1 | /*
|
---|
2 | * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | #include <openssl/crypto.h>
|
---|
12 | #include <openssl/bn.h>
|
---|
13 | #include "crypto/sparse_array.h"
|
---|
14 |
|
---|
15 | /*
|
---|
16 | * How many bits are used to index each level in the tree structure?
|
---|
17 | * This setting determines the number of pointers stored in each node of the
|
---|
18 | * tree used to represent the sparse array. Having more pointers reduces the
|
---|
19 | * depth of the tree but potentially wastes more memory. That is, this is a
|
---|
20 | * direct space versus time tradeoff.
|
---|
21 | *
|
---|
22 | * The default is to use four bits which means that the are 16
|
---|
23 | * pointers in each tree node.
|
---|
24 | *
|
---|
25 | * The library builder is also permitted to define other sizes in the closed
|
---|
26 | * interval [2, sizeof(ossl_uintmax_t) * 8]. Space use generally scales
|
---|
27 | * exponentially with the block size, although the implementation only
|
---|
28 | * creates enough blocks to support the largest used index. The depth is:
|
---|
29 | * ceil(log_2(largest index) / 2^{block size})
|
---|
30 | * E.g. with a block size of 4, and a largest index of 1000, the depth
|
---|
31 | * will be three.
|
---|
32 | */
|
---|
33 | #ifndef OPENSSL_SA_BLOCK_BITS
|
---|
34 | # define OPENSSL_SA_BLOCK_BITS 4
|
---|
35 | #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
|
---|
36 | # error OPENSSL_SA_BLOCK_BITS is out of range
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * From the number of bits, work out:
|
---|
41 | * the number of pointers in a tree node;
|
---|
42 | * a bit mask to quickly extract an index and
|
---|
43 | * the maximum depth of the tree structure.
|
---|
44 | */
|
---|
45 | #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS)
|
---|
46 | #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1)
|
---|
47 | #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \
|
---|
48 | + OPENSSL_SA_BLOCK_BITS - 1) \
|
---|
49 | / OPENSSL_SA_BLOCK_BITS)
|
---|
50 |
|
---|
51 | struct sparse_array_st {
|
---|
52 | int levels;
|
---|
53 | ossl_uintmax_t top;
|
---|
54 | size_t nelem;
|
---|
55 | void **nodes;
|
---|
56 | };
|
---|
57 |
|
---|
58 | OPENSSL_SA *ossl_sa_new(void)
|
---|
59 | {
|
---|
60 | OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
|
---|
61 |
|
---|
62 | return res;
|
---|
63 | }
|
---|
64 |
|
---|
65 | static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
|
---|
66 | void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
|
---|
67 | {
|
---|
68 | int i[SA_BLOCK_MAX_LEVELS];
|
---|
69 | void *nodes[SA_BLOCK_MAX_LEVELS];
|
---|
70 | ossl_uintmax_t idx = 0;
|
---|
71 | int l = 0;
|
---|
72 |
|
---|
73 | i[0] = 0;
|
---|
74 | nodes[0] = sa->nodes;
|
---|
75 | while (l >= 0) {
|
---|
76 | const int n = i[l];
|
---|
77 | void ** const p = nodes[l];
|
---|
78 |
|
---|
79 | if (n >= SA_BLOCK_MAX) {
|
---|
80 | if (p != NULL && node != NULL)
|
---|
81 | (*node)(p);
|
---|
82 | l--;
|
---|
83 | idx >>= OPENSSL_SA_BLOCK_BITS;
|
---|
84 | } else {
|
---|
85 | i[l] = n + 1;
|
---|
86 | if (p != NULL && p[n] != NULL) {
|
---|
87 | idx = (idx & ~SA_BLOCK_MASK) | n;
|
---|
88 | if (l < sa->levels - 1) {
|
---|
89 | i[++l] = 0;
|
---|
90 | nodes[l] = p[n];
|
---|
91 | idx <<= OPENSSL_SA_BLOCK_BITS;
|
---|
92 | } else if (leaf != NULL) {
|
---|
93 | (*leaf)(idx, p[n], arg);
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | static void sa_free_node(void **p)
|
---|
101 | {
|
---|
102 | OPENSSL_free(p);
|
---|
103 | }
|
---|
104 |
|
---|
105 | static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
|
---|
106 | {
|
---|
107 | OPENSSL_free(p);
|
---|
108 | }
|
---|
109 |
|
---|
110 | void ossl_sa_free(OPENSSL_SA *sa)
|
---|
111 | {
|
---|
112 | if (sa != NULL) {
|
---|
113 | sa_doall(sa, &sa_free_node, NULL, NULL);
|
---|
114 | OPENSSL_free(sa);
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | void ossl_sa_free_leaves(OPENSSL_SA *sa)
|
---|
119 | {
|
---|
120 | sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
|
---|
121 | OPENSSL_free(sa);
|
---|
122 | }
|
---|
123 |
|
---|
124 | /* Wrap this in a structure to avoid compiler warnings */
|
---|
125 | struct trampoline_st {
|
---|
126 | void (*func)(ossl_uintmax_t, void *);
|
---|
127 | };
|
---|
128 |
|
---|
129 | static void trampoline(ossl_uintmax_t n, void *l, void *arg)
|
---|
130 | {
|
---|
131 | ((const struct trampoline_st *)arg)->func(n, l);
|
---|
132 | }
|
---|
133 |
|
---|
134 | void ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *))
|
---|
135 | {
|
---|
136 | struct trampoline_st tramp;
|
---|
137 |
|
---|
138 | tramp.func = leaf;
|
---|
139 | if (sa != NULL)
|
---|
140 | sa_doall(sa, NULL, &trampoline, &tramp);
|
---|
141 | }
|
---|
142 |
|
---|
143 | void ossl_sa_doall_arg(const OPENSSL_SA *sa,
|
---|
144 | void (*leaf)(ossl_uintmax_t, void *, void *),
|
---|
145 | void *arg)
|
---|
146 | {
|
---|
147 | if (sa != NULL)
|
---|
148 | sa_doall(sa, NULL, leaf, arg);
|
---|
149 | }
|
---|
150 |
|
---|
151 | size_t ossl_sa_num(const OPENSSL_SA *sa)
|
---|
152 | {
|
---|
153 | return sa == NULL ? 0 : sa->nelem;
|
---|
154 | }
|
---|
155 |
|
---|
156 | void *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
|
---|
157 | {
|
---|
158 | int level;
|
---|
159 | void **p, *r = NULL;
|
---|
160 |
|
---|
161 | if (sa == NULL || sa->nelem == 0)
|
---|
162 | return NULL;
|
---|
163 |
|
---|
164 | if (n <= sa->top) {
|
---|
165 | p = sa->nodes;
|
---|
166 | for (level = sa->levels - 1; p != NULL && level > 0; level--)
|
---|
167 | p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
|
---|
168 | & SA_BLOCK_MASK];
|
---|
169 | r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
|
---|
170 | }
|
---|
171 | return r;
|
---|
172 | }
|
---|
173 |
|
---|
174 | static ossl_inline void **alloc_node(void)
|
---|
175 | {
|
---|
176 | return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
|
---|
177 | }
|
---|
178 |
|
---|
179 | int ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
|
---|
180 | {
|
---|
181 | int i, level = 1;
|
---|
182 | ossl_uintmax_t n = posn;
|
---|
183 | void **p;
|
---|
184 |
|
---|
185 | if (sa == NULL)
|
---|
186 | return 0;
|
---|
187 |
|
---|
188 | for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
|
---|
189 | if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
|
---|
190 | break;
|
---|
191 |
|
---|
192 | for (;sa->levels < level; sa->levels++) {
|
---|
193 | p = alloc_node();
|
---|
194 | if (p == NULL)
|
---|
195 | return 0;
|
---|
196 | p[0] = sa->nodes;
|
---|
197 | sa->nodes = p;
|
---|
198 | }
|
---|
199 | if (sa->top < posn)
|
---|
200 | sa->top = posn;
|
---|
201 |
|
---|
202 | p = sa->nodes;
|
---|
203 | for (level = sa->levels - 1; level > 0; level--) {
|
---|
204 | i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
|
---|
205 | if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
|
---|
206 | return 0;
|
---|
207 | p = p[i];
|
---|
208 | }
|
---|
209 | p += posn & SA_BLOCK_MASK;
|
---|
210 | if (val == NULL && *p != NULL)
|
---|
211 | sa->nelem--;
|
---|
212 | else if (val != NULL && *p == NULL)
|
---|
213 | sa->nelem++;
|
---|
214 | *p = val;
|
---|
215 | return 1;
|
---|
216 | }
|
---|