VirtualBox

source: vbox/trunk/src/libs/openssl-3.1.3/crypto/ec/ecp_nistz256.c@ 101665

Last change on this file since 101665 was 101211, checked in by vboxsync, 14 months ago

openssl-3.1.3: Applied and adjusted our OpenSSL changes to 3.1.2. bugref:10527

File size: 50.9 KB
Line 
1/*
2 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4 * Copyright (c) 2015, CloudFlare, Inc.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 *
11 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13 * (2) University of Haifa, Israel
14 * (3) CloudFlare, Inc.
15 *
16 * Reference:
17 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18 * 256 Bit Primes"
19 */
20
21/*
22 * ECDSA low level APIs are deprecated for public use, but still ok for
23 * internal use.
24 */
25#include "internal/deprecated.h"
26
27#include <string.h>
28
29#include "internal/cryptlib.h"
30#include "crypto/bn.h"
31#include "ec_local.h"
32#include "internal/refcount.h"
33
34#if BN_BITS2 != 64
35# define TOBN(hi,lo) lo,hi
36#else
37# define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo)
38#endif
39
40#if defined(__GNUC__)
41# define ALIGN32 __attribute((aligned(32)))
42#elif defined(_MSC_VER)
43# define ALIGN32 __declspec(align(32))
44#else
45# define ALIGN32
46#endif
47
48#define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N)
49#define P256_LIMBS (256/BN_BITS2)
50
51typedef unsigned short u16;
52
53typedef struct {
54 BN_ULONG X[P256_LIMBS];
55 BN_ULONG Y[P256_LIMBS];
56 BN_ULONG Z[P256_LIMBS];
57} P256_POINT;
58
59typedef struct {
60 BN_ULONG X[P256_LIMBS];
61 BN_ULONG Y[P256_LIMBS];
62} P256_POINT_AFFINE;
63
64typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66/* structure for precomputed multiples of the generator */
67struct nistz256_pre_comp_st {
68 const EC_GROUP *group; /* Parent EC_GROUP object */
69 size_t w; /* Window size */
70 /*
71 * Constant time access to the X and Y coordinates of the pre-computed,
72 * generator multiplies, in the Montgomery domain. Pre-calculated
73 * multiplies are stored in affine form.
74 */
75 PRECOMP256_ROW *precomp;
76 void *precomp_storage;
77 CRYPTO_REF_COUNT references;
78 CRYPTO_RWLOCK *lock;
79};
80
81/* Functions implemented in assembly */
82/*
83 * Most of below mentioned functions *preserve* the property of inputs
84 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85 * inputs are fully reduced, then output is too. Note that reverse is
86 * not true, in sense that given partially reduced inputs output can be
87 * either, not unlikely reduced. And "most" in first sentence refers to
88 * the fact that given the calculations flow one can tolerate that
89 * addition, 1st function below, produces partially reduced result *if*
90 * multiplications by 2 and 3, which customarily use addition, fully
91 * reduce it. This effectively gives two options: a) addition produces
92 * fully reduced result [as long as inputs are, just like remaining
93 * functions]; b) addition is allowed to produce partially reduced
94 * result, but multiplications by 2 and 3 perform additional reduction
95 * step. Choice between the two can be platform-specific, but it was a)
96 * in all cases so far...
97 */
98/* Modular add: res = a+b mod P */
99void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100 const BN_ULONG a[P256_LIMBS],
101 const BN_ULONG b[P256_LIMBS]);
102/* Modular mul by 2: res = 2*a mod P */
103void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104 const BN_ULONG a[P256_LIMBS]);
105/* Modular mul by 3: res = 3*a mod P */
106void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107 const BN_ULONG a[P256_LIMBS]);
108
109/* Modular div by 2: res = a/2 mod P */
110void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111 const BN_ULONG a[P256_LIMBS]);
112/* Modular sub: res = a-b mod P */
113void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114 const BN_ULONG a[P256_LIMBS],
115 const BN_ULONG b[P256_LIMBS]);
116/* Modular neg: res = -a mod P */
117void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118/* Montgomery mul: res = a*b*2^-256 mod P */
119void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120 const BN_ULONG a[P256_LIMBS],
121 const BN_ULONG b[P256_LIMBS]);
122/* Montgomery sqr: res = a*a*2^-256 mod P */
123void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124 const BN_ULONG a[P256_LIMBS]);
125/* Convert a number from Montgomery domain, by multiplying with 1 */
126void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127 const BN_ULONG in[P256_LIMBS]);
128/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130 const BN_ULONG in[P256_LIMBS]);
131/* Functions that perform constant time access to the precomputed tables */
132void ecp_nistz256_scatter_w5(P256_POINT *val,
133 const P256_POINT *in_t, int idx);
134void ecp_nistz256_gather_w5(P256_POINT *val,
135 const P256_POINT *in_t, int idx);
136void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
137 const P256_POINT_AFFINE *in_t, int idx);
138void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
139 const P256_POINT_AFFINE *in_t, int idx);
140
141/* One converted into the Montgomery domain */
142static const BN_ULONG ONE[P256_LIMBS] = {
143 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145};
146
147static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
148
149/* Precomputed tables for the default generator */
150extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
151
152/* Recode window to a signed digit, see ecp_nistputil.c for details */
153static unsigned int _booth_recode_w5(unsigned int in)
154{
155 unsigned int s, d;
156
157 s = ~((in >> 5) - 1);
158 d = (1 << 6) - in - 1;
159 d = (d & s) | (in & ~s);
160 d = (d >> 1) + (d & 1);
161
