612 "SYS_write", //4
4613 "SYS_open", //5
4614 "SYS_close", //6
4615 "SYS_wait4", //7
4616 "SYS_8",
4617 "SYS_link", //9
4618 "SYS_unlink", //10
4619 "SYS_11",
4620 "SYS_chdir", //12
4621 "SYS_fchdir", //13
4622 "SYS_mknod", //14
4623 "SYS_chmod", //15
4624 "SYS_chown", //16
4625 "SYS_break", //17
4626 "SYS_18",
4627 "SYS_19",
4628 "SYS_getpid", //20
4629 "SYS_mount", //21
4630 "SYS_unmount", //22
4631 "SYS_setuid", //23
4632 "SYS_getuid", //24
4633 "SYS_geteuid", //25
4634 "SYS_ptrace", //26
4635 "SYS_recvmsg", //27
4636 "SYS_sendmsg", //28
4637 "SYS_recvfrom", //29
4638 "SYS_accept", //30
4639 "SYS_getpeername", //31
4640 "SYS_getsockname", //32
4641 "SYS_access", //33
4642 "SYS_chflags", //34
4643 "SYS_fchflags", //35
4644 "SYS_sync", //36
4645 "SYS_kill", //37
4646 "SYS_38",
4647 "SYS_getppid", //39
4648 "SYS_40",
4649 "SYS_dup", //41
4650 "SYS_opipe", //42
4651 "SYS_getegid", //43
4652 "SYS_profil", //44
4653 "SYS_ktrace", //45
4654 "SYS_sigaction", //46
4655 "SYS_getgid", //47
4656 "SYS_sigprocmask", //48
4657 "SYS_getlogin", //49
4658 "SYS_setlogin", //50
4659 "SYS_acct", //51
4660 "SYS_sigpending", //52
4661 "SYS_osigaltstack", //53
4662 "SYS_ioctl", //54
4663 "SYS_reboot", //55
4664 "SYS_revoke", //56
4665 "SYS_symlink", //57
4666 "SYS_readlink", //58
4667 "SYS_execve", //59
4668 "SYS_umask", //60
4669 "SYS_chroot", //61
4670 "SYS_62",
4671 "SYS_63",
4672 "SYS_64",
4673 "SYS_65",
4674 "SYS_vfork", //66
4675 "SYS_67",
4676 "SYS_68",
4677 "SYS_sbrk", //69
4678 "SYS_sstk", //70
4679 "SYS_61",
4680 "SYS_vadvise", //72
4681 "SYS_munmap", //73
4682 "SYS_mprotect", //74
4683 "SYS_madvise", //75
4684 "SYS_76",
4685 "SYS_77",
4686 "SYS_mincore", //78
4687 "SYS_getgroups", //79
4688 "SYS_setgroups", //80
4689 "SYS_getpgrp", //81
4690 "SYS_setpgid", //82
4691 "SYS_setitimer", //83
4692 "SYS_84",
4693 "SYS_85",
4694 "SYS_getitimer", //86
4695 "SYS_87",
4696 "SYS_88",
4697 "SYS_89",
4698 "SYS_dup2", //90
4699 "SYS_91",
4700 "SYS_fcntl", //92
4701 "SYS_select", //93
4702 "SYS_94",
4703 "SYS_fsync", //95
4704 "SYS_setpriority", //96
4705 "SYS_socket", //97
4706 "SYS_connect", //98
4707 "SYS_99",
4708 "SYS_getpriority", //100
4709 "SYS_101",
4710 "SYS_102",
4711 "SYS_sigreturn", //103
4712 "SYS_bind", //104
4713 "SYS_setsockopt", //105
4714 "SYS_listen", //106
4715 "SYS_107",
4716 "SYS_108",
4717 "SYS_109",
4718 "SYS_110",
4719 "SYS_sigsuspend", //111
4720 "SYS_112",
4721 "SYS_113",
4722 "SYS_114",
4723 "SYS_115",
4724 "SYS_gettimeofday", //116
4725 "SYS_getrusage", //117
4726 "SYS_getsockopt", //118
4727 "SYS_119",
4728 "SYS_readv", //120
4729 "SYS_writev", //121
4730 "SYS_settimeofday", //122
4731 "SYS_fchown", //123
4732 "SYS_fchmod", //124
4733 "SYS_125",
4734 "SYS_setreuid", //126
4735 "SYS_setregid", //127
4736 "SYS_rename", //128
4737 "SYS_129",
4738 "SYS_130",
4739 "SYS_flock", //131
4740 "SYS_mkfifo", //132
4741 "SYS_sendto", //133
4742 "SYS_shutdown", //134
4743 "SYS_socketpair", //135
4744 "SYS_mkdir", //136
4745 "SYS_rmdir", //137
4746 "SYS_utimes", //138
4747 "SYS_139",
4748 "SYS_adjtime", //140
4749 "SYS_141",
4750 "SYS_142",
4751 "SYS_143",
4752 "SYS_144",
4753 "SYS_145",
4754 "SYS_146",
4755 "SYS_setsid", //147
4756 "SYS_quotactl", //148
4757 "SYS_149",
4758 "SYS_150",
4759 "SYS_151",
4760 "SYS_152",
4761 "SYS_153",
4762 "SYS_154",
4763 "SYS_nfssvc", //155
4764 "SYS_156",
4765 "SYS_157",
4766 "SYS_158",
4767 "SYS_159",
4768 "SYS_160",
4769 "SYS_getfh", //161
4770 "SYS_162",
4771 "SYS_163",
4772 "SYS_164",
4773 "SYS_sysarch", //165
4774 "SYS_166",
4775 "SYS_167",
4776 "SYS_168",
4777 "SYS_169",
4778 "SYS_170",
4779 "SYS_171",
4780 "SYS_172",
4781 "SYS_pread", //173
4782 "SYS_pwrite", //174
4783 "SYS_175",
4784 "SYS_176",
4785 "SYS_177",
