1 | /*
|
---|
2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include "e_os.h"
|
---|
12 | #include <stdlib.h>
|
---|
13 | #include <openssl/objects.h>
|
---|
14 | #include <openssl/evp.h>
|
---|
15 | #include <openssl/hmac.h>
|
---|
16 | #include <openssl/core_names.h>
|
---|
17 | #include <openssl/ocsp.h>
|
---|
18 | #include <openssl/conf.h>
|
---|
19 | #include <openssl/x509v3.h>
|
---|
20 | #include <openssl/dh.h>
|
---|
21 | #include <openssl/bn.h>
|
---|
22 | #include <openssl/provider.h>
|
---|
23 | #include <openssl/param_build.h>
|
---|
24 | #include "internal/nelem.h"
|
---|
25 | #include "internal/sizes.h"
|
---|
26 | #include "internal/tlsgroups.h"
|
---|
27 | #include "ssl_local.h"
|
---|
28 | #include <openssl/ct.h>
|
---|
29 |
|
---|
30 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
|
---|
31 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
|
---|
32 |
|
---|
33 | SSL3_ENC_METHOD const TLSv1_enc_data = {
|
---|
34 | tls1_enc,
|
---|
35 | tls1_mac,
|
---|
36 | tls1_setup_key_block,
|
---|
37 | tls1_generate_master_secret,
|
---|
38 | tls1_change_cipher_state,
|
---|
39 | tls1_final_finish_mac,
|
---|
40 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
41 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
42 | tls1_alert_code,
|
---|
43 | tls1_export_keying_material,
|
---|
44 | 0,
|
---|
45 | ssl3_set_handshake_header,
|
---|
46 | tls_close_construct_packet,
|
---|
47 | ssl3_handshake_write
|
---|
48 | };
|
---|
49 |
|
---|
50 | SSL3_ENC_METHOD const TLSv1_1_enc_data = {
|
---|
51 | tls1_enc,
|
---|
52 | tls1_mac,
|
---|
53 | tls1_setup_key_block,
|
---|
54 | tls1_generate_master_secret,
|
---|
55 | tls1_change_cipher_state,
|
---|
56 | tls1_final_finish_mac,
|
---|
57 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
58 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
59 | tls1_alert_code,
|
---|
60 | tls1_export_keying_material,
|
---|
61 | SSL_ENC_FLAG_EXPLICIT_IV,
|
---|
62 | ssl3_set_handshake_header,
|
---|
63 | tls_close_construct_packet,
|
---|
64 | ssl3_handshake_write
|
---|
65 | };
|
---|
66 |
|
---|
67 | SSL3_ENC_METHOD const TLSv1_2_enc_data = {
|
---|
68 | tls1_enc,
|
---|
69 | tls1_mac,
|
---|
70 | tls1_setup_key_block,
|
---|
71 | tls1_generate_master_secret,
|
---|
72 | tls1_change_cipher_state,
|
---|
73 | tls1_final_finish_mac,
|
---|
74 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
75 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
76 | tls1_alert_code,
|
---|
77 | tls1_export_keying_material,
|
---|
78 | SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
|
---|
79 | | SSL_ENC_FLAG_TLS1_2_CIPHERS,
|
---|
80 | ssl3_set_handshake_header,
|
---|
81 | tls_close_construct_packet,
|
---|
82 | ssl3_handshake_write
|
---|
83 | };
|
---|
84 |
|
---|
85 | SSL3_ENC_METHOD const TLSv1_3_enc_data = {
|
---|
86 | tls13_enc,
|
---|
87 | tls1_mac,
|
---|
88 | tls13_setup_key_block,
|
---|
89 | tls13_generate_master_secret,
|
---|
90 | tls13_change_cipher_state,
|
---|
91 | tls13_final_finish_mac,
|
---|
92 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
93 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
94 | tls13_alert_code,
|
---|
95 | tls13_export_keying_material,
|
---|
96 | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
|
---|
97 | ssl3_set_handshake_header,
|
---|
98 | tls_close_construct_packet,
|
---|
99 | ssl3_handshake_write
|
---|
100 | };
|
---|
101 |
|
---|
102 | long tls1_default_timeout(void)
|
---|
103 | {
|
---|
104 | /*
|
---|
105 | * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
|
---|
106 | * http, the cache would over fill
|
---|
107 | */
|
---|
108 | return (60 * 60 * 2);
|
---|
109 | }
|
---|
110 |
|
---|
111 | int tls1_new(SSL *s)
|
---|
112 | {
|
---|
113 | if (!ssl3_new(s))
|
---|
114 | return 0;
|
---|
115 | if (!s->method->ssl_clear(s))
|
---|
116 | return 0;
|
---|
117 |
|
---|
118 | return 1;
|
---|
119 | }
|
---|
120 |
|
---|
121 | void tls1_free(SSL *s)
|
---|
122 | {
|
---|
123 | OPENSSL_free(s->ext.session_ticket);
|
---|
124 | ssl3_free(s);
|
---|
125 | }
|
---|
126 |
|
---|
127 | int tls1_clear(SSL *s)
|
---|
128 | {
|
---|
129 | if (!ssl3_clear(s))
|
---|
130 | return 0;
|
---|
131 |
|
---|
132 | if (s->method->version == TLS_ANY_VERSION)
|
---|
133 | s->version = TLS_MAX_VERSION_INTERNAL;
|
---|
134 | else
|
---|
135 | s->version = s->method->version;
|
---|
136 |
|
---|
137 | return 1;
|
---|
138 | }
|
---|
139 |
|
---|
140 | /* Legacy NID to group_id mapping. Only works for groups we know about */
|
---|
141 | static struct {
|
---|
142 | int nid;
|
---|
143 | uint16_t group_id;
|
---|
144 | } nid_to_group[] = {
|
---|
145 | {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
|
---|
146 | {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
|
---|
147 | {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
|
---|
148 | {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
|
---|
149 | {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
|
---|
150 | {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
|
---|
151 | {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
|
---|
152 | {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
|
---|
153 | {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
|
---|
154 | {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
|
---|
155 | {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
|
---|
156 | {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
|
---|
157 | {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
|
---|
158 | {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
|
---|
159 | {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
|
---|
160 | {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
|
---|
161 | {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
|
---|
162 | {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
|
---|
163 | {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
|
---|
164 | {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
|
---|
165 | {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
|
---|
166 | {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
|
---|
167 | {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
|
---|
168 | {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
|
---|
169 | {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
|
---|
170 | {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
|
---|
171 | {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
|
---|
172 | {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
|
---|
173 | {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
|
---|
174 | {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
|
---|
175 | {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
|
---|
176 | {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
|
---|
177 | {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
|
---|
178 | {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
|
---|
179 | {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
|
---|
180 | {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
|
---|
181 | {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
|
---|
182 | {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
|
---|
183 | {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
|
---|
184 | {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
|
---|
185 | {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
|
---|
186 | {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
|
---|
187 | };
|
---|
188 |
|
---|
189 | static const unsigned char ecformats_default[] = {
|
---|
190 | TLSEXT_ECPOINTFORMAT_uncompressed,
|
---|
191 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
|
---|
192 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
|
---|
193 | };
|
---|
194 |
|
---|
195 | /* The default curves */
|
---|
196 | static const uint16_t supported_groups_default[] = {
|
---|
197 | 29, /* X25519 (29) */
|
---|
198 | 23, /* secp256r1 (23) */
|
---|
199 | 30, /* X448 (30) */
|
---|
200 | 25, /* secp521r1 (25) */
|
---|
201 | 24, /* secp384r1 (24) */
|
---|
202 | 34, /* GC256A (34) */
|
---|
203 | 35, /* GC256B (35) */
|
---|
204 | 36, /* GC256C (36) */
|
---|
205 | 37, /* GC256D (37) */
|
---|
206 | 38, /* GC512A (38) */
|
---|
207 | 39, /* GC512B (39) */
|
---|
208 | 40, /* GC512C (40) */
|
---|
209 | 0x100, /* ffdhe2048 (0x100) */
|
---|
210 | 0x101, /* ffdhe3072 (0x101) */
|
---|
211 | 0x102, /* ffdhe4096 (0x102) */
|
---|
212 | 0x103, /* ffdhe6144 (0x103) */
|
---|
213 | 0x104, /* ffdhe8192 (0x104) */
|
---|
214 | };
|
---|
215 |
|
---|
216 | static const uint16_t suiteb_curves[] = {
|
---|
217 | TLSEXT_curve_P_256,
|
---|
218 | TLSEXT_curve_P_384
|
---|
219 | };
|
---|
220 |
|
---|
221 | struct provider_group_data_st {
|
---|
222 | SSL_CTX *ctx;
|
---|
223 | OSSL_PROVIDER *provider;
|
---|
224 | };
|
---|
225 |
|
---|
226 | #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
|
---|
227 | static OSSL_CALLBACK add_provider_groups;
|
---|
228 | static int add_provider_groups(const OSSL_PARAM params[], void *data)
|
---|
229 | {
|
---|
230 | struct provider_group_data_st *pgd = data;
|
---|
231 | SSL_CTX *ctx = pgd->ctx;
|
---|
232 | OSSL_PROVIDER *provider = pgd->provider;
|
---|
233 | const OSSL_PARAM *p;
|
---|
234 | TLS_GROUP_INFO *ginf = NULL;
|
---|
235 | EVP_KEYMGMT *keymgmt;
|
---|
236 | unsigned int gid;
|
---|
237 | unsigned int is_kem = 0;
|
---|
238 | int ret = 0;
|
---|
239 |
|
---|
240 | if (ctx->group_list_max_len == ctx->group_list_len) {
|
---|
241 | TLS_GROUP_INFO *tmp = NULL;
|
---|
242 |
|
---|
243 | if (ctx->group_list_max_len == 0)
|
---|
244 | tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
|
---|
245 | * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
---|
246 | else
|
---|
247 | tmp = OPENSSL_realloc(ctx->group_list,
|
---|
248 | (ctx->group_list_max_len
|
---|
249 | + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
|
---|
250 | * sizeof(TLS_GROUP_INFO));
|
---|
251 | if (tmp == NULL) {
|
---|
252 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
253 | return 0;
|
---|
254 | }
|
---|
255 | ctx->group_list = tmp;
|
---|
256 | memset(tmp + ctx->group_list_max_len,
|
---|
257 | 0,
|
---|
258 | sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
---|
259 | ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
|
---|
260 | }
|
---|
261 |
|
---|
262 | ginf = &ctx->group_list[ctx->group_list_len];
|
---|
263 |
|
---|
264 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
|
---|
265 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
266 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
267 | goto err;
|
---|
268 | }
|
---|
269 | ginf->tlsname = OPENSSL_strdup(p->data);
|
---|
270 | if (ginf->tlsname == NULL) {
|
---|
271 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
272 | goto err;
|
---|
273 | }
|
---|
274 |
|
---|
275 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
|
---|
276 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
277 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
278 | goto err;
|
---|
279 | }
|
---|
280 | ginf->realname = OPENSSL_strdup(p->data);
|
---|
281 | if (ginf->realname == NULL) {
|
---|
282 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
283 | goto err;
|
---|
284 | }
|
---|
285 |
|
---|
286 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
|
---|
287 | if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
|
---|
288 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
289 | goto err;
|
---|
290 | }
|
---|
291 | ginf->group_id = (uint16_t)gid;
|
---|
292 |
|
---|
293 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
|
---|
294 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
295 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
296 | goto err;
|
---|
297 | }
|
---|
298 | ginf->algorithm = OPENSSL_strdup(p->data);
|
---|
299 | if (ginf->algorithm == NULL) {
|
---|
300 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
301 | goto err;
|
---|
302 | }
|
---|
303 |
|
---|
304 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
|
---|
305 | if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
|
---|
306 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
307 | goto err;
|
---|
308 | }
|
---|
309 |
|
---|
310 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
|
---|
311 | if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
|
---|
312 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
313 | goto err;
|
---|
314 | }
|
---|
315 | ginf->is_kem = 1 & is_kem;
|
---|
316 |
|
---|
317 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
|
---|
318 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
|
---|
319 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
320 | goto err;
|
---|
321 | }
|
---|
322 |
|
---|
323 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
|
---|
324 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
|
---|
325 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
326 | goto err;
|
---|
327 | }
|
---|
328 |
|
---|
329 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
|
---|
330 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
|
---|
331 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
332 | goto err;
|
---|
333 | }
|
---|
334 |
|
---|
335 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
|
---|
336 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
|
---|
337 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
338 | goto err;
|
---|
339 | }
|
---|
340 | /*
|
---|
341 | * Now check that the algorithm is actually usable for our property query
|
---|
342 | * string. Regardless of the result we still return success because we have
|
---|
343 | * successfully processed this group, even though we may decide not to use
|
---|
344 | * it.
|
---|
345 | */
|
---|
346 | ret = 1;
|
---|
347 | ERR_set_mark();
|
---|
348 | keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
|
---|
349 | if (keymgmt != NULL) {
|
---|
350 | /*
|
---|
351 | * We have successfully fetched the algorithm - however if the provider
|
---|
352 | * doesn't match this one then we ignore it.
|
---|
353 | *
|
---|
354 | * Note: We're cheating a little here. Technically if the same algorithm
|
---|
355 | * is available from more than one provider then it is undefined which
|
---|
356 | * implementation you will get back. Theoretically this could be
|
---|
357 | * different every time...we assume here that you'll always get the
|
---|
358 | * same one back if you repeat the exact same fetch. Is this a reasonable
|
---|
359 | * assumption to make (in which case perhaps we should document this
|
---|
360 | * behaviour)?
|
---|
361 | */
|
---|
362 | if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
|
---|
363 | /* We have a match - so we will use this group */
|
---|
364 | ctx->group_list_len++;
|
---|
365 | ginf = NULL;
|
---|
366 | }
|
---|
367 | EVP_KEYMGMT_free(keymgmt);
|
---|
368 | }
|
---|
369 | ERR_pop_to_mark();
|
---|
370 | err:
|
---|
371 | if (ginf != NULL) {
|
---|
372 | OPENSSL_free(ginf->tlsname);
|
---|
373 | OPENSSL_free(ginf->realname);
|
---|
374 | OPENSSL_free(ginf->algorithm);
|
---|
375 | ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
|
---|
376 | }
|
---|
377 | return ret;
|
---|
378 | }
|
---|
379 |
|
---|
380 | static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
|
---|
381 | {
|
---|
382 | struct provider_group_data_st pgd;
|
---|
383 |
|
---|
384 | pgd.ctx = vctx;
|
---|
385 | pgd.provider = provider;
|
---|
386 | return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
|
---|
387 | add_provider_groups, &pgd);
|
---|
388 | }
|
---|
389 |
|
---|
390 | int ssl_load_groups(SSL_CTX *ctx)
|
---|
391 | {
|
---|
392 | size_t i, j, num_deflt_grps = 0;
|
---|
393 | uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
|
---|
394 |
|
---|
395 | if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
|
---|
396 | return 0;
|
---|
397 |
|
---|
398 | for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
|
---|
399 | for (j = 0; j < ctx->group_list_len; j++) {
|
---|
400 | if (ctx->group_list[j].group_id == supported_groups_default[i]) {
|
---|
401 | tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
|
---|
402 | break;
|
---|
403 | }
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | if (num_deflt_grps == 0)
|
---|
408 | return 1;
|
---|
409 |
|
---|
410 | ctx->ext.supported_groups_default
|
---|
411 | = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
|
---|
412 |
|
---|
413 | if (ctx->ext.supported_groups_default == NULL) {
|
---|
414 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
415 | return 0;
|
---|
416 | }
|
---|
417 |
|
---|
418 | memcpy(ctx->ext.supported_groups_default,
|
---|
419 | tmp_supp_groups,
|
---|
420 | num_deflt_grps * sizeof(tmp_supp_groups[0]));
|
---|
421 | ctx->ext.supported_groups_default_len = num_deflt_grps;
|
---|
422 |
|
---|
423 | return 1;
|
---|
424 | }
|
---|
425 |
|
---|
426 | static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
|
---|
427 | {
|
---|
428 | size_t i;
|
---|
429 |
|
---|
430 | for (i = 0; i < ctx->group_list_len; i++) {
|
---|
431 | if (strcmp(ctx->group_list[i].tlsname, name) == 0
|
---|
432 | || strcmp(ctx->group_list[i].realname, name) == 0)
|
---|
433 | return ctx->group_list[i].group_id;
|
---|
434 | }
|
---|
435 |
|
---|
436 | return 0;
|
---|
437 | }
|
---|
438 |
|
---|
439 | const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
|
---|
440 | {
|
---|
441 | size_t i;
|
---|
442 |
|
---|
443 | for (i = 0; i < ctx->group_list_len; i++) {
|
---|
444 | if (ctx->group_list[i].group_id == group_id)
|
---|
445 | return &ctx->group_list[i];
|
---|
446 | }
|
---|
447 |
|
---|
448 | return NULL;
|
---|
449 | }
|
---|
450 |
|
---|
451 | int tls1_group_id2nid(uint16_t group_id, int include_unknown)
|
---|
452 | {
|
---|
453 | size_t i;
|
---|
454 |
|
---|
455 | if (group_id == 0)
|
---|
456 | return NID_undef;
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * Return well known Group NIDs - for backwards compatibility. This won't
|
---|
460 | * work for groups we don't know about.
|
---|
461 | */
|
---|
462 | for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
---|
463 | {
|
---|
464 | if (nid_to_group[i].group_id == group_id)
|
---|
465 | return nid_to_group[i].nid;
|
---|
466 | }
|
---|
467 | if (!include_unknown)
|
---|
468 | return NID_undef;
|
---|
469 | return TLSEXT_nid_unknown | (int)group_id;
|
---|
470 | }
|
---|
471 |
|
---|
472 | uint16_t tls1_nid2group_id(int nid)
|
---|
473 | {
|
---|
474 | size_t i;
|
---|
475 |
|
---|
476 | /*
|
---|
477 | * Return well known Group ids - for backwards compatibility. This won't
|
---|
478 | * work for groups we don't know about.
|
---|
479 | */
|
---|
480 | for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
---|
481 | {
|
---|
482 | if (nid_to_group[i].nid == nid)
|
---|
483 | return nid_to_group[i].group_id;
|
---|
484 | }
|
---|
485 |
|
---|
486 | return 0;
|
---|
487 | }
|
---|
488 |
|
---|
489 | /*
|
---|
490 | * Set *pgroups to the supported groups list and *pgroupslen to
|
---|
491 | * the number of groups supported.