162 return (d << 1) + (s & 1);
163}
164
165static unsigned int _booth_recode_w7(unsigned int in)
166{
167 unsigned int s, d;
168
169 s = ~((in >> 7) - 1);
170 d = (1 << 8) - in - 1;
171 d = (d & s) | (in & ~s);
172 d = (d >> 1) + (d & 1);
173
174 return (d << 1) + (s & 1);
175}
176
177static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178 const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179{
180 BN_ULONG mask1 = 0-move;
181 BN_ULONG mask2 = ~mask1;
182
183 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187 if (P256_LIMBS == 8) {
188 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192 }
193}
194
195static BN_ULONG is_zero(BN_ULONG in)
196{
197 in |= (0 - in);
198 in = ~in;
199 in >>= BN_BITS2 - 1;
200 return in;
201}
202
203static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204 const BN_ULONG b[P256_LIMBS])
205{
206 BN_ULONG res;
207
208 res = a[0] ^ b[0];
209 res |= a[1] ^ b[1];
210 res |= a[2] ^ b[2];
211 res |= a[3] ^ b[3];
212 if (P256_LIMBS == 8) {
213 res |= a[4] ^ b[4];
214 res |= a[5] ^ b[5];
215 res |= a[6] ^ b[6];
216 res |= a[7] ^ b[7];
217 }
218
219 return is_zero(res);
220}
221
222static BN_ULONG is_one(const BIGNUM *z)
223{
224 BN_ULONG res = 0;
225 BN_ULONG *a = bn_get_words(z);
226
227 if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228 res = a[0] ^ ONE[0];
229 res |= a[1] ^ ONE[1];
230 res |= a[2] ^ ONE[2];
231 res |= a[3] ^ ONE[3];
232 if (P256_LIMBS == 8) {
233 res |= a[4] ^ ONE[4];
234 res |= a[5] ^ ONE[5];
235 res |= a[6] ^ ONE[6];
236 /*
237 * no check for a[7] (being zero) on 32-bit platforms,
238 * because value of "one" takes only 7 limbs.
239 */
240 }
241 res = is_zero(res);
242 }
243
244 return res;
245}
246
247/*
248 * For reference, this macro is used only when new ecp_nistz256 assembly
249 * module is being developed. For example, configure with
250 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251 * performing simplest arithmetic operations on 256-bit vectors. Then
252 * work on implementation of higher-level functions performing point
253 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254 * and never define it again. (The correct macro denoting presence of
255 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256 */
257#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
258void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259void ecp_nistz256_point_add(P256_POINT *r,
260 const P256_POINT *a, const P256_POINT *b);
261void ecp_nistz256_point_add_affine(P256_POINT *r,
262 const P256_POINT *a,
263 const P256_POINT_AFFINE *b);
264#else
265/* Point double: r = 2*a */
266static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
267{
268 BN_ULONG S[P256_LIMBS];
269 BN_ULONG M[P256_LIMBS];
270 BN_ULONG Zsqr[P256_LIMBS];
271 BN_ULONG tmp0[P256_LIMBS];
272
273 const BN_ULONG *in_x = a->X;
274 const BN_ULONG *in_y = a->Y;
275 const BN_ULONG *in_z = a->Z;
276
277 BN_ULONG *res_x = r->X;
278 BN_ULONG *res_y = r->Y;
279 BN_ULONG *res_z = r->Z;
280
281 ecp_nistz256_mul_by_2(S, in_y);
282
283 ecp_nistz256_sqr_mont(Zsqr, in_z);
284
285 ecp_nistz256_sqr_mont(S, S);
286
287 ecp_nistz256_mul_mont(res_z, in_z, in_y);
288 ecp_nistz256_mul_by_2(res_z, res_z);
289
290 ecp_nistz256_add(M, in_x, Zsqr);
291 ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292
293 ecp_nistz256_sqr_mont(res_y, S);
294 ecp_nistz256_div_by_2(res_y, res_y);
295
296 ecp_nistz256_mul_mont(M, M, Zsqr);
297 ecp_nistz256_mul_by_3(M, M);
298
299 ecp_nistz256_mul_mont(S, S, in_x);
300 ecp_nistz256_mul_by_2(tmp0, S);
301
302 ecp_nistz256_sqr_mont(res_x, M);
303
304 ecp_nistz256_sub(res_x, res_x, tmp0);
305 ecp_nistz256_sub(S, S, res_x);
306
307 ecp_nistz256_mul_mont(S, S, M);
308 ecp_nistz256_sub(res_y, S, res_y);
309}
310
311/* Point addition: r = a+b */
312static void ecp_nistz256_point_add(P256_POINT *r,
313 const P256_POINT *a, const P256_POINT *b)
314{
315 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316 BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317 BN_ULONG Z1sqr[P256_LIMBS];
318 BN_ULONG Z2sqr[P256_LIMBS];
319 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320 BN_ULONG Hsqr[P256_LIMBS];
321 BN_ULONG Rsqr[P256_LIMBS];
322 BN_ULONG Hcub[P256_LIMBS];
323
324 BN_ULONG res_x[P256_LIMBS];
325 BN_ULONG res_y[P256_LIMBS];
326 BN_ULONG res_z[P256_LIMBS];
327
328 BN_ULONG in1infty, in2infty;
329
330 const BN_ULONG *in1_x = a->X;
331 const BN_ULONG *in1_y = a->Y;
332 const BN_ULONG *in1_z = a->Z;
333
334 const BN_ULONG *in2_x = b->X;
335 const BN_ULONG *in2_y = b->Y;
336 const BN_ULONG *in2_z = b->Z;
337
338 /*
339 * Infinity in encoded as (,,0)
340 */
341 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
342 if (P256_LIMBS == 8)
343 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
344
345 in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
346 if (P256_LIMBS == 8)
347 in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
348
349 in1infty = is_zero(in1infty);
350 in2infty = is_zero(in2infty);
351
352 ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
353 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
354
355 ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
356 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
357
358 ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
359 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
360 ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
361
362 ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
363 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
364 ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
365
366 /*
367 * The formulae are incorrect if the points are equal so we check for
368 * this and do doubling if this happens.
369 *
370 * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371 * that are bound to the affine coordinates (xi, yi) by the following
372 * equations:
373 * - xi = Xi / (Zi)^2
374 * - y1 = Yi / (Zi)^3
375 *
376 * For the sake of optimization, the algorithm operates over
377 * intermediate variables U1, U2 and S1, S2 that are derived from
378 * the projective coordinates:
379 * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380 * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381 *
382 * It is easy to prove that is_equal(U1, U2) implies that the affine
383 * x-coordinates are equal, or either point is at infinity.
384 * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385 * equal, or either point is at infinity.
386 *
387 * The special case of either point being the point at infinity (Z1 or Z2
388 * is zero), is handled separately later on in this function, so we avoid
389 * jumping to point_double here in those special cases.
390 *
391 * When both points are inverse of each other, we know that the affine
392 * x-coordinates are equal, and the y-coordinates have different sign.
393 * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394 * will equal 0, thus the result is infinity, if we simply let this
395 * function continue normally.
396 *
397 * We use bitwise operations to avoid potential side-channels introduced by
398 * the short-circuiting behaviour of boolean operators.
399 */
400 if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401 /*
402 * This is obviously not constant-time but it should never happen during
403 * single point multiplication, so there is no timing leak for ECDH or
404 * ECDSA signing.
405 */
406 ecp_nistz256_point_double(r, a);
407 return;
408 }
409
410 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
411 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
412 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
413 ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
415
416 ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
417 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
418
419 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420 ecp_nistz256_sub(res_x, res_x, Hcub);
421
422 ecp_nistz256_sub(res_y, U2, res_x);
423
424 ecp_nistz256_mul_mont(S2, S1, Hcub);
425 ecp_nistz256_mul_mont(res_y, R, res_y);
426 ecp_nistz256_sub(res_y, res_y, S2);
427
428 copy_conditional(res_x, in2_x, in1infty);
429 copy_conditional(res_y, in2_y, in1infty);
430 copy_conditional(res_z, in2_z, in1infty);
431
432 copy_conditional(res_x, in1_x, in2infty);
433 copy_conditional(res_y, in1_y, in2infty);
434 copy_conditional(res_z, in1_z, in2infty);
435
436 memcpy(r->X, res_x, sizeof(res_x));
437 memcpy(r->Y, res_y, sizeof(res_y));
438 memcpy(r->Z, res_z, sizeof(res_z));
439}
440
441/* Point addition when b is known to be affine: r = a+b */
442static void ecp_nistz256_point_add_affine(P256_POINT *r,
443 const P256_POINT *a,
444 const P256_POINT_AFFINE *b)
445{
446 BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447 BN_ULONG Z1sqr[P256_LIMBS];
448 BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449 BN_ULONG Hsqr[P256_LIMBS];
450 BN_ULONG Rsqr[P256_LIMBS];
451 BN_ULONG Hcub[P256_LIMBS];
452
453 BN_ULONG res_x[P256_LIMBS];
454 BN_ULONG res_y[P256_LIMBS];
455 BN_ULONG res_z[P256_LIMBS];
456
457 BN_ULONG in1infty, in2infty;
458
459 const BN_ULONG *in1_x = a->X;
460 const BN_ULONG *in1_y = a->Y;
461 const BN_ULONG *in1_z = a->Z;
462
463 const BN_ULONG *in2_x = b->X;
464 const BN_ULONG *in2_y = b->Y;
465
466 /*
467 * Infinity in encoded as (,,0)
468 */
469 in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
470 if (P256_LIMBS == 8)
471 in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
472
473 /*
474 * In affine representation we encode infinity as (0,0), which is
475 * not on the curve, so it is OK
476 */
477 in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
478 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
479 if (P256_LIMBS == 8)
480 in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
481 in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
482
483 in1infty = is_zero(in1infty);
484 in2infty = is_zero(in2infty);
485
486 ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
487
488 ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
489 ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
490
491 ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
492
493 ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
494
495 ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
496 ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
497
498 ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
499 ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
500 ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
501
502 ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
503 ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
504
505 ecp_nistz256_sub(res_x, Rsqr, Hsqr);
506 ecp_nistz256_sub(res_x, res_x, Hcub);
507 ecp_nistz256_sub(H, U2, res_x);
508
509 ecp_nistz256_mul_mont(S2, in1_y, Hcub);
510 ecp_nistz256_mul_mont(H, H, R);
511 ecp_nistz256_sub(res_y, H, S2);
512
513 copy_conditional(res_x, in2_x, in1infty);
514 copy_conditional(res_x, in1_x, in2infty);
515
516 copy_conditional(res_y, in2_y, in1infty);
517 copy_conditional(res_y, in1_y, in2infty);
518
519 copy_conditional(res_z, ONE, in1infty);
520 copy_conditional(res_z, in1_z, in2infty);
521
522 memcpy(r->X, res_x, sizeof(res_x));
523 memcpy(r->Y, res_y, sizeof(res_y));
524 memcpy(r->Z, res_z, sizeof(res_z));
525}
526#endif
527
528/* r = in^-1 mod p */
529static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
530 const BN_ULONG in[P256_LIMBS])
531{
532 /*
533 * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
534 * ffffffff ffffffff We use FLT and used poly-2 as exponent
535 */
536 BN_ULONG p2[P256_LIMBS];
537 BN_ULONG p4[P256_LIMBS];
538 BN_ULONG p8[P256_LIMBS];
539 BN_ULONG p16[P256_LIMBS];
540 BN_ULONG p32[P256_LIMBS];
541 BN_ULONG res[P256_LIMBS];
542 int i;
543
544 ecp_nistz256_sqr_mont(res, in);
545 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
546
547 ecp_nistz256_sqr_mont(res, p2);
548 ecp_nistz256_sqr_mont(res, res);
549 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
550
551 ecp_nistz256_sqr_mont(res, p4);
552 ecp_nistz256_sqr_mont(res, res);
553 ecp_nistz256_sqr_mont(res, res);
554 ecp_nistz256_sqr_mont(res, res);
555 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
556
557 ecp_nistz256_sqr_mont(res, p8);
558 for (i = 0; i < 7; i++)
559 ecp_nistz256_sqr_mont(res, res);
560 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
561
562 ecp_nistz256_sqr_mont(res, p16);
563 for (i = 0; i < 15; i++)
564 ecp_nistz256_sqr_mont(res, res);
565 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
566
567 ecp_nistz256_sqr_mont(res, p32);
568 for (i = 0; i < 31; i++)
569 ecp_nistz256_sqr_mont(res, res);
570 ecp_nistz256_mul_mont(res, res, in);
571
572 for (i = 0; i < 32 * 4; i++)
573 ecp_nistz256_sqr_mont(res, res);
574 ecp_nistz256_mul_mont(res, res, p32);
575
576 for (i = 0; i < 32; i++)
577 ecp_nistz256_sqr_mont(res, res);
578 ecp_nistz256_mul_mont(res, res, p32);
579
580 for (i = 0; i < 16; i++)
581 ecp_nistz256_sqr_mont(res, res);
582 ecp_nistz256_mul_mont(res, res, p16);
583
584 for (i = 0; i < 8; i++)
585 ecp_nistz256_sqr_mont(res, res);
586 ecp_nistz256_mul_mont(res, res, p8);
587
588 ecp_nistz256_sqr_mont(res, res);
589 ecp_nistz256_sqr_mont(res, res);
590 ecp_nistz256_sqr_mont(res, res);
591 ecp_nistz256_sqr_mont(res, res);
592 ecp_nistz256_mul_mont(res, res, p4);
593
594 ecp_nistz256_sqr_mont(res, res);
595 ecp_nistz256_sqr_mont(res, res);
596 ecp_nistz256_mul_mont(res, res, p2);
597
598 ecp_nistz256_sqr_mont(res, res);
599 ecp_nistz256_sqr_mont(res, res);
600 ecp_nistz256_mul_mont(res, res, in);
601
602 memcpy(r, res, sizeof(res));
603}
604
605/*
606 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
607 * returns one if it fits. Otherwise it returns zero.
608 */
609__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
610 const BIGNUM *in)
611{
612 return bn_copy_words(out, in, P256_LIMBS);
613}
614
615/* r = sum(scalar[i]*point[i]) */
616__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
617 P256_POINT *r,
618 const BIGNUM **scalar,
619 const EC_POINT **point,
620 size_t num, BN_CTX *ctx)
621{
622 size_t i;
623 int j, ret = 0;
624 unsigned int idx;
625 unsigned char (*p_str)[33] = NULL;
626 const unsigned int window_size = 5;
627 const unsigned int mask = (1 << (window_size + 1)) - 1;
628 unsigned int wvalue;
629 P256_POINT *temp; /* place for 5 temporary points */
630 const BIGNUM **scalars = NULL;
631 P256_POINT (*table)[16] = NULL;
632 void *table_storage = NULL;
633
634 if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
635 || (table_storage =
636 OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
637 || (p_str =
638 OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
639 || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
640 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
641 goto err;
642 }
643
644 table = (void *)ALIGNPTR(table_storage, 64);
645 temp = (P256_POINT *)(table + num);
646
647 for (i = 0; i < num; i++) {
648 P256_POINT *row = table[i];
649
650 /* This is an unusual input, we don't guarantee constant-timeness. */
651 if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
652 BIGNUM *mod;
653
654 if ((mod = BN_CTX_get(ctx)) == NULL)
655 goto err;
656 if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
657 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
658 goto err;
659 }
660 scalars[i] = mod;
661 } else
662 scalars[i] = scalar[i];
663
664 for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
665 BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
666
667 p_str[i][j + 0] = (unsigned char)d;
668 p_str[i][j + 1] = (unsigned char)(d >> 8);
669 p_str[i][j + 2] = (unsigned char)(d >> 16);
670 p_str[i][j + 3] = (unsigned char)(d >>= 24);
671 if (BN_BYTES == 8) {
672 d >>= 8;
673 p_str[i][j + 4] = (unsigned char)d;
674 p_str[i][j + 5] = (unsigned char)(d >> 8);
675 p_str[i][j + 6] = (unsigned char)(d >> 16);
676 p_str[i][j + 7] = (unsigned char)(d >> 24);
677 }
678 }
679 for (; j < 33; j++)
680 p_str[i][j] = 0;
681
682 if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
683 || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
684 || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
685 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
686 goto err;
687 }
688
689 /*
690 * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
691 * is not stored. All other values are actually stored with an offset
692 * of -1 in table.
