1 | /* ix87 specific implementation of pow function.
|
---|
2 | Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2005
|
---|
3 | Free Software Foundation, Inc.
|
---|
4 | This file is part of the GNU C Library.
|
---|
5 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
---|
6 |
|
---|
7 | The GNU C Library is free software; you can redistribute it and/or
|
---|
8 | modify it under the terms of the GNU Lesser General Public
|
---|
9 | License as published by the Free Software Foundation; either
|
---|
10 | version 2.1 of the License, or (at your option) any later version.
|
---|
11 |
|
---|
12 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | Lesser General Public License for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU Lesser General Public
|
---|
18 | License along with the GNU C Library; if not, write to the Free
|
---|
19 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
20 | 02111-1307 USA. */
|
---|
21 |
|
---|
22 | /*
|
---|
23 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
24 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
25 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
26 | * a choice of LGPL license versions is made available with the language indicating
|
---|
27 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
28 | * of the LGPL is applied is otherwise unspecified.
|
---|
29 | */
|
---|
30 |
|
---|
31 | /*#include <machine/asm.h>*/
|
---|
32 | #include <iprt/cdefs.h>
|
---|
33 |
|
---|
34 | #ifdef __MINGW32__
|
---|
35 | # define ASM_TYPE_DIRECTIVE(name,typearg)
|
---|
36 | # define ASM_SIZE_DIRECTIVE(name)
|
---|
37 | # define cfi_adjust_cfa_offset(a)
|
---|
38 | # define C_LABEL(name) _ ## name:
|
---|
39 | # define C_SYMBOL_NAME(name) _ ## name
|
---|
40 | # define ASM_GLOBAL_DIRECTIVE .global
|
---|
41 | # define ALIGNARG(log2) 1<<log2
|
---|
42 | #elif __APPLE__
|
---|
43 | # define ASM_TYPE_DIRECTIVE(name,typearg)
|
---|
44 | # define ASM_SIZE_DIRECTIVE(name)
|
---|
45 | # define cfi_adjust_cfa_offset(a)
|
---|
46 | # define C_LABEL(name) _ ## name:
|
---|
47 | # define C_SYMBOL_NAME(name) _ ## name
|
---|
48 | # define ASM_GLOBAL_DIRECTIVE .globl
|
---|
49 | # define ALIGNARG(log2) log2
|
---|
50 | #else
|
---|
51 | # define ASM_TYPE_DIRECTIVE(name,typearg) .type name,typearg;
|
---|
52 | # define ASM_SIZE_DIRECTIVE(name) .size name,.-name;
|
---|
53 | # define C_LABEL(name) name:
|
---|
54 | # define C_SYMBOL_NAME(name) name
|
---|
55 | # /* figure this one out. */
|
---|
56 | # define cfi_adjust_cfa_offset(a)
|
---|
57 | # define ASM_GLOBAL_DIRECTIVE .global
|
---|
58 | # define ALIGNARG(log2) 1<<log2
|
---|
59 | #endif
|
---|
60 |
|
---|
61 | #define ENTRY(name) \