|
---|
492 | */
|
---|
493 | void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
|
---|
494 | size_t *pgroupslen)
|
---|
495 | {
|
---|
496 | /* For Suite B mode only include P-256, P-384 */
|
---|
497 | switch (tls1_suiteb(s)) {
|
---|
498 | case SSL_CERT_FLAG_SUITEB_128_LOS:
|
---|
499 | *pgroups = suiteb_curves;
|
---|
500 | *pgroupslen = OSSL_NELEM(suiteb_curves);
|
---|
501 | break;
|
---|
502 |
|
---|
503 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
---|
504 | *pgroups = suiteb_curves;
|
---|
505 | *pgroupslen = 1;
|
---|
506 | break;
|
---|
507 |
|
---|
508 | case SSL_CERT_FLAG_SUITEB_192_LOS:
|
---|
509 | *pgroups = suiteb_curves + 1;
|
---|
510 | *pgroupslen = 1;
|
---|
511 | break;
|
---|
512 |
|
---|
513 | default:
|
---|
514 | if (s->ext.supportedgroups == NULL) {
|
---|
515 | *pgroups = s->ctx->ext.supported_groups_default;
|
---|
516 | *pgroupslen = s->ctx->ext.supported_groups_default_len;
|
---|
517 | } else {
|
---|
518 | *pgroups = s->ext.supportedgroups;
|
---|
519 | *pgroupslen = s->ext.supportedgroups_len;
|
---|
520 | }
|
---|
521 | break;
|
---|
522 | }
|
---|
523 | }
|
---|
524 |
|
---|
525 | int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
|
---|
526 | int isec, int *okfortls13)
|
---|
527 | {
|
---|
528 | const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
|
---|
529 | int ret;
|
---|
530 |
|
---|
531 | if (okfortls13 != NULL)
|
---|
532 | *okfortls13 = 0;
|
---|
533 |
|
---|
534 | if (ginfo == NULL)
|
---|
535 | return 0;
|
---|
536 |
|
---|
537 | if (SSL_IS_DTLS(s)) {
|
---|
538 | if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
|
---|
539 | return 0;
|
---|
540 | if (ginfo->maxdtls == 0)
|
---|
541 | ret = 1;
|
---|
542 | else
|
---|
543 | ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
|
---|
544 | if (ginfo->mindtls > 0)
|
---|
545 | ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
|
---|
546 | } else {
|
---|
547 | if (ginfo->mintls < 0 || ginfo->maxtls < 0)
|
---|
548 | return 0;
|
---|
549 | if (ginfo->maxtls == 0)
|
---|
550 | ret = 1;
|
---|
551 | else
|
---|
552 | ret = (minversion <= ginfo->maxtls);
|
---|
553 | if (ginfo->mintls > 0)
|
---|
554 | ret &= (maxversion >= ginfo->mintls);
|
---|
555 | if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
|
---|
556 | *okfortls13 = (ginfo->maxtls == 0)
|
---|
557 | || (ginfo->maxtls >= TLS1_3_VERSION);
|
---|
558 | }
|
---|
559 | ret &= !isec
|
---|
560 | || strcmp(ginfo->algorithm, "EC") == 0
|
---|
561 | || strcmp(ginfo->algorithm, "X25519") == 0
|
---|
562 | || strcmp(ginfo->algorithm, "X448") == 0;
|
---|
563 |
|
---|
564 | return ret;
|
---|
565 | }
|
---|
566 |
|
---|
567 | /* See if group is allowed by security callback */
|
---|
568 | int tls_group_allowed(SSL *s, uint16_t group, int op)
|
---|
569 | {
|
---|
570 | const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
|
---|
571 | unsigned char gtmp[2];
|
---|
572 |
|
---|
573 | if (ginfo == NULL)
|
---|
574 | return 0;
|
---|
575 |
|
---|
576 | gtmp[0] = group >> 8;
|
---|
577 | gtmp[1] = group & 0xff;
|
---|
578 | return ssl_security(s, op, ginfo->secbits,
|
---|
579 | tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
|
---|
580 | }
|
---|
581 |
|
---|
582 | /* Return 1 if "id" is in "list" */
|
---|
583 | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
|
---|
584 | {
|
---|
585 | size_t i;
|
---|
586 | for (i = 0; i < listlen; i++)
|
---|
587 | if (list[i] == id)
|
---|
588 | return 1;
|
---|
589 | return 0;
|
---|
590 | }
|
---|
591 |
|
---|
592 | /*-
|
---|
593 | * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
|
---|
594 | * if there is no match.
|
---|
595 | * For nmatch == -1, return number of matches
|
---|
596 | * For nmatch == -2, return the id of the group to use for
|
---|
597 | * a tmp key, or 0 if there is no match.
|
---|
598 | */
|
---|
599 | uint16_t tls1_shared_group(SSL *s, int nmatch)
|
---|
600 | {
|
---|
601 | const uint16_t *pref, *supp;
|
---|
602 | size_t num_pref, num_supp, i;
|
---|
603 | int k;
|
---|
604 |
|
---|
605 | /* Can't do anything on client side */
|
---|
606 | if (s->server == 0)
|
---|
607 | return 0;
|
---|
608 | if (nmatch == -2) {
|
---|
609 | if (tls1_suiteb(s)) {
|
---|
610 | /*
|
---|
611 | * For Suite B ciphersuite determines curve: we already know
|
---|
612 | * these are acceptable due to previous checks.
|
---|
613 | */
|
---|
614 | unsigned long cid = s->s3.tmp.new_cipher->id;
|
---|
615 |
|
---|
616 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
---|
617 | return TLSEXT_curve_P_256;
|
---|
618 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
---|
619 | return TLSEXT_curve_P_384;
|
---|
620 | /* Should never happen */
|
---|
621 | return 0;
|
---|
622 | }
|
---|
623 | /* If not Suite B just return first preference shared curve */
|
---|
624 | nmatch = 0;
|
---|
625 | }
|
---|
626 | /*
|
---|
627 | * If server preference set, our groups are the preference order
|
---|
628 | * otherwise peer decides.
|
---|
629 | */
|
---|
630 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
|
---|
631 | tls1_get_supported_groups(s, &pref, &num_pref);
|
---|
632 | tls1_get_peer_groups(s, &supp, &num_supp);
|
---|
633 | } else {
|
---|
634 | tls1_get_peer_groups(s, &pref, &num_pref);
|
---|
635 | tls1_get_supported_groups(s, &supp, &num_supp);
|
---|
636 | }
|
---|
637 |
|
---|
638 | for (k = 0, i = 0; i < num_pref; i++) {
|
---|
639 | uint16_t id = pref[i];
|
---|
640 |
|
---|
641 | if (!tls1_in_list(id, supp, num_supp)
|
---|
642 | || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
|
---|
643 | continue;
|
---|
644 | if (nmatch == k)
|
---|
645 | return id;
|
---|
646 | k++;
|
---|
647 | }
|
---|
648 | if (nmatch == -1)
|
---|
649 | return k;
|
---|
650 | /* Out of range (nmatch > k). */
|
---|
651 | return 0;
|
---|
652 | }
|
---|
653 |
|
---|
654 | int tls1_set_groups(uint16_t **pext, size_t *pextlen,
|
---|
655 | int *groups, size_t ngroups)
|
---|
656 | {
|
---|
657 | uint16_t *glist;
|
---|
658 | size_t i;
|
---|
659 | /*
|
---|
660 | * Bitmap of groups included to detect duplicates: two variables are added
|
---|
661 | * to detect duplicates as some values are more than 32.
|
---|
662 | */
|
---|
663 | unsigned long *dup_list = NULL;
|
---|
664 | unsigned long dup_list_egrp = 0;
|
---|
665 | unsigned long dup_list_dhgrp = 0;
|
---|
666 |
|
---|
667 | if (ngroups == 0) {
|
---|
668 | ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
|
---|
669 | return 0;
|
---|
670 | }
|
---|
671 | if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
|
---|
672 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
673 | return 0;
|
---|
674 | }
|
---|
675 | for (i = 0; i < ngroups; i++) {
|
---|
676 | unsigned long idmask;
|
---|
677 | uint16_t id;
|
---|
678 | id = tls1_nid2group_id(groups[i]);
|
---|
679 | if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
|
---|
680 | goto err;
|
---|
681 | idmask = 1L << (id & 0x00FF);
|
---|
682 | dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
|
---|
683 | if (!id || ((*dup_list) & idmask))
|
---|
684 | goto err;
|
---|
685 | *dup_list |= idmask;
|
---|
686 | glist[i] = id;
|
---|
687 | }
|
---|
688 | OPENSSL_free(*pext);
|
---|
689 | *pext = glist;
|
---|
690 | *pextlen = ngroups;
|
---|
691 | return 1;
|
---|
692 | err:
|
---|
693 | OPENSSL_free(glist);
|
---|
694 | return 0;
|
---|
695 | }
|
---|
696 |
|
---|
697 | # define GROUPLIST_INCREMENT 40
|
---|
698 | # define GROUP_NAME_BUFFER_LENGTH 64
|
---|
699 | typedef struct {
|
---|
700 | SSL_CTX *ctx;
|
---|
701 | size_t gidcnt;
|
---|
702 | size_t gidmax;
|
---|
703 | uint16_t *gid_arr;
|
---|
704 | } gid_cb_st;
|
---|
705 |
|
---|
706 | static int gid_cb(const char *elem, int len, void *arg)
|
---|
707 | {
|
---|
708 | gid_cb_st *garg = arg;
|
---|
709 | size_t i;
|
---|
710 | uint16_t gid = 0;
|
---|
711 | char etmp[GROUP_NAME_BUFFER_LENGTH];
|
---|
712 |
|
---|
713 | if (elem == NULL)
|
---|
714 | return 0;
|
---|
715 | if (garg->gidcnt == garg->gidmax) {
|
---|
716 | uint16_t *tmp =
|
---|
717 | OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
|
---|
718 | if (tmp == NULL)
|
---|
719 | return 0;
|
---|
720 | garg->gidmax += GROUPLIST_INCREMENT;
|
---|
721 | garg->gid_arr = tmp;
|
---|
722 | }
|
---|
723 | if (len > (int)(sizeof(etmp) - 1))
|
---|
724 | return 0;
|
---|
725 | memcpy(etmp, elem, len);
|
---|
726 | etmp[len] = 0;
|
---|
727 |
|
---|
728 | gid = tls1_group_name2id(garg->ctx, etmp);
|
---|
729 | if (gid == 0) {
|
---|
730 | ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
|
---|
731 | "group '%s' cannot be set", etmp);
|
---|
732 | return 0;
|
---|
733 | }
|
---|
734 | for (i = 0; i < garg->gidcnt; i++)
|
---|
735 | if (garg->gid_arr[i] == gid)
|
---|
736 | return 0;
|
---|
737 | garg->gid_arr[garg->gidcnt++] = gid;
|
---|
738 | return 1;
|
---|
739 | }
|
---|
740 |
|
---|
741 | /* Set groups based on a colon separated list */
|
---|
742 | int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
|
---|
743 | const char *str)
|
---|
744 | {
|
---|
745 | gid_cb_st gcb;
|
---|
746 | uint16_t *tmparr;
|
---|
747 | int ret = 0;
|
---|
748 |
|
---|
749 | gcb.gidcnt = 0;
|
---|
750 | gcb.gidmax = GROUPLIST_INCREMENT;
|
---|
751 | gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
|
---|
752 | if (gcb.gid_arr == NULL)
|
---|
753 | return 0;
|
---|
754 | gcb.ctx = ctx;
|
---|
755 | if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
|
---|
756 | goto end;
|
---|
757 | if (pext == NULL) {
|
---|
758 | ret = 1;
|
---|
759 | goto end;
|
---|
760 | }
|
---|
761 |
|
---|
762 | /*
|
---|
763 | * gid_cb ensurse there are no duplicates so we can just go ahead and set
|
---|
764 | * the result
|
---|
765 | */
|
---|
766 | tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
|
---|
767 | if (tmparr == NULL)
|
---|
768 | goto end;
|
---|
769 | *pext = tmparr;
|
---|
770 | *pextlen = gcb.gidcnt;
|
---|
771 | ret = 1;
|
---|
772 | end:
|
---|
773 | OPENSSL_free(gcb.gid_arr);
|
---|
774 | return ret;
|
---|
775 | }
|
---|
776 |
|
---|
777 | /* Check a group id matches preferences */
|
---|
778 | int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
|
---|
779 | {
|
---|
780 | const uint16_t *groups;
|
---|
781 | size_t groups_len;
|
---|
782 |
|
---|
783 | if (group_id == 0)
|
---|
784 | return 0;
|
---|
785 |
|
---|
786 | /* Check for Suite B compliance */
|
---|
787 | if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
|
---|
788 | unsigned long cid = s->s3.tmp.new_cipher->id;
|
---|
789 |
|
---|
790 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
|
---|
791 | if (group_id != TLSEXT_curve_P_256)
|
---|
792 | return 0;
|
---|
793 | } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
|
---|
794 | if (group_id != TLSEXT_curve_P_384)
|
---|
795 | return 0;
|
---|
796 | } else {
|
---|
797 | /* Should never happen */
|
---|
798 | return 0;
|
---|
799 | }
|
---|
800 | }
|
---|
801 |
|
---|
802 | if (check_own_groups) {
|
---|
803 | /* Check group is one of our preferences */
|
---|
804 | tls1_get_supported_groups(s, &groups, &groups_len);
|
---|
805 | if (!tls1_in_list(group_id, groups, groups_len))
|
---|
806 | return 0;
|
---|
807 | }
|
---|
808 |
|
---|
809 | if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
|
---|
810 | return 0;
|
---|
811 |
|
---|
812 | /* For clients, nothing more to check */
|
---|
813 | if (!s->server)
|
---|
814 | return 1;
|
---|
815 |
|
---|
816 | /* Check group is one of peers preferences */
|
---|
817 | tls1_get_peer_groups(s, &groups, &groups_len);
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * RFC 4492 does not require the supported elliptic curves extension
|
---|
821 | * so if it is not sent we can just choose any curve.
|
---|
822 | * It is invalid to send an empty list in the supported groups
|
---|
823 | * extension, so groups_len == 0 always means no extension.
|
---|
824 | */
|
---|
825 | if (groups_len == 0)
|
---|
826 | return 1;
|
---|
827 | return tls1_in_list(group_id, groups, groups_len);
|
---|
828 | }
|
---|
829 |
|
---|
830 | void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
|
---|
831 | size_t *num_formats)
|
---|
832 | {
|
---|
833 | /*
|
---|
834 | * If we have a custom point format list use it otherwise use default
|
---|
835 | */
|
---|
836 | if (s->ext.ecpointformats) {
|
---|
837 | *pformats = s->ext.ecpointformats;
|
---|
838 | *num_formats = s->ext.ecpointformats_len;
|
---|
839 | } else {
|
---|
840 | *pformats = ecformats_default;
|
---|
841 | /* For Suite B we don't support char2 fields */
|
---|
842 | if (tls1_suiteb(s))
|
---|
843 | *num_formats = sizeof(ecformats_default) - 1;
|
---|
844 | else
|
---|
845 | *num_formats = sizeof(ecformats_default);
|
---|
846 | }
|
---|
847 | }
|
---|
848 |
|
---|
849 | /* Check a key is compatible with compression extension */
|
---|
850 | static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
|
---|
851 | {
|
---|
852 | unsigned char comp_id;
|
---|
853 | size_t i;
|
---|
854 | int point_conv;
|
---|
855 |
|
---|
856 | /* If not an EC key nothing to check */
|
---|
857 | if (!EVP_PKEY_is_a(pkey, "EC"))
|
---|
858 | return 1;
|
---|
859 |
|
---|
860 |
|
---|
861 | /* Get required compression id */
|
---|
862 | point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
|
---|
863 | if (point_conv == 0)
|
---|
864 | return 0;
|
---|
865 | if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
|
---|
866 | comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
|
---|
867 | } else if (SSL_IS_TLS13(s)) {
|
---|
868 | /*
|
---|
869 | * ec_point_formats extension is not used in TLSv1.3 so we ignore
|
---|
870 | * this check.
|
---|
871 | */
|
---|
872 | return 1;
|
---|
873 | } else {
|
---|
874 | int field_type = EVP_PKEY_get_field_type(pkey);
|
---|
875 |
|
---|
876 | if (field_type == NID_X9_62_prime_field)
|
---|
877 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
|
---|
878 | else if (field_type == NID_X9_62_characteristic_two_field)
|
---|
879 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
|
---|
880 | else
|
---|
881 | return 0;
|
---|
882 | }
|
---|
883 | /*
|
---|
884 | * If point formats extension present check it, otherwise everything is
|
---|
885 | * supported (see RFC4492).
|
---|
886 | */
|
---|
887 | if (s->ext.peer_ecpointformats == NULL)
|
---|
888 | return 1;
|
---|
889 |
|
---|
890 | for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
|
---|
891 | if (s->ext.peer_ecpointformats[i] == comp_id)
|
---|
892 | return 1;
|
---|
893 | }
|
---|
894 | return 0;
|
---|
895 | }
|
---|
896 |
|
---|
897 | /* Return group id of a key */
|
---|
898 | static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
|
---|
899 | {
|
---|
900 | int curve_nid = ssl_get_EC_curve_nid(pkey);
|
---|
901 |
|
---|
902 | if (curve_nid == NID_undef)
|
---|
903 | return 0;
|
---|
904 | return tls1_nid2group_id(curve_nid);
|
---|
905 | }
|
---|
906 |
|
---|
907 | /*
|
---|
908 | * Check cert parameters compatible with extensions: currently just checks EC
|
---|
909 | * certificates have compatible curves and compression.
|
---|
910 | */
|
---|
911 | static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
|
---|
912 | {
|
---|
913 | uint16_t group_id;
|
---|
914 | EVP_PKEY *pkey;
|
---|
915 | pkey = X509_get0_pubkey(x);
|
---|
916 | if (pkey == NULL)
|
---|
917 | return 0;
|
---|
918 | /* If not EC nothing to do */
|
---|
919 | if (!EVP_PKEY_is_a(pkey, "EC"))
|
---|
920 | return 1;
|
---|
921 | /* Check compression */
|
---|
922 | if (!tls1_check_pkey_comp(s, pkey))
|
---|
923 | return 0;
|
---|
924 | group_id = tls1_get_group_id(pkey);
|
---|
925 | /*
|
---|
926 | * For a server we allow the certificate to not be in our list of supported
|
---|
927 | * groups.
|
---|
928 | */
|
---|
929 | if (!tls1_check_group_id(s, group_id, !s->server))
|
---|
930 | return 0;
|
---|
931 | /*
|
---|
932 | * Special case for suite B. We *MUST* sign using SHA256+P-256 or
|
---|
933 | * SHA384+P-384.