693 */
694
695 ecp_nistz256_scatter_w5 (row, &temp[0], 1);
696 ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */
697 ecp_nistz256_scatter_w5 (row, &temp[1], 2);
698 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */
699 ecp_nistz256_scatter_w5 (row, &temp[2], 3);
700 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */
701 ecp_nistz256_scatter_w5 (row, &temp[1], 4);
702 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */
703 ecp_nistz256_scatter_w5 (row, &temp[2], 6);
704 ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */
705 ecp_nistz256_scatter_w5 (row, &temp[3], 5);
706 ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */
707 ecp_nistz256_scatter_w5 (row, &temp[4], 7);
708 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */
709 ecp_nistz256_scatter_w5 (row, &temp[1], 8);
710 ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
711 ecp_nistz256_scatter_w5 (row, &temp[2], 12);
712 ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
713 ecp_nistz256_scatter_w5 (row, &temp[3], 10);
714 ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
715 ecp_nistz256_scatter_w5 (row, &temp[4], 14);
716 ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/
717 ecp_nistz256_scatter_w5 (row, &temp[2], 13);
718 ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/
719 ecp_nistz256_scatter_w5 (row, &temp[3], 11);
720 ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/
721 ecp_nistz256_scatter_w5 (row, &temp[4], 15);
722 ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */
723 ecp_nistz256_scatter_w5 (row, &temp[2], 9);
724 ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
725 ecp_nistz256_scatter_w5 (row, &temp[1], 16);
726 }
727
728 idx = 255;
729
730 wvalue = p_str[0][(idx - 1) / 8];
731 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
732
733 /*
734 * We gather to temp[0], because we know it's position relative
735 * to table
736 */
737 ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
738 memcpy(r, &temp[0], sizeof(temp[0]));
739
740 while (idx >= 5) {
741 for (i = (idx == 255 ? 1 : 0); i < num; i++) {
742 unsigned int off = (idx - 1) / 8;
743
744 wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
745 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
746
747 wvalue = _booth_recode_w5(wvalue);
748
749 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
750
751 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
752 copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
753
754 ecp_nistz256_point_add(r, r, &temp[0]);
755 }
756
757 idx -= window_size;
758
759 ecp_nistz256_point_double(r, r);
760 ecp_nistz256_point_double(r, r);
761 ecp_nistz256_point_double(r, r);
762 ecp_nistz256_point_double(r, r);
763 ecp_nistz256_point_double(r, r);
764 }
765
766 /* Final window */
767 for (i = 0; i < num; i++) {
768 wvalue = p_str[i][0];
769 wvalue = (wvalue << 1) & mask;
770
771 wvalue = _booth_recode_w5(wvalue);
772
773 ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
774
775 ecp_nistz256_neg(temp[1].Y, temp[0].Y);
776 copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
777
778 ecp_nistz256_point_add(r, r, &temp[0]);
779 }
780
781 ret = 1;
782 err:
783 OPENSSL_free(table_storage);
784 OPENSSL_free(p_str);
785 OPENSSL_free(scalars);
786 return ret;
787}
788
789/* Coordinates of G, for which we have precomputed tables */
790static const BN_ULONG def_xG[P256_LIMBS] = {
791 TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
792 TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
793};
794
795static const BN_ULONG def_yG[P256_LIMBS] = {
796 TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
797 TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
798};
799
800/*
801 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
802 * generator.
803 */
804static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
805{
806 return (bn_get_top(generator->X) == P256_LIMBS) &&
807 (bn_get_top(generator->Y) == P256_LIMBS) &&
808 is_equal(bn_get_words(generator->X), def_xG) &&
809 is_equal(bn_get_words(generator->Y), def_yG) &&
810 is_one(generator->Z);
811}
812
813__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
814{
815 /*
816 * We precompute a table for a Booth encoded exponent (wNAF) based
817 * computation. Each table holds 64 values for safe access, with an
818 * implicit value of infinity at index zero. We use window of size 7, and
819 * therefore require ceil(256/7) = 37 tables.
820 */
821 const BIGNUM *order;
822 EC_POINT *P = NULL, *T = NULL;
823 const EC_POINT *generator;
824 NISTZ256_PRE_COMP *pre_comp;
825 BN_CTX *new_ctx = NULL;
826 int i, j, k, ret = 0;
827 size_t w;
828
829 PRECOMP256_ROW *preComputedTable = NULL;
830 unsigned char *precomp_storage = NULL;
831
832 /* if there is an old NISTZ256_PRE_COMP object, throw it away */
833 EC_pre_comp_free(group);
834 generator = EC_GROUP_get0_generator(group);
835 if (generator == NULL) {
836 ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
837 return 0;
838 }
839
840 if (ecp_nistz256_is_affine_G(generator)) {
841 /*
842 * No need to calculate tables for the standard generator because we
843 * have them statically.
844 */
845 return 1;
846 }
847
848 if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
849 return 0;
850
851 if (ctx == NULL) {
852 ctx = new_ctx = BN_CTX_new_ex(group->libctx);
853 if (ctx == NULL)
854 goto err;
855 }
856
857 BN_CTX_start(ctx);
858
859 order = EC_GROUP_get0_order(group);
860 if (order == NULL)
861 goto err;
862
863 if (BN_is_zero(order)) {
864 ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
865 goto err;
866 }
867
868 w = 7;
869
870 if ((precomp_storage =
871 OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
872 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
873 goto err;
874 }
875
876 preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
877
878 P = EC_POINT_new(group);
879 T = EC_POINT_new(group);
880 if (P == NULL || T == NULL)
881 goto err;
882
883 /*
884 * The zero entry is implicitly infinity, and we skip it, storing other
885 * values with -1 offset.
886 */
887 if (!EC_POINT_copy(T, generator))
888 goto err;
889
890 for (k = 0; k < 64; k++) {
891 if (!EC_POINT_copy(P, T))
892 goto err;
893 for (j = 0; j < 37; j++) {
894 P256_POINT_AFFINE temp;
895 /*
896 * It would be faster to use EC_POINTs_make_affine and
897 * make multiple points affine at the same time.
