1 | /* ix87 specific implementation of pow function.
|
---|
2 | Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004 Free Software Founda
|
---|
3 | This file is part of the GNU C Library.
|
---|
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
---|
5 |
|
---|
6 | The GNU C Library is free software; you can redistribute it and/or
|
---|
7 | modify it under the terms of the GNU Lesser General Public
|
---|
8 | License as published by the Free Software Foundation; either
|
---|
9 | version 2.1 of the License, or (at your option) any later version.
|
---|
10 |
|
---|
11 | The GNU C Library is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | Lesser General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU Lesser General Public
|
---|
17 | License along with the GNU C Library; if not, write to the Free
|
---|
18 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
19 | 02111-1307 USA. */
|
---|
20 |
|
---|
21 | /*#include <machine/asm.h>*/
|
---|
22 | #include <iprt/cdefs.h>
|
---|
23 |
|
---|
24 | #define ALIGNARG(log2) 1<<log2
|
---|
25 | #define ASM_TYPE_DIRECTIVE(name,typearg) .type name,typearg;
|
---|
26 | #define ASM_SIZE_DIRECTIVE(name) .size name,.-name;
|
---|
27 | #define ASM_GLOBAL_DIRECTIVE .global
|
---|
28 |
|
---|
29 | #define C_LABEL(name) name:
|
---|
30 | #define C_SYMBOL_NAME(name) name
|
---|
31 |
|
---|
32 | #define ENTRY(name) \
|
---|
33 | ASM_GLOBAL_DIRECTIVE C_SYMBOL_NAME(name); \
|
---|
34 | ASM_TYPE_DIRECTIVE (C_SYMBOL_NAME(name),@function) \
|
---|
35 | .align ALIGNARG(4); \
|
---|
36 | C_LABEL(name)
|
---|
37 |
|
---|
38 | #undef END
|
---|
39 | #define END(name) \
|
---|
40 | ASM_SIZE_DIRECTIVE(name)
|
---|
41 |
|
---|
42 |
|
---|
43 | #ifdef __ELF__
|
---|
44 | .section .rodata
|
---|
45 | #else
|
---|
46 | .text
|
---|
47 | #endif
|
---|
48 |
|
---|
49 | .align ALIGNARG(4)
|
---|
50 | ASM_TYPE_DIRECTIVE(infinity,@object)
|
---|
51 | inf_zero:
|
---|
52 | infinity:
|
---|
53 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
|
---|
54 | ASM_SIZE_DIRECTIVE(infinity)
|
---|
55 | ASM_TYPE_DIRECTIVE(zero,@object)
|
---|
56 | zero: .double 0.0
|
---|
57 | ASM_SIZE_DIRECTIVE(zero)
|
---|
58 | ASM_TYPE_DIRECTIVE(minf_mzero,@object)
|
---|
59 | minf_mzero:
|
---|
60 | minfinity:
|
---|
61 | .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
|
---|
62 | mzero:
|
---|
63 | .byte 0, 0, 0, 0, 0, 0, 0, 0x80
|
---|
64 | ASM_SIZE_DIRECTIVE(minf_mzero)
|
---|
65 | ASM_TYPE_DIRECTIVE(one,@object)
|
---|
66 | one: .double 1.0
|
---|
67 | ASM_SIZE_DIRECTIVE(one)
|
---|
68 | ASM_TYPE_DIRECTIVE(limit,@object)
|
---|
69 | limit: .double 0.29
|
---|
70 | ASM_SIZE_DIRECTIVE(limit)
|
---|
71 | ASM_TYPE_DIRECTIVE(p63,@object)
|
---|
72 | p63:
|
---|
73 | .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
|
---|
74 | ASM_SIZE_DIRECTIVE(p63)
|
---|
75 |
|
---|
76 | //#ifdef PIC
|
---|
77 | //#define MO(op) op##(%rip)
|
---|
78 | //#else
|
---|
79 | #define MO(op) op
|
---|
80 | //#endif
|
---|
81 |
|
---|
82 | .text
|
---|
83 | /*ENTRY(__ieee754_powl)*/
|
---|
84 | ENTRY(RT_NOCRT(powl))
|
---|
85 |
|
---|
86 | fldt 24(%rsp) // y
|
---|
87 | fxam
|
---|
88 |
|
---|
89 |
|
---|
90 | fnstsw
|
---|
91 | movb %ah, %dl
|
---|
92 | andb $0x45, %ah
|
---|
93 | cmpb $0x40, %ah // is y == 0 ?
|
---|
94 | je 11f
|
---|
95 |
|
---|
96 | cmpb $0x05, %ah // is y == ±inf ?
|
---|
97 | je 12f
|
---|
98 |
|
---|
99 | cmpb $0x01, %ah // is y == NaN ?
|
---|
100 | je 30f
|
---|
101 |
|
---|
102 | fldt 8(%rsp) // x : y
|
---|
103 |
|
---|
104 | fxam
|
---|
105 | fnstsw
|
---|
106 | movb %ah, %dh
|
---|
107 | andb $0x45, %ah
|
---|
108 | cmpb $0x40, %ah
|
---|
109 | je 20f // x is ±0
|
---|
110 |
|
---|
111 | cmpb $0x05, %ah
|
---|
112 | je 15f // x is ±inf
|
---|
113 |
|
---|
114 | fxch // y : x
|
---|
115 |
|
---|
116 | /* fistpll raises invalid exception for |y| >= 1L<<63. */
|
---|
117 | fldl MO(p63) // 1L<<63 : y : x
|
---|
118 | fld %st(1) // y : 1L<<63 : y : x
|
---|
119 | fabs // |y| : 1L<<63 : y : x
|
---|
120 | fcomip %st(1), %st // 1L<<63 : y : x
|
---|
121 | fstp %st(0) // y : x
|
---|
122 | jnc 2f
|
---|
123 |
|
---|
124 | /* First see whether `y' is a natural number. In this case we
|
---|
125 | can use a more precise algorithm. */
|
---|
126 | fld %st // y : y : x
|
---|
127 | fistpll -8(%rsp) // y : x
|
---|
128 | fildll -8(%rsp) // int(y) : y : x
|
---|
129 | fucomip %st(1),%st // y : x
|
---|
130 | jne 2f
|
---|
131 |
|
---|
132 | /* OK, we have an integer value for y. */
|
---|
133 | mov -8(%rsp),%eax
|
---|
134 | mov -4(%rsp),%edx
|
---|
135 | orl $0, %edx
|
---|
136 | fstp %st(0) // x
|
---|
137 | jns 4f // y >= 0, jump
|
---|
138 | fdivrl MO(one) // 1/x (now referred to as x)
|
---|
139 | negl %eax
|
---|
140 | adcl $0, %edx
|
---|
141 | negl %edx
|
---|
142 | 4: fldl MO(one) // 1 : x
|
---|
143 | fxch
|
---|
144 |
|
---|
145 | 6: shrdl $1, %edx, %eax
|
---|
146 | jnc 5f
|
---|
147 | fxch
|
---|
148 | fmul %st(1) // x : ST*x
|
---|
149 | fxch
|
---|
150 | 5: fmul %st(0), %st // x*x : ST*x
|
---|
151 | shrl $1, %edx
|
---|
152 | movl %eax, %ecx
|
---|
153 | orl %edx, %ecx
|
---|
154 | jnz 6b
|
---|
155 | fstp %st(0) // ST*x
|
---|
156 | ret
|
---|
157 |
|
---|
158 | /* y is ±NAN */
|
---|
159 | 30: fldt 8(%rsp) // x : y
|
---|
160 | fldl MO(one) // 1.0 : x : y
|
---|
161 | fucomip %st(1),%st // x : y
|
---|
162 | je 31f
|
---|
163 | fxch // y : x
|
---|
164 | 31: fstp %st(1)
|
---|
165 | ret
|
---|
166 |
|
---|
167 | .align ALIGNARG(4)
|
---|
168 | 2: /* y is a real number. */
|
---|
169 | fxch // x : y
|
---|
170 | fldl MO(one) // 1.0 : x : y
|
---|
171 | fld %st(1) // x : 1.0 : x : y
|
---|
172 | fsub %st(1) // x-1 : 1.0 : x : y
|
---|
173 | fabs // |x-1| : 1.0 : x : y
|
---|
174 | fcompl MO(limit) // 1.0 : x : y
|
---|
175 | fnstsw
|
---|
176 | fxch // x : 1.0 : y
|
---|
177 | test $4500,%eax
|
---|
178 | jz 7f
|
---|
179 | fsub %st(1) // x-1 : 1.0 : y
|
---|
180 | fyl2xp1 // log2(x) : y
|
---|
181 | jmp 8f
|
---|
182 |
|
---|
183 | 7: fyl2x // log2(x) : y
|
---|
184 | 8: fmul %st(1) // y*log2(x) : y
|
---|
185 | fxam
|
---|
186 | fnstsw
|
---|
187 | andb $0x45, %ah
|
---|
188 | cmpb $0x05, %ah // is y*log2(x) == ±inf ?
|
---|
189 | je 28f
|
---|
190 | fst %st(1) // y*log2(x) : y*log2(x)
|
---|
191 | frndint // int(y*log2(x)) : y*log2(x)
|
---|
192 | fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
|
---|
193 | fxch // fract(y*log2(x)) : int(y*log2(x))
|
---|
194 | f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
|
---|
195 | faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
|
---|
196 | fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
|
---|
197 | fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
|
---|
198 | ret
|
---|
199 |
|
---|
200 | 28: fstp %st(1) // y*log2(x)
|
---|
201 | fldl MO(one) // 1 : y*log2(x)
|
---|
202 | fscale // 2^(y*log2(x)) : y*log2(x)
|
---|
203 | fstp %st(1) // 2^(y*log2(x))
|
---|
204 | ret
|
---|
205 |
|
---|
206 | // pow(x,±0) = 1
|
---|
207 | .align ALIGNARG(4)
|
---|
208 | 11: fstp %st(0) // pop y
|
---|
209 | fldl MO(one)
|
---|
210 | ret
|
---|
211 |
|
---|
212 | // y == ±inf
|
---|
213 | .align ALIGNARG(4)
|
---|
214 | 12: fstp %st(0) // pop y
|
---|
215 | fldt 8(%rsp) // x
|
---|
216 | fabs
|
---|
217 | fcompl MO(one) // < 1, == 1, or > 1
|
---|
218 | fnstsw
|
---|
219 | andb $0x45, %ah
|
---|
220 | cmpb $0x45, %ah
|
---|
221 | je 13f // jump if x is NaN
|
---|
222 |
|
---|
223 | cmpb $0x40, %ah
|
---|
224 | je 14f // jump if |x| == 1
|
---|
225 |
|
---|
226 | shlb $1, %ah
|
---|
227 | xorb %ah, %dl
|
---|
228 | andl $2, %edx
|
---|
229 | #ifdef PIC
|
---|
230 | lea inf_zero(%rip),%rcx
|
---|
231 | fldl (%rcx, %rdx, 4)
|
---|
232 | #else
|
---|
233 | fldl inf_zero(,%rdx, 4)
|
---|
234 | #endif
|
---|
235 | ret
|
---|
236 |
|
---|
237 | .align ALIGNARG(4)
|
---|
238 | 14: fldl MO(one)
|
---|
239 | ret
|
---|
240 |
|
---|
241 | .align ALIGNARG(4)
|
---|
242 | 13: fldt 8(%rsp) // load x == NaN
|
---|
243 | ret
|
---|
244 |
|
---|
245 | .align ALIGNARG(4)
|
---|
246 | // x is ±inf
|
---|
247 | 15: fstp %st(0) // y
|
---|
248 | testb $2, %dh
|
---|
249 | jz 16f // jump if x == +inf
|
---|
250 |
|
---|
251 | // We must find out whether y is an odd integer.
|
---|
252 | fld %st // y : y
|
---|
253 | fistpll -8(%rsp) // y
|
---|
254 | fildll -8(%rsp) // int(y) : y
|
---|
255 | fucomip %st(1),%st
|
---|
256 | ffreep %st // <empty>
|
---|
257 | jne 17f
|
---|
258 |
|
---|
259 | // OK, the value is an integer, but is it odd?
|
---|
260 | mov -8(%rsp), %eax
|
---|
261 | mov -4(%rsp), %edx
|
---|
262 | andb $1, %al
|
---|
263 | jz 18f // jump if not odd
|
---|
264 | // It's an odd integer.
|
---|
265 | shrl $31, %edx
|
---|
266 | #ifdef PIC
|
---|
267 | lea minf_mzero(%rip),%rcx
|
---|
268 | fldl (%rcx, %rdx, 8)
|
---|
269 | #else
|
---|
270 | fldl minf_mzero(,%rdx, 8)
|
---|
271 | #endif
|
---|
272 | ret
|
---|
273 |
|
---|
274 | .align ALIGNARG(4)
|
---|
275 | 16: fcompl MO(zero)
|
---|
276 | fnstsw
|
---|
277 | shrl $5, %eax
|
---|
278 | andl $8, %eax
|
---|
279 | #ifdef PIC
|
---|
280 | lea inf_zero(%rip),%rcx
|
---|
281 | fldl (%rcx, %rax, 1)
|
---|
282 | #else
|
---|
283 | fldl inf_zero(,%rax, 1)
|
---|
284 | #endif
|
---|
285 | ret
|
---|
286 |
|
---|
287 | .align ALIGNARG(4)
|
---|
288 | 17: shll $30, %edx // sign bit for y in right position
|
---|
289 | 18: shrl $31, %edx
|
---|
290 | #ifdef PIC
|
---|
291 | lea inf_zero(%rip),%rcx
|
---|
292 | fldl (%rcx, %rdx, 8)
|
---|
293 | #else
|
---|
294 | fldl inf_zero(,%rdx, 8)
|
---|
295 | #endif
|
---|
296 | ret
|
---|
297 |
|
---|
298 | .align ALIGNARG(4)
|
---|
299 | // x is ±0
|
---|
300 | 20: fstp %st(0) // y
|
---|
301 | testb $2, %dl
|
---|
302 | jz 21f // y > 0
|
---|
303 |
|
---|
304 | // x is ±0 and y is < 0. We must find out whether y is an odd integer.
|
---|
305 | testb $2, %dh
|
---|
306 | jz 25f
|
---|
307 |
|
---|
308 | fld %st // y : y
|
---|
309 | fistpll -8(%rsp) // y
|
---|
310 | fildll -8(%rsp) // int(y) : y
|
---|
311 | fucomip %st(1),%st
|
---|
312 | ffreep %st // <empty>
|
---|
313 | jne 26f
|
---|
314 |
|
---|
315 | // OK, the value is an integer, but is it odd?
|
---|
316 | mov -8(%rsp),%eax
|
---|
317 | mov -4(%rsp),%edx
|
---|
318 | andb $1, %al
|
---|
319 | jz 27f // jump if not odd
|
---|
320 | // It's an odd integer.
|
---|
321 | // Raise divide-by-zero exception and get minus infinity value.
|
---|
322 | fldl MO(one)
|
---|
323 | fdivl MO(zero)
|
---|
324 | fchs
|
---|
325 | ret
|
---|
326 |
|
---|
327 | 25: fstp %st(0)
|
---|
328 | 26:
|
---|
329 | 27: // Raise divide-by-zero exception and get infinity value.
|
---|
330 | fldl MO(one)
|
---|
331 | fdivl MO(zero)
|
---|
332 | ret
|
---|
333 |
|
---|
334 | .align ALIGNARG(4)
|
---|
335 | // x is ±0 and y is > 0. We must find out whether y is an odd integer.
|
---|
336 | 21: testb $2, %dh
|
---|
337 | jz 22f
|
---|
338 |
|
---|
339 | fld %st // y : y
|
---|
340 | fistpll -8(%rsp) // y
|
---|
341 | fildll -8(%rsp) // int(y) : y
|
---|
342 | fucomip %st(1),%st
|
---|
343 | ffreep %st // <empty>
|
---|
344 | jne 23f
|
---|
345 |
|
---|
346 | // OK, the value is an integer, but is it odd?
|
---|
347 | mov -8(%rsp),%eax
|
---|
348 | mov -4(%rsp),%edx
|
---|
349 | andb $1, %al
|
---|
350 | jz 24f // jump if not odd
|
---|
351 | // It's an odd integer.
|
---|
352 | fldl MO(mzero)
|
---|
353 | ret
|
---|
354 |
|
---|
355 | 22: fstp %st(0)
|
---|
356 | 23:
|
---|
357 | 24: fldl MO(zero)
|
---|
358 | ret
|
---|
359 |
|
---|
360 | /*END(__ieee754_powl)*/
|
---|
361 | END(RT_NOCRT(powl))
|
---|
362 |
|
---|