|
---|
934 | */
|
---|
935 | if (check_ee_md && tls1_suiteb(s)) {
|
---|
936 | int check_md;
|
---|
937 | size_t i;
|
---|
938 |
|
---|
939 | /* Check to see we have necessary signing algorithm */
|
---|
940 | if (group_id == TLSEXT_curve_P_256)
|
---|
941 | check_md = NID_ecdsa_with_SHA256;
|
---|
942 | else if (group_id == TLSEXT_curve_P_384)
|
---|
943 | check_md = NID_ecdsa_with_SHA384;
|
---|
944 | else
|
---|
945 | return 0; /* Should never happen */
|
---|
946 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
947 | if (check_md == s->shared_sigalgs[i]->sigandhash)
|
---|
948 | return 1;;
|
---|
949 | }
|
---|
950 | return 0;
|
---|
951 | }
|
---|
952 | return 1;
|
---|
953 | }
|
---|
954 |
|
---|
955 | /*
|
---|
956 | * tls1_check_ec_tmp_key - Check EC temporary key compatibility
|
---|
957 | * @s: SSL connection
|
---|
958 | * @cid: Cipher ID we're considering using
|
---|
959 | *
|
---|
960 | * Checks that the kECDHE cipher suite we're considering using
|
---|
961 | * is compatible with the client extensions.
|
---|
962 | *
|
---|
963 | * Returns 0 when the cipher can't be used or 1 when it can.
|
---|
964 | */
|
---|
965 | int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
|
---|
966 | {
|
---|
967 | /* If not Suite B just need a shared group */
|
---|
968 | if (!tls1_suiteb(s))
|
---|
969 | return tls1_shared_group(s, 0) != 0;
|
---|
970 | /*
|
---|
971 | * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
|
---|
972 | * curves permitted.
|
---|
973 | */
|
---|
974 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
---|
975 | return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
|
---|
976 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
---|
977 | return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
|
---|
978 |
|
---|
979 | return 0;
|
---|
980 | }
|
---|
981 |
|
---|
982 | /* Default sigalg schemes */
|
---|
983 | static const uint16_t tls12_sigalgs[] = {
|
---|
984 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
985 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
---|
986 | TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
---|
987 | TLSEXT_SIGALG_ed25519,
|
---|
988 | TLSEXT_SIGALG_ed448,
|
---|
989 |
|
---|
990 | TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
---|
991 | TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
---|
992 | TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
---|
993 | TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
---|
994 | TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
---|
995 | TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
---|
996 |
|
---|
997 | TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
---|
998 | TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
---|
999 | TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
---|
1000 |
|
---|
1001 | TLSEXT_SIGALG_ecdsa_sha224,
|
---|
1002 | TLSEXT_SIGALG_ecdsa_sha1,
|
---|
1003 |
|
---|
1004 | TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
---|
1005 | TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
---|
1006 |
|
---|
1007 | TLSEXT_SIGALG_dsa_sha224,
|
---|
1008 | TLSEXT_SIGALG_dsa_sha1,
|
---|
1009 |
|
---|
1010 | TLSEXT_SIGALG_dsa_sha256,
|
---|
1011 | TLSEXT_SIGALG_dsa_sha384,
|
---|
1012 | TLSEXT_SIGALG_dsa_sha512,
|
---|
1013 |
|
---|
1014 | #ifndef OPENSSL_NO_GOST
|
---|
1015 | TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
---|
1016 | TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
---|
1017 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
---|
1018 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
---|
1019 | TLSEXT_SIGALG_gostr34102001_gostr3411,
|
---|
1020 | #endif
|
---|
1021 | };
|
---|
1022 |
|
---|
1023 |
|
---|
1024 | static const uint16_t suiteb_sigalgs[] = {
|
---|
1025 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
1026 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384
|
---|
1027 | };
|
---|
1028 |
|
---|
1029 | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
|
---|
1030 | {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
1031 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1032 | NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
|
---|
1033 | {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
---|
1034 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1035 | NID_ecdsa_with_SHA384, NID_secp384r1, 1},
|
---|
1036 | {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
---|
1037 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1038 | NID_ecdsa_with_SHA512, NID_secp521r1, 1},
|
---|
1039 | {"ed25519", TLSEXT_SIGALG_ed25519,
|
---|
1040 | NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
|
---|
1041 | NID_undef, NID_undef, 1},
|
---|
1042 | {"ed448", TLSEXT_SIGALG_ed448,
|
---|
1043 | NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
|
---|
1044 | NID_undef, NID_undef, 1},
|
---|
1045 | {NULL, TLSEXT_SIGALG_ecdsa_sha224,
|
---|
1046 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1047 | NID_ecdsa_with_SHA224, NID_undef, 1},
|
---|
1048 | {NULL, TLSEXT_SIGALG_ecdsa_sha1,
|
---|
1049 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1050 | NID_ecdsa_with_SHA1, NID_undef, 1},
|
---|
1051 | {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
---|
1052 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1053 | NID_undef, NID_undef, 1},
|
---|
1054 | {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
---|
1055 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1056 | NID_undef, NID_undef, 1},
|
---|
1057 | {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
---|
1058 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1059 | NID_undef, NID_undef, 1},
|
---|
1060 | {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
---|
1061 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1062 | NID_undef, NID_undef, 1},
|
---|
1063 | {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
---|
1064 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1065 | NID_undef, NID_undef, 1},
|
---|
1066 | {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
---|
1067 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1068 | NID_undef, NID_undef, 1},
|
---|
1069 | {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
---|
1070 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1071 | NID_sha256WithRSAEncryption, NID_undef, 1},
|
---|
1072 | {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
---|
1073 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1074 | NID_sha384WithRSAEncryption, NID_undef, 1},
|
---|
1075 | {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
---|
1076 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1077 | NID_sha512WithRSAEncryption, NID_undef, 1},
|
---|
1078 | {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
---|
1079 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1080 | NID_sha224WithRSAEncryption, NID_undef, 1},
|
---|
1081 | {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
---|
1082 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1083 | NID_sha1WithRSAEncryption, NID_undef, 1},
|
---|
1084 | {NULL, TLSEXT_SIGALG_dsa_sha256,
|
---|
1085 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1086 | NID_dsa_with_SHA256, NID_undef, 1},
|
---|
1087 | {NULL, TLSEXT_SIGALG_dsa_sha384,
|
---|
1088 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1089 | NID_undef, NID_undef, 1},
|
---|
1090 | {NULL, TLSEXT_SIGALG_dsa_sha512,
|
---|
1091 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1092 | NID_undef, NID_undef, 1},
|
---|
1093 | {NULL, TLSEXT_SIGALG_dsa_sha224,
|
---|
1094 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1095 | NID_undef, NID_undef, 1},
|
---|
1096 | {NULL, TLSEXT_SIGALG_dsa_sha1,
|
---|
1097 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1098 | NID_dsaWithSHA1, NID_undef, 1},
|
---|
1099 | #ifndef OPENSSL_NO_GOST
|
---|
1100 | {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
---|
1101 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
---|
1102 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
---|
1103 | NID_undef, NID_undef, 1},
|
---|
1104 | {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
---|
1105 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
---|
1106 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
---|
1107 | NID_undef, NID_undef, 1},
|
---|
1108 | {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
---|
1109 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
---|
1110 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
---|
1111 | NID_undef, NID_undef, 1},
|
---|
1112 | {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
---|
1113 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
---|
1114 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
---|
1115 | NID_undef, NID_undef, 1},
|
---|
1116 | {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
|
---|
1117 | NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
|
---|
1118 | NID_id_GostR3410_2001, SSL_PKEY_GOST01,
|
---|
1119 | NID_undef, NID_undef, 1}
|
---|
1120 | #endif
|
---|
1121 | };
|
---|
1122 | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
|
---|
1123 | static const SIGALG_LOOKUP legacy_rsa_sigalg = {
|
---|
1124 | "rsa_pkcs1_md5_sha1", 0,
|
---|
1125 | NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
|
---|
1126 | EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1127 | NID_undef, NID_undef, 1
|
---|
1128 | };
|
---|
1129 |
|
---|
1130 | /*
|
---|
1131 | * Default signature algorithm values used if signature algorithms not present.
|
---|
1132 | * From RFC5246. Note: order must match certificate index order.
|
---|
1133 | */
|
---|
1134 | static const uint16_t tls_default_sigalg[] = {
|
---|
1135 | TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
|
---|
1136 | 0, /* SSL_PKEY_RSA_PSS_SIGN */
|
---|
1137 | TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
|
---|
1138 | TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
|
---|
1139 | TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
|
---|
1140 | TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
|
---|
1141 | TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
|
---|
1142 | 0, /* SSL_PKEY_ED25519 */
|
---|
1143 | 0, /* SSL_PKEY_ED448 */
|
---|
1144 | };
|
---|
1145 |
|
---|
1146 | int ssl_setup_sig_algs(SSL_CTX *ctx)
|
---|
1147 | {
|
---|
1148 | size_t i;
|
---|
1149 | const SIGALG_LOOKUP *lu;
|
---|
1150 | SIGALG_LOOKUP *cache
|
---|
1151 | = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
|
---|
1152 | EVP_PKEY *tmpkey = EVP_PKEY_new();
|
---|
1153 | int ret = 0;
|
---|
1154 |
|
---|
1155 | if (cache == NULL || tmpkey == NULL)
|
---|
1156 | goto err;
|
---|
1157 |
|
---|
1158 | ERR_set_mark();
|
---|
1159 | for (i = 0, lu = sigalg_lookup_tbl;
|
---|
1160 | i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
|
---|
1161 | EVP_PKEY_CTX *pctx;
|
---|
1162 |
|
---|
1163 | cache[i] = *lu;
|
---|
1164 |
|
---|
1165 | /*
|
---|
1166 | * Check hash is available.
|
---|
1167 | * This test is not perfect. A provider could have support
|
---|
1168 | * for a signature scheme, but not a particular hash. However the hash
|
---|
1169 | * could be available from some other loaded provider. In that case it
|
---|
1170 | * could be that the signature is available, and the hash is available
|
---|
1171 | * independently - but not as a combination. We ignore this for now.
|
---|
1172 | */
|
---|
1173 | if (lu->hash != NID_undef
|
---|
1174 | && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
|
---|
1175 | cache[i].enabled = 0;
|
---|
1176 | continue;
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
|
---|
1180 | cache[i].enabled = 0;
|
---|
1181 | continue;
|
---|
1182 | }
|
---|
1183 | pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
|
---|
1184 | /* If unable to create pctx we assume the sig algorithm is unavailable */
|
---|
1185 | if (pctx == NULL)
|
---|
1186 | cache[i].enabled = 0;
|
---|
1187 | EVP_PKEY_CTX_free(pctx);
|
---|
1188 | }
|
---|
1189 | ERR_pop_to_mark();
|
---|
1190 | ctx->sigalg_lookup_cache = cache;
|
---|
1191 | cache = NULL;
|
---|
1192 |
|
---|
1193 | ret = 1;
|
---|
1194 | err:
|
---|
1195 | OPENSSL_free(cache);
|
---|
1196 | EVP_PKEY_free(tmpkey);
|
---|
1197 | return ret;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | /* Lookup TLS signature algorithm */
|
---|
1201 | static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
|
---|
1202 | {
|
---|
1203 | size_t i;
|
---|
1204 | const SIGALG_LOOKUP *lu;
|
---|
1205 |
|
---|
1206 | for (i = 0, lu = s->ctx->sigalg_lookup_cache;
|
---|
1207 | /* cache should have the same number of elements as sigalg_lookup_tbl */
|
---|
1208 | i < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
1209 | lu++, i++) {
|
---|
1210 | if (lu->sigalg == sigalg) {
|
---|
1211 | if (!lu->enabled)
|
---|
1212 | return NULL;
|
---|
1213 | return lu;
|
---|
1214 | }
|
---|
1215 | }
|
---|
1216 | return NULL;
|
---|
1217 | }
|
---|
1218 | /* Lookup hash: return 0 if invalid or not enabled */
|
---|
1219 | int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
|
---|
1220 | {
|
---|
1221 | const EVP_MD *md;
|
---|
1222 | if (lu == NULL)
|
---|
1223 | return 0;
|
---|
1224 | /* lu->hash == NID_undef means no associated digest */
|
---|
1225 | if (lu->hash == NID_undef) {
|
---|
1226 | md = NULL;
|
---|
1227 | } else {
|
---|
1228 | md = ssl_md(ctx, lu->hash_idx);
|
---|
1229 | if (md == NULL)
|
---|
1230 | return 0;
|
---|
1231 | }
|
---|
1232 | if (pmd)
|
---|
1233 | *pmd = md;
|
---|
1234 | return 1;
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | /*
|
---|
1238 | * Check if key is large enough to generate RSA-PSS signature.
|
---|
1239 | *
|
---|
1240 | * The key must greater than or equal to 2 * hash length + 2.
|
---|
1241 | * SHA512 has a hash length of 64 bytes, which is incompatible
|
---|
1242 | * with a 128 byte (1024 bit) key.
|
---|
1243 | */
|
---|
1244 | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
|
---|
1245 | static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
|
---|
1246 | const SIGALG_LOOKUP *lu)
|
---|
1247 | {
|
---|
1248 | const EVP_MD *md;
|
---|
1249 |
|
---|
1250 | if (pkey == NULL)
|
---|
1251 | return 0;
|
---|
1252 | if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
|
---|
1253 | return 0;
|
---|
1254 | if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
|
---|
1255 | return 0;
|
---|
1256 | return 1;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | /*
|
---|
1260 | * Returns a signature algorithm when the peer did not send a list of supported
|
---|
1261 | * signature algorithms. The signature algorithm is fixed for the certificate
|
---|
1262 | * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
|
---|
1263 | * certificate type from |s| will be used.
|
---|
1264 | * Returns the signature algorithm to use, or NULL on error.
|
---|
1265 | */
|
---|
1266 | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
|
---|
1267 | {
|
---|
1268 | if (idx == -1) {
|
---|
1269 | if (s->server) {
|
---|
1270 | size_t i;
|
---|
1271 |
|
---|
1272 | /* Work out index corresponding to ciphersuite */
|
---|
1273 | for (i = 0; i < SSL_PKEY_NUM; i++) {
|
---|
1274 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
|
---|
1275 |
|
---|
1276 | if (clu == NULL)
|
---|
1277 | continue;
|
---|
1278 | if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
|
---|
1279 | idx = i;
|
---|
1280 | break;
|
---|
1281 | }
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | /*
|
---|
1285 | * Some GOST ciphersuites allow more than one signature algorithms
|
---|
1286 | * */
|
---|
1287 | if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
|
---|
1288 | int real_idx;
|
---|
1289 |
|
---|
1290 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
|
---|
1291 | real_idx--) {
|
---|
1292 | if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
---|
1293 | idx = real_idx;
|
---|
1294 | break;
|
---|
1295 | }
|
---|
1296 | }
|
---|
1297 | }
|
---|
1298 | /*
|
---|
1299 | * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
|
---|
1300 | * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
|
---|
1301 | */
|
---|
1302 | else if (idx == SSL_PKEY_GOST12_256) {
|
---|
1303 | int real_idx;
|
---|
1304 |
|
---|
1305 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
|
---|
1306 | real_idx--) {
|
---|
1307 | if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
---|
1308 | idx = real_idx;
|
---|
1309 | break;
|
---|
1310 | }
|
---|
1311 | }
|
---|
1312 | }
|
---|
1313 | } else {
|
---|
1314 | idx = s->cert->key - s->cert->pkeys;
|
---|
1315 | }
|
---|
1316 | }
|
---|
1317 | if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
|
---|
1318 | return NULL;
|
---|
1319 | if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
|
---|
1320 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
|
---|
1321 |
|
---|
1322 | if (lu == NULL)
|
---|
1323 | return NULL;
|
---|
1324 | if (!tls1_lookup_md(s->ctx, lu, NULL))
|
---|
1325 | return NULL;
|
---|
1326 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
---|
1327 | return NULL;
|
---|
1328 | return lu;
|
---|
1329 | }
|
---|
1330 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
|
---|
1331 | return NULL;
|
---|
1332 | return &legacy_rsa_sigalg;
|
---|
1333 | }
|
---|
1334 | /* Set peer sigalg based key type */
|
---|
1335 | int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
|
---|
1336 | {
|
---|
1337 | size_t idx;
|
---|
1338 | const SIGALG_LOOKUP *lu;
|
---|
1339 |
|
---|
1340 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
|
---|
1341 | return 0;
|
---|
1342 | lu = tls1_get_legacy_sigalg(s, idx);
|
---|
1343 | if (lu == NULL)
|
---|
1344 | return 0;
|
---|
1345 | s->s3.tmp.peer_sigalg = lu;
|
---|
1346 | return 1;
|
---|
1347 | }
|
---|
1348 |
|
---|
1349 | size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
|
---|
1350 | {
|
---|
1351 | /*
|
---|
1352 | * If Suite B mode use Suite B sigalgs only, ignore any other
|
---|
1353 | * preferences.
|
---|
1354 | */
|
---|
1355 | switch (tls1_suiteb(s)) {
|
---|
1356 | case SSL_CERT_FLAG_SUITEB_128_LOS:
|
---|
1357 | *psigs = suiteb_sigalgs;
|
---|
1358 | return OSSL_NELEM(suiteb_sigalgs);
|
---|
1359 |
|
---|
1360 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
---|
1361 | *psigs = suiteb_sigalgs;
|
---|
1362 | return 1;
|
---|
1363 |
|
---|
1364 | case SSL_CERT_FLAG_SUITEB_192_LOS:
|
---|
1365 | *psigs = suiteb_sigalgs + 1;
|
---|
1366 | return 1;
|
---|
1367 | }
|
---|
1368 | /*
|
---|
1369 | * We use client_sigalgs (if not NULL) if we're a server
|
---|
1370 | * and sending a certificate request or if we're a client and
|
---|
1371 | * determining which shared algorithm to use.
|
---|
1372 | */
|
---|
1373 | if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
|
---|
1374 | *psigs = s->cert->client_sigalgs;
|
---|
1375 | return s->cert->client_sigalgslen;
|
---|
1376 | } else if (s->cert->conf_sigalgs) {
|
---|
1377 | *psigs = s->cert->conf_sigalgs;
|
---|
1378 | return s->cert->conf_sigalgslen;
|
---|
1379 | } else {
|
---|
1380 | *psigs = tls12_sigalgs;
|
---|
1381 | return OSSL_NELEM(tls12_sigalgs);
|
---|
1382 | }
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 | /*
|
---|
1386 | * Called by servers only. Checks that we have a sig alg that supports the
|
---|
1387 | * specified EC curve.