898 */
899 if (group->meth->make_affine == NULL
900 || !group->meth->make_affine(group, P, ctx))
901 goto err;
902 if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
903 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
904 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
905 goto err;
906 }
907 ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
908 for (i = 0; i < 7; i++) {
909 if (!EC_POINT_dbl(group, P, P, ctx))
910 goto err;
911 }
912 }
913 if (!EC_POINT_add(group, T, T, generator, ctx))
914 goto err;
915 }
916
917 pre_comp->group = group;
918 pre_comp->w = w;
919 pre_comp->precomp = preComputedTable;
920 pre_comp->precomp_storage = precomp_storage;
921 precomp_storage = NULL;
922 SETPRECOMP(group, nistz256, pre_comp);
923 pre_comp = NULL;
924 ret = 1;
925
926 err:
927 BN_CTX_end(ctx);
928 BN_CTX_free(new_ctx);
929
930 EC_nistz256_pre_comp_free(pre_comp);
931 OPENSSL_free(precomp_storage);
932 EC_POINT_free(P);
933 EC_POINT_free(T);
934 return ret;
935}
936
937__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
938 const P256_POINT_AFFINE *in,
939 BN_CTX *ctx)
940{
941 int ret = 0;
942
943 if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
944 && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
945 && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
946 out->Z_is_one = 1;
947
948 return ret;
949}
950
951/* r = scalar*G + sum(scalars[i]*points[i]) */
952__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
953 EC_POINT *r,
954 const BIGNUM *scalar,
955 size_t num,
956 const EC_POINT *points[],
957 const BIGNUM *scalars[], BN_CTX *ctx)
958{
959 int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
960 unsigned char p_str[33] = { 0 };
961 const PRECOMP256_ROW *preComputedTable = NULL;
962 const NISTZ256_PRE_COMP *pre_comp = NULL;
963 const EC_POINT *generator = NULL;
964 const BIGNUM **new_scalars = NULL;
965 const EC_POINT **new_points = NULL;
966 unsigned int idx = 0;
967 const unsigned int window_size = 7;
968 const unsigned int mask = (1 << (window_size + 1)) - 1;
969 unsigned int wvalue;
970 ALIGN32 union {
971 P256_POINT p;
972 P256_POINT_AFFINE a;
973 } t, p;
974 BIGNUM *tmp_scalar;
975
976 if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
977 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
978 return 0;
979 }
980
981 memset(&p, 0, sizeof(p));
982 BN_CTX_start(ctx);
983
984 if (scalar) {
985 generator = EC_GROUP_get0_generator(group);
986 if (generator == NULL) {
987 ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
988 goto err;
989 }
990
991 /* look if we can use precomputed multiples of generator */
992 pre_comp = group->pre_comp.nistz256;
993
994 if (pre_comp) {
995 /*
996 * If there is a precomputed table for the generator, check that
997 * it was generated with the same generator.
998 */
999 EC_POINT *pre_comp_generator = EC_POINT_new(group);
1000 if (pre_comp_generator == NULL)
1001 goto err;
1002
1003 ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
1004 if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1005 group, &p.a, ctx)) {
1006 EC_POINT_free(pre_comp_generator);
1007 goto err;
1008 }
1009
1010 if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1011 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1012
1013 EC_POINT_free(pre_comp_generator);
1014 }
1015
1016 if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1017 /*
1018 * If there is no precomputed data, but the generator is the
1019 * default, a hardcoded table of precomputed data is used. This
1020 * is because applications, such as Apache, do not use
1021 * EC_KEY_precompute_mult.
1022 */
1023 preComputedTable = ecp_nistz256_precomputed;
1024 }
1025
1026 if (preComputedTable) {
1027 BN_ULONG infty;
1028
1029 if ((BN_num_bits(scalar) > 256)
1030 || BN_is_negative(scalar)) {
1031 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1032 goto err;
1033
1034 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1035 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1036 goto err;
1037 }
1038 scalar = tmp_scalar;
1039 }
1040
1041 for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1042 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1043
1044 p_str[i + 0] = (unsigned char)d;
1045 p_str[i + 1] = (unsigned char)(d >> 8);
1046 p_str[i + 2] = (unsigned char)(d >> 16);
1047 p_str[i + 3] = (unsigned char)(d >>= 24);
1048 if (BN_BYTES == 8) {
1049 d >>= 8;
1050 p_str[i + 4] = (unsigned char)d;
1051 p_str[i + 5] = (unsigned char)(d >> 8);
1052 p_str[i + 6] = (unsigned char)(d >> 16);
1053 p_str[i + 7] = (unsigned char)(d >> 24);
1054 }
1055 }
1056
1057 for (; i < 33; i++)
1058 p_str[i] = 0;
1059
1060 /* First window */
1061 wvalue = (p_str[0] << 1) & mask;
1062 idx += window_size;
1063
1064 wvalue = _booth_recode_w7(wvalue);
1065
1066 ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1067 wvalue >> 1);
1068
1069 ecp_nistz256_neg(p.p.Z, p.p.Y);
1070 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1071
1072 /*
1073 * Since affine infinity is encoded as (0,0) and
1074 * Jacobian is (,,0), we need to harmonize them
1075 * by assigning "one" or zero to Z.
1076 */
1077 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1078 p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1079#if !defined(_MSC_VER) || P256_LIMBS != 4 /* vbox: VC++ 2010 complains about out of bounds accesses here in debug builds. */
1080 if (P256_LIMBS == 8)
1081 infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1082 p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1083#endif
1084
1085 infty = 0 - is_zero(infty);
1086 infty = ~infty;
1087
1088 p.p.Z[0] = ONE[0] & infty;
1089 p.p.Z[1] = ONE[1] & infty;
1090 p.p.Z[2] = ONE[2] & infty;
1091 p.p.Z[3] = ONE[3] & infty;
1092#if !defined(_MSC_VER) || P256_LIMBS != 4 /* vbox: VC++ 2010 complains about out of bounds accesses here in debug builds. */
1093 if (P256_LIMBS == 8) {
1094 p.p.Z[4] = ONE[4] & infty;
1095 p.p.Z[5] = ONE[5] & infty;
1096 p.p.Z[6] = ONE[6] & infty;
1097 p.p.Z[7] = ONE[7] & infty;
1098 }
1099#endif
1100
1101 for (i = 1; i < 37; i++) {
1102 unsigned int off = (idx - 1) / 8;
1103 wvalue = p_str[off] | p_str[off + 1] << 8;
1104 wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1105 idx += window_size;
1106
1107 wvalue = _booth_recode_w7(wvalue);
1108
1109 ecp_nistz256_gather_w7(&t.a,
1110 preComputedTable[i], wvalue >> 1);
1111
1112 ecp_nistz256_neg(t.p.Z, t.a.Y);
1113 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1114
1115 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1116 }
1117 } else {
1118 p_is_infinity = 1;
1119 no_precomp_for_generator = 1;
1120 }
1121 } else
1122 p_is_infinity = 1;
1123
1124 if (no_precomp_for_generator) {
1125 /*
1126 * Without a precomputed table for the generator, it has to be
1127 * handled like a normal point.
1128 */
1129 new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1130 if (new_scalars == NULL) {
1131 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1132 goto err;
1133 }
1134
1135 new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1136 if (new_points == NULL) {
1137 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1138 goto err;
1139 }
1140
1141 memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1142 new_scalars[num] = scalar;
1143 memcpy(new_points, points, num * sizeof(EC_POINT *));
1144 new_points[num] = generator;
1145
1146 scalars = new_scalars;
1147 points = new_points;
1148 num++;
1149 }
1150
1151 if (num) {
1152 P256_POINT *out = &t.p;
1153 if (p_is_infinity)
1154 out = &p.p;
1155
1156 if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1157 goto err;
1158
1159 if (!p_is_infinity)
1160 ecp_nistz256_point_add(&p.p, &p.p, out);
1161 }
1162
1163 /* Not constant-time, but we're only operating on the public output. */
1164 if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1165 !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1166 !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1167 goto err;
1168 }
1169 r->Z_is_one = is_one(r->Z) & 1;
1170
1171 ret = 1;
1172
1173err:
1174 BN_CTX_end(ctx);
1175 OPENSSL_free(new_points);
1176 OPENSSL_free(new_scalars);
1177 return ret;
1178}
1179
1180__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1181 const EC_POINT *point,
1182 BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1183{
1184 BN_ULONG z_inv2[P256_LIMBS];
1185 BN_ULONG z_inv3[P256_LIMBS];
1186 BN_ULONG x_aff[P256_LIMBS];
1187 BN_ULONG y_aff[P256_LIMBS];
1188 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1189 BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1190
1191 if (EC_POINT_is_at_infinity(group, point)) {
1192 ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1193 return 0;
1194 }
1195
1196 if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1197 !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1198 !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1199 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1200 return 0;
1201 }
1202
1203 ecp_nistz256_mod_inverse(z_inv3, point_z);
1204 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1205 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1206
1207 if (x != NULL) {
1208 ecp_nistz256_from_mont(x_ret, x_aff);
1209 if (!bn_set_words(x, x_ret, P256_LIMBS))
1210 return 0;
1211 }
1212
1213 if (y != NULL) {
1214 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1215 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1216 ecp_nistz256_from_mont(y_ret, y_aff);
1217 if (!bn_set_words(y, y_ret, P256_LIMBS))
1218 return 0;
1219 }
1220
1221 return 1;
1222}
1223
1224static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1225{
1226 NISTZ256_PRE_COMP *ret = NULL;
1227
1228 if (!group)
1229 return NULL;
1230
1231 ret = OPENSSL_zalloc(sizeof(*ret));
1232
1233 if (ret == NULL) {
1234 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1235 return ret;
1236 }
1237
1238 ret->group = group;
1239 ret->w = 6; /* default */
1240 ret->references = 1;
1241
1242 ret->lock = CRYPTO_THREAD_lock_new();
1243 if (ret->lock == NULL) {
1244 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1245 OPENSSL_free(ret);
1246 return NULL;
1247 }
1248 return ret;
1249}
1250
1251NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1252{
1253 int i;
1254 if (p != NULL)
1255 CRYPTO_UP_REF(&p->references, &i, p->lock);
1256 return p;
1257}
1258
1259void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1260{
1261 int i;
1262
1263 if (pre == NULL)
1264 return;
1265
1266 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1267 REF_PRINT_COUNT("EC_nistz256", pre);
1268 if (i > 0)
1269 return;
1270 REF_ASSERT_ISNT(i < 0);
1271
1272 OPENSSL_free(pre->precomp_storage);
1273 CRYPTO_THREAD_lock_free(pre->lock);
1274 OPENSSL_free(pre);
1275}
1276
1277
1278static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1279{
1280 /* There is a hard-coded table for the default generator. */
1281 const EC_POINT *generator = EC_GROUP_get0_generator(group);
1282
1283 if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1284 /* There is a hard-coded table for the default generator. */
1285 return 1;
1286 }
1287
1288 return HAVEPRECOMP(group, nistz256);
1289}
1290
1291#if defined(__x86_64) || defined(__x86_64__) || \
1292 defined(_M_AMD64) || defined(_M_X64) || \
1293 defined(__powerpc64__) || defined(_ARCH_PP64) || \
1294 defined(__aarch64__)
1295/*
1296 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1297 */
1298void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1299 const BN_ULONG a[P256_LIMBS],
1300 const BN_ULONG b[P256_LIMBS]);
1301void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1302 const BN_ULONG a[P256_LIMBS],
1303 BN_ULONG rep);
1304
1305static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1306 const BIGNUM *x, BN_CTX *ctx)
1307{
1308 /* RR = 2^512 mod ord(p256) */
1309 static const BN_ULONG RR[P256_LIMBS] = {
1310 TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1311 TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1312 };
1313 /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1314 static const BN_ULONG one[P256_LIMBS] = {
1315 TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1316 };
1317 /*
1318 * We don't use entry 0 in the table, so we omit it and address
1319 * with -1 offset.
1320 */
1321 BN_ULONG table[15][P256_LIMBS];
1322 BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1323 int i, ret = 0;
1324 enum {
1325 i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111,
1326 i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32
1327 };
1328
1329 /*
1330 * Catch allocation failure early.