|
---|
62 | ASM_GLOBAL_DIRECTIVE C_SYMBOL_NAME(name); \
|
---|
63 | ASM_TYPE_DIRECTIVE (C_SYMBOL_NAME(name),@function) \
|
---|
64 | .align ALIGNARG(4); \
|
---|
65 | C_LABEL(name)
|
---|
66 |
|
---|
67 | #undef END
|
---|
68 | #define END(name) \
|
---|
69 | ASM_SIZE_DIRECTIVE(name)
|
---|
70 |
|
---|
71 | #ifdef __ELF__
|
---|
72 | .section .rodata
|
---|
73 | #else
|
---|
74 | .text
|
---|
75 | #endif
|
---|
76 |
|
---|
77 | .align ALIGNARG(4)
|
---|
78 | ASM_TYPE_DIRECTIVE(infinity,@object)
|
---|
79 | inf_zero:
|
---|
80 | infinity:
|
---|
81 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
---|
82 | ASM_SIZE_DIRECTIVE(infinity)
|
---|
83 | ASM_TYPE_DIRECTIVE(zero,@object)
|
---|
84 | zero: .double 0.0
|
---|
85 | ASM_SIZE_DIRECTIVE(zero)
|
---|
86 | ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
---|
87 | minf_mzero:
|
---|
88 | minfinity:
|
---|
89 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
---|
90 | mzero:
|
---|
91 | .byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
---|
92 | ASM_SIZE_DIRECTIVE(minf_mzero)
|
---|
93 | ASM_TYPE_DIRECTIVE(one,@object)
|
---|
94 | one: .double 1.0
|
---|
95 | ASM_SIZE_DIRECTIVE(one)
|
---|
96 | ASM_TYPE_DIRECTIVE(limit,@object)
|
---|
97 | limit: .double 0.29
|
---|
98 | ASM_SIZE_DIRECTIVE(limit)
|
---|
99 | ASM_TYPE_DIRECTIVE(p63,@object)
|
---|
100 | p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
|
---|
101 | ASM_SIZE_DIRECTIVE(p63)
|
---|
102 |
|
---|
103 | #ifdef PIC
|
---|
104 | #define MO(op) op##@GOTOFF(%ecx)
|
---|
105 | #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
|
---|
106 | #else
|
---|
107 | #define MO(op) op
|
---|
108 | #define MOX(op,x,f) op(,x,f)
|
---|
109 | #endif
|
---|
110 |
|
---|
111 | .text
|
---|
112 | //ENTRY(__ieee754_powl)
|
---|
113 | ENTRY(RT_NOCRT(powl))
|
---|
114 | #ifdef RT_OS_DARWIN /* 16-byte long double with 8 byte alignment requirements */
|
---|
115 | fldt 20(%esp) // y
|
---|
116 | #else
|
---|
117 | fldt 16(%esp) // y
|
---|
118 | #endif
|
---|
119 | fxam
|
---|
120 |
|
---|
121 | #ifdef PIC
|
---|
122 | LOAD_PIC_REG (cx)
|
---|
123 | #endif
|
---|
124 |
|
---|
125 | fnstsw
|
---|
126 | movb %ah, %dl
|
---|
127 | andb $0x45, %ah
|
---|
128 | cmpb $0x40, %ah // is y == 0 ?
|
---|
129 | je .L11
|
---|
130 |
|
---|
131 | cmpb $0x05, %ah // is y == ±inf ?
|
---|
132 | je .L12
|
---|
133 |
|
---|
134 | cmpb $0x01, %ah // is y == NaN ?
|
---|
135 | je .L30
|
---|
136 |
|
---|
137 | fldt 4(%esp) // x : y
|
---|
138 |
|
---|
139 | subl $8,%esp
|
---|
140 | cfi_adjust_cfa_offset (8)
|
---|
141 |
|
---|
142 | fxam
|
---|
143 | fnstsw
|
---|
144 | movb %ah, %dh
|
---|
145 | andb $0x45, %ah
|
---|
146 | cmpb $0x40, %ah
|
---|
147 | je .L20 // x is ±0
|
---|
148 |
|
---|
149 | cmpb $0x05, %ah
|
---|
150 | je .L15 // x is ±inf
|
---|
151 |
|
---|
152 | fxch // y : x
|
---|
153 |
|
---|
154 | /* fistpll raises invalid exception for |y| >= 1L<<63. */
|
---|
155 | fld %st // y : y : x
|
---|
156 | fabs // |y| : y : x
|
---|
157 | fcompl MO(p63) // y : x
|
---|
158 | fnstsw
|
---|
159 | sahf
|
---|
160 | jnc .L2
|
---|
161 |
|
---|
162 | /* First see whether `y' is a natural number. In this case we
|
---|
163 | can use a more precise algorithm. */
|
---|
164 | fld %st // y : y : x
|
---|
165 | fistpll (%esp) // y : x
|
---|
166 | fildll (%esp) // int(y) : y : x
|
---|
167 | fucomp %st(1) // y : x
|
---|
168 | fnstsw
|
---|
169 | sahf
|
---|
170 | jne .L2
|
---|
171 |
|
---|
172 | /* OK, we have an integer value for y. */
|
---|
173 | popl %eax
|
---|
174 | cfi_adjust_cfa_offset (-4)
|
---|
175 | popl %edx
|
---|
176 | cfi_adjust_cfa_offset (-4)
|
---|
177 | orl $0, %edx
|
---|
178 | fstp %st(0) // x
|
---|
179 | jns .L4 // y >= 0, jump
|
---|
180 | fdivrl MO(one) // 1/x (now referred to as x)
|
---|
181 | negl %eax
|
---|
182 | adcl $0, %edx
|
---|
183 | negl %edx
|
---|
184 | .L4: fldl MO(one) // 1 : x
|
---|
185 | fxch
|
---|
186 |
|
---|
187 | .L6: shrdl $1, %edx, %eax
|
---|
188 | jnc .L5
|
---|
189 | fxch
|
---|
190 | fmul %st(1) // x : ST*x
|
---|
191 | fxch
|
---|
192 | .L5: fmul %st(0), %st // x*x : ST*x
|
---|
193 | shrl $1, %edx
|
---|
194 | movl %eax, %ecx
|
---|
195 | orl %edx, %ecx
|
---|
196 | jnz .L6
|
---|
197 | fstp %st(0) // ST*x
|
---|
198 | ret
|
---|
199 |
|
---|
200 | /* y is ±NAN */
|
---|
201 | .L30: fldt 4(%esp) // x : y
|
---|
202 | fldl MO(one) // 1.0 : x : y
|
---|
203 | fucomp %st(1) // x : y
|
---|
204 | fnstsw
|
---|
205 | sahf
|
---|
206 | je .L31
|
---|
207 | fxch // y : x
|
---|
208 | .L31: fstp %st(1)
|
---|
209 | ret
|
---|
210 |
|
---|
211 | cfi_adjust_cfa_offset (8)
|
---|
212 | .align ALIGNARG(4)
|
---|
213 | .L2: /* y is a real number. */
|
---|
214 | fxch // x : y
|
---|
215 | fldl MO(one) // 1.0 : x : y
|
---|
216 | fld %st(1) // x : 1.0 : x : y
|
---|
217 | fsub %st(1) // x-1 : 1.0 : x : y
|
---|
218 | fabs // |x-1| : 1.0 : x : y
|
---|
219 | fcompl MO(limit) // 1.0 : x : y
|
---|
220 | fnstsw
|
---|
221 | fxch // x : 1.0 : y
|
---|
222 | sahf
|
---|
223 | ja .L7
|
---|
224 | fsub %st(1) // x-1 : 1.0 : y
|
---|
225 | fyl2xp1 // log2(x) : y
|
---|
226 | jmp .L8
|
---|
227 |
|
---|
228 | .L7: fyl2x // log2(x) : y
|
---|
229 | .L8: fmul %st(1) // y*log2(x) : y
|
---|
230 | fxam
|
---|
231 | fnstsw
|
---|
232 | andb $0x45, %ah
|
---|
233 | cmpb $0x05, %ah // is y*log2(x) == ±inf ?
|
---|
234 | je .L28
|
---|
235 | fst %st(1) // y*log2(x) : y*log2(x)
|
---|
236 | frndint // int(y*log2(x)) : y*log2(x)
|
---|
237 | fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
|
---|
238 | fxch // fract(y*log2(x)) : int(y*log2(x))
|
---|
239 | f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
---|
240 | faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
---|
241 | fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
---|
242 | addl $8, %esp
|
---|
243 | cfi_adjust_cfa_offset (-8)
|
---|
244 | fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
---|
245 | ret
|
---|
246 |
|
---|
247 | cfi_adjust_cfa_offset (8)
|
---|
248 | .L28: fstp %st(1) // y*log2(x)
|
---|
249 | fldl MO(one) // 1 : y*log2(x)
|
---|
250 | fscale // 2^(y*log2(x)) : y*log2(x)
|
---|
251 | addl $8, %esp
|
---|
252 | cfi_adjust_cfa_offset (-8)
|
---|
253 | fstp %st(1) // 2^(y*log2(x))
|
---|
254 | ret
|
---|
255 |
|
---|
256 | // pow(x,±0) = 1
|
---|
257 | .align ALIGNARG(4)
|
---|
258 | .L11: fstp %st(0) // pop y
|
---|
259 | fldl MO(one)
|
---|
260 | ret
|
---|
261 |
|
---|
262 | // y == ±inf
|
---|
263 | .align ALIGNARG(4)
|
---|
264 | .L12: fstp %st(0) // pop y
|
---|
265 | fldt 4(%esp) // x
|
---|
266 | fabs
|
---|
267 | fcompl MO(one) // < 1, == 1, or > 1
|
---|
268 | fnstsw
|
---|
269 | andb $0x45, %ah
|
---|
270 | cmpb $0x45, %ah
|
---|
271 | je .L13 // jump if x is NaN
|
---|
272 |
|
---|
273 | cmpb $0x40, %ah
|
---|
274 | je .L14 // jump if |x| == 1
|
---|
275 |
|
---|
276 | shlb $1, %ah
|
---|
277 | xorb %ah, %dl
|
---|
278 | andl $2, %edx
|
---|
279 | fldl MOX(inf_zero, %edx, 4)
|
---|
280 | ret
|
---|
281 |
|
---|
282 | .align ALIGNARG(4)
|
---|
283 | .L14: fldl MO(one)
|
---|
284 | ret
|
---|
285 |
|
---|
286 | .align ALIGNARG(4)
|
---|
287 | .L13: fldt 4(%esp) // load x == NaN
|
---|
288 | ret
|
---|
289 |
|
---|
290 | cfi_adjust_cfa_offset (8)
|
---|
291 | .align ALIGNARG(4)
|
---|
292 | // x is ±inf
|
---|
293 | .L15: fstp %st(0) // y
|
---|
294 | testb $2, %dh
|
---|
295 | jz .L16 // jump if x == +inf
|
---|
296 |
|
---|
297 | // We must find out whether y is an odd integer.
|
---|
298 | fld %st // y : y
|
---|
299 | fistpll (%esp) // y
|
---|
300 | fildll (%esp) // int(y) : y
|
---|
301 | fucompp // <empty>
|
---|
302 | fnstsw
|
---|
303 | sahf
|
---|
304 | jne .L17
|
---|
305 |
|
---|
306 | // OK, the value is an integer, but is it odd?
|
---|
307 | popl %eax
|
---|
308 | cfi_adjust_cfa_offset (-4)
|
---|
309 | popl %edx
|
---|
310 | cfi_adjust_cfa_offset (-4)
|
---|
311 | andb $1, %al
|
---|
312 | jz .L18 // jump if not odd
|
---|
313 | // It's an odd integer.
|
---|
314 | shrl $31, %edx
|
---|
315 | fldl MOX(minf_mzero, %edx, 8)
|
---|
316 | ret
|
---|
317 |
|
---|
318 | cfi_adjust_cfa_offset (8)
|
---|
319 | .align ALIGNARG(4)
|
---|
320 | .L16: fcompl MO(zero)
|
---|
321 | addl $8, %esp
|
---|
322 | cfi_adjust_cfa_offset (-8)
|
---|
323 | fnstsw
|
---|
324 | shrl $5, %eax
|
---|
325 | andl $8, %eax
|
---|
326 | fldl MOX(inf_zero, %eax, 1)
|
---|
327 | ret
|
---|
328 |
|
---|
329 | cfi_adjust_cfa_offset (8)
|
---|
330 | .align ALIGNARG(4)
|
---|
331 | .L17: shll $30, %edx // sign bit for y in right position
|
---|
332 | addl $8, %esp
|
---|
333 | cfi_adjust_cfa_offset (-8)
|
---|
334 | .L18: shrl $31, %edx
|
---|
335 | fldl MOX(inf_zero, %edx, 8)
|
---|
336 | ret
|
---|
337 |
|
---|
338 | cfi_adjust_cfa_offset (8)
|
---|
339 | .align ALIGNARG(4)
|
---|
340 | // x is ±0
|
---|
341 | .L20: fstp %st(0) // y
|
---|
342 | testb $2, %dl
|
---|
343 | jz .L21 // y > 0
|
---|
344 |
|
---|
345 | // x is ±0 and y is < 0. We must find out whether y is an odd integer.
|
---|
346 | testb $2, %dh
|
---|
347 | jz .L25
|
---|
348 |
|
---|
349 | fld %st // y : y
|
---|
350 | fistpll (%esp) // y
|
---|
351 | fildll (%esp) // int(y) : y
|
---|
352 | fucompp // <empty>
|
---|
353 | fnstsw
|
---|
354 | sahf
|
---|
355 | jne .L26
|
---|
356 |
|
---|
357 | // OK, the value is an integer, but is it odd?
|
---|
358 | popl %eax
|
---|
359 | cfi_adjust_cfa_offset (-4)
|
---|
360 | popl %edx
|
---|
361 | cfi_adjust_cfa_offset (-4)
|
---|
362 | andb $1, %al
|
---|
363 | jz .L27 // jump if not odd
|
---|
364 | // It's an odd integer.
|
---|
365 | // Raise divide-by-zero exception and get minus infinity value.
|
---|
366 | fldl MO(one)
|
---|
367 | fdivl MO(zero)
|
---|
368 | fchs
|
---|
369 | ret
|
---|
370 |
|
---|
371 | cfi_adjust_cfa_offset (8)
|
---|
372 | .L25: fstp %st(0)
|
---|
373 | .L26: addl $8, %esp
|
---|
374 | cfi_adjust_cfa_offset (-8)
|
---|
375 | .L27: // Raise divide-by-zero exception and get infinity value.
|
---|
376 | fldl MO(one)
|
---|
377 | fdivl MO(zero)
|
---|
378 | ret
|
---|
379 |
|
---|
380 | cfi_adjust_cfa_offset (8)
|
---|
381 | .align ALIGNARG(4)
|
---|
382 | // x is ±0 and y is > 0. We must find out whether y is an odd integer.
|
---|
383 | .L21: testb $2, %dh
|
---|
384 | jz .L22
|
---|
385 |
|
---|
386 | fld %st // y : y
|
---|
387 | fistpll (%esp) // y
|
---|
388 | fildll (%esp) // int(y) : y
|
---|
389 | fucompp // <empty>
|
---|
390 | fnstsw
|
---|
391 | sahf
|
---|
392 | jne .L23
|
---|
393 |
|
---|
394 | // OK, the value is an integer, but is it odd?
|
---|
395 | popl %eax
|
---|
396 | cfi_adjust_cfa_offset (-4)
|
---|
397 | popl %edx
|
---|
398 | cfi_adjust_cfa_offset (-4)
|
---|
399 | andb $1, %al
|
---|
400 | jz .L24 // jump if not odd
|
---|
401 | // It's an odd integer.
|
---|
402 | fldl MO(mzero)
|
---|
403 | ret
|
---|
404 |
|
---|
405 | cfi_adjust_cfa_offset (8)
|
---|
406 | .L22: fstp %st(0)
|
---|
407 | .L23: addl $8, %esp // Don't use 2 x pop
|
---|
408 | cfi_adjust_cfa_offset (-8)
|
---|
409 | .L24: fldl MO(zero)
|
---|
410 | ret
|
---|
411 |
|
---|
412 | END(RT_NOCRT(powl))
|
---|
413 | //END(__ieee754_powl)
|
---|