|
---|
1388 | */
|
---|
1389 | int tls_check_sigalg_curve(const SSL *s, int curve)
|
---|
1390 | {
|
---|
1391 | const uint16_t *sigs;
|
---|
1392 | size_t siglen, i;
|
---|
1393 |
|
---|
1394 | if (s->cert->conf_sigalgs) {
|
---|
1395 | sigs = s->cert->conf_sigalgs;
|
---|
1396 | siglen = s->cert->conf_sigalgslen;
|
---|
1397 | } else {
|
---|
1398 | sigs = tls12_sigalgs;
|
---|
1399 | siglen = OSSL_NELEM(tls12_sigalgs);
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | for (i = 0; i < siglen; i++) {
|
---|
1403 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
|
---|
1404 |
|
---|
1405 | if (lu == NULL)
|
---|
1406 | continue;
|
---|
1407 | if (lu->sig == EVP_PKEY_EC
|
---|
1408 | && lu->curve != NID_undef
|
---|
1409 | && curve == lu->curve)
|
---|
1410 | return 1;
|
---|
1411 | }
|
---|
1412 |
|
---|
1413 | return 0;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | /*
|
---|
1417 | * Return the number of security bits for the signature algorithm, or 0 on
|
---|
1418 | * error.
|
---|
1419 | */
|
---|
1420 | static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
|
---|
1421 | {
|
---|
1422 | const EVP_MD *md = NULL;
|
---|
1423 | int secbits = 0;
|
---|
1424 |
|
---|
1425 | if (!tls1_lookup_md(ctx, lu, &md))
|
---|
1426 | return 0;
|
---|
1427 | if (md != NULL)
|
---|
1428 | {
|
---|
1429 | int md_type = EVP_MD_get_type(md);
|
---|
1430 |
|
---|
1431 | /* Security bits: half digest bits */
|
---|
1432 | secbits = EVP_MD_get_size(md) * 4;
|
---|
1433 | /*
|
---|
1434 | * SHA1 and MD5 are known to be broken. Reduce security bits so that
|
---|
1435 | * they're no longer accepted at security level 1. The real values don't
|
---|
1436 | * really matter as long as they're lower than 80, which is our
|
---|
1437 | * security level 1.
|
---|
1438 | * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
|
---|
1439 | * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
|
---|
1440 | * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
|
---|
1441 | * puts a chosen-prefix attack for MD5 at 2^39.
|
---|
1442 | */
|
---|
1443 | if (md_type == NID_sha1)
|
---|
1444 | secbits = 64;
|
---|
1445 | else if (md_type == NID_md5_sha1)
|
---|
1446 | secbits = 67;
|
---|
1447 | else if (md_type == NID_md5)
|
---|
1448 | secbits = 39;
|
---|
1449 | } else {
|
---|
1450 | /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
|
---|
1451 | if (lu->sigalg == TLSEXT_SIGALG_ed25519)
|
---|
1452 | secbits = 128;
|
---|
1453 | else if (lu->sigalg == TLSEXT_SIGALG_ed448)
|
---|
1454 | secbits = 224;
|
---|
1455 | }
|
---|
1456 | return secbits;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | /*
|
---|
1460 | * Check signature algorithm is consistent with sent supported signature
|
---|
1461 | * algorithms and if so set relevant digest and signature scheme in
|
---|
1462 | * s.
|
---|
1463 | */
|
---|
1464 | int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
|
---|
1465 | {
|
---|
1466 | const uint16_t *sent_sigs;
|
---|
1467 | const EVP_MD *md = NULL;
|
---|
1468 | char sigalgstr[2];
|
---|
1469 | size_t sent_sigslen, i, cidx;
|
---|
1470 | int pkeyid = -1;
|
---|
1471 | const SIGALG_LOOKUP *lu;
|
---|
1472 | int secbits = 0;
|
---|
1473 |
|
---|
1474 | pkeyid = EVP_PKEY_get_id(pkey);
|
---|
1475 | /* Should never happen */
|
---|
1476 | if (pkeyid == -1)
|
---|
1477 | return -1;
|
---|
1478 | if (SSL_IS_TLS13(s)) {
|
---|
1479 | /* Disallow DSA for TLS 1.3 */
|
---|
1480 | if (pkeyid == EVP_PKEY_DSA) {
|
---|
1481 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1482 | return 0;
|
---|
1483 | }
|
---|
1484 | /* Only allow PSS for TLS 1.3 */
|
---|
1485 | if (pkeyid == EVP_PKEY_RSA)
|
---|
1486 | pkeyid = EVP_PKEY_RSA_PSS;
|
---|
1487 | }
|
---|
1488 | lu = tls1_lookup_sigalg(s, sig);
|
---|
1489 | /*
|
---|
1490 | * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
|
---|
1491 | * is consistent with signature: RSA keys can be used for RSA-PSS
|
---|
1492 | */
|
---|
1493 | if (lu == NULL
|
---|
1494 | || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|
---|
1495 | || (pkeyid != lu->sig
|
---|
1496 | && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
|
---|
1497 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1498 | return 0;
|
---|
1499 | }
|
---|
1500 | /* Check the sigalg is consistent with the key OID */
|
---|
1501 | if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
|
---|
1502 | || lu->sig_idx != (int)cidx) {
|
---|
1503 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1504 | return 0;
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | if (pkeyid == EVP_PKEY_EC) {
|
---|
1508 |
|
---|
1509 | /* Check point compression is permitted */
|
---|
1510 | if (!tls1_check_pkey_comp(s, pkey)) {
|
---|
1511 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
|
---|
1512 | SSL_R_ILLEGAL_POINT_COMPRESSION);
|
---|
1513 | return 0;
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 | /* For TLS 1.3 or Suite B check curve matches signature algorithm */
|
---|
1517 | if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
|
---|
1518 | int curve = ssl_get_EC_curve_nid(pkey);
|
---|
1519 |
|
---|
1520 | if (lu->curve != NID_undef && curve != lu->curve) {
|
---|
1521 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
---|
1522 | return 0;
|
---|
1523 | }
|
---|
1524 | }
|
---|
1525 | if (!SSL_IS_TLS13(s)) {
|
---|
1526 | /* Check curve matches extensions */
|
---|
1527 | if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
|
---|
1528 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
---|
1529 | return 0;
|
---|
1530 | }
|
---|
1531 | if (tls1_suiteb(s)) {
|
---|
1532 | /* Check sigalg matches a permissible Suite B value */
|
---|
1533 | if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
|
---|
1534 | && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
|
---|
1535 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
1536 | SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1537 | return 0;
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 | }
|
---|
1541 | } else if (tls1_suiteb(s)) {
|
---|
1542 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1543 | return 0;
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | /* Check signature matches a type we sent */
|
---|
1547 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
1548 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
---|
1549 | if (sig == *sent_sigs)
|
---|
1550 | break;
|
---|
1551 | }
|
---|
1552 | /* Allow fallback to SHA1 if not strict mode */
|
---|
1553 | if (i == sent_sigslen && (lu->hash != NID_sha1
|
---|
1554 | || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
|
---|
1555 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1556 | return 0;
|
---|
1557 | }
|
---|
1558 | if (!tls1_lookup_md(s->ctx, lu, &md)) {
|
---|
1559 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
|
---|
1560 | return 0;
|
---|
1561 | }
|
---|
1562 | /*
|
---|
1563 | * Make sure security callback allows algorithm. For historical
|
---|
1564 | * reasons we have to pass the sigalg as a two byte char array.
|
---|
1565 | */
|
---|
1566 | sigalgstr[0] = (sig >> 8) & 0xff;
|
---|
1567 | sigalgstr[1] = sig & 0xff;
|
---|
1568 | secbits = sigalg_security_bits(s->ctx, lu);
|
---|
1569 | if (secbits == 0 ||
|
---|
1570 | !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
|
---|
1571 | md != NULL ? EVP_MD_get_type(md) : NID_undef,
|
---|
1572 | (void *)sigalgstr)) {
|
---|
1573 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1574 | return 0;
|
---|
1575 | }
|
---|
1576 | /* Store the sigalg the peer uses */
|
---|
1577 | s->s3.tmp.peer_sigalg = lu;
|
---|
1578 | return 1;
|
---|
1579 | }
|
---|
1580 |
|
---|
1581 | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
|
---|
1582 | {
|
---|
1583 | if (s->s3.tmp.peer_sigalg == NULL)
|
---|
1584 | return 0;
|
---|
1585 | *pnid = s->s3.tmp.peer_sigalg->sig;
|
---|
1586 | return 1;
|
---|
1587 | }
|
---|
1588 |
|
---|
1589 | int SSL_get_signature_type_nid(const SSL *s, int *pnid)
|
---|
1590 | {
|
---|
1591 | if (s->s3.tmp.sigalg == NULL)
|
---|
1592 | return 0;
|
---|
1593 | *pnid = s->s3.tmp.sigalg->sig;
|
---|
1594 | return 1;
|
---|
1595 | }
|
---|
1596 |
|
---|
1597 | /*
|
---|
1598 | * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
|
---|
1599 | * supported, doesn't appear in supported signature algorithms, isn't supported
|
---|
1600 | * by the enabled protocol versions or by the security level.
|
---|
1601 | *
|
---|
1602 | * This function should only be used for checking which ciphers are supported
|
---|
1603 | * by the client.
|
---|
1604 | *
|
---|
1605 | * Call ssl_cipher_disabled() to check that it's enabled or not.
|
---|
1606 | */
|
---|
1607 | int ssl_set_client_disabled(SSL *s)
|
---|
1608 | {
|
---|
1609 | s->s3.tmp.mask_a = 0;
|
---|
1610 | s->s3.tmp.mask_k = 0;
|
---|
1611 | ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
|
---|
1612 | if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
|
---|
1613 | &s->s3.tmp.max_ver, NULL) != 0)
|
---|
1614 | return 0;
|
---|
1615 | #ifndef OPENSSL_NO_PSK
|
---|
1616 | /* with PSK there must be client callback set */
|
---|
1617 | if (!s->psk_client_callback) {
|
---|
1618 | s->s3.tmp.mask_a |= SSL_aPSK;
|
---|
1619 | s->s3.tmp.mask_k |= SSL_PSK;
|
---|
1620 | }
|
---|
1621 | #endif /* OPENSSL_NO_PSK */
|
---|
1622 | #ifndef OPENSSL_NO_SRP
|
---|
1623 | if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
|
---|
1624 | s->s3.tmp.mask_a |= SSL_aSRP;
|
---|
1625 | s->s3.tmp.mask_k |= SSL_kSRP;
|
---|
1626 | }
|
---|
1627 | #endif
|
---|
1628 | return 1;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | /*
|
---|
1632 | * ssl_cipher_disabled - check that a cipher is disabled or not
|
---|
1633 | * @s: SSL connection that you want to use the cipher on
|
---|
1634 | * @c: cipher to check
|
---|
1635 | * @op: Security check that you want to do
|
---|
1636 | * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
|
---|
1637 | *
|
---|
1638 | * Returns 1 when it's disabled, 0 when enabled.
|
---|
1639 | */
|
---|
1640 | int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
|
---|
1641 | {
|
---|
1642 | if (c->algorithm_mkey & s->s3.tmp.mask_k
|
---|
1643 | || c->algorithm_auth & s->s3.tmp.mask_a)
|
---|
1644 | return 1;
|
---|
1645 | if (s->s3.tmp.max_ver == 0)
|
---|
1646 | return 1;
|
---|
1647 | if (!SSL_IS_DTLS(s)) {
|
---|
1648 | int min_tls = c->min_tls;
|
---|
1649 |
|
---|
1650 | /*
|
---|
1651 | * For historical reasons we will allow ECHDE to be selected by a server
|
---|
1652 | * in SSLv3 if we are a client
|
---|
1653 | */
|
---|
1654 | if (min_tls == TLS1_VERSION && ecdhe
|
---|
1655 | && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
|
---|
1656 | min_tls = SSL3_VERSION;
|
---|
1657 |
|
---|
1658 | if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
|
---|
1659 | return 1;
|
---|
1660 | }
|
---|
1661 | if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
|
---|
1662 | || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
|
---|
1663 | return 1;
|
---|
1664 |
|
---|
1665 | return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 | int tls_use_ticket(SSL *s)
|
---|
1669 | {
|
---|
1670 | if ((s->options & SSL_OP_NO_TICKET))
|
---|
1671 | return 0;
|
---|
1672 | return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 | int tls1_set_server_sigalgs(SSL *s)
|
---|
1676 | {
|
---|
1677 | size_t i;
|
---|
1678 |
|
---|
1679 | /* Clear any shared signature algorithms */
|
---|
1680 | OPENSSL_free(s->shared_sigalgs);
|
---|
1681 | s->shared_sigalgs = NULL;
|
---|
1682 | s->shared_sigalgslen = 0;
|
---|
1683 | /* Clear certificate validity flags */
|
---|
1684 | for (i = 0; i < SSL_PKEY_NUM; i++)
|
---|
1685 | s->s3.tmp.valid_flags[i] = 0;
|
---|
1686 | /*
|
---|
1687 | * If peer sent no signature algorithms check to see if we support
|
---|
1688 | * the default algorithm for each certificate type
|
---|
1689 | */
|
---|
1690 | if (s->s3.tmp.peer_cert_sigalgs == NULL
|
---|
1691 | && s->s3.tmp.peer_sigalgs == NULL) {
|
---|
1692 | const uint16_t *sent_sigs;
|
---|
1693 | size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
1694 |
|
---|
1695 | for (i = 0; i < SSL_PKEY_NUM; i++) {
|
---|
1696 | const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
|
---|
1697 | size_t j;
|
---|
1698 |
|
---|
1699 | if (lu == NULL)
|
---|
1700 | continue;
|
---|
1701 | /* Check default matches a type we sent */
|
---|
1702 | for (j = 0; j < sent_sigslen; j++) {
|
---|
1703 | if (lu->sigalg == sent_sigs[j]) {
|
---|
1704 | s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
|
---|
1705 | break;
|
---|
1706 | }
|
---|
1707 | }
|
---|
1708 | }
|
---|
1709 | return 1;
|
---|
1710 | }
|
---|
1711 |
|
---|
1712 | if (!tls1_process_sigalgs(s)) {
|
---|
1713 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
---|
1714 | return 0;
|
---|
1715 | }
|
---|
1716 | if (s->shared_sigalgs != NULL)
|
---|
1717 | return 1;
|
---|
1718 |
|
---|
1719 | /* Fatal error if no shared signature algorithms */
|
---|
1720 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
1721 | SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
|
---|
1722 | return 0;
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 | /*-
|
---|
1726 | * Gets the ticket information supplied by the client if any.
|
---|
1727 | *
|
---|
1728 | * hello: The parsed ClientHello data
|
---|
1729 | * ret: (output) on return, if a ticket was decrypted, then this is set to
|
---|
1730 | * point to the resulting session.
|
---|
1731 | */
|
---|
1732 | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
|
---|
1733 | SSL_SESSION **ret)
|
---|
1734 | {
|
---|
1735 | size_t size;
|
---|
1736 | RAW_EXTENSION *ticketext;
|
---|
1737 |
|
---|
1738 | *ret = NULL;
|
---|
1739 | s->ext.ticket_expected = 0;
|
---|
1740 |
|
---|
1741 | /*
|
---|
1742 | * If tickets disabled or not supported by the protocol version
|
---|
1743 | * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
|
---|
1744 | * resumption.
|
---|
1745 | */
|
---|
1746 | if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
|
---|
1747 | return SSL_TICKET_NONE;
|
---|
1748 |
|
---|
1749 | ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
|
---|
1750 | if (!ticketext->present)
|
---|
1751 | return SSL_TICKET_NONE;
|
---|
1752 |
|
---|
1753 | size = PACKET_remaining(&ticketext->data);
|
---|
1754 |
|
---|
1755 | return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
|
---|
1756 | hello->session_id, hello->session_id_len, ret);
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | /*-
|
---|
1760 | * tls_decrypt_ticket attempts to decrypt a session ticket.
|
---|
1761 | *
|
---|
1762 | * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
|
---|
1763 | * expecting a pre-shared key ciphersuite, in which case we have no use for
|
---|
1764 | * session tickets and one will never be decrypted, nor will
|
---|
1765 | * s->ext.ticket_expected be set to 1.
|
---|
1766 | *
|
---|
1767 | * Side effects:
|
---|
1768 | * Sets s->ext.ticket_expected to 1 if the server will have to issue
|
---|
1769 | * a new session ticket to the client because the client indicated support
|
---|
1770 | * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
|
---|
1771 | * a session ticket or we couldn't use the one it gave us, or if
|
---|
1772 | * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
|
---|
1773 | * Otherwise, s->ext.ticket_expected is set to 0.
|
---|
1774 | *
|
---|
1775 | * etick: points to the body of the session ticket extension.
|
---|
1776 | * eticklen: the length of the session tickets extension.
|
---|
1777 | * sess_id: points at the session ID.
|
---|
1778 | * sesslen: the length of the session ID.
|
---|
1779 | * psess: (output) on return, if a ticket was decrypted, then this is set to
|
---|
1780 | * point to the resulting session.
|
---|
1781 | */
|
---|
1782 | SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
|
---|
1783 | size_t eticklen, const unsigned char *sess_id,
|
---|
1784 | size_t sesslen, SSL_SESSION **psess)
|
---|
1785 | {
|
---|
1786 | SSL_SESSION *sess = NULL;
|
---|
1787 | unsigned char *sdec;
|
---|
1788 | const unsigned char *p;
|
---|
1789 | int slen, ivlen, renew_ticket = 0, declen;
|
---|
1790 | SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1791 | size_t mlen;
|
---|
1792 | unsigned char tick_hmac[EVP_MAX_MD_SIZE];
|
---|
1793 | SSL_HMAC *hctx = NULL;
|
---|
1794 | EVP_CIPHER_CTX *ctx = NULL;
|
---|
1795 | SSL_CTX *tctx = s->session_ctx;
|
---|
1796 |
|
---|
1797 | if (eticklen == 0) {
|
---|
1798 | /*
|
---|
1799 | * The client will accept a ticket but doesn't currently have
|
---|
1800 | * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
|
---|
1801 | */
|
---|
1802 | ret = SSL_TICKET_EMPTY;
|
---|
1803 | goto end;
|
---|
1804 | }
|
---|
1805 | if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
|
---|
1806 | /*
|
---|
1807 | * Indicate that the ticket couldn't be decrypted rather than
|
---|
1808 | * generating the session from ticket now, trigger
|
---|
1809 | * abbreviated handshake based on external mechanism to
|
---|
1810 | * calculate the master secret later.