1331 */
1332 if (bn_wexpand(r, P256_LIMBS) == NULL) {
1333 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1334 goto err;
1335 }
1336
1337 if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1338 BIGNUM *tmp;
1339
1340 if ((tmp = BN_CTX_get(ctx)) == NULL
1341 || !BN_nnmod(tmp, x, group->order, ctx)) {
1342 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1343 goto err;
1344 }
1345 x = tmp;
1346 }
1347
1348 if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1349 ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1350 goto err;
1351 }
1352
1353 ecp_nistz256_ord_mul_mont(table[0], t, RR);
1354#if 0
1355 /*
1356 * Original sparse-then-fixed-window algorithm, retained for reference.
1357 */
1358 for (i = 2; i < 16; i += 2) {
1359 ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1360 ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1361 }
1362
1363 /*
1364 * The top 128bit of the exponent are highly redudndant, so we
1365 * perform an optimized flow
1366 */
1367 ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
1368 ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
1369
1370 ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
1371 ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
1372
1373 ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
1374 ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
1375
1376 ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
1377 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
1378
1379 ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
1380 ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
1381
1382 /*
1383 * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1384 */
1385 for(i = 0; i < 32; i++) {
1386 /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1387 * split into nibbles */
1388 static const unsigned char expLo[32] = {
1389 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1390 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1391 };
1392
1393 ecp_nistz256_ord_sqr_mont(out, out, 4);
1394 /* The exponent is public, no need in constant-time access */
1395 ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1396 }
1397#else
1398 /*
1399 * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1400 *
1401 * Even though this code path spares 12 squarings, 4.5%, and 13
1402 * multiplications, 25%, on grand scale sign operation is not that
1403 * much faster, not more that 2%...
1404 */
1405
1406 /* pre-calculate powers */
1407 ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1408
1409 ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1410
1411 ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1412
1413 ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1414
1415 ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1416
1417 ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1418
1419 ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1420 ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1421
1422 ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1423
1424 ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1425
1426 ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1427
1428 ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1429 ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1430
1431 ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1432 ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1433
1434 ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1435 ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1436
1437 /* calculations */
1438 ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1439 ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1440
1441 for (i = 0; i < 27; i++) {
1442 static const struct { unsigned char p, i; } chain[27] = {
1443 { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1444 { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1445 { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1446 { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1447 { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1448 { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1449 { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1450 { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1451 { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1452 };
1453
1454 ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1455 ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1456 }
1457#endif
1458 ecp_nistz256_ord_mul_mont(out, out, one);
1459
1460 /*
1461 * Can't fail, but check return code to be consistent anyway.
1462 */
1463 if (!bn_set_words(r, out, P256_LIMBS))
1464 goto err;
1465
1466 ret = 1;
1467err:
1468 return ret;
1469}
1470#else
1471# define ecp_nistz256_inv_mod_ord NULL
1472#endif
1473
1474const EC_METHOD *EC_GFp_nistz256_method(void)
1475{
1476 static const EC_METHOD ret = {
1477 EC_FLAGS_DEFAULT_OCT,
1478 NID_X9_62_prime_field,
1479 ossl_ec_GFp_mont_group_init,
1480 ossl_ec_GFp_mont_group_finish,
1481 ossl_ec_GFp_mont_group_clear_finish,
1482 ossl_ec_GFp_mont_group_copy,
1483 ossl_ec_GFp_mont_group_set_curve,
1484 ossl_ec_GFp_simple_group_get_curve,
1485 ossl_ec_GFp_simple_group_get_degree,
1486 ossl_ec_group_simple_order_bits,
1487 ossl_ec_GFp_simple_group_check_discriminant,
1488 ossl_ec_GFp_simple_point_init,
1489 ossl_ec_GFp_simple_point_finish,
1490 ossl_ec_GFp_simple_point_clear_finish,
1491 ossl_ec_GFp_simple_point_copy,
1492 ossl_ec_GFp_simple_point_set_to_infinity,
1493 ossl_ec_GFp_simple_point_set_affine_coordinates,
1494 ecp_nistz256_get_affine,
1495 0, 0, 0,
1496 ossl_ec_GFp_simple_add,
1497 ossl_ec_GFp_simple_dbl,
1498 ossl_ec_GFp_simple_invert,
1499 ossl_ec_GFp_simple_is_at_infinity,
1500 ossl_ec_GFp_simple_is_on_curve,
1501 ossl_ec_GFp_simple_cmp,
1502 ossl_ec_GFp_simple_make_affine,
1503 ossl_ec_GFp_simple_points_make_affine,
1504 ecp_nistz256_points_mul, /* mul */
1505 ecp_nistz256_mult_precompute, /* precompute_mult */
1506 ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1507 ossl_ec_GFp_mont_field_mul,
1508 ossl_ec_GFp_mont_field_sqr,
1509 0, /* field_div */
1510 ossl_ec_GFp_mont_field_inv,
1511 ossl_ec_GFp_mont_field_encode,
1512 ossl_ec_GFp_mont_field_decode,
1513 ossl_ec_GFp_mont_field_set_to_one,
1514 ossl_ec_key_simple_priv2oct,
1515 ossl_ec_key_simple_oct2priv,
1516 0, /* set private */
1517 ossl_ec_key_simple_generate_key,
1518 ossl_ec_key_simple_check_key,
1519 ossl_ec_key_simple_generate_public_key,
1520 0, /* keycopy */
1521 0, /* keyfinish */
1522 ossl_ecdh_simple_compute_key,
1523 ossl_ecdsa_simple_sign_setup,
1524 ossl_ecdsa_simple_sign_sig,
1525 ossl_ecdsa_simple_verify_sig,
1526 ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
1527 0, /* blind_coordinates */
1528 0, /* ladder_pre */
1529 0, /* ladder_step */
1530 0 /* ladder_post */
1531 };
1532
1533 return &ret;
1534}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette