/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/e_os.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "internal/nelem.h" #include "internal/sizes.h" #include "internal/tlsgroups.h" #include "internal/cryptlib.h" #include "ssl_local.h" #include static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); SSL3_ENC_METHOD const TLSv1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_3_enc_data = { tls13_enc, tls1_mac, tls13_setup_key_block, tls13_generate_master_secret, tls13_change_cipher_state, tls13_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls13_alert_code, tls13_export_keying_material, SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; long tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return 0; if (!s->method->ssl_clear(s)) return 0; return 1; } void tls1_free(SSL *s) { OPENSSL_free(s->ext.session_ticket); ssl3_free(s); } int tls1_clear(SSL *s) { if (!ssl3_clear(s)) return 0; if (s->method->version == TLS_ANY_VERSION) s->version = TLS_MAX_VERSION_INTERNAL; else s->version = s->method->version; return 1; } /* Legacy NID to group_id mapping. Only works for groups we know about */ static struct { int nid; uint16_t group_id; } nid_to_group[] = { {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022}, {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023}, {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024}, {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025}, {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026}, {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027}, {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028}, {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; /* The default curves */ static const uint16_t supported_groups_default[] = { 29, /* X25519 (29) */ 23, /* secp256r1 (23) */ 30, /* X448 (30) */ 25, /* secp521r1 (25) */ 24, /* secp384r1 (24) */ 34, /* GC256A (34) */ 35, /* GC256B (35) */ 36, /* GC256C (36) */ 37, /* GC256D (37) */ 38, /* GC512A (38) */ 39, /* GC512B (39) */ 40, /* GC512C (40) */ 0x100, /* ffdhe2048 (0x100) */ 0x101, /* ffdhe3072 (0x101) */ 0x102, /* ffdhe4096 (0x102) */ 0x103, /* ffdhe6144 (0x103) */ 0x104, /* ffdhe8192 (0x104) */ }; static const uint16_t suiteb_curves[] = { TLSEXT_curve_P_256, TLSEXT_curve_P_384 }; struct provider_group_data_st { SSL_CTX *ctx; OSSL_PROVIDER *provider; }; #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10 static OSSL_CALLBACK add_provider_groups; static int add_provider_groups(const OSSL_PARAM params[], void *data) { struct provider_group_data_st *pgd = data; SSL_CTX *ctx = pgd->ctx; OSSL_PROVIDER *provider = pgd->provider; const OSSL_PARAM *p; TLS_GROUP_INFO *ginf = NULL; EVP_KEYMGMT *keymgmt; unsigned int gid; unsigned int is_kem = 0; int ret = 0; if (ctx->group_list_max_len == ctx->group_list_len) { TLS_GROUP_INFO *tmp = NULL; if (ctx->group_list_max_len == 0) tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); else tmp = OPENSSL_realloc(ctx->group_list, (ctx->group_list_max_len + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE) * sizeof(TLS_GROUP_INFO)); if (tmp == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } ctx->group_list = tmp; memset(tmp + ctx->group_list_max_len, 0, sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE); ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE; } ginf = &ctx->group_list[ctx->group_list_len]; p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME); if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } ginf->tlsname = OPENSSL_strdup(p->data); if (ginf->tlsname == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL); if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } ginf->realname = OPENSSL_strdup(p->data); if (ginf->realname == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID); if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } ginf->group_id = (uint16_t)gid; p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG); if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } ginf->algorithm = OPENSSL_strdup(p->data); if (ginf->algorithm == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS); if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM); if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } ginf->is_kem = 1 & is_kem; p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS); if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS); if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS); if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS); if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } /* * Now check that the algorithm is actually usable for our property query * string. Regardless of the result we still return success because we have * successfully processed this group, even though we may decide not to use * it. */ ret = 1; ERR_set_mark(); keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq); if (keymgmt != NULL) { /* * We have successfully fetched the algorithm - however if the provider * doesn't match this one then we ignore it. * * Note: We're cheating a little here. Technically if the same algorithm * is available from more than one provider then it is undefined which * implementation you will get back. Theoretically this could be * different every time...we assume here that you'll always get the * same one back if you repeat the exact same fetch. Is this a reasonable * assumption to make (in which case perhaps we should document this * behaviour)? */ if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { /* We have a match - so we will use this group */ ctx->group_list_len++; ginf = NULL; } EVP_KEYMGMT_free(keymgmt); } ERR_pop_to_mark(); err: if (ginf != NULL) { OPENSSL_free(ginf->tlsname); OPENSSL_free(ginf->realname); OPENSSL_free(ginf->algorithm); ginf->algorithm = ginf->tlsname = ginf->realname = NULL; } return ret; } static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx) { struct provider_group_data_st pgd; pgd.ctx = vctx; pgd.provider = provider; return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP", add_provider_groups, &pgd); } int ssl_load_groups(SSL_CTX *ctx) { size_t i, j, num_deflt_grps = 0; uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)]; if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx)) return 0; for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) { for (j = 0; j < ctx->group_list_len; j++) { if (ctx->group_list[j].group_id == supported_groups_default[i]) { tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id; break; } } } if (num_deflt_grps == 0) return 1; ctx->ext.supported_groups_default = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps); if (ctx->ext.supported_groups_default == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(ctx->ext.supported_groups_default, tmp_supp_groups, num_deflt_grps * sizeof(tmp_supp_groups[0])); ctx->ext.supported_groups_default_len = num_deflt_grps; return 1; } static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name) { size_t i; for (i = 0; i < ctx->group_list_len; i++) { if (strcmp(ctx->group_list[i].tlsname, name) == 0 || strcmp(ctx->group_list[i].realname, name) == 0) return ctx->group_list[i].group_id; } return 0; } const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id) { size_t i; for (i = 0; i < ctx->group_list_len; i++) { if (ctx->group_list[i].group_id == group_id) return &ctx->group_list[i]; } return NULL; } int tls1_group_id2nid(uint16_t group_id, int include_unknown) { size_t i; if (group_id == 0) return NID_undef; /* * Return well known Group NIDs - for backwards compatibility. This won't * work for groups we don't know about. */ for (i = 0; i < OSSL_NELEM(nid_to_group); i++) { if (nid_to_group[i].group_id == group_id) return nid_to_group[i].nid; } if (!include_unknown) return NID_undef; return TLSEXT_nid_unknown | (int)group_id; } uint16_t tls1_nid2group_id(int nid) { size_t i; /* * Return well known Group ids - for backwards compatibility. This won't * work for groups we don't know about. */ for (i = 0; i < OSSL_NELEM(nid_to_group); i++) { if (nid_to_group[i].nid == nid) return nid_to_group[i].group_id; } return 0; } /* * Set *pgroups to the supported groups list and *pgroupslen to * the number of groups supported. */ void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, size_t *pgroupslen) { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pgroups = suiteb_curves; *pgroupslen = OSSL_NELEM(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pgroups = suiteb_curves; *pgroupslen = 1; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pgroups = suiteb_curves + 1; *pgroupslen = 1; break; default: if (s->ext.supportedgroups == NULL) { *pgroups = s->ctx->ext.supported_groups_default; *pgroupslen = s->ctx->ext.supported_groups_default_len; } else { *pgroups = s->ext.supportedgroups; *pgroupslen = s->ext.supportedgroups_len; } break; } } int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion, int isec, int *okfortls13) { const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id); int ret; if (okfortls13 != NULL) *okfortls13 = 0; if (ginfo == NULL) return 0; if (SSL_IS_DTLS(s)) { if (ginfo->mindtls < 0 || ginfo->maxdtls < 0) return 0; if (ginfo->maxdtls == 0) ret = 1; else ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls); if (ginfo->mindtls > 0) ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls); } else { if (ginfo->mintls < 0 || ginfo->maxtls < 0) return 0; if (ginfo->maxtls == 0) ret = 1; else ret = (minversion <= ginfo->maxtls); if (ginfo->mintls > 0) ret &= (maxversion >= ginfo->mintls); if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION) *okfortls13 = (ginfo->maxtls == 0) || (ginfo->maxtls >= TLS1_3_VERSION); } ret &= !isec || strcmp(ginfo->algorithm, "EC") == 0 || strcmp(ginfo->algorithm, "X25519") == 0 || strcmp(ginfo->algorithm, "X448") == 0; return ret; } /* See if group is allowed by security callback */ int tls_group_allowed(SSL *s, uint16_t group, int op) { const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group); unsigned char gtmp[2]; if (ginfo == NULL) return 0; gtmp[0] = group >> 8; gtmp[1] = group & 0xff; return ssl_security(s, op, ginfo->secbits, tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp); } /* Return 1 if "id" is in "list" */ static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) { size_t i; for (i = 0; i < listlen; i++) if (list[i] == id) return 1; return 0; } /*- * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 * if there is no match. * For nmatch == -1, return number of matches * For nmatch == -2, return the id of the group to use for * a tmp key, or 0 if there is no match. */ uint16_t tls1_shared_group(SSL *s, int nmatch) { const uint16_t *pref, *supp; size_t num_pref, num_supp, i; int k; SSL_CTX *ctx = s->ctx; /* Can't do anything on client side */ if (s->server == 0) return 0; if (nmatch == -2) { if (tls1_suiteb(s)) { /* * For Suite B ciphersuite determines curve: we already know * these are acceptable due to previous checks. */ unsigned long cid = s->s3.tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return TLSEXT_curve_P_256; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return TLSEXT_curve_P_384; /* Should never happen */ return 0; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } /* * If server preference set, our groups are the preference order * otherwise peer decides. */ if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { tls1_get_supported_groups(s, &pref, &num_pref); tls1_get_peer_groups(s, &supp, &num_supp); } else { tls1_get_peer_groups(s, &pref, &num_pref); tls1_get_supported_groups(s, &supp, &num_supp); } for (k = 0, i = 0; i < num_pref; i++) { uint16_t id = pref[i]; const TLS_GROUP_INFO *inf; if (!tls1_in_list(id, supp, num_supp) || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED)) continue; inf = tls1_group_id_lookup(ctx, id); if (!ossl_assert(inf != NULL)) return 0; if (SSL_IS_DTLS(s)) { if (inf->maxdtls == -1) continue; if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls)) || (inf->maxdtls != 0 && DTLS_VERSION_GT(s->version, inf->maxdtls))) continue; } else { if (inf->maxtls == -1) continue; if ((inf->mintls != 0 && s->version < inf->mintls) || (inf->maxtls != 0 && s->version > inf->maxtls)) continue; } if (nmatch == k) return id; k++; } if (nmatch == -1) return k; /* Out of range (nmatch > k). */ return 0; } int tls1_set_groups(uint16_t **pext, size_t *pextlen, int *groups, size_t ngroups) { uint16_t *glist; size_t i; /* * Bitmap of groups included to detect duplicates: two variables are added * to detect duplicates as some values are more than 32. */ unsigned long *dup_list = NULL; unsigned long dup_list_egrp = 0; unsigned long dup_list_dhgrp = 0; if (ngroups == 0) { ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); return 0; } if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < ngroups; i++) { unsigned long idmask; uint16_t id; id = tls1_nid2group_id(groups[i]); if ((id & 0x00FF) >= (sizeof(unsigned long) * 8)) goto err; idmask = 1L << (id & 0x00FF); dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp; if (!id || ((*dup_list) & idmask)) goto err; *dup_list |= idmask; glist[i] = id; } OPENSSL_free(*pext); *pext = glist; *pextlen = ngroups; return 1; err: OPENSSL_free(glist); return 0; } # define GROUPLIST_INCREMENT 40 # define GROUP_NAME_BUFFER_LENGTH 64 typedef struct { SSL_CTX *ctx; size_t gidcnt; size_t gidmax; uint16_t *gid_arr; } gid_cb_st; static int gid_cb(const char *elem, int len, void *arg) { gid_cb_st *garg = arg; size_t i; uint16_t gid = 0; char etmp[GROUP_NAME_BUFFER_LENGTH]; if (elem == NULL) return 0; if (garg->gidcnt == garg->gidmax) { uint16_t *tmp = OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT); if (tmp == NULL) return 0; garg->gidmax += GROUPLIST_INCREMENT; garg->gid_arr = tmp; } if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; gid = tls1_group_name2id(garg->ctx, etmp); if (gid == 0) { ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT, "group '%s' cannot be set", etmp); return 0; } for (i = 0; i < garg->gidcnt; i++) if (garg->gid_arr[i] == gid) return 0; garg->gid_arr[garg->gidcnt++] = gid; return 1; } /* Set groups based on a colon separated list */ int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen, const char *str) { gid_cb_st gcb; uint16_t *tmparr; int ret = 0; gcb.gidcnt = 0; gcb.gidmax = GROUPLIST_INCREMENT; gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr)); if (gcb.gid_arr == NULL) return 0; gcb.ctx = ctx; if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb)) goto end; if (pext == NULL) { ret = 1; goto end; } /* * gid_cb ensurse there are no duplicates so we can just go ahead and set * the result */ tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr)); if (tmparr == NULL) goto end; OPENSSL_free(*pext); *pext = tmparr; *pextlen = gcb.gidcnt; ret = 1; end: OPENSSL_free(gcb.gid_arr); return ret; } /* Check a group id matches preferences */ int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) { const uint16_t *groups; size_t groups_len; if (group_id == 0) return 0; /* Check for Suite B compliance */ if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { unsigned long cid = s->s3.tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (group_id != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (group_id != TLSEXT_curve_P_384) return 0; } else { /* Should never happen */ return 0; } } if (check_own_groups) { /* Check group is one of our preferences */ tls1_get_supported_groups(s, &groups, &groups_len); if (!tls1_in_list(group_id, groups, groups_len)) return 0; } if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) return 0; /* For clients, nothing more to check */ if (!s->server) return 1; /* Check group is one of peers preferences */ tls1_get_peer_groups(s, &groups, &groups_len); /* * RFC 4492 does not require the supported elliptic curves extension * so if it is not sent we can just choose any curve. * It is invalid to send an empty list in the supported groups * extension, so groups_len == 0 always means no extension. */ if (groups_len == 0) return 1; return tls1_in_list(group_id, groups, groups_len); } void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats) { /* * If we have a custom point format list use it otherwise use default */ if (s->ext.ecpointformats) { *pformats = s->ext.ecpointformats; *num_formats = s->ext.ecpointformats_len; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *num_formats = sizeof(ecformats_default) - 1; else *num_formats = sizeof(ecformats_default); } } /* Check a key is compatible with compression extension */ static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) { unsigned char comp_id; size_t i; int point_conv; /* If not an EC key nothing to check */ if (!EVP_PKEY_is_a(pkey, "EC")) return 1; /* Get required compression id */ point_conv = EVP_PKEY_get_ec_point_conv_form(pkey); if (point_conv == 0) return 0; if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } else if (SSL_IS_TLS13(s)) { /* * ec_point_formats extension is not used in TLSv1.3 so we ignore * this check. */ return 1; } else { int field_type = EVP_PKEY_get_field_type(pkey); if (field_type == NID_X9_62_prime_field) comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else if (field_type == NID_X9_62_characteristic_two_field) comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; else return 0; } /* * If point formats extension present check it, otherwise everything is * supported (see RFC4492). */ if (s->ext.peer_ecpointformats == NULL) return 1; for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { if (s->ext.peer_ecpointformats[i] == comp_id) return 1; } return 0; } /* Return group id of a key */ static uint16_t tls1_get_group_id(EVP_PKEY *pkey) { int curve_nid = ssl_get_EC_curve_nid(pkey); if (curve_nid == NID_undef) return 0; return tls1_nid2group_id(curve_nid); } /* * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) { uint16_t group_id; EVP_PKEY *pkey; pkey = X509_get0_pubkey(x); if (pkey == NULL) return 0; /* If not EC nothing to do */ if (!EVP_PKEY_is_a(pkey, "EC")) return 1; /* Check compression */ if (!tls1_check_pkey_comp(s, pkey)) return 0; group_id = tls1_get_group_id(pkey); /* * For a server we allow the certificate to not be in our list of supported * groups. */ if (!tls1_check_group_id(s, group_id, !s->server)) return 0; /* * Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384. */ if (check_ee_md && tls1_suiteb(s)) { int check_md; size_t i; /* Check to see we have necessary signing algorithm */ if (group_id == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (group_id == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < s->shared_sigalgslen; i++) { if (check_md == s->shared_sigalgs[i]->sigandhash) return 1;; } return 0; } return 1; } /* * tls1_check_ec_tmp_key - Check EC temporary key compatibility * @s: SSL connection * @cid: Cipher ID we're considering using * * Checks that the kECDHE cipher suite we're considering using * is compatible with the client extensions. * * Returns 0 when the cipher can't be used or 1 when it can. */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { /* If not Suite B just need a shared group */ if (!tls1_suiteb(s)) return tls1_shared_group(s, 0) != 0; /* * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other * curves permitted. */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); return 0; } /* Default sigalg schemes */ static const uint16_t tls12_sigalgs[] = { TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384, TLSEXT_SIGALG_ecdsa_secp521r1_sha512, TLSEXT_SIGALG_ed25519, TLSEXT_SIGALG_ed448, TLSEXT_SIGALG_rsa_pss_pss_sha256, TLSEXT_SIGALG_rsa_pss_pss_sha384, TLSEXT_SIGALG_rsa_pss_pss_sha512, TLSEXT_SIGALG_rsa_pss_rsae_sha256, TLSEXT_SIGALG_rsa_pss_rsae_sha384, TLSEXT_SIGALG_rsa_pss_rsae_sha512, TLSEXT_SIGALG_rsa_pkcs1_sha256, TLSEXT_SIGALG_rsa_pkcs1_sha384, TLSEXT_SIGALG_rsa_pkcs1_sha512, TLSEXT_SIGALG_ecdsa_sha224, TLSEXT_SIGALG_ecdsa_sha1, TLSEXT_SIGALG_rsa_pkcs1_sha224, TLSEXT_SIGALG_rsa_pkcs1_sha1, TLSEXT_SIGALG_dsa_sha224, TLSEXT_SIGALG_dsa_sha1, TLSEXT_SIGALG_dsa_sha256, TLSEXT_SIGALG_dsa_sha384, TLSEXT_SIGALG_dsa_sha512, #ifndef OPENSSL_NO_GOST TLSEXT_SIGALG_gostr34102012_256_intrinsic, TLSEXT_SIGALG_gostr34102012_512_intrinsic, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, TLSEXT_SIGALG_gostr34102001_gostr3411, #endif }; static const uint16_t suiteb_sigalgs[] = { TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384 }; static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1}, {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA384, NID_secp384r1, 1}, {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA512, NID_secp521r1, 1}, {"ed25519", TLSEXT_SIGALG_ed25519, NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, NID_undef, NID_undef, 1}, {"ed448", TLSEXT_SIGALG_ed448, NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_ecdsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA224, NID_undef, 1}, {NULL, TLSEXT_SIGALG_ecdsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA1, NID_undef, 1}, {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef, 1}, {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef, 1}, {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, NID_undef, NID_undef, 1}, {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef, 1}, {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef, 1}, {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef, 1}, {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha256WithRSAEncryption, NID_undef, 1}, {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha384WithRSAEncryption, NID_undef, 1}, {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha512WithRSAEncryption, NID_undef, 1}, {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha224WithRSAEncryption, NID_undef, 1}, {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha1WithRSAEncryption, NID_undef, 1}, {NULL, TLSEXT_SIGALG_dsa_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsa_with_SHA256, NID_undef, 1}, {NULL, TLSEXT_SIGALG_dsa_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_dsa_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_dsa_sha224, NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_dsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsaWithSHA1, NID_undef, 1}, #ifndef OPENSSL_NO_GOST {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, NID_undef, NID_undef, 1}, {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, NID_id_GostR3411_94, SSL_MD_GOST94_IDX, NID_id_GostR3410_2001, SSL_PKEY_GOST01, NID_undef, NID_undef, 1} #endif }; /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ static const SIGALG_LOOKUP legacy_rsa_sigalg = { "rsa_pkcs1_md5_sha1", 0, NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_undef, NID_undef, 1 }; /* * Default signature algorithm values used if signature algorithms not present. * From RFC5246. Note: order must match certificate index order. */ static const uint16_t tls_default_sigalg[] = { TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ 0, /* SSL_PKEY_RSA_PSS_SIGN */ TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */ TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */ 0, /* SSL_PKEY_ED25519 */ 0, /* SSL_PKEY_ED448 */ }; int ssl_setup_sig_algs(SSL_CTX *ctx) { size_t i; const SIGALG_LOOKUP *lu; SIGALG_LOOKUP *cache = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl)); EVP_PKEY *tmpkey = EVP_PKEY_new(); int ret = 0; if (cache == NULL || tmpkey == NULL) goto err; ERR_set_mark(); for (i = 0, lu = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { EVP_PKEY_CTX *pctx; cache[i] = *lu; /* * Check hash is available. * This test is not perfect. A provider could have support * for a signature scheme, but not a particular hash. However the hash * could be available from some other loaded provider. In that case it * could be that the signature is available, and the hash is available * independently - but not as a combination. We ignore this for now. */ if (lu->hash != NID_undef && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { cache[i].enabled = 0; continue; } if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { cache[i].enabled = 0; continue; } pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq); /* If unable to create pctx we assume the sig algorithm is unavailable */ if (pctx == NULL) cache[i].enabled = 0; EVP_PKEY_CTX_free(pctx); } ERR_pop_to_mark(); ctx->sigalg_lookup_cache = cache; cache = NULL; ret = 1; err: OPENSSL_free(cache); EVP_PKEY_free(tmpkey); return ret; } /* Lookup TLS signature algorithm */ static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg) { size_t i; const SIGALG_LOOKUP *lu; for (i = 0, lu = s->ctx->sigalg_lookup_cache; /* cache should have the same number of elements as sigalg_lookup_tbl */ i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { if (lu->sigalg == sigalg) { if (!lu->enabled) return NULL; return lu; } } return NULL; } /* Lookup hash: return 0 if invalid or not enabled */ int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd) { const EVP_MD *md; if (lu == NULL) return 0; /* lu->hash == NID_undef means no associated digest */ if (lu->hash == NID_undef) { md = NULL; } else { md = ssl_md(ctx, lu->hash_idx); if (md == NULL) return 0; } if (pmd) *pmd = md; return 1; } /* * Check if key is large enough to generate RSA-PSS signature. * * The key must greater than or equal to 2 * hash length + 2. * SHA512 has a hash length of 64 bytes, which is incompatible * with a 128 byte (1024 bit) key. */ #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2) static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey, const SIGALG_LOOKUP *lu) { const EVP_MD *md; if (pkey == NULL) return 0; if (!tls1_lookup_md(ctx, lu, &md) || md == NULL) return 0; if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md)) return 0; return 1; } /* * Returns a signature algorithm when the peer did not send a list of supported * signature algorithms. The signature algorithm is fixed for the certificate * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the * certificate type from |s| will be used. * Returns the signature algorithm to use, or NULL on error. */ static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) { if (idx == -1) { if (s->server) { size_t i; /* Work out index corresponding to ciphersuite */ for (i = 0; i < SSL_PKEY_NUM; i++) { const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); if (clu == NULL) continue; if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { idx = i; break; } } /* * Some GOST ciphersuites allow more than one signature algorithms * */ if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { int real_idx; for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; real_idx--) { if (s->cert->pkeys[real_idx].privatekey != NULL) { idx = real_idx; break; } } } /* * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used * with new (aGOST12-only) ciphersuites, we should find out which one is available really. */ else if (idx == SSL_PKEY_GOST12_256) { int real_idx; for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256; real_idx--) { if (s->cert->pkeys[real_idx].privatekey != NULL) { idx = real_idx; break; } } } } else { idx = s->cert->key - s->cert->pkeys; } } if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) return NULL; if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]); if (lu == NULL) return NULL; if (!tls1_lookup_md(s->ctx, lu, NULL)) return NULL; if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) return NULL; return lu; } if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) return NULL; return &legacy_rsa_sigalg; } /* Set peer sigalg based key type */ int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) { size_t idx; const SIGALG_LOOKUP *lu; if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) return 0; lu = tls1_get_legacy_sigalg(s, idx); if (lu == NULL) return 0; s->s3.tmp.peer_sigalg = lu; return 1; } size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return OSSL_NELEM(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 1; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 1; return 1; } /* * We use client_sigalgs (if not NULL) if we're a server * and sending a certificate request or if we're a client and * determining which shared algorithm to use. */ if ((s->server == sent) && s->cert->client_sigalgs != NULL) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return OSSL_NELEM(tls12_sigalgs); } } /* * Called by servers only. Checks that we have a sig alg that supports the * specified EC curve. */ int tls_check_sigalg_curve(const SSL *s, int curve) { const uint16_t *sigs; size_t siglen, i; if (s->cert->conf_sigalgs) { sigs = s->cert->conf_sigalgs; siglen = s->cert->conf_sigalgslen; } else { sigs = tls12_sigalgs; siglen = OSSL_NELEM(tls12_sigalgs); } for (i = 0; i < siglen; i++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]); if (lu == NULL) continue; if (lu->sig == EVP_PKEY_EC && lu->curve != NID_undef && curve == lu->curve) return 1; } return 0; } /* * Return the number of security bits for the signature algorithm, or 0 on * error. */ static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu) { const EVP_MD *md = NULL; int secbits = 0; if (!tls1_lookup_md(ctx, lu, &md)) return 0; if (md != NULL) { int md_type = EVP_MD_get_type(md); /* Security bits: half digest bits */ secbits = EVP_MD_get_size(md) * 4; /* * SHA1 and MD5 are known to be broken. Reduce security bits so that * they're no longer accepted at security level 1. The real values don't * really matter as long as they're lower than 80, which is our * security level 1. * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf * puts a chosen-prefix attack for MD5 at 2^39. */ if (md_type == NID_sha1) secbits = 64; else if (md_type == NID_md5_sha1) secbits = 67; else if (md_type == NID_md5) secbits = 39; } else { /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ if (lu->sigalg == TLSEXT_SIGALG_ed25519) secbits = 128; else if (lu->sigalg == TLSEXT_SIGALG_ed448) secbits = 224; } return secbits; } /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so set relevant digest and signature scheme in * s. */ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) { const uint16_t *sent_sigs; const EVP_MD *md = NULL; char sigalgstr[2]; size_t sent_sigslen, i, cidx; int pkeyid = -1; const SIGALG_LOOKUP *lu; int secbits = 0; pkeyid = EVP_PKEY_get_id(pkey); /* Should never happen */ if (pkeyid == -1) return -1; if (SSL_IS_TLS13(s)) { /* Disallow DSA for TLS 1.3 */ if (pkeyid == EVP_PKEY_DSA) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Only allow PSS for TLS 1.3 */ if (pkeyid == EVP_PKEY_RSA) pkeyid = EVP_PKEY_RSA_PSS; } lu = tls1_lookup_sigalg(s, sig); /* * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type * is consistent with signature: RSA keys can be used for RSA-PSS */ if (lu == NULL || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) || (pkeyid != lu->sig && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Check the sigalg is consistent with the key OID */ if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx) || lu->sig_idx != (int)cidx) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } if (pkeyid == EVP_PKEY_EC) { /* Check point compression is permitted */ if (!tls1_check_pkey_comp(s, pkey)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_ILLEGAL_POINT_COMPRESSION); return 0; } /* For TLS 1.3 or Suite B check curve matches signature algorithm */ if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { int curve = ssl_get_EC_curve_nid(pkey); if (lu->curve != NID_undef && curve != lu->curve) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); return 0; } } if (!SSL_IS_TLS13(s)) { /* Check curve matches extensions */ if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE); return 0; } if (tls1_suiteb(s)) { /* Check sigalg matches a permissible Suite B value */ if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } } } } else if (tls1_suiteb(s)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < sent_sigslen; i++, sent_sigs++) { if (sig == *sent_sigs) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } if (!tls1_lookup_md(s->ctx, lu, &md)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST); return 0; } /* * Make sure security callback allows algorithm. For historical * reasons we have to pass the sigalg as a two byte char array. */ sigalgstr[0] = (sig >> 8) & 0xff; sigalgstr[1] = sig & 0xff; secbits = sigalg_security_bits(s->ctx, lu); if (secbits == 0 || !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, md != NULL ? EVP_MD_get_type(md) : NID_undef, (void *)sigalgstr)) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Store the sigalg the peer uses */ s->s3.tmp.peer_sigalg = lu; return 1; } int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) { if (s->s3.tmp.peer_sigalg == NULL) return 0; *pnid = s->s3.tmp.peer_sigalg->sig; return 1; } int SSL_get_signature_type_nid(const SSL *s, int *pnid) { if (s->s3.tmp.sigalg == NULL) return 0; *pnid = s->s3.tmp.sigalg->sig; return 1; } /* * Set a mask of disabled algorithms: an algorithm is disabled if it isn't * supported, doesn't appear in supported signature algorithms, isn't supported * by the enabled protocol versions or by the security level. * * This function should only be used for checking which ciphers are supported * by the client. * * Call ssl_cipher_disabled() to check that it's enabled or not. */ int ssl_set_client_disabled(SSL *s) { s->s3.tmp.mask_a = 0; s->s3.tmp.mask_k = 0; ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver, &s->s3.tmp.max_ver, NULL) != 0) return 0; #ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { s->s3.tmp.mask_a |= SSL_aPSK; s->s3.tmp.mask_k |= SSL_PSK; } #endif /* OPENSSL_NO_PSK */ #ifndef OPENSSL_NO_SRP if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { s->s3.tmp.mask_a |= SSL_aSRP; s->s3.tmp.mask_k |= SSL_kSRP; } #endif return 1; } /* * ssl_cipher_disabled - check that a cipher is disabled or not * @s: SSL connection that you want to use the cipher on * @c: cipher to check * @op: Security check that you want to do * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 * * Returns 1 when it's disabled, 0 when enabled. */ int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) { if (c->algorithm_mkey & s->s3.tmp.mask_k || c->algorithm_auth & s->s3.tmp.mask_a) return 1; if (s->s3.tmp.max_ver == 0) return 1; if (!SSL_IS_DTLS(s)) { int min_tls = c->min_tls; /* * For historical reasons we will allow ECHDE to be selected by a server * in SSLv3 if we are a client */ if (min_tls == TLS1_VERSION && ecdhe && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) min_tls = SSL3_VERSION; if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver)) return 1; } if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver) || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver))) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } int tls_use_ticket(SSL *s) { if ((s->options & SSL_OP_NO_TICKET)) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } int tls1_set_server_sigalgs(SSL *s) { size_t i; /* Clear any shared signature algorithms */ OPENSSL_free(s->shared_sigalgs); s->shared_sigalgs = NULL; s->shared_sigalgslen = 0; /* Clear certificate validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) s->s3.tmp.valid_flags[i] = 0; /* * If peer sent no signature algorithms check to see if we support * the default algorithm for each certificate type */ if (s->s3.tmp.peer_cert_sigalgs == NULL && s->s3.tmp.peer_sigalgs == NULL) { const uint16_t *sent_sigs; size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < SSL_PKEY_NUM; i++) { const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); size_t j; if (lu == NULL) continue; /* Check default matches a type we sent */ for (j = 0; j < sent_sigslen; j++) { if (lu->sigalg == sent_sigs[j]) { s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN; break; } } } return 1; } if (!tls1_process_sigalgs(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if (s->shared_sigalgs != NULL) return 1; /* Fatal error if no shared signature algorithms */ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); return 0; } /*- * Gets the ticket information supplied by the client if any. * * hello: The parsed ClientHello data * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, SSL_SESSION **ret) { size_t size; RAW_EXTENSION *ticketext; *ret = NULL; s->ext.ticket_expected = 0; /* * If tickets disabled or not supported by the protocol version * (e.g. TLSv1.3) behave as if no ticket present to permit stateful * resumption. */ if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) return SSL_TICKET_NONE; ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; if (!ticketext->present) return SSL_TICKET_NONE; size = PACKET_remaining(&ticketext->data); return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, hello->session_id, hello->session_id_len, ret); } /*- * tls_decrypt_ticket attempts to decrypt a session ticket. * * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are * expecting a pre-shared key ciphersuite, in which case we have no use for * session tickets and one will never be decrypted, nor will * s->ext.ticket_expected be set to 1. * * Side effects: * Sets s->ext.ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. * Otherwise, s->ext.ticket_expected is set to 0. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extension. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, size_t eticklen, const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess) { SSL_SESSION *sess = NULL; unsigned char *sdec; const unsigned char *p; int slen, ivlen, renew_ticket = 0, declen; SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; size_t mlen; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; SSL_HMAC *hctx = NULL; EVP_CIPHER_CTX *ctx = NULL; SSL_CTX *tctx = s->session_ctx; if (eticklen == 0) { /* * The client will accept a ticket but doesn't currently have * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 */ ret = SSL_TICKET_EMPTY; goto end; } if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger * abbreviated handshake based on external mechanism to * calculate the master secret later. */ ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Need at least keyname + iv */ if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Initialize session ticket encryption and HMAC contexts */ hctx = ssl_hmac_new(tctx); if (hctx == NULL) { ret = SSL_TICKET_FATAL_ERR_MALLOC; goto end; } ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { ret = SSL_TICKET_FATAL_ERR_MALLOC; goto end; } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL) #else if (tctx->ext.ticket_key_evp_cb != NULL) #endif { unsigned char *nctick = (unsigned char *)etick; int rv = 0; if (tctx->ext.ticket_key_evp_cb != NULL) rv = tctx->ext.ticket_key_evp_cb(s, nctick, nctick + TLSEXT_KEYNAME_LENGTH, ctx, ssl_hmac_get0_EVP_MAC_CTX(hctx), 0); #ifndef OPENSSL_NO_DEPRECATED_3_0 else if (tctx->ext.ticket_key_cb != NULL) /* if 0 is returned, write an empty ticket */ rv = tctx->ext.ticket_key_cb(s, nctick, nctick + TLSEXT_KEYNAME_LENGTH, ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0); #endif if (rv < 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (rv == 0) { ret = SSL_TICKET_NO_DECRYPT; goto end; } if (rv == 2) renew_ticket = 1; } else { EVP_CIPHER *aes256cbc = NULL; /* Check key name matches */ if (memcmp(etick, tctx->ext.tick_key_name, TLSEXT_KEYNAME_LENGTH) != 0) { ret = SSL_TICKET_NO_DECRYPT; goto end; } aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC", s->ctx->propq); if (aes256cbc == NULL || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key, sizeof(tctx->ext.secure->tick_hmac_key), "SHA256") <= 0 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL, tctx->ext.secure->tick_aes_key, etick + TLSEXT_KEYNAME_LENGTH) <= 0) { EVP_CIPHER_free(aes256cbc); ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } EVP_CIPHER_free(aes256cbc); if (SSL_IS_TLS13(s)) renew_ticket = 1; } /* * Attempt to process session ticket, first conduct sanity and integrity * checks on ticket. */ mlen = ssl_hmac_size(hctx); if (mlen == 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } ivlen = EVP_CIPHER_CTX_get_iv_length(ctx); if (ivlen < 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } /* Sanity check ticket length: must exceed keyname + IV + HMAC */ if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) { ret = SSL_TICKET_NO_DECRYPT; goto end; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ if (ssl_hmac_update(hctx, etick, eticklen) <= 0 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { ret = SSL_TICKET_NO_DECRYPT; goto end; } /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + TLSEXT_KEYNAME_LENGTH + ivlen; eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen; sdec = OPENSSL_malloc(eticklen); if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) { OPENSSL_free(sdec); ret = SSL_TICKET_FATAL_ERR_OTHER; goto end; } if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { OPENSSL_free(sdec); ret = SSL_TICKET_NO_DECRYPT; goto end; } slen += declen; p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); slen -= p - sdec; OPENSSL_free(sdec); if (sess) { /* Some additional consistency checks */ if (slen != 0) { SSL_SESSION_free(sess); sess = NULL; ret = SSL_TICKET_NO_DECRYPT; goto end; } /* * The session ID, if non-empty, is used by some clients to detect * that the ticket has been accepted. So we copy it to the session * structure. If it is empty set length to zero as required by * standard. */ if (sesslen) { memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; } if (renew_ticket) ret = SSL_TICKET_SUCCESS_RENEW; else ret = SSL_TICKET_SUCCESS; goto end; } ERR_clear_error(); /* * For session parse failure, indicate that we need to send a new ticket. */ ret = SSL_TICKET_NO_DECRYPT; end: EVP_CIPHER_CTX_free(ctx); ssl_hmac_free(hctx); /* * If set, the decrypt_ticket_cb() is called unless a fatal error was * detected above. The callback is responsible for checking |ret| before it * performs any action */ if (s->session_ctx->decrypt_ticket_cb != NULL && (ret == SSL_TICKET_EMPTY || ret == SSL_TICKET_NO_DECRYPT || ret == SSL_TICKET_SUCCESS || ret == SSL_TICKET_SUCCESS_RENEW)) { size_t keyname_len = eticklen; int retcb; if (keyname_len > TLSEXT_KEYNAME_LENGTH) keyname_len = TLSEXT_KEYNAME_LENGTH; retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, ret, s->session_ctx->ticket_cb_data); switch (retcb) { case SSL_TICKET_RETURN_ABORT: ret = SSL_TICKET_FATAL_ERR_OTHER; break; case SSL_TICKET_RETURN_IGNORE: ret = SSL_TICKET_NONE; SSL_SESSION_free(sess); sess = NULL; break; case SSL_TICKET_RETURN_IGNORE_RENEW: if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) ret = SSL_TICKET_NO_DECRYPT; /* else the value of |ret| will already do the right thing */ SSL_SESSION_free(sess); sess = NULL; break; case SSL_TICKET_RETURN_USE: case SSL_TICKET_RETURN_USE_RENEW: if (ret != SSL_TICKET_SUCCESS && ret != SSL_TICKET_SUCCESS_RENEW) ret = SSL_TICKET_FATAL_ERR_OTHER; else if (retcb == SSL_TICKET_RETURN_USE) ret = SSL_TICKET_SUCCESS; else ret = SSL_TICKET_SUCCESS_RENEW; break; default: ret = SSL_TICKET_FATAL_ERR_OTHER; } } if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { switch (ret) { case SSL_TICKET_NO_DECRYPT: case SSL_TICKET_SUCCESS_RENEW: case SSL_TICKET_EMPTY: s->ext.ticket_expected = 1; } } *psess = sess; return ret; } /* Check to see if a signature algorithm is allowed */ static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) { unsigned char sigalgstr[2]; int secbits; if (lu == NULL || !lu->enabled) return 0; /* DSA is not allowed in TLS 1.3 */ if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) return 0; /* * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3 * spec */ if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX || lu->hash_idx == SSL_MD_MD5_IDX || lu->hash_idx == SSL_MD_SHA224_IDX)) return 0; /* See if public key algorithm allowed */ if (ssl_cert_is_disabled(s->ctx, lu->sig_idx)) return 0; if (lu->sig == NID_id_GostR3410_2012_256 || lu->sig == NID_id_GostR3410_2012_512 || lu->sig == NID_id_GostR3410_2001) { /* We never allow GOST sig algs on the server with TLSv1.3 */ if (s->server && SSL_IS_TLS13(s)) return 0; if (!s->server && s->method->version == TLS_ANY_VERSION && s->s3.tmp.max_ver >= TLS1_3_VERSION) { int i, num; STACK_OF(SSL_CIPHER) *sk; /* * We're a client that could negotiate TLSv1.3. We only allow GOST * sig algs if we could negotiate TLSv1.2 or below and we have GOST * ciphersuites enabled. */ if (s->s3.tmp.min_ver >= TLS1_3_VERSION) return 0; sk = SSL_get_ciphers(s); num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; for (i = 0; i < num; i++) { const SSL_CIPHER *c; c = sk_SSL_CIPHER_value(sk, i); /* Skip disabled ciphers */ if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) continue; if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0) break; } if (i == num) return 0; } } /* Finally see if security callback allows it */ secbits = sigalg_security_bits(s->ctx, lu); sigalgstr[0] = (lu->sigalg >> 8) & 0xff; sigalgstr[1] = lu->sigalg & 0xff; return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); } /* * Get a mask of disabled public key algorithms based on supported signature * algorithms. For example if no signature algorithm supports RSA then RSA is * disabled. */ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) { const uint16_t *sigalgs; size_t i, sigalgslen; uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; /* * Go through all signature algorithms seeing if we support any * in disabled_mask. */ sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); for (i = 0; i < sigalgslen; i++, sigalgs++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs); const SSL_CERT_LOOKUP *clu; if (lu == NULL) continue; clu = ssl_cert_lookup_by_idx(lu->sig_idx); if (clu == NULL) continue; /* If algorithm is disabled see if we can enable it */ if ((clu->amask & disabled_mask) != 0 && tls12_sigalg_allowed(s, op, lu)) disabled_mask &= ~clu->amask; } *pmask_a |= disabled_mask; } int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen) { size_t i; int rv = 0; for (i = 0; i < psiglen; i++, psig++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig); if (lu == NULL || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) continue; if (!WPACKET_put_bytes_u16(pkt, *psig)) return 0; /* * If TLS 1.3 must have at least one valid TLS 1.3 message * signing algorithm: i.e. neither RSA nor SHA1/SHA224 */ if (rv == 0 && (!SSL_IS_TLS13(s) || (lu->sig != EVP_PKEY_RSA && lu->hash != NID_sha1 && lu->hash != NID_sha224))) rv = 1; } if (rv == 0) ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return rv; } /* Given preference and allowed sigalgs set shared sigalgs */ static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, const uint16_t *pref, size_t preflen, const uint16_t *allow, size_t allowlen) { const uint16_t *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp); /* Skip disabled hashes or signature algorithms */ if (lu == NULL || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) continue; for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { if (*ptmp == *atmp) { nmatch++; if (shsig) *shsig++ = lu; break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const uint16_t *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; const SIGALG_LOOKUP **salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); OPENSSL_free(s->shared_sigalgs); s->shared_sigalgs = NULL; s->shared_sigalgslen = 0; /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, 0, &conf); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = s->s3.tmp.peer_sigalgs; allowlen = s->s3.tmp.peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = s->s3.tmp.peer_sigalgs; preflen = s->s3.tmp.peer_sigalgslen; } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; } s->shared_sigalgs = salgs; s->shared_sigalgslen = nmatch; return 1; } int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) { unsigned int stmp; size_t size, i; uint16_t *buf; size = PACKET_remaining(pkt); /* Invalid data length */ if (size == 0 || (size & 1) != 0) return 0; size >>= 1; if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) buf[i] = stmp; if (i != size) { OPENSSL_free(buf); return 0; } OPENSSL_free(*pdest); *pdest = buf; *pdestlen = size; return 1; } int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) { /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Should never happen */ if (s->cert == NULL) return 0; if (cert) return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs, &s->s3.tmp.peer_cert_sigalgslen); else return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs, &s->s3.tmp.peer_sigalgslen); } /* Set preferred digest for each key type */ int tls1_process_sigalgs(SSL *s) { size_t i; uint32_t *pvalid = s->s3.tmp.valid_flags; if (!tls1_set_shared_sigalgs(s)) return 0; for (i = 0; i < SSL_PKEY_NUM; i++) pvalid[i] = 0; for (i = 0; i < s->shared_sigalgslen; i++) { const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; int idx = sigptr->sig_idx; /* Ignore PKCS1 based sig algs in TLSv1.3 */ if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) continue; /* If not disabled indicate we can explicitly sign */ if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx)) pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { uint16_t *psig = s->s3.tmp.peer_sigalgs; size_t numsigalgs = s->s3.tmp.peer_sigalgslen; if (psig == NULL || numsigalgs > INT_MAX) return 0; if (idx >= 0) { const SIGALG_LOOKUP *lu; if (idx >= (int)numsigalgs) return 0; psig += idx; if (rhash != NULL) *rhash = (unsigned char)((*psig >> 8) & 0xff); if (rsig != NULL) *rsig = (unsigned char)(*psig & 0xff); lu = tls1_lookup_sigalg(s, *psig); if (psign != NULL) *psign = lu != NULL ? lu->sig : NID_undef; if (phash != NULL) *phash = lu != NULL ? lu->hash : NID_undef; if (psignhash != NULL) *psignhash = lu != NULL ? lu->sigandhash : NID_undef; } return (int)numsigalgs; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const SIGALG_LOOKUP *shsigalgs; if (s->shared_sigalgs == NULL || idx < 0 || idx >= (int)s->shared_sigalgslen || s->shared_sigalgslen > INT_MAX) return 0; shsigalgs = s->shared_sigalgs[idx]; if (phash != NULL) *phash = shsigalgs->hash; if (psign != NULL) *psign = shsigalgs->sig; if (psignhash != NULL) *psignhash = shsigalgs->sigandhash; if (rsig != NULL) *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); if (rhash != NULL) *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); return (int)s->shared_sigalgslen; } /* Maximum possible number of unique entries in sigalgs array */ #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) typedef struct { size_t sigalgcnt; /* TLSEXT_SIGALG_XXX values */ uint16_t sigalgs[TLS_MAX_SIGALGCNT]; } sig_cb_st; static void get_sigorhash(int *psig, int *phash, const char *str) { if (strcmp(str, "RSA") == 0) { *psig = EVP_PKEY_RSA; } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { *psig = EVP_PKEY_RSA_PSS; } else if (strcmp(str, "DSA") == 0) { *psig = EVP_PKEY_DSA; } else if (strcmp(str, "ECDSA") == 0) { *psig = EVP_PKEY_EC; } else { *phash = OBJ_sn2nid(str); if (*phash == NID_undef) *phash = OBJ_ln2nid(str); } } /* Maximum length of a signature algorithm string component */ #define TLS_MAX_SIGSTRING_LEN 40 static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; const SIGALG_LOOKUP *s; char etmp[TLS_MAX_SIGSTRING_LEN], *p; int sig_alg = NID_undef, hash_alg = NID_undef; if (elem == NULL) return 0; if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); /* * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; * if there's no '+' in the provided name, look for the new-style combined * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and * rsa_pss_rsae_* that differ only by public key OID; in such cases * we will pick the _rsae_ variant, by virtue of them appearing earlier * in the table. */ if (p == NULL) { for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->name != NULL && strcmp(etmp, s->name) == 0) { sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; break; } } if (i == OSSL_NELEM(sigalg_lookup_tbl)) return 0; } else { *p = 0; p++; if (*p == 0) return 0; get_sigorhash(&sig_alg, &hash_alg, etmp); get_sigorhash(&sig_alg, &hash_alg, p); if (sig_alg == NID_undef || hash_alg == NID_undef) return 0; for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->hash == hash_alg && s->sig == sig_alg) { sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; break; } } if (i == OSSL_NELEM(sigalg_lookup_tbl)) return 0; } /* Reject duplicates */ for (i = 0; i < sarg->sigalgcnt - 1; i++) { if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { sarg->sigalgcnt--; return 0; } } return 1; } /* * Set supported signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, int client) { uint16_t *sigalgs; if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; } return 1; } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { uint16_t *sigalgs, *sptr; size_t i; if (salglen & 1) return 0; if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0, sptr = sigalgs; i < salglen; i += 2) { size_t j; const SIGALG_LOOKUP *curr; int md_id = *psig_nids++; int sig_id = *psig_nids++; for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); j++, curr++) { if (curr->hash == md_id && curr->sig == sig_id) { *sptr++ = curr->sigalg; break; } } if (j == OSSL_NELEM(sigalg_lookup_tbl)) goto err; } if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen / 2; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen / 2; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) { int sig_nid, use_pc_sigalgs = 0; size_t i; const SIGALG_LOOKUP *sigalg; size_t sigalgslen; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { /* * If we're in TLSv1.3 then we only get here if we're checking the * chain. If the peer has specified peer_cert_sigalgs then we use them * otherwise we default to normal sigalgs. */ sigalgslen = s->s3.tmp.peer_cert_sigalgslen; use_pc_sigalgs = 1; } else { sigalgslen = s->shared_sigalgslen; } for (i = 0; i < sigalgslen; i++) { sigalg = use_pc_sigalgs ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]) : s->shared_sigalgs[i]; if (sigalg != NULL && sig_nid == sigalg->sigandhash) return 1; } return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { const X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* * Check certificate chain is consistent with TLS extensions and is usable by * server. This servers two purposes: it allows users to check chains before * passing them to the server and it allows the server to check chains before * attempting to use them. */ /* Flags which need to be set for a certificate when strict mode not set */ #define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ #define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; uint32_t *pvalid; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = (int)(cpk - c->pkeys); } else cpk = c->pkeys + idx; pvalid = s->s3.tmp.valid_flags + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; } else { size_t certidx; if (!x || !pk) return 0; if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) return 0; idx = certidx; pvalid = s->s3.tmp.valid_flags + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok == X509_V_OK) rv |= CERT_PKEY_SUITEB; else if (!check_flags) goto end; } /* * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; int rsign = 0; if (s->s3.tmp.peer_cert_sigalgs != NULL || s->s3.tmp.peer_sigalgs != NULL) { default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ } else { switch (idx) { case SSL_PKEY_RSA: rsign = EVP_PKEY_RSA; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: rsign = EVP_PKEY_DSA; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = EVP_PKEY_EC; default_nid = NID_ecdsa_with_SHA1; break; case SSL_PKEY_GOST01: rsign = NID_id_GostR3410_2001; default_nid = NID_id_GostR3411_94_with_GostR3410_2001; break; case SSL_PKEY_GOST12_256: rsign = NID_id_GostR3410_2012_256; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; break; case SSL_PKEY_GOST12_512: rsign = NID_id_GostR3410_2012_512; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; break; default: default_nid = -1; break; } } /* * If peer sent no signature algorithms extension and we have set * preferred signature algorithms check we support sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const uint16_t *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j++, p++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p); if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (SSL_IS_TLS13(s)) { /* * We only get here if the application has called SSL_check_chain(), * so check_flags is always set. */ if (find_sig_alg(s, x, pk) != NULL) rv |= CERT_PKEY_EE_SIGNATURE; } else if (!tls1_check_sig_alg(s, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if (check_flags) rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, 1)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; int check_type = 0; if (EVP_PKEY_is_a(pk, "RSA")) check_type = TLS_CT_RSA_SIGN; else if (EVP_PKEY_is_a(pk, "DSA")) check_type = TLS_CT_DSS_SIGN; else if (EVP_PKEY_is_a(pk, "EC")) check_type = TLS_CT_ECDSA_SIGN; if (check_type) { const uint8_t *ctypes = s->s3.tmp.ctype; size_t j; for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { if (*ctypes == check_type) { rv |= CERT_PKEY_CERT_TYPE; break; } } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else { rv |= CERT_PKEY_CERT_TYPE; } ca_dn = s->s3.tmp.peer_ca_names; if (ca_dn == NULL || sk_X509_NAME_num(ca_dn) == 0 || ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; else for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; /* * When checking a CERT_PKEY structure all flags are irrelevant if the * chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) { *pvalid = rv; } else { /* Preserve sign and explicit sign flag, clear rest */ *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); } /* User level utility function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } EVP_PKEY *ssl_get_auto_dh(SSL *s) { EVP_PKEY *dhp = NULL; BIGNUM *p; int dh_secbits = 80, sec_level_bits; EVP_PKEY_CTX *pctx = NULL; OSSL_PARAM_BLD *tmpl = NULL; OSSL_PARAM *params = NULL; if (s->cert->dh_tmp_auto != 2) { if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { if (s->s3.tmp.new_cipher->strength_bits == 256) dh_secbits = 128; else dh_secbits = 80; } else { if (s->s3.tmp.cert == NULL) return NULL; dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey); } } /* Do not pick a prime that is too weak for the current security level */ sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); if (dh_secbits < sec_level_bits) dh_secbits = sec_level_bits; if (dh_secbits >= 192) p = BN_get_rfc3526_prime_8192(NULL); else if (dh_secbits >= 152) p = BN_get_rfc3526_prime_4096(NULL); else if (dh_secbits >= 128) p = BN_get_rfc3526_prime_3072(NULL); else if (dh_secbits >= 112) p = BN_get_rfc3526_prime_2048(NULL); else p = BN_get_rfc2409_prime_1024(NULL); if (p == NULL) goto err; pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq); if (pctx == NULL || EVP_PKEY_fromdata_init(pctx) != 1) goto err; tmpl = OSSL_PARAM_BLD_new(); if (tmpl == NULL || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p) || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2)) goto err; params = OSSL_PARAM_BLD_to_param(tmpl); if (params == NULL || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1) goto err; err: OSSL_PARAM_free(params); OSSL_PARAM_BLD_free(tmpl); EVP_PKEY_CTX_free(pctx); BN_free(p); return dhp; } static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) { int secbits = -1; EVP_PKEY *pkey = X509_get0_pubkey(x); if (pkey) { /* * If no parameters this will return -1 and fail using the default * security callback for any non-zero security level. This will * reject keys which omit parameters but this only affects DSA and * omission of parameters is never (?) done in practice. */ secbits = EVP_PKEY_get_security_bits(pkey); } if (s) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) { /* Lookup signature algorithm digest */ int secbits, nid, pknid; /* Don't check signature if self signed */ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) return 1; if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) secbits = -1; /* If digest NID not defined use signature NID */ if (nid == NID_undef) nid = pknid; if (s) return ssl_security(s, op, secbits, nid, x); else return ssl_ctx_security(ctx, op, secbits, nid, x); } int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; if (is_ee) { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) return SSL_R_EE_KEY_TOO_SMALL; } else { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) return SSL_R_CA_KEY_TOO_SMALL; } if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) return SSL_R_CA_MD_TOO_WEAK; return 1; } /* * Check security of a chain, if |sk| includes the end entity certificate then * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending * one to the peer. Return values: 1 if ok otherwise error code to use */ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) { int rv, start_idx, i; if (x == NULL) { x = sk_X509_value(sk, 0); if (x == NULL) return ERR_R_INTERNAL_ERROR; start_idx = 1; } else start_idx = 0; rv = ssl_security_cert(s, NULL, x, vfy, 1); if (rv != 1) return rv; for (i = start_idx; i < sk_X509_num(sk); i++) { x = sk_X509_value(sk, i); rv = ssl_security_cert(s, NULL, x, vfy, 0); if (rv != 1) return rv; } return 1; } /* * For TLS 1.2 servers check if we have a certificate which can be used * with the signature algorithm "lu" and return index of certificate. */ static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) { int sig_idx = lu->sig_idx; const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); /* If not recognised or not supported by cipher mask it is not suitable */ if (clu == NULL || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0 || (clu->nid == EVP_PKEY_RSA_PSS && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) return -1; return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; } /* * Checks the given cert against signature_algorithm_cert restrictions sent by * the peer (if any) as well as whether the hash from the sigalg is usable with * the key. * Returns true if the cert is usable and false otherwise. */ static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu; int mdnid, pknid, supported; size_t i; const char *mdname = NULL; /* * If the given EVP_PKEY cannot support signing with this digest, * the answer is simply 'no'. */ if (sig->hash != NID_undef) mdname = OBJ_nid2sn(sig->hash); supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx, mdname, s->ctx->propq); if (supported <= 0) return 0; /* * The TLS 1.3 signature_algorithms_cert extension places restrictions * on the sigalg with which the certificate was signed (by its issuer). */ if (s->s3.tmp.peer_cert_sigalgs != NULL) { if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) return 0; for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]); if (lu == NULL) continue; /* * This does not differentiate between the * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not * have a chain here that lets us look at the key OID in the * signing certificate. */ if (mdnid == lu->hash && pknid == lu->sig) return 1; } return 0; } /* * Without signat_algorithms_cert, any certificate for which we have * a viable public key is permitted. */ return 1; } /* * Returns true if |s| has a usable certificate configured for use * with signature scheme |sig|. * "Usable" includes a check for presence as well as applying * the signature_algorithm_cert restrictions sent by the peer (if any). * Returns false if no usable certificate is found. */ static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) { /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ if (idx == -1) idx = sig->sig_idx; if (!ssl_has_cert(s, idx)) return 0; return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, s->cert->pkeys[idx].privatekey); } /* * Returns true if the supplied cert |x| and key |pkey| is usable with the * specified signature scheme |sig|, or false otherwise. */ static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, EVP_PKEY *pkey) { size_t idx; if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) return 0; /* Check the key is consistent with the sig alg */ if ((int)idx != sig->sig_idx) return 0; return check_cert_usable(s, sig, x, pkey); } /* * Find a signature scheme that works with the supplied certificate |x| and key * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our * available certs/keys to find one that works. */ static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) { const SIGALG_LOOKUP *lu = NULL; size_t i; int curve = -1; EVP_PKEY *tmppkey; /* Look for a shared sigalgs matching possible certificates */ for (i = 0; i < s->shared_sigalgslen; i++) { lu = s->shared_sigalgs[i]; /* Skip SHA1, SHA224, DSA and RSA if not PSS */ if (lu->hash == NID_sha1 || lu->hash == NID_sha224 || lu->sig == EVP_PKEY_DSA || lu->sig == EVP_PKEY_RSA) continue; /* Check that we have a cert, and signature_algorithms_cert */ if (!tls1_lookup_md(s->ctx, lu, NULL)) continue; if ((pkey == NULL && !has_usable_cert(s, lu, -1)) || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) continue; tmppkey = (pkey != NULL) ? pkey : s->cert->pkeys[lu->sig_idx].privatekey; if (lu->sig == EVP_PKEY_EC) { if (curve == -1) curve = ssl_get_EC_curve_nid(tmppkey); if (lu->curve != NID_undef && curve != lu->curve) continue; } else if (lu->sig == EVP_PKEY_RSA_PSS) { /* validate that key is large enough for the signature algorithm */ if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu)) continue; } break; } if (i == s->shared_sigalgslen) return NULL; return lu; } /* * Choose an appropriate signature algorithm based on available certificates * Sets chosen certificate and signature algorithm. * * For servers if we fail to find a required certificate it is a fatal error, * an appropriate error code is set and a TLS alert is sent. * * For clients fatalerrs is set to 0. If a certificate is not suitable it is not * a fatal error: we will either try another certificate or not present one * to the server. In this case no error is set. */ int tls_choose_sigalg(SSL *s, int fatalerrs) { const SIGALG_LOOKUP *lu = NULL; int sig_idx = -1; s->s3.tmp.cert = NULL; s->s3.tmp.sigalg = NULL; if (SSL_IS_TLS13(s)) { lu = find_sig_alg(s, NULL, NULL); if (lu == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } } else { /* If ciphersuite doesn't require a cert nothing to do */ if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT)) return 1; if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) return 1; if (SSL_USE_SIGALGS(s)) { size_t i; if (s->s3.tmp.peer_sigalgs != NULL) { int curve = -1; /* For Suite B need to match signature algorithm to curve */ if (tls1_suiteb(s)) curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC] .privatekey); /* * Find highest preference signature algorithm matching * cert type */ for (i = 0; i < s->shared_sigalgslen; i++) { lu = s->shared_sigalgs[i]; if (s->server) { if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) continue; } else { int cc_idx = s->cert->key - s->cert->pkeys; sig_idx = lu->sig_idx; if (cc_idx != sig_idx) continue; } /* Check that we have a cert, and sig_algs_cert */ if (!has_usable_cert(s, lu, sig_idx)) continue; if (lu->sig == EVP_PKEY_RSA_PSS) { /* validate that key is large enough for the signature algorithm */ EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu)) continue; } if (curve == -1 || lu->curve == curve) break; } #ifndef OPENSSL_NO_GOST /* * Some Windows-based implementations do not send GOST algorithms indication * in supported_algorithms extension, so when we have GOST-based ciphersuite, * we have to assume GOST support. */ if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } else { i = 0; sig_idx = lu->sig_idx; } } #endif if (i == s->shared_sigalgslen) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } } else { /* * If we have no sigalg use defaults */ const uint16_t *sent_sigs; size_t sent_sigslen; if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < sent_sigslen; i++, sent_sigs++) { if (lu->sigalg == *sent_sigs && has_usable_cert(s, lu, lu->sig_idx)) break; } if (i == sent_sigslen) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } } } else { if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { if (!fatalerrs) return 1; SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); return 0; } } } if (sig_idx == -1) sig_idx = lu->sig_idx; s->s3.tmp.cert = &s->cert->pkeys[sig_idx]; s->cert->key = s->s3.tmp.cert; s->s3.tmp.sigalg = lu; return 1; } int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) { if (mode != TLSEXT_max_fragment_length_DISABLED && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } ctx->ext.max_fragment_len_mode = mode; return 1; } int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) { if (mode != TLSEXT_max_fragment_length_DISABLED && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); return 0; } ssl->ext.max_fragment_len_mode = mode; return 1; } uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) { return session->ext.max_fragment_len_mode; } /* * Helper functions for HMAC access with legacy support included. */ SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx) { SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret)); EVP_MAC *mac = NULL; if (ret == NULL) return NULL; #ifndef OPENSSL_NO_DEPRECATED_3_0 if (ctx->ext.ticket_key_evp_cb == NULL && ctx->ext.ticket_key_cb != NULL) { if (!ssl_hmac_old_new(ret)) goto err; return ret; } #endif mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq); if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL) goto err; EVP_MAC_free(mac); return ret; err: EVP_MAC_CTX_free(ret->ctx); EVP_MAC_free(mac); OPENSSL_free(ret); return NULL; } void ssl_hmac_free(SSL_HMAC *ctx) { if (ctx != NULL) { EVP_MAC_CTX_free(ctx->ctx); #ifndef OPENSSL_NO_DEPRECATED_3_0 ssl_hmac_old_free(ctx); #endif OPENSSL_free(ctx); } } EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx) { return ctx->ctx; } int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md) { OSSL_PARAM params[2], *p = params; if (ctx->ctx != NULL) { *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0); *p = OSSL_PARAM_construct_end(); if (EVP_MAC_init(ctx->ctx, key, len, params)) return 1; } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (ctx->old_ctx != NULL) return ssl_hmac_old_init(ctx, key, len, md); #endif return 0; } int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len) { if (ctx->ctx != NULL) return EVP_MAC_update(ctx->ctx, data, len); #ifndef OPENSSL_NO_DEPRECATED_3_0 if (ctx->old_ctx != NULL) return ssl_hmac_old_update(ctx, data, len); #endif return 0; } int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len, size_t max_size) { if (ctx->ctx != NULL) return EVP_MAC_final(ctx->ctx, md, len, max_size); #ifndef OPENSSL_NO_DEPRECATED_3_0 if (ctx->old_ctx != NULL) return ssl_hmac_old_final(ctx, md, len); #endif return 0; } size_t ssl_hmac_size(const SSL_HMAC *ctx) { if (ctx->ctx != NULL) return EVP_MAC_CTX_get_mac_size(ctx->ctx); #ifndef OPENSSL_NO_DEPRECATED_3_0 if (ctx->old_ctx != NULL) return ssl_hmac_old_size(ctx); #endif return 0; } int ssl_get_EC_curve_nid(const EVP_PKEY *pkey) { char gname[OSSL_MAX_NAME_SIZE]; if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0) return OBJ_txt2nid(gname); return NID_undef; } __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey, const unsigned char *enckey, size_t enckeylen) { if (EVP_PKEY_is_a(pkey, "DH")) { int bits = EVP_PKEY_get_bits(pkey); if (bits <= 0 || enckeylen != (size_t)bits / 8) /* the encoded key must be padded to the length of the p */ return 0; } else if (EVP_PKEY_is_a(pkey, "EC")) { if (enckeylen < 3 /* point format and at least 1 byte for x and y */ || enckey[0] != 0x04) return 0; } return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen); }