|
---|
1811 | */
|
---|
1812 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1813 | goto end;
|
---|
1814 | }
|
---|
1815 |
|
---|
1816 | /* Need at least keyname + iv */
|
---|
1817 | if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
|
---|
1818 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1819 | goto end;
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 | /* Initialize session ticket encryption and HMAC contexts */
|
---|
1823 | hctx = ssl_hmac_new(tctx);
|
---|
1824 | if (hctx == NULL) {
|
---|
1825 | ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
---|
1826 | goto end;
|
---|
1827 | }
|
---|
1828 | ctx = EVP_CIPHER_CTX_new();
|
---|
1829 | if (ctx == NULL) {
|
---|
1830 | ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
---|
1831 | goto end;
|
---|
1832 | }
|
---|
1833 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
1834 | if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
|
---|
1835 | #else
|
---|
1836 | if (tctx->ext.ticket_key_evp_cb != NULL)
|
---|
1837 | #endif
|
---|
1838 | {
|
---|
1839 | unsigned char *nctick = (unsigned char *)etick;
|
---|
1840 | int rv = 0;
|
---|
1841 |
|
---|
1842 | if (tctx->ext.ticket_key_evp_cb != NULL)
|
---|
1843 | rv = tctx->ext.ticket_key_evp_cb(s, nctick,
|
---|
1844 | nctick + TLSEXT_KEYNAME_LENGTH,
|
---|
1845 | ctx,
|
---|
1846 | ssl_hmac_get0_EVP_MAC_CTX(hctx),
|
---|
1847 | 0);
|
---|
1848 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
1849 | else if (tctx->ext.ticket_key_cb != NULL)
|
---|
1850 | /* if 0 is returned, write an empty ticket */
|
---|
1851 | rv = tctx->ext.ticket_key_cb(s, nctick,
|
---|
1852 | nctick + TLSEXT_KEYNAME_LENGTH,
|
---|
1853 | ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
|
---|
1854 | #endif
|
---|
1855 | if (rv < 0) {
|
---|
1856 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1857 | goto end;
|
---|
1858 | }
|
---|
1859 | if (rv == 0) {
|
---|
1860 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1861 | goto end;
|
---|
1862 | }
|
---|
1863 | if (rv == 2)
|
---|
1864 | renew_ticket = 1;
|
---|
1865 | } else {
|
---|
1866 | EVP_CIPHER *aes256cbc = NULL;
|
---|
1867 |
|
---|
1868 | /* Check key name matches */
|
---|
1869 | if (memcmp(etick, tctx->ext.tick_key_name,
|
---|
1870 | TLSEXT_KEYNAME_LENGTH) != 0) {
|
---|
1871 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1872 | goto end;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
|
---|
1876 | s->ctx->propq);
|
---|
1877 | if (aes256cbc == NULL
|
---|
1878 | || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
|
---|
1879 | sizeof(tctx->ext.secure->tick_hmac_key),
|
---|
1880 | "SHA256") <= 0
|
---|
1881 | || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
|
---|
1882 | tctx->ext.secure->tick_aes_key,
|
---|
1883 | etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
|
---|
1884 | EVP_CIPHER_free(aes256cbc);
|
---|
1885 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1886 | goto end;
|
---|
1887 | }
|
---|
1888 | EVP_CIPHER_free(aes256cbc);
|
---|
1889 | if (SSL_IS_TLS13(s))
|
---|
1890 | renew_ticket = 1;
|
---|
1891 | }
|
---|
1892 | /*
|
---|
1893 | * Attempt to process session ticket, first conduct sanity and integrity
|
---|
1894 | * checks on ticket.
|
---|
1895 | */
|
---|
1896 | mlen = ssl_hmac_size(hctx);
|
---|
1897 | if (mlen == 0) {
|
---|
1898 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1899 | goto end;
|
---|
1900 | }
|
---|
1901 |
|
---|
1902 | ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1903 | if (ivlen < 0) {
|
---|
1904 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1905 | goto end;
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | /* Sanity check ticket length: must exceed keyname + IV + HMAC */
|
---|
1909 | if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
|
---|
1910 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1911 | goto end;
|
---|
1912 | }
|
---|
1913 | eticklen -= mlen;
|
---|
1914 | /* Check HMAC of encrypted ticket */
|
---|
1915 | if (ssl_hmac_update(hctx, etick, eticklen) <= 0
|
---|
1916 | || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
|
---|
1917 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1918 | goto end;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
|
---|
1922 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1923 | goto end;
|
---|
1924 | }
|
---|
1925 | /* Attempt to decrypt session data */
|
---|
1926 | /* Move p after IV to start of encrypted ticket, update length */
|
---|
1927 | p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
|
---|
1928 | eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
|
---|
1929 | sdec = OPENSSL_malloc(eticklen);
|
---|
1930 | if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
|
---|
1931 | (int)eticklen) <= 0) {
|
---|
1932 | OPENSSL_free(sdec);
|
---|
1933 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
1934 | goto end;
|
---|
1935 | }
|
---|
1936 | if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
|
---|
1937 | OPENSSL_free(sdec);
|
---|
1938 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1939 | goto end;
|
---|
1940 | }
|
---|
1941 | slen += declen;
|
---|
1942 | p = sdec;
|
---|
1943 |
|
---|
1944 | sess = d2i_SSL_SESSION(NULL, &p, slen);
|
---|
1945 | slen -= p - sdec;
|
---|
1946 | OPENSSL_free(sdec);
|
---|
1947 | if (sess) {
|
---|
1948 | /* Some additional consistency checks */
|
---|
1949 | if (slen != 0) {
|
---|
1950 | SSL_SESSION_free(sess);
|
---|
1951 | sess = NULL;
|
---|
1952 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1953 | goto end;
|
---|
1954 | }
|
---|
1955 | /*
|
---|
1956 | * The session ID, if non-empty, is used by some clients to detect
|
---|
1957 | * that the ticket has been accepted. So we copy it to the session
|
---|
1958 | * structure. If it is empty set length to zero as required by
|
---|
1959 | * standard.
|
---|
1960 | */
|
---|
1961 | if (sesslen) {
|
---|
1962 | memcpy(sess->session_id, sess_id, sesslen);
|
---|
1963 | sess->session_id_length = sesslen;
|
---|
1964 | }
|
---|
1965 | if (renew_ticket)
|
---|
1966 | ret = SSL_TICKET_SUCCESS_RENEW;
|
---|
1967 | else
|
---|
1968 | ret = SSL_TICKET_SUCCESS;
|
---|
1969 | goto end;
|
---|
1970 | }
|
---|
1971 | ERR_clear_error();
|
---|
1972 | /*
|
---|
1973 | * For session parse failure, indicate that we need to send a new ticket.
|
---|
1974 | */
|
---|
1975 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
1976 |
|
---|
1977 | end:
|
---|
1978 | EVP_CIPHER_CTX_free(ctx);
|
---|
1979 | ssl_hmac_free(hctx);
|
---|
1980 |
|
---|
1981 | /*
|
---|
1982 | * If set, the decrypt_ticket_cb() is called unless a fatal error was
|
---|
1983 | * detected above. The callback is responsible for checking |ret| before it
|
---|
1984 | * performs any action
|
---|
1985 | */
|
---|
1986 | if (s->session_ctx->decrypt_ticket_cb != NULL
|
---|
1987 | && (ret == SSL_TICKET_EMPTY
|
---|
1988 | || ret == SSL_TICKET_NO_DECRYPT
|
---|
1989 | || ret == SSL_TICKET_SUCCESS
|
---|
1990 | || ret == SSL_TICKET_SUCCESS_RENEW)) {
|
---|
1991 | size_t keyname_len = eticklen;
|
---|
1992 | int retcb;
|
---|
1993 |
|
---|
1994 | if (keyname_len > TLSEXT_KEYNAME_LENGTH)
|
---|
1995 | keyname_len = TLSEXT_KEYNAME_LENGTH;
|
---|
1996 | retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
|
---|
1997 | ret,
|
---|
1998 | s->session_ctx->ticket_cb_data);
|
---|
1999 | switch (retcb) {
|
---|
2000 | case SSL_TICKET_RETURN_ABORT:
|
---|
2001 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2002 | break;
|
---|
2003 |
|
---|
2004 | case SSL_TICKET_RETURN_IGNORE:
|
---|
2005 | ret = SSL_TICKET_NONE;
|
---|
2006 | SSL_SESSION_free(sess);
|
---|
2007 | sess = NULL;
|
---|
2008 | break;
|
---|
2009 |
|
---|
2010 | case SSL_TICKET_RETURN_IGNORE_RENEW:
|
---|
2011 | if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
|
---|
2012 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2013 | /* else the value of |ret| will already do the right thing */
|
---|
2014 | SSL_SESSION_free(sess);
|
---|
2015 | sess = NULL;
|
---|
2016 | break;
|
---|
2017 |
|
---|
2018 | case SSL_TICKET_RETURN_USE:
|
---|
2019 | case SSL_TICKET_RETURN_USE_RENEW:
|
---|
2020 | if (ret != SSL_TICKET_SUCCESS
|
---|
2021 | && ret != SSL_TICKET_SUCCESS_RENEW)
|
---|
2022 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2023 | else if (retcb == SSL_TICKET_RETURN_USE)
|
---|
2024 | ret = SSL_TICKET_SUCCESS;
|
---|
2025 | else
|
---|
2026 | ret = SSL_TICKET_SUCCESS_RENEW;
|
---|
2027 | break;
|
---|
2028 |
|
---|
2029 | default:
|
---|
2030 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2031 | }
|
---|
2032 | }
|
---|
2033 |
|
---|
2034 | if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
|
---|
2035 | switch (ret) {
|
---|
2036 | case SSL_TICKET_NO_DECRYPT:
|
---|
2037 | case SSL_TICKET_SUCCESS_RENEW:
|
---|
2038 | case SSL_TICKET_EMPTY:
|
---|
2039 | s->ext.ticket_expected = 1;
|
---|
2040 | }
|
---|
2041 | }
|
---|
2042 |
|
---|
2043 | *psess = sess;
|
---|
2044 |
|
---|
2045 | return ret;
|
---|
2046 | }
|
---|
2047 |
|
---|
2048 | /* Check to see if a signature algorithm is allowed */
|
---|
2049 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
|
---|
2050 | {
|
---|
2051 | unsigned char sigalgstr[2];
|
---|
2052 | int secbits;
|
---|
2053 |
|
---|
2054 | if (lu == NULL || !lu->enabled)
|
---|
2055 | return 0;
|
---|
2056 | /* DSA is not allowed in TLS 1.3 */
|
---|
2057 | if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
|
---|
2058 | return 0;
|
---|
2059 | /*
|
---|
2060 | * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
|
---|
2061 | * spec
|
---|
2062 | */
|
---|
2063 | if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
|
---|
2064 | && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|
---|
2065 | || lu->hash_idx == SSL_MD_MD5_IDX
|
---|
2066 | || lu->hash_idx == SSL_MD_SHA224_IDX))
|
---|
2067 | return 0;
|
---|
2068 |
|
---|
2069 | /* See if public key algorithm allowed */
|
---|
2070 | if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
|
---|
2071 | return 0;
|
---|
2072 |
|
---|
2073 | if (lu->sig == NID_id_GostR3410_2012_256
|
---|
2074 | || lu->sig == NID_id_GostR3410_2012_512
|
---|
2075 | || lu->sig == NID_id_GostR3410_2001) {
|
---|
2076 | /* We never allow GOST sig algs on the server with TLSv1.3 */
|
---|
2077 | if (s->server && SSL_IS_TLS13(s))
|
---|
2078 | return 0;
|
---|
2079 | if (!s->server
|
---|
2080 | && s->method->version == TLS_ANY_VERSION
|
---|
2081 | && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
|
---|
2082 | int i, num;
|
---|
2083 | STACK_OF(SSL_CIPHER) *sk;
|
---|
2084 |
|
---|
2085 | /*
|
---|
2086 | * We're a client that could negotiate TLSv1.3. We only allow GOST
|
---|
2087 | * sig algs if we could negotiate TLSv1.2 or below and we have GOST
|
---|
2088 | * ciphersuites enabled.
|
---|
2089 | */
|
---|
2090 |
|
---|
2091 | if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
|
---|
2092 | return 0;
|
---|
2093 |
|
---|
2094 | sk = SSL_get_ciphers(s);
|
---|
2095 | num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
|
---|
2096 | for (i = 0; i < num; i++) {
|
---|
2097 | const SSL_CIPHER *c;
|
---|
2098 |
|
---|
2099 | c = sk_SSL_CIPHER_value(sk, i);
|
---|
2100 | /* Skip disabled ciphers */
|
---|
2101 | if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
|
---|
2102 | continue;
|
---|
2103 |
|
---|
2104 | if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
|
---|
2105 | break;
|
---|
2106 | }
|
---|
2107 | if (i == num)
|
---|
2108 | return 0;
|
---|
2109 | }
|
---|
2110 | }
|
---|
2111 |
|
---|
2112 | /* Finally see if security callback allows it */
|
---|
2113 | secbits = sigalg_security_bits(s->ctx, lu);
|
---|
2114 | sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
|
---|
2115 | sigalgstr[1] = lu->sigalg & 0xff;
|
---|
2116 | return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
|
---|
2117 | }
|
---|
2118 |
|
---|
2119 | /*
|
---|
2120 | * Get a mask of disabled public key algorithms based on supported signature
|
---|
2121 | * algorithms. For example if no signature algorithm supports RSA then RSA is
|
---|
2122 | * disabled.
|
---|
2123 | */
|
---|
2124 |
|
---|
2125 | void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
|
---|
2126 | {
|
---|
2127 | const uint16_t *sigalgs;
|
---|
2128 | size_t i, sigalgslen;
|
---|
2129 | uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
|
---|
2130 | /*
|
---|
2131 | * Go through all signature algorithms seeing if we support any
|
---|
2132 | * in disabled_mask.
|
---|
2133 | */
|
---|
2134 | sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
|
---|
2135 | for (i = 0; i < sigalgslen; i++, sigalgs++) {
|
---|
2136 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
|
---|
2137 | const SSL_CERT_LOOKUP *clu;
|
---|
2138 |
|
---|
2139 | if (lu == NULL)
|
---|
2140 | continue;
|
---|
2141 |
|
---|
2142 | clu = ssl_cert_lookup_by_idx(lu->sig_idx);
|
---|
2143 | if (clu == NULL)
|
---|
2144 | continue;
|
---|
2145 |
|
---|
2146 | /* If algorithm is disabled see if we can enable it */
|
---|
2147 | if ((clu->amask & disabled_mask) != 0
|
---|
2148 | && tls12_sigalg_allowed(s, op, lu))
|
---|
2149 | disabled_mask &= ~clu->amask;
|
---|
2150 | }
|
---|
2151 | *pmask_a |= disabled_mask;
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 | int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
|
---|
2155 | const uint16_t *psig, size_t psiglen)
|
---|
2156 | {
|
---|
2157 | size_t i;
|
---|
2158 | int rv = 0;
|
---|
2159 |
|
---|
2160 | for (i = 0; i < psiglen; i++, psig++) {
|
---|
2161 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
|
---|
2162 |
|
---|
2163 | if (lu == NULL
|
---|
2164 | || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
---|
2165 | continue;
|
---|
2166 | if (!WPACKET_put_bytes_u16(pkt, *psig))
|
---|
2167 | return 0;
|
---|
2168 | /*
|
---|
2169 | * If TLS 1.3 must have at least one valid TLS 1.3 message
|
---|
2170 | * signing algorithm: i.e. neither RSA nor SHA1/SHA224
|
---|
2171 | */
|
---|
2172 | if (rv == 0 && (!SSL_IS_TLS13(s)
|
---|
2173 | || (lu->sig != EVP_PKEY_RSA
|
---|
2174 | && lu->hash != NID_sha1
|
---|
2175 | && lu->hash != NID_sha224)))
|
---|
2176 | rv = 1;
|
---|
2177 | }
|
---|
2178 | if (rv == 0)
|
---|
2179 | ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
2180 | return rv;
|
---|
2181 | }
|
---|
2182 |
|
---|
2183 | /* Given preference and allowed sigalgs set shared sigalgs */
|
---|
2184 | static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
|
---|
2185 | const uint16_t *pref, size_t preflen,
|
---|
2186 | const uint16_t *allow, size_t allowlen)
|
---|
2187 | {
|
---|
2188 | const uint16_t *ptmp, *atmp;
|
---|
2189 | size_t i, j, nmatch = 0;
|
---|
2190 | for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
|
---|
2191 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
|
---|
2192 |
|
---|
2193 | /* Skip disabled hashes or signature algorithms */
|
---|
2194 | if (lu == NULL
|
---|
2195 | || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
|
---|
2196 | continue;
|
---|
2197 | for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
|
---|
2198 | if (*ptmp == *atmp) {
|
---|
2199 | nmatch++;
|
---|
2200 | if (shsig)
|
---|
2201 | *shsig++ = lu;
|
---|
2202 | break;
|
---|
2203 | }
|
---|
2204 | }
|
---|
2205 | }
|
---|
2206 | return nmatch;
|
---|
2207 | }
|
---|
2208 |
|
---|
2209 | /* Set shared signature algorithms for SSL structures */
|
---|
2210 | static int tls1_set_shared_sigalgs(SSL *s)
|
---|
2211 | {
|
---|
2212 | const uint16_t *pref, *allow, *conf;
|
---|
2213 | size_t preflen, allowlen, conflen;
|
---|
2214 | size_t nmatch;
|
---|
2215 | const SIGALG_LOOKUP **salgs = NULL;
|
---|
2216 | CERT *c = s->cert;
|
---|
2217 | unsigned int is_suiteb = tls1_suiteb(s);
|
---|
2218 |
|
---|
2219 | OPENSSL_free(s->shared_sigalgs);
|
---|
2220 | s->shared_sigalgs = NULL;
|
---|
2221 | s->shared_sigalgslen = 0;
|
---|
2222 | /* If client use client signature algorithms if not NULL */
|
---|
2223 | if (!s->server && c->client_sigalgs && !is_suiteb) {
|
---|
2224 | conf = c->client_sigalgs;
|
---|
2225 | conflen = c->client_sigalgslen;
|
---|
2226 | } else if (c->conf_sigalgs && !is_suiteb) {
|
---|
2227 | conf = c->conf_sigalgs;
|
---|
2228 | conflen = c->conf_sigalgslen;
|
---|
2229 | } else
|
---|
2230 | conflen = tls12_get_psigalgs(s, 0, &conf);
|
---|
2231 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
|
---|
2232 | pref = conf;
|
---|
2233 | preflen = conflen;
|
---|
2234 | allow = s->s3.tmp.peer_sigalgs;
|
---|
2235 | allowlen = s->s3.tmp.peer_sigalgslen;
|
---|
2236 | } else {
|
---|
2237 | allow = conf;
|
---|
2238 | allowlen = conflen;
|
---|
2239 | pref = s->s3.tmp.peer_sigalgs;
|
---|
2240 | preflen = s->s3.tmp.peer_sigalgslen;
|
---|
2241 | }
|
---|
2242 | nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
|
---|
2243 | if (nmatch) {
|
---|
2244 | if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
|
---|
2245 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
2246 | return 0;
|
---|
2247 | }
|
---|
2248 | nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
|
---|
2249 | } else {
|
---|
2250 | salgs = NULL;
|
---|
2251 | }
|
---|
2252 | s->shared_sigalgs = salgs;
|
---|
2253 | s->shared_sigalgslen = nmatch;
|
---|
2254 | return 1;
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
|
---|
2258 | {
|
---|
2259 | unsigned int stmp;
|
---|
2260 | size_t size, i;
|
---|
2261 | uint16_t *buf;
|
---|
2262 |
|
---|
2263 | size = PACKET_remaining(pkt);
|
---|
2264 |
|
---|
2265 | /* Invalid data length */
|
---|
2266 | if (size == 0 || (size & 1) != 0)
|
---|
2267 | return 0;
|
---|
2268 |
|
---|
2269 | size >>= 1;
|
---|
2270 |
|
---|
2271 | if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
|
---|
2272 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
2273 | return 0;
|
---|
2274 | }
|
---|
2275 | for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
|
---|
2276 | buf[i] = stmp;
|
---|
2277 |
|
---|
2278 | if (i != size) {
|
---|
2279 | OPENSSL_free(buf);
|
---|
2280 | return 0;
|
---|
2281 | }
|
---|
2282 |
|
---|
2283 | OPENSSL_free(*pdest);
|
---|
2284 | *pdest = buf;
|
---|
2285 | *pdestlen = size;
|
---|
2286 |
|
---|
2287 | return 1;
|
---|
2288 | }
|
---|
2289 |
|
---|
2290 | int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
|
---|
2291 | {
|
---|
2292 | /* Extension ignored for inappropriate versions */
|
---|
2293 | if (!SSL_USE_SIGALGS(s))
|
---|
2294 | return 1;
|
---|
2295 | /* Should never happen */
|
---|
2296 | if (s->cert == NULL)
|
---|
2297 | return 0;
|
---|
2298 |
|
---|
2299 | if (cert)
|
---|
2300 | return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
|
---|
2301 | &s->s3.tmp.peer_cert_sigalgslen);
|
---|
2302 | else
|
---|
2303 | return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
|
---|
2304 | &s->s3.tmp.peer_sigalgslen);
|
---|
2305 |
|
---|
2306 | }
|
---|
2307 |
|
---|
2308 | /* Set preferred digest for each key type */
|
---|
2309 |
|
---|
2310 | int tls1_process_sigalgs(SSL *s)
|
---|
2311 | {
|
---|
2312 | size_t i;
|
---|
2313 | uint32_t *pvalid = s->s3.tmp.valid_flags;
|
---|
2314 |
|
---|
2315 | if (!tls1_set_shared_sigalgs(s))
|
---|
2316 | return 0;
|
---|
2317 |
|
---|
2318 | for (i = 0; i < SSL_PKEY_NUM; i++)
|
---|
2319 | pvalid[i] = 0;
|
---|
2320 |
|
---|
2321 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
2322 | const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
|
---|
2323 | int idx = sigptr->sig_idx;
|
---|
2324 |
|
---|
2325 | /* Ignore PKCS1 based sig algs in TLSv1.3 */
|
---|
2326 | if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
|
---|
2327 | continue;
|
---|
2328 | /* If not disabled indicate we can explicitly sign */
|
---|
2329 | if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
|
---|
2330 | pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
---|
2331 | }
|
---|
2332 | return 1;
|
---|
2333 | }
|
---|
2334 |
|
---|
2335 | int SSL_get_sigalgs(SSL *s, int idx,
|
---|
2336 | int *psign, int *phash, int *psignhash,
|
---|
2337 | unsigned char *rsig, unsigned char *rhash)
|
---|
2338 | {
|
---|
2339 | uint16_t *psig = s->s3.tmp.peer_sigalgs;
|
---|
2340 | size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
|
---|
2341 | if (psig == NULL || numsigalgs > INT_MAX)
|
---|
2342 | return 0;
|
---|
2343 | if (idx >= 0) {
|
---|
2344 | const SIGALG_LOOKUP *lu;
|
---|
2345 |
|
---|
2346 | if (idx >= (int)numsigalgs)
|
---|
2347 | return 0;
|
---|
2348 | psig += idx;
|
---|
2349 | if (rhash != NULL)
|
---|
2350 | *rhash = (unsigned char)((*psig >> 8) & 0xff);
|
---|
2351 | if (rsig != NULL)
|
---|
2352 | *rsig = (unsigned char)(*psig & 0xff);
|
---|
2353 | lu = tls1_lookup_sigalg(s, *psig);
|
---|
2354 | if (psign != NULL)
|
---|
2355 | *psign = lu != NULL ? lu->sig : NID_undef;
|
---|
2356 | if (phash != NULL)
|
---|
2357 | *phash = lu != NULL ? lu->hash : NID_undef;
|
---|
2358 | if (psignhash != NULL)
|
---|
2359 | *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
|
---|
2360 | }
|
---|
2361 | return (int)numsigalgs;
|
---|
2362 | }
|
---|
2363 |
|
---|
2364 | int SSL_get_shared_sigalgs(SSL *s, int idx,
|
---|
2365 | int *psign, int *phash, int *psignhash,
|
---|
2366 | unsigned char *rsig, unsigned char *rhash)
|
---|
2367 | {
|
---|
2368 | const SIGALG_LOOKUP *shsigalgs;
|
---|
2369 | if (s->shared_sigalgs == NULL
|
---|
2370 | || idx < 0
|
---|
2371 | || idx >= (int)s->shared_sigalgslen
|
---|
2372 | || s->shared_sigalgslen > INT_MAX)
|
---|
2373 | return 0;
|
---|
2374 | shsigalgs = s->shared_sigalgs[idx];
|
---|
2375 | if (phash != NULL)
|
---|
2376 | *phash = shsigalgs->hash;
|
---|
2377 | if (psign != NULL)
|
---|
2378 | *psign = shsigalgs->sig;
|
---|
2379 | if (psignhash != NULL)
|
---|
2380 | *psignhash = shsigalgs->sigandhash;
|
---|
2381 | if (rsig != NULL)
|
---|
2382 | *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
|
---|
2383 | if (rhash != NULL)
|
---|
2384 | *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
|
---|
2385 | return (int)s->shared_sigalgslen;
|
---|
2386 | }
|
---|
2387 |
|
---|
2388 | /* Maximum possible number of unique entries in sigalgs array */
|
---|
2389 | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
|
---|
2390 |
|
---|
2391 | typedef struct {
|
---|
2392 | size_t sigalgcnt;
|
---|
2393 | /* TLSEXT_SIGALG_XXX values */
|
---|
2394 | uint16_t sigalgs[TLS_MAX_SIGALGCNT];
|
---|
2395 | } sig_cb_st;
|
---|
2396 |
|
---|
2397 | static void get_sigorhash(int *psig, int *phash, const char *str)
|
---|
2398 | {
|
---|
2399 | if (strcmp(str, "RSA") == 0) {
|
---|
2400 | *psig = EVP_PKEY_RSA;
|
---|
2401 | } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
|
---|
2402 | *psig = EVP_PKEY_RSA_PSS;
|
---|
2403 | } else if (strcmp(str, "DSA") == 0) {
|
---|
2404 | *psig = EVP_PKEY_DSA;
|
---|
2405 | } else if (strcmp(str, "ECDSA") == 0) {
|
---|
2406 | *psig = EVP_PKEY_EC;
|
---|
2407 | } else {
|
---|
2408 | *phash = OBJ_sn2nid(str);
|
---|
2409 | if (*phash == NID_undef)
|
---|
2410 | *phash = OBJ_ln2nid(str);
|
---|
2411 | }
|
---|
2412 | }
|
---|
2413 | /* Maximum length of a signature algorithm string component */
|
---|
2414 | #define TLS_MAX_SIGSTRING_LEN 40
|
---|
2415 |
|
---|
2416 | static int sig_cb(const char *elem, int len, void *arg)
|
---|
2417 | {
|
---|
2418 | sig_cb_st *sarg = arg;
|
---|
2419 | size_t i;
|
---|
2420 | const SIGALG_LOOKUP *s;
|
---|
2421 | char etmp[TLS_MAX_SIGSTRING_LEN], *p;
|
---|
2422 | int sig_alg = NID_undef, hash_alg = NID_undef;
|
---|
2423 | if (elem == NULL)
|
---|
2424 | return 0;
|
---|
2425 | if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
|
---|
2426 | return 0;
|
---|
2427 | if (len > (int)(sizeof(etmp) - 1))
|
---|
2428 | return 0;
|
---|
2429 | memcpy(etmp, elem, len);
|
---|
2430 | etmp[len] = 0;
|
---|
2431 | p = strchr(etmp, '+');
|
---|
2432 | /*
|
---|
2433 | * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
|
---|
2434 | * if there's no '+' in the provided name, look for the new-style combined
|
---|
2435 | * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
|
---|
2436 | * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
|
---|
2437 | * rsa_pss_rsae_* that differ only by public key OID; in such cases
|
---|
2438 | * we will pick the _rsae_ variant, by virtue of them appearing earlier
|
---|
2439 | * in the table.
|
---|
2440 | */
|
---|
2441 | if (p == NULL) {
|
---|
2442 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
2443 | i++, s++) {
|
---|
2444 | if (s->name != NULL && strcmp(etmp, s->name) == 0) {
|
---|
2445 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
---|
2446 | break;
|
---|
2447 | }
|
---|
2448 | }
|
---|
2449 | if (i == OSSL_NELEM(sigalg_lookup_tbl))
|
---|
2450 | return 0;
|
---|
2451 | } else {
|
---|
2452 | *p = 0;
|
---|
2453 | p++;
|
---|
2454 | if (*p == 0)
|
---|
2455 | return 0;
|
---|
2456 | get_sigorhash(&sig_alg, &hash_alg, etmp);
|
---|
2457 | get_sigorhash(&sig_alg, &hash_alg, p);
|
---|
2458 | if (sig_alg == NID_undef || hash_alg == NID_undef)
|
---|
2459 | return 0;
|
---|
2460 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
2461 | i++, s++) {
|
---|
2462 | if (s->hash == hash_alg && s->sig == sig_alg) {
|
---|
2463 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
---|
2464 | break;
|
---|
2465 | }
|
---|
2466 | }
|
---|
2467 | if (i == OSSL_NELEM(sigalg_lookup_tbl))
|
---|
2468 | return 0;
|
---|
2469 | }
|
---|
2470 |
|
---|
2471 | /* Reject duplicates */
|
---|
2472 | for (i = 0; i < sarg->sigalgcnt - 1; i++) {
|
---|
2473 | if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
|
---|
2474 | sarg->sigalgcnt--;
|
---|
2475 | return 0;
|
---|
2476 | }
|
---|
2477 | }
|
---|
2478 | return 1;
|
---|
2479 | }
|
---|
2480 |
|
---|
2481 | /*
|
---|
2482 | * Set supported signature algorithms based on a colon separated list of the
|
---|
2483 | * form sig+hash e.g. RSA+SHA512:DSA+SHA512
|
---|
2484 | */
|
---|
2485 | int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
|
---|
2486 | {
|
---|
2487 | sig_cb_st sig;
|
---|
2488 | sig.sigalgcnt = 0;
|
---|
2489 | if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
|
---|
2490 | return 0;
|
---|
2491 | if (c == NULL)
|
---|
2492 | return 1;
|
---|
2493 | return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
|
---|
2497 | int client)
|
---|
2498 | {
|
---|
2499 | uint16_t *sigalgs;
|
---|
2500 |
|
---|
2501 | if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
|
---|
2502 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
2503 | return 0;
|
---|
2504 | }
|
---|
2505 | memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
|
---|
2506 |
|
---|
2507 | if (client) {
|
---|
2508 | OPENSSL_free(c->client_sigalgs);
|
---|
2509 | c->client_sigalgs = sigalgs;
|
---|
2510 | c->client_sigalgslen = salglen;
|
---|
2511 | } else {
|
---|
2512 | OPENSSL_free(c->conf_sigalgs);
|
---|
2513 | c->conf_sigalgs = sigalgs;
|
---|
2514 | c->conf_sigalgslen = salglen;
|
---|
2515 | }
|
---|
2516 |
|
---|
2517 | return 1;
|
---|
2518 | }
|
---|
2519 |
|
---|
2520 | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
|
---|
2521 | {
|
---|
2522 | uint16_t *sigalgs, *sptr;
|
---|
2523 | size_t i;
|
---|
2524 |
|
---|
2525 | if (salglen & 1)
|
---|
2526 | return 0;
|
---|
2527 | if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
|
---|
2528 | ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
|
---|
2529 | return 0;
|
---|
2530 | }
|
---|
2531 | for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
|
---|
2532 | size_t j;
|
---|
2533 | const SIGALG_LOOKUP *curr;
|
---|
2534 | int md_id = *psig_nids++;
|
---|
2535 | int sig_id = *psig_nids++;
|
---|
2536 |
|
---|
2537 | for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
2538 | j++, curr++) {
|
---|
2539 | if (curr->hash == md_id && curr->sig == sig_id) {
|
---|
2540 | *sptr++ = curr->sigalg;
|
---|
2541 | break;
|
---|
2542 | }
|
---|
2543 | }
|
---|
2544 |
|
---|
2545 | if (j == OSSL_NELEM(sigalg_lookup_tbl))
|
---|
2546 | goto err;
|
---|
2547 | }
|
---|
2548 |
|
---|
2549 | if (client) {
|
---|
2550 | OPENSSL_free(c->client_sigalgs);
|
---|
2551 | c->client_sigalgs = sigalgs;
|
---|
2552 | c->client_sigalgslen = salglen / 2;
|
---|
2553 | } else {
|
---|
2554 | OPENSSL_free(c->conf_sigalgs);
|
---|
2555 | c->conf_sigalgs = sigalgs;
|
---|
2556 | c->conf_sigalgslen = salglen / 2;
|
---|
2557 | }
|
---|
2558 |
|
---|
2559 | return 1;
|
---|
2560 |
|
---|
2561 | err:
|
---|
2562 | OPENSSL_free(sigalgs);
|
---|
2563 | return 0;
|
---|
2564 | }
|
---|
2565 |
|
---|
2566 | static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
|
---|
2567 | {
|
---|
2568 | int sig_nid, use_pc_sigalgs = 0;
|
---|
2569 | size_t i;
|
---|
2570 | const SIGALG_LOOKUP *sigalg;
|
---|
2571 | size_t sigalgslen;
|
---|
2572 | if (default_nid == -1)
|
---|
2573 | return 1;
|
---|
2574 | sig_nid = X509_get_signature_nid(x);
|
---|
2575 | if (default_nid)
|
---|
2576 | return sig_nid == default_nid ? 1 : 0;
|
---|
2577 |
|
---|
2578 | if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
|
---|
2579 | /*
|
---|
2580 | * If we're in TLSv1.3 then we only get here if we're checking the
|
---|
2581 | * chain. If the peer has specified peer_cert_sigalgs then we use them
|
---|
2582 | * otherwise we default to normal sigalgs.
|
---|
2583 | */
|
---|
2584 | sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
|
---|
2585 | use_pc_sigalgs = 1;
|
---|
2586 | } else {
|
---|
2587 | sigalgslen = s->shared_sigalgslen;
|
---|
2588 | }
|
---|
2589 | for (i = 0; i < sigalgslen; i++) {
|
---|
2590 | sigalg = use_pc_sigalgs
|
---|
2591 | ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
|
---|
2592 | : s->shared_sigalgs[i];
|
---|
2593 | if (sigalg != NULL && sig_nid == sigalg->sigandhash)
|
---|
2594 | return 1;
|
---|
2595 | }
|
---|
2596 | return 0;
|
---|
2597 | }
|
---|
2598 |
|
---|
2599 | /* Check to see if a certificate issuer name matches list of CA names */
|
---|
2600 | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
|
---|
2601 | {
|
---|
2602 | const X509_NAME *nm;
|
---|
2603 | int i;
|
---|
2604 | nm = X509_get_issuer_name(x);
|
---|
2605 | for (i = 0; i < sk_X509_NAME_num(names); i++) {
|
---|
2606 | if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
|
---|
2607 | return 1;
|
---|
2608 | }
|
---|
2609 | return 0;
|
---|
2610 | }
|
---|
2611 |
|
---|
2612 | /*
|
---|
2613 | * Check certificate chain is consistent with TLS extensions and is usable by
|
---|
2614 | * server. This servers two purposes: it allows users to check chains before
|
---|
2615 | * passing them to the server and it allows the server to check chains before
|
---|
2616 | * attempting to use them.
|
---|
2617 | */
|
---|
2618 |
|
---|
2619 | /* Flags which need to be set for a certificate when strict mode not set */
|
---|
2620 |
|
---|
2621 | #define CERT_PKEY_VALID_FLAGS \
|
---|
2622 | (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
|
---|
2623 | /* Strict mode flags */
|
---|
2624 | #define CERT_PKEY_STRICT_FLAGS \
|
---|
2625 | (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
|
---|
2626 | | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
|
---|
2627 |
|
---|
2628 | int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
|
---|
2629 | int idx)
|
---|
2630 | {
|
---|
2631 | int i;
|
---|
2632 | int rv = 0;
|
---|
2633 | int check_flags = 0, strict_mode;
|
---|
2634 | CERT_PKEY *cpk = NULL;
|
---|
2635 | CERT *c = s->cert;
|
---|
2636 | uint32_t *pvalid;
|
---|
2637 | unsigned int suiteb_flags = tls1_suiteb(s);
|
---|
2638 | /* idx == -1 means checking server chains */
|
---|
2639 | if (idx != -1) {
|
---|
2640 | /* idx == -2 means checking client certificate chains */
|
---|
2641 | if (idx == -2) {
|
---|
2642 | cpk = c->key;
|
---|
2643 | idx = (int)(cpk - c->pkeys);
|
---|
2644 | } else
|
---|
2645 | cpk = c->pkeys + idx;
|
---|
2646 | pvalid = s->s3.tmp.valid_flags + idx;
|
---|
2647 | x = cpk->x509;
|
---|
2648 | pk = cpk->privatekey;
|
---|
2649 | chain = cpk->chain;
|
---|
2650 | strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
|
---|
2651 | /* If no cert or key, forget it */
|
---|
2652 | if (!x || !pk)
|
---|
2653 | goto end;
|
---|
2654 | } else {
|
---|
2655 | size_t certidx;
|
---|
2656 |
|
---|
2657 | if (!x || !pk)
|
---|
2658 | return 0;
|
---|
2659 |
|
---|
2660 | if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
|
---|
2661 | return 0;
|
---|
2662 | idx = certidx;
|
---|
2663 | pvalid = s->s3.tmp.valid_flags + idx;
|
---|
2664 |
|
---|
2665 | if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
|
---|
2666 | check_flags = CERT_PKEY_STRICT_FLAGS;
|
---|
2667 | else
|
---|
2668 | check_flags = CERT_PKEY_VALID_FLAGS;
|
---|
2669 | strict_mode = 1;
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | if (suiteb_flags) {
|
---|
2673 | int ok;
|
---|
2674 | if (check_flags)
|
---|
2675 | check_flags |= CERT_PKEY_SUITEB;
|
---|
2676 | ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
|
---|
2677 | if (ok == X509_V_OK)
|
---|
2678 | rv |= CERT_PKEY_SUITEB;
|
---|
2679 | else if (!check_flags)
|
---|
2680 | goto end;
|
---|
2681 | }
|
---|
2682 |
|
---|
2683 | /*
|
---|
2684 | * Check all signature algorithms are consistent with signature
|
---|
2685 | * algorithms extension if TLS 1.2 or later and strict mode.
|
---|
2686 | */
|
---|
2687 | if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
|
---|
2688 | int default_nid;
|
---|
2689 | int rsign = 0;
|
---|
2690 | if (s->s3.tmp.peer_cert_sigalgs != NULL
|
---|
2691 | || s->s3.tmp.peer_sigalgs != NULL) {
|
---|
2692 | default_nid = 0;
|
---|
2693 | /* If no sigalgs extension use defaults from RFC5246 */
|
---|
2694 | } else {
|
---|
2695 | switch (idx) {
|
---|
2696 | case SSL_PKEY_RSA:
|
---|
2697 | rsign = EVP_PKEY_RSA;
|
---|
2698 | default_nid = NID_sha1WithRSAEncryption;
|
---|
2699 | break;
|
---|
2700 |
|
---|
2701 | case SSL_PKEY_DSA_SIGN:
|
---|
2702 | rsign = EVP_PKEY_DSA;
|
---|
2703 | default_nid = NID_dsaWithSHA1;
|
---|
2704 | break;
|
---|
2705 |
|
---|
2706 | case SSL_PKEY_ECC:
|
---|
2707 | rsign = EVP_PKEY_EC;
|
---|
2708 | default_nid = NID_ecdsa_with_SHA1;
|
---|
2709 | break;
|
---|
2710 |
|
---|
2711 | case SSL_PKEY_GOST01:
|
---|
2712 | rsign = NID_id_GostR3410_2001;
|
---|
2713 | default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
|
---|
2714 | break;
|
---|
2715 |
|
---|
2716 | case SSL_PKEY_GOST12_256:
|
---|
2717 | rsign = NID_id_GostR3410_2012_256;
|
---|
2718 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
|
---|
2719 | break;
|
---|
2720 |
|
---|
2721 | case SSL_PKEY_GOST12_512:
|
---|
2722 | rsign = NID_id_GostR3410_2012_512;
|
---|
2723 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
|
---|
2724 | break;
|
---|
2725 |
|
---|
2726 | default:
|
---|
2727 | default_nid = -1;
|
---|
2728 | break;
|
---|
2729 | }
|
---|
2730 | }
|
---|
2731 | /*
|
---|
2732 | * If peer sent no signature algorithms extension and we have set
|
---|
2733 | * preferred signature algorithms check we support sha1.
|
---|
2734 | */
|
---|
2735 | if (default_nid > 0 && c->conf_sigalgs) {
|
---|
2736 | size_t j;
|
---|
2737 | const uint16_t *p = c->conf_sigalgs;
|
---|
2738 | for (j = 0; j < c->conf_sigalgslen; j++, p++) {
|
---|
2739 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
|
---|
2740 |
|
---|
2741 | if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
|
---|
2742 | break;
|
---|
2743 | }
|
---|
2744 | if (j == c->conf_sigalgslen) {
|
---|
2745 | if (check_flags)
|
---|
2746 | goto skip_sigs;
|
---|
2747 | else
|
---|
2748 | goto end;
|
---|
2749 | }
|
---|
2750 | }
|
---|
2751 | /* Check signature algorithm of each cert in chain */
|
---|
2752 | if (SSL_IS_TLS13(s)) {
|
---|
2753 | /*
|
---|
2754 | * We only get here if the application has called SSL_check_chain(),
|
---|
2755 | * so check_flags is always set.
|
---|
2756 | */
|
---|
2757 | if (find_sig_alg(s, x, pk) != NULL)
|
---|
2758 | rv |= CERT_PKEY_EE_SIGNATURE;
|
---|
2759 | } else if (!tls1_check_sig_alg(s, x, default_nid)) {
|
---|
2760 | if (!check_flags)
|
---|
2761 | goto end;
|
---|
2762 | } else
|
---|
2763 | rv |= CERT_PKEY_EE_SIGNATURE;
|
---|
2764 | rv |= CERT_PKEY_CA_SIGNATURE;
|
---|
2765 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
2766 | if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
|
---|
2767 | if (check_flags) {
|
---|
2768 | rv &= ~CERT_PKEY_CA_SIGNATURE;
|
---|
2769 | break;
|
---|
2770 | } else
|
---|
2771 | goto end;
|
---|
2772 | }
|
---|
2773 | }
|
---|
2774 | }
|
---|
2775 | /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
|
---|
2776 | else if (check_flags)
|
---|
2777 | rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
|
---|
2778 | skip_sigs:
|
---|
2779 | /* Check cert parameters are consistent */
|
---|
2780 | if (tls1_check_cert_param(s, x, 1))
|
---|
2781 | rv |= CERT_PKEY_EE_PARAM;
|
---|
2782 | else if (!check_flags)
|
---|
2783 | goto end;
|
---|
2784 | if (!s->server)
|
---|
2785 | rv |= CERT_PKEY_CA_PARAM;
|
---|
2786 | /* In strict mode check rest of chain too */
|
---|
2787 | else if (strict_mode) {
|
---|
2788 | rv |= CERT_PKEY_CA_PARAM;
|
---|
2789 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
2790 | X509 *ca = sk_X509_value(chain, i);
|
---|
2791 | if (!tls1_check_cert_param(s, ca, 0)) {
|
---|
2792 | if (check_flags) {
|
---|
2793 | rv &= ~CERT_PKEY_CA_PARAM;
|
---|
2794 | break;
|
---|
2795 | } else
|
---|
2796 | goto end;
|
---|
2797 | }
|
---|
2798 | }
|
---|
2799 | }
|
---|
2800 | if (!s->server && strict_mode) {
|
---|
2801 | STACK_OF(X509_NAME) *ca_dn;
|
---|
2802 | int check_type = 0;
|
---|
2803 |
|
---|
2804 | if (EVP_PKEY_is_a(pk, "RSA"))
|
---|
2805 | check_type = TLS_CT_RSA_SIGN;
|
---|
2806 | else if (EVP_PKEY_is_a(pk, "DSA"))
|
---|
2807 | check_type = TLS_CT_DSS_SIGN;
|
---|
2808 | else if (EVP_PKEY_is_a(pk, "EC"))
|
---|
2809 | check_type = TLS_CT_ECDSA_SIGN;
|
---|
2810 |
|
---|
2811 | if (check_type) {
|
---|
2812 | const uint8_t *ctypes = s->s3.tmp.ctype;
|
---|
2813 | size_t j;
|
---|
2814 |
|
---|
2815 | for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
|
---|
2816 | if (*ctypes == check_type) {
|
---|
2817 | rv |= CERT_PKEY_CERT_TYPE;
|
---|
2818 | break;
|
---|
2819 | }
|
---|
2820 | }
|
---|
2821 | if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
|
---|
2822 | goto end;
|
---|
2823 | } else {
|
---|
2824 | rv |= CERT_PKEY_CERT_TYPE;
|
---|
2825 | }
|
---|
2826 |
|
---|
2827 | ca_dn = s->s3.tmp.peer_ca_names;
|
---|
2828 |
|
---|
2829 | if (ca_dn == NULL
|
---|
2830 | || sk_X509_NAME_num(ca_dn) == 0
|
---|
2831 | || ssl_check_ca_name(ca_dn, x))
|
---|
2832 | rv |= CERT_PKEY_ISSUER_NAME;
|
---|
2833 | else
|
---|
2834 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
2835 | X509 *xtmp = sk_X509_value(chain, i);
|
---|
2836 |
|
---|
2837 | if (ssl_check_ca_name(ca_dn, xtmp)) {
|
---|
2838 | rv |= CERT_PKEY_ISSUER_NAME;
|
---|
2839 | break;
|
---|
2840 | }
|
---|
2841 | }
|
---|
2842 |
|
---|
2843 | if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
|
---|
2844 | goto end;
|
---|
2845 | } else
|
---|
2846 | rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
|
---|
2847 |
|
---|
2848 | if (!check_flags || (rv & check_flags) == check_flags)
|
---|
2849 | rv |= CERT_PKEY_VALID;
|
---|
2850 |
|
---|
2851 | end:
|
---|
2852 |
|
---|
2853 | if (TLS1_get_version(s) >= TLS1_2_VERSION)
|
---|
2854 | rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
|
---|
2855 | else
|
---|
2856 | rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
|
---|
2857 |
|
---|
2858 | /*
|
---|
2859 | * When checking a CERT_PKEY structure all flags are irrelevant if the
|
---|
2860 | * chain is invalid.
|
---|
2861 | */
|
---|
2862 | if (!check_flags) {
|
---|
2863 | if (rv & CERT_PKEY_VALID) {
|
---|
2864 | *pvalid = rv;
|
---|
2865 | } else {
|
---|
2866 | /* Preserve sign and explicit sign flag, clear rest */
|
---|
2867 | *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
---|
2868 | return 0;
|
---|
2869 | }
|
---|
2870 | }
|
---|
2871 | return rv;
|
---|
2872 | }
|
---|
2873 |
|
---|
2874 | /* Set validity of certificates in an SSL structure */
|
---|
2875 | void tls1_set_cert_validity(SSL *s)
|
---|
2876 | {
|
---|
2877 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
|
---|
2878 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
|
---|
2879 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
|
---|
2880 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
|
---|
2881 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
|
---|
2882 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
|
---|
2883 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
|
---|
2884 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
|
---|
2885 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
|
---|
2886 | }
|
---|
2887 |
|
---|
2888 | /* User level utility function to check a chain is suitable */
|
---|
2889 | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
|
---|
2890 | {
|
---|
2891 | return tls1_check_chain(s, x, pk, chain, -1);
|
---|
2892 | }
|
---|
2893 |
|
---|
2894 | EVP_PKEY *ssl_get_auto_dh(SSL *s)
|
---|
2895 | {
|
---|
2896 | EVP_PKEY *dhp = NULL;
|
---|
2897 | BIGNUM *p;
|
---|
2898 | int dh_secbits = 80, sec_level_bits;
|
---|
2899 | EVP_PKEY_CTX *pctx = NULL;
|
---|
2900 | OSSL_PARAM_BLD *tmpl = NULL;
|
---|
2901 | OSSL_PARAM *params = NULL;
|
---|
2902 |
|
---|
2903 | if (s->cert->dh_tmp_auto != 2) {
|
---|
2904 | if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
|
---|
2905 | if (s->s3.tmp.new_cipher->strength_bits == 256)
|
---|
2906 | dh_secbits = 128;
|
---|
2907 | else
|
---|
2908 | dh_secbits = 80;
|
---|
2909 | } else {
|
---|
2910 | if (s->s3.tmp.cert == NULL)
|
---|
2911 | return NULL;
|
---|
2912 | dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
|
---|
2913 | }
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 | /* Do not pick a prime that is too weak for the current security level */
|
---|
2917 | sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
|
---|
2918 | if (dh_secbits < sec_level_bits)
|
---|
2919 | dh_secbits = sec_level_bits;
|
---|
2920 |
|
---|
2921 | if (dh_secbits >= 192)
|
---|
2922 | p = BN_get_rfc3526_prime_8192(NULL);
|
---|
2923 | else if (dh_secbits >= 152)
|
---|
2924 | p = BN_get_rfc3526_prime_4096(NULL);
|
---|
2925 | else if (dh_secbits >= 128)
|
---|
2926 | p = BN_get_rfc3526_prime_3072(NULL);
|
---|
2927 | else if (dh_secbits >= 112)
|
---|
2928 | p = BN_get_rfc3526_prime_2048(NULL);
|
---|
2929 | else
|
---|
2930 | p = BN_get_rfc2409_prime_1024(NULL);
|
---|
2931 | if (p == NULL)
|
---|
2932 | goto err;
|
---|
2933 |
|
---|
2934 | pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
|
---|
2935 | if (pctx == NULL
|
---|
2936 | || EVP_PKEY_fromdata_init(pctx) != 1)
|
---|
2937 | goto err;
|
---|
2938 |
|
---|
2939 | tmpl = OSSL_PARAM_BLD_new();
|
---|
2940 | if (tmpl == NULL
|
---|
2941 | || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
|
---|
2942 | || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
|
---|
2943 | goto err;
|
---|
2944 |
|
---|
2945 | params = OSSL_PARAM_BLD_to_param(tmpl);
|
---|
2946 | if (params == NULL
|
---|
2947 | || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
|
---|
2948 | goto err;
|
---|
2949 |
|
---|
2950 | err:
|
---|
2951 | OSSL_PARAM_free(params);
|
---|
2952 | OSSL_PARAM_BLD_free(tmpl);
|
---|
2953 | EVP_PKEY_CTX_free(pctx);
|
---|
2954 | BN_free(p);
|
---|
2955 | return dhp;
|
---|
2956 | }
|
---|
2957 |
|
---|
2958 | static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
---|
2959 | {
|
---|
2960 | int secbits = -1;
|
---|
2961 | EVP_PKEY *pkey = X509_get0_pubkey(x);
|
---|
2962 | if (pkey) {
|
---|
2963 | /*
|
---|
2964 | * If no parameters this will return -1 and fail using the default
|
---|
2965 | * security callback for any non-zero security level. This will
|
---|
2966 | * reject keys which omit parameters but this only affects DSA and
|
---|
2967 | * omission of parameters is never (?) done in practice.
|
---|
2968 | */
|
---|
2969 | secbits = EVP_PKEY_get_security_bits(pkey);
|
---|
2970 | }
|
---|
2971 | if (s)
|
---|
2972 | return ssl_security(s, op, secbits, 0, x);
|
---|
2973 | else
|
---|
2974 | return ssl_ctx_security(ctx, op, secbits, 0, x);
|
---|
2975 | }
|
---|
2976 |
|
---|
2977 | static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
|
---|
2978 | {
|
---|
2979 | /* Lookup signature algorithm digest */
|
---|
2980 | int secbits, nid, pknid;
|
---|
2981 | /* Don't check signature if self signed */
|
---|
2982 | if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
|
---|
2983 | return 1;
|
---|
2984 | if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
|
---|
2985 | secbits = -1;
|
---|
2986 | /* If digest NID not defined use signature NID */
|
---|
2987 | if (nid == NID_undef)
|
---|
2988 | nid = pknid;
|
---|
2989 | if (s)
|
---|
2990 | return ssl_security(s, op, secbits, nid, x);
|
---|
2991 | else
|
---|
2992 | return ssl_ctx_security(ctx, op, secbits, nid, x);
|
---|
2993 | }
|
---|
2994 |
|
---|
2995 | int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
|
---|
2996 | {
|
---|
2997 | if (vfy)
|
---|
2998 | vfy = SSL_SECOP_PEER;
|
---|
2999 | if (is_ee) {
|
---|
3000 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
|
---|
3001 | return SSL_R_EE_KEY_TOO_SMALL;
|
---|
3002 | } else {
|
---|
3003 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
|
---|
3004 | return SSL_R_CA_KEY_TOO_SMALL;
|
---|
3005 | }
|
---|
3006 | if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
|
---|
3007 | return SSL_R_CA_MD_TOO_WEAK;
|
---|
3008 | return 1;
|
---|
3009 | }
|
---|
3010 |
|
---|
3011 | /*
|
---|
3012 | * Check security of a chain, if |sk| includes the end entity certificate then
|
---|
3013 | * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
|
---|
3014 | * one to the peer. Return values: 1 if ok otherwise error code to use
|
---|
3015 | */
|
---|
3016 |
|
---|
3017 | int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
|
---|
3018 | {
|
---|
3019 | int rv, start_idx, i;
|
---|
3020 | if (x == NULL) {
|
---|
3021 | x = sk_X509_value(sk, 0);
|
---|
3022 | if (x == NULL)
|
---|
3023 | return ERR_R_INTERNAL_ERROR;
|
---|
3024 | start_idx = 1;
|
---|
3025 | } else
|
---|
3026 | start_idx = 0;
|
---|
3027 |
|
---|
3028 | rv = ssl_security_cert(s, NULL, x, vfy, 1);
|
---|
3029 | if (rv != 1)
|
---|
3030 | return rv;
|
---|
3031 |
|
---|
3032 | for (i = start_idx; i < sk_X509_num(sk); i++) {
|
---|
3033 | x = sk_X509_value(sk, i);
|
---|
3034 | rv = ssl_security_cert(s, NULL, x, vfy, 0);
|
---|
3035 | if (rv != 1)
|
---|
3036 | return rv;
|
---|
3037 | }
|
---|
3038 | return 1;
|
---|
3039 | }
|
---|
3040 |
|
---|
3041 | /*
|
---|
3042 | * For TLS 1.2 servers check if we have a certificate which can be used
|
---|
3043 | * with the signature algorithm "lu" and return index of certificate.
|
---|
3044 | */
|
---|
3045 |
|
---|
3046 | static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
|
---|
3047 | {
|
---|
3048 | int sig_idx = lu->sig_idx;
|
---|
3049 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
|
---|
3050 |
|
---|
3051 | /* If not recognised or not supported by cipher mask it is not suitable */
|
---|
3052 | if (clu == NULL
|
---|
3053 | || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
|
---|
3054 | || (clu->nid == EVP_PKEY_RSA_PSS
|
---|
3055 | && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
|
---|
3056 | return -1;
|
---|
3057 |
|
---|
3058 | return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
|
---|
3059 | }
|
---|
3060 |
|
---|
3061 | /*
|
---|
3062 | * Checks the given cert against signature_algorithm_cert restrictions sent by
|
---|
3063 | * the peer (if any) as well as whether the hash from the sigalg is usable with
|
---|
3064 | * the key.
|
---|
3065 | * Returns true if the cert is usable and false otherwise.
|
---|
3066 | */
|
---|
3067 | static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
|
---|
3068 | EVP_PKEY *pkey)
|
---|
3069 | {
|
---|
3070 | const SIGALG_LOOKUP *lu;
|
---|
3071 | int mdnid, pknid, supported;
|
---|
3072 | size_t i;
|
---|
3073 | const char *mdname = NULL;
|
---|
3074 |
|
---|
3075 | /*
|
---|
3076 | * If the given EVP_PKEY cannot support signing with this digest,
|
---|
3077 | * the answer is simply 'no'.
|
---|
3078 | */
|
---|
3079 | if (sig->hash != NID_undef)
|
---|
3080 | mdname = OBJ_nid2sn(sig->hash);
|
---|
3081 | supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
|
---|
3082 | mdname,
|
---|
3083 | s->ctx->propq);
|
---|
3084 | if (supported <= 0)
|
---|
3085 | return 0;
|
---|
3086 |
|
---|
3087 | /*
|
---|
3088 | * The TLS 1.3 signature_algorithms_cert extension places restrictions
|
---|
3089 | * on the sigalg with which the certificate was signed (by its issuer).
|
---|
3090 | */
|
---|
3091 | if (s->s3.tmp.peer_cert_sigalgs != NULL) {
|
---|
3092 | if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
|
---|
3093 | return 0;
|
---|
3094 | for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
|
---|
3095 | lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
|
---|
3096 | if (lu == NULL)
|
---|
3097 | continue;
|
---|
3098 |
|
---|
3099 | /*
|
---|
3100 | * This does not differentiate between the
|
---|
3101 | * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
|
---|
3102 | * have a chain here that lets us look at the key OID in the
|
---|
3103 | * signing certificate.
|
---|
3104 | */
|
---|
3105 | if (mdnid == lu->hash && pknid == lu->sig)
|
---|
3106 | return 1;
|
---|
3107 | }
|
---|
3108 | return 0;
|
---|
3109 | }
|
---|
3110 |
|
---|
3111 | /*
|
---|
3112 | * Without signat_algorithms_cert, any certificate for which we have
|
---|
3113 | * a viable public key is permitted.
|
---|
3114 | */
|
---|
3115 | return 1;
|
---|
3116 | }
|
---|
3117 |
|
---|
3118 | /*
|
---|
3119 | * Returns true if |s| has a usable certificate configured for use
|
---|
3120 | * with signature scheme |sig|.
|
---|
3121 | * "Usable" includes a check for presence as well as applying
|
---|
3122 | * the signature_algorithm_cert restrictions sent by the peer (if any).
|
---|
3123 | * Returns false if no usable certificate is found.
|
---|
3124 | */
|
---|
3125 | static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
|
---|
3126 | {
|
---|
3127 | /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
|
---|
3128 | if (idx == -1)
|
---|
3129 | idx = sig->sig_idx;
|
---|
3130 | if (!ssl_has_cert(s, idx))
|
---|
3131 | return 0;
|
---|
3132 |
|
---|
3133 | return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
|
---|
3134 | s->cert->pkeys[idx].privatekey);
|
---|
3135 | }
|
---|
3136 |
|
---|
3137 | /*
|
---|
3138 | * Returns true if the supplied cert |x| and key |pkey| is usable with the
|
---|
3139 | * specified signature scheme |sig|, or false otherwise.
|
---|
3140 | */
|
---|
3141 | static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
|
---|
3142 | EVP_PKEY *pkey)
|
---|
3143 | {
|
---|
3144 | size_t idx;
|
---|
3145 |
|
---|
3146 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
|
---|
3147 | return 0;
|
---|
3148 |
|
---|
3149 | /* Check the key is consistent with the sig alg */
|
---|
3150 | if ((int)idx != sig->sig_idx)
|
---|
3151 | return 0;
|
---|
3152 |
|
---|
3153 | return check_cert_usable(s, sig, x, pkey);
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | /*
|
---|
3157 | * Find a signature scheme that works with the supplied certificate |x| and key
|
---|
3158 | * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
|
---|
3159 | * available certs/keys to find one that works.
|
---|
3160 | */
|
---|
3161 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
|
---|
3162 | {
|
---|
3163 | const SIGALG_LOOKUP *lu = NULL;
|
---|
3164 | size_t i;
|
---|
3165 | int curve = -1;
|
---|
3166 | EVP_PKEY *tmppkey;
|
---|
3167 |
|
---|
3168 | /* Look for a shared sigalgs matching possible certificates */
|
---|
3169 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
3170 | lu = s->shared_sigalgs[i];
|
---|
3171 |
|
---|
3172 | /* Skip SHA1, SHA224, DSA and RSA if not PSS */
|
---|
3173 | if (lu->hash == NID_sha1
|
---|
3174 | || lu->hash == NID_sha224
|
---|
3175 | || lu->sig == EVP_PKEY_DSA
|
---|
3176 | || lu->sig == EVP_PKEY_RSA)
|
---|
3177 | continue;
|
---|
3178 | /* Check that we have a cert, and signature_algorithms_cert */
|
---|
3179 | if (!tls1_lookup_md(s->ctx, lu, NULL))
|
---|
3180 | continue;
|
---|
3181 | if ((pkey == NULL && !has_usable_cert(s, lu, -1))
|
---|
3182 | || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
|
---|
3183 | continue;
|
---|
3184 |
|
---|
3185 | tmppkey = (pkey != NULL) ? pkey
|
---|
3186 | : s->cert->pkeys[lu->sig_idx].privatekey;
|
---|
3187 |
|
---|
3188 | if (lu->sig == EVP_PKEY_EC) {
|
---|
3189 | if (curve == -1)
|
---|
3190 | curve = ssl_get_EC_curve_nid(tmppkey);
|
---|
3191 | if (lu->curve != NID_undef && curve != lu->curve)
|
---|
3192 | continue;
|
---|
3193 | } else if (lu->sig == EVP_PKEY_RSA_PSS) {
|
---|
3194 | /* validate that key is large enough for the signature algorithm */
|
---|
3195 | if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
|
---|
3196 | continue;
|
---|
3197 | }
|
---|
3198 | break;
|
---|
3199 | }
|
---|
3200 |
|
---|
3201 | if (i == s->shared_sigalgslen)
|
---|
3202 | return NULL;
|
---|
3203 |
|
---|
3204 | return lu;
|
---|
3205 | }
|
---|
3206 |
|
---|
3207 | /*
|
---|
3208 | * Choose an appropriate signature algorithm based on available certificates
|
---|
3209 | * Sets chosen certificate and signature algorithm.
|
---|
3210 | *
|
---|
3211 | * For servers if we fail to find a required certificate it is a fatal error,
|
---|
3212 | * an appropriate error code is set and a TLS alert is sent.
|
---|
3213 | *
|
---|
3214 | * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
|
---|
3215 | * a fatal error: we will either try another certificate or not present one
|
---|
3216 | * to the server. In this case no error is set.
|
---|
3217 | */
|
---|
3218 | int tls_choose_sigalg(SSL *s, int fatalerrs)
|
---|
3219 | {
|
---|
3220 | const SIGALG_LOOKUP *lu = NULL;
|
---|
3221 | int sig_idx = -1;
|
---|
3222 |
|
---|
3223 | s->s3.tmp.cert = NULL;
|
---|
3224 | s->s3.tmp.sigalg = NULL;
|
---|
3225 |
|
---|
3226 | if (SSL_IS_TLS13(s)) {
|
---|
3227 | lu = find_sig_alg(s, NULL, NULL);
|
---|
3228 | if (lu == NULL) {
|
---|
3229 | if (!fatalerrs)
|
---|
3230 | return 1;
|
---|
3231 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3232 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3233 | return 0;
|
---|
3234 | }
|
---|
3235 | } else {
|
---|
3236 | /* If ciphersuite doesn't require a cert nothing to do */
|
---|
3237 | if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
|
---|
3238 | return 1;
|
---|
3239 | if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
|
---|
3240 | return 1;
|
---|
3241 |
|
---|
3242 | if (SSL_USE_SIGALGS(s)) {
|
---|
3243 | size_t i;
|
---|
3244 | if (s->s3.tmp.peer_sigalgs != NULL) {
|
---|
3245 | int curve = -1;
|
---|
3246 |
|
---|
3247 | /* For Suite B need to match signature algorithm to curve */
|
---|
3248 | if (tls1_suiteb(s))
|
---|
3249 | curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
|
---|
3250 | .privatekey);
|
---|
3251 |
|
---|
3252 | /*
|
---|
3253 | * Find highest preference signature algorithm matching
|
---|
3254 | * cert type
|
---|
3255 | */
|
---|
3256 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
3257 | lu = s->shared_sigalgs[i];
|
---|
3258 |
|
---|
3259 | if (s->server) {
|
---|
3260 | if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
|
---|
3261 | continue;
|
---|
3262 | } else {
|
---|
3263 | int cc_idx = s->cert->key - s->cert->pkeys;
|
---|
3264 |
|
---|
3265 | sig_idx = lu->sig_idx;
|
---|
3266 | if (cc_idx != sig_idx)
|
---|
3267 | continue;
|
---|
3268 | }
|
---|
3269 | /* Check that we have a cert, and sig_algs_cert */
|
---|
3270 | if (!has_usable_cert(s, lu, sig_idx))
|
---|
3271 | continue;
|
---|
3272 | if (lu->sig == EVP_PKEY_RSA_PSS) {
|
---|
3273 | /* validate that key is large enough for the signature algorithm */
|
---|
3274 | EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
|
---|
3275 |
|
---|
3276 | if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
|
---|
3277 | continue;
|
---|
3278 | }
|
---|
3279 | if (curve == -1 || lu->curve == curve)
|
---|
3280 | break;
|
---|
3281 | }
|
---|
3282 | #ifndef OPENSSL_NO_GOST
|
---|
3283 | /*
|
---|
3284 | * Some Windows-based implementations do not send GOST algorithms indication
|
---|
3285 | * in supported_algorithms extension, so when we have GOST-based ciphersuite,
|
---|
3286 | * we have to assume GOST support.
|
---|
3287 | */
|
---|
3288 | if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
|
---|
3289 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3290 | if (!fatalerrs)
|
---|
3291 | return 1;
|
---|
3292 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3293 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3294 | return 0;
|
---|
3295 | } else {
|
---|
3296 | i = 0;
|
---|
3297 | sig_idx = lu->sig_idx;
|
---|
3298 | }
|
---|
3299 | }
|
---|
3300 | #endif
|
---|
3301 | if (i == s->shared_sigalgslen) {
|
---|
3302 | if (!fatalerrs)
|
---|
3303 | return 1;
|
---|
3304 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3305 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3306 | return 0;
|
---|
3307 | }
|
---|
3308 | } else {
|
---|
3309 | /*
|
---|
3310 | * If we have no sigalg use defaults
|
---|
3311 | */
|
---|
3312 | const uint16_t *sent_sigs;
|
---|
3313 | size_t sent_sigslen;
|
---|
3314 |
|
---|
3315 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3316 | if (!fatalerrs)
|
---|
3317 | return 1;
|
---|
3318 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3319 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3320 | return 0;
|
---|
3321 | }
|
---|
3322 |
|
---|
3323 | /* Check signature matches a type we sent */
|
---|
3324 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
3325 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
---|
3326 | if (lu->sigalg == *sent_sigs
|
---|
3327 | && has_usable_cert(s, lu, lu->sig_idx))
|
---|
3328 | break;
|
---|
3329 | }
|
---|
3330 | if (i == sent_sigslen) {
|
---|
3331 | if (!fatalerrs)
|
---|
3332 | return 1;
|
---|
3333 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3334 | SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
3335 | return 0;
|
---|
3336 | }
|
---|
3337 | }
|
---|
3338 | } else {
|
---|
3339 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3340 | if (!fatalerrs)
|
---|
3341 | return 1;
|
---|
3342 | SSLfatal(s, SSL_AD_INTERNAL_ERROR,
|
---|
3343 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3344 | return 0;
|
---|
3345 | }
|
---|
3346 | }
|
---|
3347 | }
|
---|
3348 | if (sig_idx == -1)
|
---|
3349 | sig_idx = lu->sig_idx;
|
---|
3350 | s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
|
---|
3351 | s->cert->key = s->s3.tmp.cert;
|
---|
3352 | s->s3.tmp.sigalg = lu;
|
---|
3353 | return 1;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
|
---|
3357 | {
|
---|
3358 | if (mode != TLSEXT_max_fragment_length_DISABLED
|
---|
3359 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
---|
3360 | ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
---|
3361 | return 0;
|
---|
3362 | }
|
---|
3363 |
|
---|
3364 | ctx->ext.max_fragment_len_mode = mode;
|
---|
3365 | return 1;
|
---|
3366 | }
|
---|
3367 |
|
---|
3368 | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
|
---|
3369 | {
|
---|
3370 | if (mode != TLSEXT_max_fragment_length_DISABLED
|
---|
3371 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
---|
3372 | ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
---|
3373 | return 0;
|
---|
3374 | }
|
---|
3375 |
|
---|
3376 | ssl->ext.max_fragment_len_mode = mode;
|
---|
3377 | return 1;
|
---|
3378 | }
|
---|
3379 |
|
---|
3380 | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
|
---|
3381 | {
|
---|
3382 | return session->ext.max_fragment_len_mode;
|
---|
3383 | }
|
---|
3384 |
|
---|
3385 | /*
|
---|
3386 | * Helper functions for HMAC access with legacy support included.
|
---|
3387 | */
|
---|
3388 | SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
|
---|
3389 | {
|
---|
3390 | SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
3391 | EVP_MAC *mac = NULL;
|
---|
3392 |
|
---|
3393 | if (ret == NULL)
|
---|
3394 | return NULL;
|
---|
3395 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3396 | if (ctx->ext.ticket_key_evp_cb == NULL
|
---|
3397 | && ctx->ext.ticket_key_cb != NULL) {
|
---|
3398 | if (!ssl_hmac_old_new(ret))
|
---|
3399 | goto err;
|
---|
3400 | return ret;
|
---|
3401 | }
|
---|
3402 | #endif
|
---|
3403 | mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
|
---|
3404 | if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
|
---|
3405 | goto err;
|
---|
3406 | EVP_MAC_free(mac);
|
---|
3407 | return ret;
|
---|
3408 | err:
|
---|
3409 | EVP_MAC_CTX_free(ret->ctx);
|
---|
3410 | EVP_MAC_free(mac);
|
---|
3411 | OPENSSL_free(ret);
|
---|
3412 | return NULL;
|
---|
3413 | }
|
---|
3414 |
|
---|
3415 | void ssl_hmac_free(SSL_HMAC *ctx)
|
---|
3416 | {
|
---|
3417 | if (ctx != NULL) {
|
---|
3418 | EVP_MAC_CTX_free(ctx->ctx);
|
---|
3419 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3420 | ssl_hmac_old_free(ctx);
|
---|
3421 | #endif
|
---|
3422 | OPENSSL_free(ctx);
|
---|
3423 | }
|
---|
3424 | }
|
---|
3425 |
|
---|
3426 | EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
|
---|
3427 | {
|
---|
3428 | return ctx->ctx;
|
---|
3429 | }
|
---|
3430 |
|
---|
3431 | int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
|
---|
3432 | {
|
---|
3433 | OSSL_PARAM params[2], *p = params;
|
---|
3434 |
|
---|
3435 | if (ctx->ctx != NULL) {
|
---|
3436 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
|
---|
3437 | *p = OSSL_PARAM_construct_end();
|
---|
3438 | if (EVP_MAC_init(ctx->ctx, key, len, params))
|
---|
3439 | return 1;
|
---|
3440 | }
|
---|
3441 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3442 | if (ctx->old_ctx != NULL)
|
---|
3443 | return ssl_hmac_old_init(ctx, key, len, md);
|
---|
3444 | #endif
|
---|
3445 | return 0;
|
---|
3446 | }
|
---|
3447 |
|
---|
3448 | int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
|
---|
3449 | {
|
---|
3450 | if (ctx->ctx != NULL)
|
---|
3451 | return EVP_MAC_update(ctx->ctx, data, len);
|
---|
3452 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3453 | if (ctx->old_ctx != NULL)
|
---|
3454 | return ssl_hmac_old_update(ctx, data, len);
|
---|
3455 | #endif
|
---|
3456 | return 0;
|
---|
3457 | }
|
---|
3458 |
|
---|
3459 | int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
|
---|
3460 | size_t max_size)
|
---|
3461 | {
|
---|
3462 | if (ctx->ctx != NULL)
|
---|
3463 | return EVP_MAC_final(ctx->ctx, md, len, max_size);
|
---|
3464 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3465 | if (ctx->old_ctx != NULL)
|
---|
3466 | return ssl_hmac_old_final(ctx, md, len);
|
---|
3467 | #endif
|
---|
3468 | return 0;
|
---|
3469 | }
|
---|
3470 |
|
---|
3471 | size_t ssl_hmac_size(const SSL_HMAC *ctx)
|
---|
3472 | {
|
---|
3473 | if (ctx->ctx != NULL)
|
---|
3474 | return EVP_MAC_CTX_get_mac_size(ctx->ctx);
|
---|
3475 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3476 | if (ctx->old_ctx != NULL)
|
---|
3477 | return ssl_hmac_old_size(ctx);
|
---|
3478 | #endif
|
---|
3479 | return 0;
|
---|
3480 | }
|
---|
3481 |
|
---|
3482 | int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
|
---|
3483 | {
|
---|
3484 | char gname[OSSL_MAX_NAME_SIZE];
|
---|
3485 |
|
---|
3486 | if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
|
---|
3487 | return OBJ_txt2nid(gname);
|
---|
3488 |
|
---|
3489 | return NID_undef;
|
---|
3490 | }
|
---|
3491 |
|
---|
3492 | __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
|
---|
3493 | const unsigned char *enckey,
|
---|
3494 | size_t enckeylen)
|
---|
3495 | {
|
---|
3496 | if (EVP_PKEY_is_a(pkey, "DH")) {
|
---|
3497 | int bits = EVP_PKEY_get_bits(pkey);
|
---|
3498 |
|
---|
3499 | if (bits <= 0 || enckeylen != (size_t)bits / 8)
|
---|
3500 | /* the encoded key must be padded to the length of the p */
|
---|
3501 | return 0;
|
---|
3502 | } else if (EVP_PKEY_is_a(pkey, "EC")) {
|
---|
3503 | if (enckeylen < 3 /* point format and at least 1 byte for x and y */
|
---|
3504 | || enckey[0] != 0x04)
|
---|
3505 | return 0;
|
---|
3506 | }
|
---|
3507 |
|
---|
3508 | return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
|
---|
3509 | }
|
---|