/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/nelem.h" #include #include "internal/o_dir.h" /* Must be after bio.h due to openssl-mangling.h */ #include #include #include #include #include #include #include "internal/refcount.h" #include "ssl_local.h" #include "ssl_cert_table.h" #include "internal/thread_once.h" #ifndef OPENSSL_NO_POSIX_IO # include # ifdef _WIN32 # define stat _stat # endif # ifndef S_ISDIR # define S_ISDIR(a) (((a) & S_IFMT) == S_IFDIR) # endif #endif static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); static CRYPTO_ONCE ssl_x509_store_ctx_once = CRYPTO_ONCE_STATIC_INIT; static volatile int ssl_x509_store_ctx_idx = -1; DEFINE_RUN_ONCE_STATIC(ssl_x509_store_ctx_init) { ssl_x509_store_ctx_idx = X509_STORE_CTX_get_ex_new_index(0, "SSL for verify callback", NULL, NULL, NULL); return ssl_x509_store_ctx_idx >= 0; } int SSL_get_ex_data_X509_STORE_CTX_idx(void) { if (!RUN_ONCE(&ssl_x509_store_ctx_once, ssl_x509_store_ctx_init)) return -1; return ssl_x509_store_ctx_idx; } CERT *ssl_cert_new(void) { CERT *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return NULL; } ret->key = &(ret->pkeys[SSL_PKEY_RSA]); ret->references = 1; ret->sec_cb = ssl_security_default_callback; ret->sec_level = OPENSSL_TLS_SECURITY_LEVEL; ret->sec_ex = NULL; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } return ret; } CERT *ssl_cert_dup(CERT *cert) { CERT *ret = OPENSSL_zalloc(sizeof(*ret)); int i; if (ret == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return NULL; } ret->references = 1; ret->key = &ret->pkeys[cert->key - cert->pkeys]; ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); OPENSSL_free(ret); return NULL; } if (cert->dh_tmp != NULL) { ret->dh_tmp = cert->dh_tmp; EVP_PKEY_up_ref(ret->dh_tmp); } ret->dh_tmp_cb = cert->dh_tmp_cb; ret->dh_tmp_auto = cert->dh_tmp_auto; for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = cert->pkeys + i; CERT_PKEY *rpk = ret->pkeys + i; if (cpk->x509 != NULL) { rpk->x509 = cpk->x509; X509_up_ref(rpk->x509); } if (cpk->privatekey != NULL) { rpk->privatekey = cpk->privatekey; EVP_PKEY_up_ref(cpk->privatekey); } if (cpk->chain) { rpk->chain = X509_chain_up_ref(cpk->chain); if (!rpk->chain) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } } if (cert->pkeys[i].serverinfo != NULL) { /* Just copy everything. */ ret->pkeys[i].serverinfo = OPENSSL_malloc(cert->pkeys[i].serverinfo_length); if (ret->pkeys[i].serverinfo == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } ret->pkeys[i].serverinfo_length = cert->pkeys[i].serverinfo_length; memcpy(ret->pkeys[i].serverinfo, cert->pkeys[i].serverinfo, cert->pkeys[i].serverinfo_length); } } /* Configured sigalgs copied across */ if (cert->conf_sigalgs) { ret->conf_sigalgs = OPENSSL_malloc(cert->conf_sigalgslen * sizeof(*cert->conf_sigalgs)); if (ret->conf_sigalgs == NULL) goto err; memcpy(ret->conf_sigalgs, cert->conf_sigalgs, cert->conf_sigalgslen * sizeof(*cert->conf_sigalgs)); ret->conf_sigalgslen = cert->conf_sigalgslen; } else ret->conf_sigalgs = NULL; if (cert->client_sigalgs) { ret->client_sigalgs = OPENSSL_malloc(cert->client_sigalgslen * sizeof(*cert->client_sigalgs)); if (ret->client_sigalgs == NULL) goto err; memcpy(ret->client_sigalgs, cert->client_sigalgs, cert->client_sigalgslen * sizeof(*cert->client_sigalgs)); ret->client_sigalgslen = cert->client_sigalgslen; } else ret->client_sigalgs = NULL; /* Copy any custom client certificate types */ if (cert->ctype) { ret->ctype = OPENSSL_memdup(cert->ctype, cert->ctype_len); if (ret->ctype == NULL) goto err; ret->ctype_len = cert->ctype_len; } ret->cert_flags = cert->cert_flags; ret->cert_cb = cert->cert_cb; ret->cert_cb_arg = cert->cert_cb_arg; if (cert->verify_store) { X509_STORE_up_ref(cert->verify_store); ret->verify_store = cert->verify_store; } if (cert->chain_store) { X509_STORE_up_ref(cert->chain_store); ret->chain_store = cert->chain_store; } ret->sec_cb = cert->sec_cb; ret->sec_level = cert->sec_level; ret->sec_ex = cert->sec_ex; if (!custom_exts_copy(&ret->custext, &cert->custext)) goto err; #ifndef OPENSSL_NO_PSK if (cert->psk_identity_hint) { ret->psk_identity_hint = OPENSSL_strdup(cert->psk_identity_hint); if (ret->psk_identity_hint == NULL) goto err; } #endif return ret; err: ssl_cert_free(ret); return NULL; } /* Free up and clear all certificates and chains */ void ssl_cert_clear_certs(CERT *c) { int i; if (c == NULL) return; for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; X509_free(cpk->x509); cpk->x509 = NULL; EVP_PKEY_free(cpk->privatekey); cpk->privatekey = NULL; sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = NULL; OPENSSL_free(cpk->serverinfo); cpk->serverinfo = NULL; cpk->serverinfo_length = 0; } } void ssl_cert_free(CERT *c) { int i; if (c == NULL) return; CRYPTO_DOWN_REF(&c->references, &i, c->lock); REF_PRINT_COUNT("CERT", c); if (i > 0) return; REF_ASSERT_ISNT(i < 0); EVP_PKEY_free(c->dh_tmp); ssl_cert_clear_certs(c); OPENSSL_free(c->conf_sigalgs); OPENSSL_free(c->client_sigalgs); OPENSSL_free(c->ctype); X509_STORE_free(c->verify_store); X509_STORE_free(c->chain_store); custom_exts_free(&c->custext); #ifndef OPENSSL_NO_PSK OPENSSL_free(c->psk_identity_hint); #endif CRYPTO_THREAD_lock_free(c->lock); OPENSSL_free(c); } int ssl_cert_set0_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain) { int i, r; CERT_PKEY *cpk = s != NULL ? s->cert->key : ctx->cert->key; if (!cpk) return 0; for (i = 0; i < sk_X509_num(chain); i++) { X509 *x = sk_X509_value(chain, i); r = ssl_security_cert(s, ctx, x, 0, 0); if (r != 1) { ERR_raise(ERR_LIB_SSL, r); return 0; } } sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = chain; return 1; } int ssl_cert_set1_chain(SSL *s, SSL_CTX *ctx, STACK_OF(X509) *chain) { STACK_OF(X509) *dchain; if (!chain) return ssl_cert_set0_chain(s, ctx, NULL); dchain = X509_chain_up_ref(chain); if (!dchain) return 0; if (!ssl_cert_set0_chain(s, ctx, dchain)) { sk_X509_pop_free(dchain, X509_free); return 0; } return 1; } int ssl_cert_add0_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x) { int r; CERT_PKEY *cpk = s ? s->cert->key : ctx->cert->key; if (!cpk) return 0; r = ssl_security_cert(s, ctx, x, 0, 0); if (r != 1) { ERR_raise(ERR_LIB_SSL, r); return 0; } if (!cpk->chain) cpk->chain = sk_X509_new_null(); if (!cpk->chain || !sk_X509_push(cpk->chain, x)) return 0; return 1; } int ssl_cert_add1_chain_cert(SSL *s, SSL_CTX *ctx, X509 *x) { if (!ssl_cert_add0_chain_cert(s, ctx, x)) return 0; X509_up_ref(x); return 1; } int ssl_cert_select_current(CERT *c, X509 *x) { int i; if (x == NULL) return 0; for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->x509 == x && cpk->privatekey) { c->key = cpk; return 1; } } for (i = 0; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->privatekey && cpk->x509 && !X509_cmp(cpk->x509, x)) { c->key = cpk; return 1; } } return 0; } int ssl_cert_set_current(CERT *c, long op) { int i, idx; if (!c) return 0; if (op == SSL_CERT_SET_FIRST) idx = 0; else if (op == SSL_CERT_SET_NEXT) { idx = (int)(c->key - c->pkeys + 1); if (idx >= SSL_PKEY_NUM) return 0; } else return 0; for (i = idx; i < SSL_PKEY_NUM; i++) { CERT_PKEY *cpk = c->pkeys + i; if (cpk->x509 && cpk->privatekey) { c->key = cpk; return 1; } } return 0; } void ssl_cert_set_cert_cb(CERT *c, int (*cb) (SSL *ssl, void *arg), void *arg) { c->cert_cb = cb; c->cert_cb_arg = arg; } /* * Verify a certificate chain * Return codes: * 1: Verify success * 0: Verify failure or error * -1: Retry required */ int ssl_verify_cert_chain(SSL *s, STACK_OF(X509) *sk) { X509 *x; int i = 0; X509_STORE *verify_store; X509_STORE_CTX *ctx = NULL; X509_VERIFY_PARAM *param; if ((sk == NULL) || (sk_X509_num(sk) == 0)) return 0; if (s->cert->verify_store) verify_store = s->cert->verify_store; else verify_store = s->ctx->cert_store; ctx = X509_STORE_CTX_new_ex(s->ctx->libctx, s->ctx->propq); if (ctx == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return 0; } x = sk_X509_value(sk, 0); if (!X509_STORE_CTX_init(ctx, verify_store, x, sk)) { ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB); goto end; } param = X509_STORE_CTX_get0_param(ctx); /* * XXX: Separate @AUTHSECLEVEL and @TLSSECLEVEL would be useful at some * point, for now a single @SECLEVEL sets the same policy for TLS crypto * and PKI authentication. */ X509_VERIFY_PARAM_set_auth_level(param, SSL_get_security_level(s)); /* Set suite B flags if needed */ X509_STORE_CTX_set_flags(ctx, tls1_suiteb(s)); if (!X509_STORE_CTX_set_ex_data (ctx, SSL_get_ex_data_X509_STORE_CTX_idx(), s)) { goto end; } /* Verify via DANE if enabled */ if (DANETLS_ENABLED(&s->dane)) X509_STORE_CTX_set0_dane(ctx, &s->dane); /* * We need to inherit the verify parameters. These can be determined by * the context: if its a server it will verify SSL client certificates or * vice versa. */ X509_STORE_CTX_set_default(ctx, s->server ? "ssl_client" : "ssl_server"); /* * Anything non-default in "s->param" should overwrite anything in the ctx. */ X509_VERIFY_PARAM_set1(param, s->param); if (s->verify_callback) X509_STORE_CTX_set_verify_cb(ctx, s->verify_callback); if (s->ctx->app_verify_callback != NULL) { i = s->ctx->app_verify_callback(ctx, s->ctx->app_verify_arg); } else { i = X509_verify_cert(ctx); /* We treat an error in the same way as a failure to verify */ if (i < 0) i = 0; } s->verify_result = X509_STORE_CTX_get_error(ctx); sk_X509_pop_free(s->verified_chain, X509_free); s->verified_chain = NULL; if (X509_STORE_CTX_get0_chain(ctx) != NULL) { s->verified_chain = X509_STORE_CTX_get1_chain(ctx); if (s->verified_chain == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); i = 0; } } /* Move peername from the store context params to the SSL handle's */ X509_VERIFY_PARAM_move_peername(s->param, param); end: X509_STORE_CTX_free(ctx); return i; } static void set0_CA_list(STACK_OF(X509_NAME) **ca_list, STACK_OF(X509_NAME) *name_list) { sk_X509_NAME_pop_free(*ca_list, X509_NAME_free); *ca_list = name_list; } STACK_OF(X509_NAME) *SSL_dup_CA_list(const STACK_OF(X509_NAME) *sk) { int i; const int num = sk_X509_NAME_num(sk); STACK_OF(X509_NAME) *ret; X509_NAME *name; ret = sk_X509_NAME_new_reserve(NULL, num); if (ret == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); return NULL; } for (i = 0; i < num; i++) { name = X509_NAME_dup(sk_X509_NAME_value(sk, i)); if (name == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); sk_X509_NAME_pop_free(ret, X509_NAME_free); return NULL; } sk_X509_NAME_push(ret, name); /* Cannot fail after reserve call */ } return ret; } void SSL_set0_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&s->ca_names, name_list); } void SSL_CTX_set0_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&ctx->ca_names, name_list); } const STACK_OF(X509_NAME) *SSL_CTX_get0_CA_list(const SSL_CTX *ctx) { return ctx->ca_names; } const STACK_OF(X509_NAME) *SSL_get0_CA_list(const SSL *s) { return s->ca_names != NULL ? s->ca_names : s->ctx->ca_names; } void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&ctx->client_ca_names, name_list); } STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx) { return ctx->client_ca_names; } void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list) { set0_CA_list(&s->client_ca_names, name_list); } const STACK_OF(X509_NAME) *SSL_get0_peer_CA_list(const SSL *s) { return s->s3.tmp.peer_ca_names; } STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s) { if (!s->server) return s->s3.tmp.peer_ca_names; return s->client_ca_names != NULL ? s->client_ca_names : s->ctx->client_ca_names; } static int add_ca_name(STACK_OF(X509_NAME) **sk, const X509 *x) { X509_NAME *name; if (x == NULL) return 0; if (*sk == NULL && ((*sk = sk_X509_NAME_new_null()) == NULL)) return 0; if ((name = X509_NAME_dup(X509_get_subject_name(x))) == NULL) return 0; if (!sk_X509_NAME_push(*sk, name)) { X509_NAME_free(name); return 0; } return 1; } int SSL_add1_to_CA_list(SSL *ssl, const X509 *x) { return add_ca_name(&ssl->ca_names, x); } int SSL_CTX_add1_to_CA_list(SSL_CTX *ctx, const X509 *x) { return add_ca_name(&ctx->ca_names, x); } /* * The following two are older names are to be replaced with * SSL(_CTX)_add1_to_CA_list */ int SSL_add_client_CA(SSL *ssl, X509 *x) { return add_ca_name(&ssl->client_ca_names, x); } int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x) { return add_ca_name(&ctx->client_ca_names, x); } static int xname_cmp(const X509_NAME *a, const X509_NAME *b) { unsigned char *abuf = NULL, *bbuf = NULL; int alen, blen, ret; /* X509_NAME_cmp() itself casts away constness in this way, so * assume it's safe: */ alen = i2d_X509_NAME((X509_NAME *)a, &abuf); blen = i2d_X509_NAME((X509_NAME *)b, &bbuf); if (alen < 0 || blen < 0) ret = -2; else if (alen != blen) ret = alen - blen; else /* alen == blen */ ret = memcmp(abuf, bbuf, alen); OPENSSL_free(abuf); OPENSSL_free(bbuf); return ret; } static int xname_sk_cmp(const X509_NAME *const *a, const X509_NAME *const *b) { return xname_cmp(*a, *b); } static unsigned long xname_hash(const X509_NAME *a) { /* This returns 0 also if SHA1 is not available */ return X509_NAME_hash_ex((X509_NAME *)a, NULL, NULL, NULL); } STACK_OF(X509_NAME) *SSL_load_client_CA_file_ex(const char *file, OSSL_LIB_CTX *libctx, const char *propq) { BIO *in = BIO_new(BIO_s_file()); X509 *x = NULL; X509_NAME *xn = NULL; STACK_OF(X509_NAME) *ret = NULL; LHASH_OF(X509_NAME) *name_hash = lh_X509_NAME_new(xname_hash, xname_cmp); OSSL_LIB_CTX *prev_libctx = NULL; if ((name_hash == NULL) || (in == NULL)) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } x = X509_new_ex(libctx, propq); if (x == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } if (BIO_read_filename(in, file) <= 0) goto err; /* Internally lh_X509_NAME_retrieve() needs the libctx to retrieve SHA1 */ prev_libctx = OSSL_LIB_CTX_set0_default(libctx); for (;;) { if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL) break; if (ret == NULL) { ret = sk_X509_NAME_new_null(); if (ret == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } } if ((xn = X509_get_subject_name(x)) == NULL) goto err; /* check for duplicates */ xn = X509_NAME_dup(xn); if (xn == NULL) goto err; if (lh_X509_NAME_retrieve(name_hash, xn) != NULL) { /* Duplicate. */ X509_NAME_free(xn); xn = NULL; } else { lh_X509_NAME_insert(name_hash, xn); if (!sk_X509_NAME_push(ret, xn)) goto err; } } goto done; err: X509_NAME_free(xn); sk_X509_NAME_pop_free(ret, X509_NAME_free); ret = NULL; done: /* restore the old libctx */ OSSL_LIB_CTX_set0_default(prev_libctx); BIO_free(in); X509_free(x); lh_X509_NAME_free(name_hash); if (ret != NULL) ERR_clear_error(); return ret; } STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file) { return SSL_load_client_CA_file_ex(file, NULL, NULL); } int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack, const char *file) { BIO *in; X509 *x = NULL; X509_NAME *xn = NULL; int ret = 1; int (*oldcmp) (const X509_NAME *const *a, const X509_NAME *const *b); oldcmp = sk_X509_NAME_set_cmp_func(stack, xname_sk_cmp); in = BIO_new(BIO_s_file()); if (in == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } if (BIO_read_filename(in, file) <= 0) goto err; for (;;) { if (PEM_read_bio_X509(in, &x, NULL, NULL) == NULL) break; if ((xn = X509_get_subject_name(x)) == NULL) goto err; xn = X509_NAME_dup(xn); if (xn == NULL) goto err; if (sk_X509_NAME_find(stack, xn) >= 0) { /* Duplicate. */ X509_NAME_free(xn); } else if (!sk_X509_NAME_push(stack, xn)) { X509_NAME_free(xn); goto err; } } ERR_clear_error(); goto done; err: ret = 0; done: BIO_free(in); X509_free(x); (void)sk_X509_NAME_set_cmp_func(stack, oldcmp); return ret; } int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack, const char *dir) { OPENSSL_DIR_CTX *d = NULL; const char *filename; int ret = 0; /* Note that a side effect is that the CAs will be sorted by name */ while ((filename = OPENSSL_DIR_read(&d, dir))) { char buf[1024]; int r; #ifndef OPENSSL_NO_POSIX_IO struct stat st; #else /* Cannot use stat so just skip current and parent directories */ if (strcmp(filename, ".") == 0 || strcmp(filename, "..") == 0) continue; #endif if (strlen(dir) + strlen(filename) + 2 > sizeof(buf)) { ERR_raise(ERR_LIB_SSL, SSL_R_PATH_TOO_LONG); goto err; } #ifdef OPENSSL_SYS_VMS r = BIO_snprintf(buf, sizeof(buf), "%s%s", dir, filename); #else r = BIO_snprintf(buf, sizeof(buf), "%s/%s", dir, filename); #endif #ifndef OPENSSL_NO_POSIX_IO /* Skip subdirectories */ if (!stat(buf, &st) && S_ISDIR(st.st_mode)) continue; #endif if (r <= 0 || r >= (int)sizeof(buf)) goto err; if (!SSL_add_file_cert_subjects_to_stack(stack, buf)) goto err; } if (errno) { ERR_raise_data(ERR_LIB_SYS, get_last_sys_error(), "calling OPENSSL_dir_read(%s)", dir); ERR_raise(ERR_LIB_SSL, ERR_R_SYS_LIB); goto err; } ret = 1; err: if (d) OPENSSL_DIR_end(&d); return ret; } static int add_uris_recursive(STACK_OF(X509_NAME) *stack, const char *uri, int depth) { int ok = 1; OSSL_STORE_CTX *ctx = NULL; X509 *x = NULL; X509_NAME *xn = NULL; if ((ctx = OSSL_STORE_open(uri, NULL, NULL, NULL, NULL)) == NULL) goto err; while (!OSSL_STORE_eof(ctx) && !OSSL_STORE_error(ctx)) { OSSL_STORE_INFO *info = OSSL_STORE_load(ctx); int infotype = info == 0 ? 0 : OSSL_STORE_INFO_get_type(info); if (info == NULL) continue; if (infotype == OSSL_STORE_INFO_NAME) { /* * This is an entry in the "directory" represented by the current * uri. if |depth| allows, dive into it. */ if (depth > 0) ok = add_uris_recursive(stack, OSSL_STORE_INFO_get0_NAME(info), depth - 1); } else if (infotype == OSSL_STORE_INFO_CERT) { if ((x = OSSL_STORE_INFO_get0_CERT(info)) == NULL || (xn = X509_get_subject_name(x)) == NULL || (xn = X509_NAME_dup(xn)) == NULL) goto err; if (sk_X509_NAME_find(stack, xn) >= 0) { /* Duplicate. */ X509_NAME_free(xn); } else if (!sk_X509_NAME_push(stack, xn)) { X509_NAME_free(xn); goto err; } } OSSL_STORE_INFO_free(info); } ERR_clear_error(); goto done; err: ok = 0; done: OSSL_STORE_close(ctx); return ok; } int SSL_add_store_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack, const char *store) { int (*oldcmp) (const X509_NAME *const *a, const X509_NAME *const *b) = sk_X509_NAME_set_cmp_func(stack, xname_sk_cmp); int ret = add_uris_recursive(stack, store, 1); (void)sk_X509_NAME_set_cmp_func(stack, oldcmp); return ret; } /* Build a certificate chain for current certificate */ int ssl_build_cert_chain(SSL *s, SSL_CTX *ctx, int flags) { CERT *c = s ? s->cert : ctx->cert; CERT_PKEY *cpk = c->key; X509_STORE *chain_store = NULL; X509_STORE_CTX *xs_ctx = NULL; STACK_OF(X509) *chain = NULL, *untrusted = NULL; X509 *x; SSL_CTX *real_ctx = (s == NULL) ? ctx : s->ctx; int i, rv = 0; if (!cpk->x509) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_SET); goto err; } /* Rearranging and check the chain: add everything to a store */ if (flags & SSL_BUILD_CHAIN_FLAG_CHECK) { chain_store = X509_STORE_new(); if (chain_store == NULL) goto err; for (i = 0; i < sk_X509_num(cpk->chain); i++) { x = sk_X509_value(cpk->chain, i); if (!X509_STORE_add_cert(chain_store, x)) goto err; } /* Add EE cert too: it might be self signed */ if (!X509_STORE_add_cert(chain_store, cpk->x509)) goto err; } else { if (c->chain_store) chain_store = c->chain_store; else if (s) chain_store = s->ctx->cert_store; else chain_store = ctx->cert_store; if (flags & SSL_BUILD_CHAIN_FLAG_UNTRUSTED) untrusted = cpk->chain; } xs_ctx = X509_STORE_CTX_new_ex(real_ctx->libctx, real_ctx->propq); if (xs_ctx == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE); goto err; } if (!X509_STORE_CTX_init(xs_ctx, chain_store, cpk->x509, untrusted)) { ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB); goto err; } /* Set suite B flags if needed */ X509_STORE_CTX_set_flags(xs_ctx, c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS); i = X509_verify_cert(xs_ctx); if (i <= 0 && flags & SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR) { if (flags & SSL_BUILD_CHAIN_FLAG_CLEAR_ERROR) ERR_clear_error(); i = 1; rv = 2; } if (i > 0) chain = X509_STORE_CTX_get1_chain(xs_ctx); if (i <= 0) { i = X509_STORE_CTX_get_error(xs_ctx); ERR_raise_data(ERR_LIB_SSL, SSL_R_CERTIFICATE_VERIFY_FAILED, "Verify error:%s", X509_verify_cert_error_string(i)); goto err; } /* Remove EE certificate from chain */ x = sk_X509_shift(chain); X509_free(x); if (flags & SSL_BUILD_CHAIN_FLAG_NO_ROOT) { if (sk_X509_num(chain) > 0) { /* See if last cert is self signed */ x = sk_X509_value(chain, sk_X509_num(chain) - 1); if (X509_get_extension_flags(x) & EXFLAG_SS) { x = sk_X509_pop(chain); X509_free(x); } } } /* * Check security level of all CA certificates: EE will have been checked * already. */ for (i = 0; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); rv = ssl_security_cert(s, ctx, x, 0, 0); if (rv != 1) { ERR_raise(ERR_LIB_SSL, rv); sk_X509_pop_free(chain, X509_free); rv = 0; goto err; } } sk_X509_pop_free(cpk->chain, X509_free); cpk->chain = chain; if (rv == 0) rv = 1; err: if (flags & SSL_BUILD_CHAIN_FLAG_CHECK) X509_STORE_free(chain_store); X509_STORE_CTX_free(xs_ctx); return rv; } int ssl_cert_set_cert_store(CERT *c, X509_STORE *store, int chain, int ref) { X509_STORE **pstore; if (chain) pstore = &c->chain_store; else pstore = &c->verify_store; X509_STORE_free(*pstore); *pstore = store; if (ref && store) X509_STORE_up_ref(store); return 1; } int ssl_cert_get_cert_store(CERT *c, X509_STORE **pstore, int chain) { *pstore = (chain ? c->chain_store : c->verify_store); return 1; } int ssl_get_security_level_bits(const SSL *s, const SSL_CTX *ctx, int *levelp) { int level; /* * note that there's a corresponding minbits_table * in crypto/x509/x509_vfy.c that's used for checking the security level * of RSA and DSA keys */ static const int minbits_table[5 + 1] = { 0, 80, 112, 128, 192, 256 }; if (ctx != NULL) level = SSL_CTX_get_security_level(ctx); else level = SSL_get_security_level(s); if (level > 5) level = 5; else if (level < 0) level = 0; if (levelp != NULL) *levelp = level; return minbits_table[level]; } static int ssl_security_default_callback(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { int level, minbits, pfs_mask; minbits = ssl_get_security_level_bits(s, ctx, &level); if (level == 0) { /* * No EDH keys weaker than 1024-bits even at level 0, otherwise, * anything goes. */ if (op == SSL_SECOP_TMP_DH && bits < 80) return 0; return 1; } switch (op) { case SSL_SECOP_CIPHER_SUPPORTED: case SSL_SECOP_CIPHER_SHARED: case SSL_SECOP_CIPHER_CHECK: { const SSL_CIPHER *c = other; /* No ciphers below security level */ if (bits < minbits) return 0; /* No unauthenticated ciphersuites */ if (c->algorithm_auth & SSL_aNULL) return 0; /* No MD5 mac ciphersuites */ if (c->algorithm_mac & SSL_MD5) return 0; /* SHA1 HMAC is 160 bits of security */ if (minbits > 160 && c->algorithm_mac & SSL_SHA1) return 0; /* Level 2: no RC4 */ if (level >= 2 && c->algorithm_enc == SSL_RC4) return 0; /* Level 3: forward secure ciphersuites only */ pfs_mask = SSL_kDHE | SSL_kECDHE | SSL_kDHEPSK | SSL_kECDHEPSK; if (level >= 3 && c->min_tls != TLS1_3_VERSION && !(c->algorithm_mkey & pfs_mask)) return 0; break; } case SSL_SECOP_VERSION: if (!SSL_IS_DTLS(s)) { /* SSLv3, TLS v1.0 and TLS v1.1 only allowed at level 0 */ if (nid <= TLS1_1_VERSION && level > 0) return 0; } else { /* DTLS v1.0 only allowed at level 0 */ if (DTLS_VERSION_LT(nid, DTLS1_2_VERSION) && level > 0) return 0; } break; case SSL_SECOP_COMPRESSION: if (level >= 2) return 0; break; case SSL_SECOP_TICKET: if (level >= 3) return 0; break; default: if (bits < minbits) return 0; } return 1; } int ssl_security(const SSL *s, int op, int bits, int nid, void *other) { return s->cert->sec_cb(s, NULL, op, bits, nid, other, s->cert->sec_ex); } int ssl_ctx_security(const SSL_CTX *ctx, int op, int bits, int nid, void *other) { return ctx->cert->sec_cb(NULL, ctx, op, bits, nid, other, ctx->cert->sec_ex); } int ssl_cert_lookup_by_nid(int nid, size_t *pidx) { size_t i; for (i = 0; i < OSSL_NELEM(ssl_cert_info); i++) { if (ssl_cert_info[i].nid == nid) { *pidx = i; return 1; } } return 0; } const SSL_CERT_LOOKUP *ssl_cert_lookup_by_pkey(const EVP_PKEY *pk, size_t *pidx) { size_t i; for (i = 0; i < OSSL_NELEM(ssl_cert_info); i++) { const SSL_CERT_LOOKUP *tmp_lu = &ssl_cert_info[i]; if (EVP_PKEY_is_a(pk, OBJ_nid2sn(tmp_lu->nid)) || EVP_PKEY_is_a(pk, OBJ_nid2ln(tmp_lu->nid))) { if (pidx != NULL) *pidx = i; return tmp_lu; } } return NULL; } const SSL_CERT_LOOKUP *ssl_cert_lookup_by_idx(size_t idx) { if (idx >= OSSL_NELEM(ssl_cert_info)) return NULL; return &ssl_cert_info[idx]; }