4786 "SYS_178",
4787 "SYS_179",
4788 "SYS_180",
4789 "SYS_setgid", //181
4790 "SYS_setegid", //182
4791 "SYS_seteuid", //183
4792 "SYS_lfs_bmapv", //184
4793 "SYS_lfs_markv", //185
4794 "SYS_lfs_segclean", //186
4795 "SYS_lfs_segwait", //187
4796 "SYS_188",
4797 "SYS_189",
4798 "SYS_190",
4799 "SYS_pathconf", //191
4800 "SYS_fpathconf", //192
4801 "SYS_swapctl", //193
4802 "SYS_getrlimit", //194
4803 "SYS_setrlimit", //195
4804 "SYS_getdirentries", //196
4805 "SYS_mmap", //197
4806 "SYS___syscall", //198
4807 "SYS_lseek", //199
4808 "SYS_truncate", //200
4809 "SYS_ftruncate", //201
4810 "SYS___sysctl", //202
4811 "SYS_mlock", //203
4812 "SYS_munlock", //204
4813 "SYS_205",
4814 "SYS_futimes", //206
4815 "SYS_getpgid", //207
4816 "SYS_xfspioctl", //208
4817 "SYS_209",
4818 "SYS_210",
4819 "SYS_211",
4820 "SYS_212",
4821 "SYS_213",
4822 "SYS_214",
4823 "SYS_215",
4824 "SYS_216",
4825 "SYS_217",
4826 "SYS_218",
4827 "SYS_219",
4828 "SYS_220",
4829 "SYS_semget", //221
4830 "SYS_222",
4831 "SYS_223",
4832 "SYS_224",
4833 "SYS_msgget", //225
4834 "SYS_msgsnd", //226
4835 "SYS_msgrcv", //227
4836 "SYS_shmat", //228
4837 "SYS_229",
4838 "SYS_shmdt", //230
4839 "SYS_231",
4840 "SYS_clock_gettime", //232
4841 "SYS_clock_settime", //233
4842 "SYS_clock_getres", //234
4843 "SYS_235",
4844 "SYS_236",
4845 "SYS_237",
4846 "SYS_238",
4847 "SYS_239",
4848 "SYS_nanosleep", //240
4849 "SYS_241",
4850 "SYS_242",
4851 "SYS_243",
4852 "SYS_244",
4853 "SYS_245",
4854 "SYS_246",
4855 "SYS_247",
4856 "SYS_248",
4857 "SYS_249",
4858 "SYS_minherit", //250
4859 "SYS_rfork", //251
4860 "SYS_poll", //252
4861 "SYS_issetugid", //253
4862 "SYS_lchown", //254
4863 "SYS_getsid", //255
4864 "SYS_msync", //256
4865 "SYS_257",
4866 "SYS_258",
4867 "SYS_259",
4868 "SYS_getfsstat", //260
4869 "SYS_statfs", //261
4870 "SYS_fstatfs", //262
4871 "SYS_pipe", //263
4872 "SYS_fhopen", //264
4873 "SYS_265",
4874 "SYS_fhstatfs", //266
4875 "SYS_preadv", //267
4876 "SYS_pwritev", //268
4877 "SYS_kqueue", //269
4878 "SYS_kevent", //270
4879 "SYS_mlockall", //271
4880 "SYS_munlockall", //272
4881 "SYS_getpeereid", //273
4882 "SYS_274",
4883 "SYS_275",
4884 "SYS_276",
4885 "SYS_277",
4886 "SYS_278",
4887 "SYS_279",
4888 "SYS_280",
4889 "SYS_getresuid", //281
4890 "SYS_setresuid", //282
4891 "SYS_getresgid", //283
4892 "SYS_setresgid", //284
4893 "SYS_285",
4894 "SYS_mquery", //286
4895 "SYS_closefrom", //287
4896 "SYS_sigaltstack", //288
4897 "SYS_shmget", //289
4898 "SYS_semop", //290
4899 "SYS_stat", //291
4900 "SYS_fstat", //292
4901 "SYS_lstat", //293
4902 "SYS_fhstat", //294
4903 "SYS___semctl", //295
4904 "SYS_shmctl", //296
4905 "SYS_msgctl", //297
4906 "SYS_MAXSYSCALL", //298
4907 //299
4908 //300
4909 };
4910 uint32_t uEAX;
4911 if (!LogIsEnabled())
4912 return;
4913 uEAX = CPUMGetGuestEAX(pVM);
4914 switch (uEAX)
4915 {
4916 default:
4917 if (uEAX < ELEMENTS(apsz))
4918 {
4919 uint32_t au32Args[8] = {0};
4920 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4921 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4922 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4923 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4924 }
4925 else
4926 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4927 break;
4928 }
4929}
4930
4931
4932#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4933/**
4934 * The Dll main entry point (stub).
4935 */
4936bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4937{
4938 return true;
4939}
4940
4941void *memcpy(void *dst, const void *src, size_t size)
4942{
4943 uint8_t*pbDst = dst, *pbSrc = src;
4944 while (size-- > 0)
4945 *pbDst++ = *pbSrc++;
4946 return dst;
4947}
4948
4949#endif
4950
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette