1 | /* crc32.c -- compute the CRC-32 of a data stream
|
---|
2 | * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | *
|
---|
5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
---|
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
---|
7 | * tables for updating the shift register in one step with three exclusive-ors
|
---|
8 | * instead of four steps with four exclusive-ors. This results in about a
|
---|
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
---|
10 | */
|
---|
11 |
|
---|
12 | /* @(#) $Id$ */
|
---|
13 |
|
---|
14 | /*
|
---|
15 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
|
---|
16 | protection on the static variables used to control the first-use generation
|
---|
17 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
|
---|
18 | first call get_crc_table() to initialize the tables before allowing more than
|
---|
19 | one thread to use crc32().
|
---|
20 |
|
---|
21 | DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
|
---|
22 | */
|
---|
23 |
|
---|
24 | #ifdef MAKECRCH
|
---|
25 | # include <stdio.h>
|
---|
26 | # ifndef DYNAMIC_CRC_TABLE
|
---|
27 | # define DYNAMIC_CRC_TABLE
|
---|
28 | # endif /* !DYNAMIC_CRC_TABLE */
|
---|
29 | #endif /* MAKECRCH */
|
---|
30 |
|
---|
31 | #include "zutil.h" /* for STDC and FAR definitions */
|
---|
32 |
|
---|
33 | /* Definitions for doing the crc four data bytes at a time. */
|
---|
34 | #if !defined(NOBYFOUR) && defined(Z_U4)
|
---|
35 | # define BYFOUR
|
---|
36 | #endif
|
---|
37 | #ifdef BYFOUR
|
---|
38 | local unsigned long crc32_little OF((unsigned long,
|
---|
39 | const unsigned char FAR *, z_size_t));
|
---|
40 | local unsigned long crc32_big OF((unsigned long,
|
---|
41 | const unsigned char FAR *, z_size_t));
|
---|
42 | # define TBLS 8
|
---|
43 | #else
|
---|
44 | # define TBLS 1
|
---|
45 | #endif /* BYFOUR */
|
---|
46 |
|
---|
47 | /* Local functions for crc concatenation */
|
---|
48 | local unsigned long gf2_matrix_times OF((unsigned long *mat,
|
---|
49 | unsigned long vec));
|
---|
50 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
|
---|
51 | local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
|
---|
52 |
|
---|
53 |
|
---|
54 | #ifdef DYNAMIC_CRC_TABLE
|
---|
55 |
|
---|
56 | local volatile int crc_table_empty = 1;
|
---|
57 | local z_crc_t FAR crc_table[TBLS][256];
|
---|
58 | local void make_crc_table OF((void));
|
---|
59 | #ifdef MAKECRCH
|
---|
60 | local void write_table OF((FILE *, const z_crc_t FAR *));
|
---|
61 | #endif /* MAKECRCH */
|
---|
62 | /*
|
---|
63 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
---|
64 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
---|
65 |
|
---|
66 | Polynomials over GF(2) are represented in binary, one bit per coefficient,
|
---|
67 | with the lowest powers in the most significant bit. Then adding polynomials
|
---|
68 | is just exclusive-or, and multiplying a polynomial by x is a right shift by
|
---|
69 | one. If we call the above polynomial p, and represent a byte as the
|
---|
70 | polynomial q, also with the lowest power in the most significant bit (so the
|
---|
71 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
|
---|
72 | where a mod b means the remainder after dividing a by b.
|
---|
73 |
|
---|
74 | This calculation is done using the shift-register method of multiplying and
|
---|
75 | taking the remainder. The register is initialized to zero, and for each
|
---|
76 | incoming bit, x^32 is added mod p to the register if the bit is a one (where
|
---|
77 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
|
---|
78 | x (which is shifting right by one and adding x^32 mod p if the bit shifted
|
---|
79 | out is a one). We start with the highest power (least significant bit) of
|
---|
80 | q and repeat for all eight bits of q.
|
---|
81 |
|
---|
82 | The first table is simply the CRC of all possible eight bit values. This is
|
---|
83 | all the information needed to generate CRCs on data a byte at a time for all
|
---|
84 | combinations of CRC register values and incoming bytes. The remaining tables
|
---|
85 | allow for word-at-a-time CRC calculation for both big-endian and little-
|
---|
86 | endian machines, where a word is four bytes.
|
---|
87 | */
|
---|
88 | local void make_crc_table()
|
---|
89 | {
|
---|
90 | z_crc_t c;
|
---|
91 | int n, k;
|
---|
92 | z_crc_t poly; /* polynomial exclusive-or pattern */
|
---|
93 | /* terms of polynomial defining this crc (except x^32): */
|
---|
94 | static volatile int first = 1; /* flag to limit concurrent making */
|
---|
95 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
|
---|
96 |
|
---|
97 | /* See if another task is already doing this (not thread-safe, but better
|
---|
98 | than nothing -- significantly reduces duration of vulnerability in
|
---|
99 | case the advice about DYNAMIC_CRC_TABLE is ignored) */
|
---|
100 | if (first) {
|
---|
101 | first = 0;
|
---|
102 |
|
---|
103 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */
|
---|
104 | poly = 0;
|
---|
105 | for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
|
---|
106 | poly |= (z_crc_t)1 << (31 - p[n]);
|
---|
107 |
|
---|
108 | /* generate a crc for every 8-bit value */
|
---|
109 | for (n = 0; n < 256; n++) {
|
---|
110 | c = (z_crc_t)n;
|
---|
111 | for (k = 0; k < 8; k++)
|
---|
112 | c = c & 1 ? poly ^ (c >> 1) : c >> 1;
|
---|
113 | crc_table[0][n] = c;
|
---|
114 | }
|
---|
115 |
|
---|
116 | #ifdef BYFOUR
|
---|
117 | /* generate crc for each value followed by one, two, and three zeros,
|
---|
118 | and then the byte reversal of those as well as the first table */
|
---|
119 | for (n = 0; n < 256; n++) {
|
---|
120 | c = crc_table[0][n];
|
---|
121 | crc_table[4][n] = ZSWAP32(c);
|
---|
122 | for (k = 1; k < 4; k++) {
|
---|
123 | c = crc_table[0][c & 0xff] ^ (c >> 8);
|
---|
124 | crc_table[k][n] = c;
|
---|
125 | crc_table[k + 4][n] = ZSWAP32(c);
|
---|
126 | }
|
---|
127 | }
|
---|
128 | #endif /* BYFOUR */
|
---|
129 |
|
---|
130 | crc_table_empty = 0;
|
---|
131 | }
|
---|
132 | else { /* not first */
|
---|
133 | /* wait for the other guy to finish (not efficient, but rare) */
|
---|
134 | while (crc_table_empty)
|
---|
135 | ;
|
---|
136 | }
|
---|
137 |
|
---|
138 | #ifdef MAKECRCH
|
---|
139 | /* write out CRC tables to crc32.h */
|
---|
140 | {
|
---|
141 | FILE *out;
|
---|
142 |
|
---|
143 | out = fopen("crc32.h", "w");
|
---|
144 | if (out == NULL) return;
|
---|
145 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
|
---|
146 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
|
---|
147 | fprintf(out, "local const z_crc_t FAR ");
|
---|
148 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
|
---|
149 | write_table(out, crc_table[0]);
|
---|
150 | # ifdef BYFOUR
|
---|
151 | fprintf(out, "#ifdef BYFOUR\n");
|
---|
152 | for (k = 1; k < 8; k++) {
|
---|
153 | fprintf(out, " },\n {\n");
|
---|
154 | write_table(out, crc_table[k]);
|
---|
155 | }
|
---|
156 | fprintf(out, "#endif\n");
|
---|
157 | # endif /* BYFOUR */
|
---|
158 | fprintf(out, " }\n};\n");
|
---|
159 | fclose(out);
|
---|
160 | }
|
---|
161 | #endif /* MAKECRCH */
|
---|
162 | }
|
---|
163 |
|
---|
164 | #ifdef MAKECRCH
|
---|
165 | local void write_table(out, table)
|
---|
166 | FILE *out;
|
---|
167 | const z_crc_t FAR *table;
|
---|
168 | {
|
---|
169 | int n;
|
---|
170 |
|
---|
171 | for (n = 0; n < 256; n++)
|
---|
172 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
|
---|
173 | (unsigned long)(table[n]),
|
---|
174 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
|
---|
175 | }
|
---|
176 | #endif /* MAKECRCH */
|
---|
177 |
|
---|
178 | #else /* !DYNAMIC_CRC_TABLE */
|
---|
179 | /* ========================================================================
|
---|
180 | * Tables of CRC-32s of all single-byte values, made by make_crc_table().
|
---|
181 | */
|
---|
182 | #include "crc32.h"
|
---|
183 | #endif /* DYNAMIC_CRC_TABLE */
|
---|
184 |
|
---|
185 | /* =========================================================================
|
---|
186 | * This function can be used by asm versions of crc32()
|
---|
187 | */
|
---|
188 | const z_crc_t FAR * ZEXPORT get_crc_table()
|
---|
189 | {
|
---|
190 | #ifdef DYNAMIC_CRC_TABLE
|
---|
191 | if (crc_table_empty)
|
---|
192 | make_crc_table();
|
---|
193 | #endif /* DYNAMIC_CRC_TABLE */
|
---|
194 | return (const z_crc_t FAR *)crc_table;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /* ========================================================================= */
|
---|
198 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
|
---|
199 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
|
---|
200 |
|
---|
201 | /* ========================================================================= */
|
---|
202 | unsigned long ZEXPORT crc32_z(crc, buf, len)
|
---|
203 | unsigned long crc;
|
---|
204 | const unsigned char FAR *buf;
|
---|
205 | z_size_t len;
|
---|
206 | {
|
---|
207 | if (buf == Z_NULL) return 0UL;
|
---|
208 |
|
---|
209 | #ifdef DYNAMIC_CRC_TABLE
|
---|
210 | if (crc_table_empty)
|
---|
211 | make_crc_table();
|
---|
212 | #endif /* DYNAMIC_CRC_TABLE */
|
---|
213 |
|
---|
214 | #ifdef BYFOUR
|
---|
215 | if (sizeof(void *) == sizeof(ptrdiff_t)) {
|
---|
216 | z_crc_t endian;
|
---|
217 |
|
---|
218 | endian = 1;
|
---|
219 | if (*((unsigned char *)(&endian)))
|
---|
220 | return crc32_little(crc, buf, len);
|
---|
221 | else
|
---|
222 | return crc32_big(crc, buf, len);
|
---|
223 | }
|
---|
224 | #endif /* BYFOUR */
|
---|
225 | crc = crc ^ 0xffffffffUL;
|
---|
226 | while (len >= 8) {
|
---|
227 | DO8;
|
---|
228 | len -= 8;
|
---|
229 | }
|
---|
230 | if (len) do {
|
---|
231 | DO1;
|
---|
232 | } while (--len);
|
---|
233 | return crc ^ 0xffffffffUL;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /* ========================================================================= */
|
---|
237 | unsigned long ZEXPORT crc32(crc, buf, len)
|
---|
238 | unsigned long crc;
|
---|
239 | const unsigned char FAR *buf;
|
---|
240 | uInt len;
|
---|
241 | {
|
---|
242 | return crc32_z(crc, buf, len);
|
---|
243 | }
|
---|
244 |
|
---|
245 | #ifdef BYFOUR
|
---|
246 |
|
---|
247 | /*
|
---|
248 | This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
|
---|
249 | integer pointer type. This violates the strict aliasing rule, where a
|
---|
250 | compiler can assume, for optimization purposes, that two pointers to
|
---|
251 | fundamentally different types won't ever point to the same memory. This can
|
---|
252 | manifest as a problem only if one of the pointers is written to. This code
|
---|
253 | only reads from those pointers. So long as this code remains isolated in
|
---|
254 | this compilation unit, there won't be a problem. For this reason, this code
|
---|
255 | should not be copied and pasted into a compilation unit in which other code
|
---|
256 | writes to the buffer that is passed to these routines.
|
---|
257 | */
|
---|
258 |
|
---|
259 | /* ========================================================================= */
|
---|
260 | #define DOLIT4 c ^= *buf4++; \
|
---|
261 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
|
---|
262 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
|
---|
263 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
|
---|
264 |
|
---|
265 | /* ========================================================================= */
|
---|
266 | local unsigned long crc32_little(crc, buf, len)
|
---|
267 | unsigned long crc;
|
---|
268 | const unsigned char FAR *buf;
|
---|
269 | z_size_t len;
|
---|
270 | {
|
---|
271 | register z_crc_t c;
|
---|
272 | register const z_crc_t FAR *buf4;
|
---|
273 |
|
---|
274 | c = (z_crc_t)crc;
|
---|
275 | c = ~c;
|
---|
276 | while (len && ((ptrdiff_t)buf & 3)) {
|
---|
277 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
---|
278 | len--;
|
---|
279 | }
|
---|
280 |
|
---|
281 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
|
---|
282 | while (len >= 32) {
|
---|
283 | DOLIT32;
|
---|
284 | len -= 32;
|
---|
285 | }
|
---|
286 | while (len >= 4) {
|
---|
287 | DOLIT4;
|
---|
288 | len -= 4;
|
---|
289 | }
|
---|
290 | buf = (const unsigned char FAR *)buf4;
|
---|
291 |
|
---|
292 | if (len) do {
|
---|
293 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
---|
294 | } while (--len);
|
---|
295 | c = ~c;
|
---|
296 | return (unsigned long)c;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /* ========================================================================= */
|
---|
300 | #define DOBIG4 c ^= *buf4++; \
|
---|
301 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
---|
302 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
---|
303 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
---|
304 |
|
---|
305 | /* ========================================================================= */
|
---|
306 | local unsigned long crc32_big(crc, buf, len)
|
---|
307 | unsigned long crc;
|
---|
308 | const unsigned char FAR *buf;
|
---|
309 | z_size_t len;
|
---|
310 | {
|
---|
311 | register z_crc_t c;
|
---|
312 | register const z_crc_t FAR *buf4;
|
---|
313 |
|
---|
314 | c = ZSWAP32((z_crc_t)crc);
|
---|
315 | c = ~c;
|
---|
316 | while (len && ((ptrdiff_t)buf & 3)) {
|
---|
317 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
---|
318 | len--;
|
---|
319 | }
|
---|
320 |
|
---|
321 | buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
|
---|
322 | while (len >= 32) {
|
---|
323 | DOBIG32;
|
---|
324 | len -= 32;
|
---|
325 | }
|
---|
326 | while (len >= 4) {
|
---|
327 | DOBIG4;
|
---|
328 | len -= 4;
|
---|
329 | }
|
---|
330 | buf = (const unsigned char FAR *)buf4;
|
---|
331 |
|
---|
332 | if (len) do {
|
---|
333 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
---|
334 | } while (--len);
|
---|
335 | c = ~c;
|
---|
336 | return (unsigned long)(ZSWAP32(c));
|
---|
337 | }
|
---|
338 |
|
---|
339 | #endif /* BYFOUR */
|
---|
340 |
|
---|
341 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
|
---|
342 |
|
---|
343 | /* ========================================================================= */
|
---|
344 | local unsigned long gf2_matrix_times(mat, vec)
|
---|
345 | unsigned long *mat;
|
---|
346 | unsigned long vec;
|
---|
347 | {
|
---|
348 | unsigned long sum;
|
---|
349 |
|
---|
350 | sum = 0;
|
---|
351 | while (vec) {
|
---|
352 | if (vec & 1)
|
---|
353 | sum ^= *mat;
|
---|
354 | vec >>= 1;
|
---|
355 | mat++;
|
---|
356 | }
|
---|
357 | return sum;
|
---|
358 | }
|
---|
359 |
|
---|
360 | /* ========================================================================= */
|
---|
361 | local void gf2_matrix_square(square, mat)
|
---|
362 | unsigned long *square;
|
---|
363 | unsigned long *mat;
|
---|
364 | {
|
---|
365 | int n;
|
---|
366 |
|
---|
367 | for (n = 0; n < GF2_DIM; n++)
|
---|
368 | square[n] = gf2_matrix_times(mat, mat[n]);
|
---|
369 | }
|
---|
370 |
|
---|
371 | /* ========================================================================= */
|
---|
372 | local uLong crc32_combine_(crc1, crc2, len2)
|
---|
373 | uLong crc1;
|
---|
374 | uLong crc2;
|
---|
375 | z_off64_t len2;
|
---|
376 | {
|
---|
377 | int n;
|
---|
378 | unsigned long row;
|
---|
379 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
---|
380 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
---|
381 |
|
---|
382 | /* degenerate case (also disallow negative lengths) */
|
---|
383 | if (len2 <= 0)
|
---|
384 | return crc1;
|
---|
385 |
|
---|
386 | /* put operator for one zero bit in odd */
|
---|
387 | odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
|
---|
388 | row = 1;
|
---|
389 | for (n = 1; n < GF2_DIM; n++) {
|
---|
390 | odd[n] = row;
|
---|
391 | row <<= 1;
|
---|
392 | }
|
---|
393 |
|
---|
394 | /* put operator for two zero bits in even */
|
---|
395 | gf2_matrix_square(even, odd);
|
---|
396 |
|
---|
397 | /* put operator for four zero bits in odd */
|
---|
398 | gf2_matrix_square(odd, even);
|
---|
399 |
|
---|
400 | /* apply len2 zeros to crc1 (first square will put the operator for one
|
---|
401 | zero byte, eight zero bits, in even) */
|
---|
402 | do {
|
---|
403 | /* apply zeros operator for this bit of len2 */
|
---|
404 | gf2_matrix_square(even, odd);
|
---|
405 | if (len2 & 1)
|
---|
406 | crc1 = gf2_matrix_times(even, crc1);
|
---|
407 | len2 >>= 1;
|
---|
408 |
|
---|
409 | /* if no more bits set, then done */
|
---|
410 | if (len2 == 0)
|
---|
411 | break;
|
---|
412 |
|
---|
413 | /* another iteration of the loop with odd and even swapped */
|
---|
414 | gf2_matrix_square(odd, even);
|
---|
415 | if (len2 & 1)
|
---|
416 | crc1 = gf2_matrix_times(odd, crc1);
|
---|
417 | len2 >>= 1;
|
---|
418 |
|
---|
419 | /* if no more bits set, then done */
|
---|
420 | } while (len2 != 0);
|
---|
421 |
|
---|
422 | /* return combined crc */
|
---|
423 | crc1 ^= crc2;
|
---|
424 | return crc1;
|
---|
425 | }
|
---|
426 |
|
---|
427 | /* ========================================================================= */
|
---|
428 | uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
---|
429 | uLong crc1;
|
---|
430 | uLong crc2;
|
---|
431 | z_off_t len2;
|
---|
432 | {
|
---|
433 | return crc32_combine_(crc1, crc2, len2);
|
---|
434 | }
|
---|
435 |
|
---|
436 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
|
---|
437 | uLong crc1;
|
---|
438 | uLong crc2;
|
---|
439 | z_off64_t len2;
|
---|
440 | {
|
---|
441 | return crc32_combine_(crc1, crc2, len2);
|
---|
442 | }
|
---|