VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/ssl/t1_lib.c@ 95000

Last change on this file since 95000 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

File size: 91.6 KB
Line 
1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "e_os.h"
12#include <stdlib.h>
13#include <openssl/objects.h>
14#include <openssl/evp.h>
15#include <openssl/hmac.h>
16#include <openssl/ocsp.h>
17#include <openssl/conf.h>
18#include <openssl/x509v3.h>
19#include <openssl/dh.h>
20#include <openssl/bn.h>
21#include "internal/nelem.h"
22#include "ssl_local.h"
23#include <openssl/ct.h>
24
25static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
26static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
27
28SSL3_ENC_METHOD const TLSv1_enc_data = {
29 tls1_enc,
30 tls1_mac,
31 tls1_setup_key_block,
32 tls1_generate_master_secret,
33 tls1_change_cipher_state,
34 tls1_final_finish_mac,
35 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
36 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
37 tls1_alert_code,
38 tls1_export_keying_material,
39 0,
40 ssl3_set_handshake_header,
41 tls_close_construct_packet,
42 ssl3_handshake_write
43};
44
45SSL3_ENC_METHOD const TLSv1_1_enc_data = {
46 tls1_enc,
47 tls1_mac,
48 tls1_setup_key_block,
49 tls1_generate_master_secret,
50 tls1_change_cipher_state,
51 tls1_final_finish_mac,
52 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
53 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
54 tls1_alert_code,
55 tls1_export_keying_material,
56 SSL_ENC_FLAG_EXPLICIT_IV,
57 ssl3_set_handshake_header,
58 tls_close_construct_packet,
59 ssl3_handshake_write
60};
61
62SSL3_ENC_METHOD const TLSv1_2_enc_data = {
63 tls1_enc,
64 tls1_mac,
65 tls1_setup_key_block,
66 tls1_generate_master_secret,
67 tls1_change_cipher_state,
68 tls1_final_finish_mac,
69 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
70 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
71 tls1_alert_code,
72 tls1_export_keying_material,
73 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
74 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
75 ssl3_set_handshake_header,
76 tls_close_construct_packet,
77 ssl3_handshake_write
78};
79
80SSL3_ENC_METHOD const TLSv1_3_enc_data = {
81 tls13_enc,
82 tls1_mac,
83 tls13_setup_key_block,
84 tls13_generate_master_secret,
85 tls13_change_cipher_state,
86 tls13_final_finish_mac,
87 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
88 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
89 tls13_alert_code,
90 tls13_export_keying_material,
91 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
92 ssl3_set_handshake_header,
93 tls_close_construct_packet,
94 ssl3_handshake_write
95};
96
97long tls1_default_timeout(void)
98{
99 /*
100 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
101 * http, the cache would over fill
102 */
103 return (60 * 60 * 2);
104}
105
106int tls1_new(SSL *s)
107{
108 if (!ssl3_new(s))
109 return 0;
110 if (!s->method->ssl_clear(s))
111 return 0;
112
113 return 1;
114}
115
116void tls1_free(SSL *s)
117{
118 OPENSSL_free(s->ext.session_ticket);
119 ssl3_free(s);
120}
121
122int tls1_clear(SSL *s)
123{
124 if (!ssl3_clear(s))
125 return 0;
126
127 if (s->method->version == TLS_ANY_VERSION)
128 s->version = TLS_MAX_VERSION;
129 else
130 s->version = s->method->version;
131
132 return 1;
133}
134
135#ifndef OPENSSL_NO_EC
136
137/*
138 * Table of curve information.
139 * Do not delete entries or reorder this array! It is used as a lookup
140 * table: the index of each entry is one less than the TLS curve id.
141 */
142static const TLS_GROUP_INFO nid_list[] = {
143 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
144 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
145 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
146 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
147 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
148 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
149 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
150 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
151 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
152 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
153 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
154 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
155 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
156 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
157 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
158 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
159 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
160 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
161 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
162 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
163 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
164 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
165 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
166 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
167 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
168 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
169 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
170 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
171 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
172 {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */
173};
174
175static const unsigned char ecformats_default[] = {
176 TLSEXT_ECPOINTFORMAT_uncompressed,
177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
178 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
179};
180
181/* The default curves */
182static const uint16_t eccurves_default[] = {
183 29, /* X25519 (29) */
184 23, /* secp256r1 (23) */
185 30, /* X448 (30) */
186 25, /* secp521r1 (25) */
187 24, /* secp384r1 (24) */
188};
189
190static const uint16_t suiteb_curves[] = {
191 TLSEXT_curve_P_256,
192 TLSEXT_curve_P_384
193};
194
195const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id)
196{
197 /* ECC curves from RFC 4492 and RFC 7027 */
198 if (group_id < 1 || group_id > OSSL_NELEM(nid_list))
199 return NULL;
200 return &nid_list[group_id - 1];
201}
202
203static uint16_t tls1_nid2group_id(int nid)
204{
205 size_t i;
206 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
207 if (nid_list[i].nid == nid)
208 return (uint16_t)(i + 1);
209 }
210 return 0;
211}
212
213/*
214 * Set *pgroups to the supported groups list and *pgroupslen to
215 * the number of groups supported.
216 */
217void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
218 size_t *pgroupslen)
219{
220
221 /* For Suite B mode only include P-256, P-384 */
222 switch (tls1_suiteb(s)) {
223 case SSL_CERT_FLAG_SUITEB_128_LOS:
224 *pgroups = suiteb_curves;
225 *pgroupslen = OSSL_NELEM(suiteb_curves);
226 break;
227
228 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
229 *pgroups = suiteb_curves;
230 *pgroupslen = 1;
231 break;
232
233 case SSL_CERT_FLAG_SUITEB_192_LOS:
234 *pgroups = suiteb_curves + 1;
235 *pgroupslen = 1;
236 break;
237
238 default:
239 if (s->ext.supportedgroups == NULL) {
240 *pgroups = eccurves_default;
241 *pgroupslen = OSSL_NELEM(eccurves_default);
242 } else {
243 *pgroups = s->ext.supportedgroups;
244 *pgroupslen = s->ext.supportedgroups_len;
245 }
246 break;
247 }
248}
249
250/* See if curve is allowed by security callback */
251int tls_curve_allowed(SSL *s, uint16_t curve, int op)
252{
253 const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve);
254 unsigned char ctmp[2];
255
256 if (cinfo == NULL)
257 return 0;
258# ifdef OPENSSL_NO_EC2M
259 if (cinfo->flags & TLS_CURVE_CHAR2)
260 return 0;
261# endif
262 ctmp[0] = curve >> 8;
263 ctmp[1] = curve & 0xff;
264 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp);
265}
266
267/* Return 1 if "id" is in "list" */
268static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
269{
270 size_t i;
271 for (i = 0; i < listlen; i++)
272 if (list[i] == id)
273 return 1;
274 return 0;
275}
276
277/*-
278 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
279 * if there is no match.
280 * For nmatch == -1, return number of matches
281 * For nmatch == -2, return the id of the group to use for
282 * a tmp key, or 0 if there is no match.
283 */
284uint16_t tls1_shared_group(SSL *s, int nmatch)
285{
286 const uint16_t *pref, *supp;
287 size_t num_pref, num_supp, i;
288 int k;
289
290 /* Can't do anything on client side */
291 if (s->server == 0)
292 return 0;
293 if (nmatch == -2) {
294 if (tls1_suiteb(s)) {
295 /*
296 * For Suite B ciphersuite determines curve: we already know
297 * these are acceptable due to previous checks.
298 */
299 unsigned long cid = s->s3->tmp.new_cipher->id;
300
301 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
302 return TLSEXT_curve_P_256;
303 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
304 return TLSEXT_curve_P_384;
305 /* Should never happen */
306 return 0;
307 }
308 /* If not Suite B just return first preference shared curve */
309 nmatch = 0;
310 }
311 /*
312 * If server preference set, our groups are the preference order
313 * otherwise peer decides.
314 */
315 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
316 tls1_get_supported_groups(s, &pref, &num_pref);
317 tls1_get_peer_groups(s, &supp, &num_supp);
318 } else {
319 tls1_get_peer_groups(s, &pref, &num_pref);
320 tls1_get_supported_groups(s, &supp, &num_supp);
321 }
322
323 for (k = 0, i = 0; i < num_pref; i++) {
324 uint16_t id = pref[i];
325
326 if (!tls1_in_list(id, supp, num_supp)
327 || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED))
328 continue;
329 if (nmatch == k)
330 return id;
331 k++;
332 }
333 if (nmatch == -1)
334 return k;
335 /* Out of range (nmatch > k). */
336 return 0;
337}
338
339int tls1_set_groups(uint16_t **pext, size_t *pextlen,
340 int *groups, size_t ngroups)
341{
342 uint16_t *glist;
343 size_t i;
344 /*
345 * Bitmap of groups included to detect duplicates: only works while group
346 * ids < 32
347 */
348 unsigned long dup_list = 0;
349
350 if (ngroups == 0) {
351 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
352 return 0;
353 }
354 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
355 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
356 return 0;
357 }
358 for (i = 0; i < ngroups; i++) {
359 unsigned long idmask;
360 uint16_t id;
361 /* TODO(TLS1.3): Convert for DH groups */
362 id = tls1_nid2group_id(groups[i]);
363 idmask = 1L << id;
364 if (!id || (dup_list & idmask)) {
365 OPENSSL_free(glist);
366 return 0;
367 }
368 dup_list |= idmask;
369 glist[i] = id;
370 }
371 OPENSSL_free(*pext);
372 *pext = glist;
373 *pextlen = ngroups;
374 return 1;
375}
376
377# define MAX_CURVELIST OSSL_NELEM(nid_list)
378
379typedef struct {
380 size_t nidcnt;
381 int nid_arr[MAX_CURVELIST];
382} nid_cb_st;
383
384static int nid_cb(const char *elem, int len, void *arg)
385{
386 nid_cb_st *narg = arg;
387 size_t i;
388 int nid;
389 char etmp[20];
390 if (elem == NULL)
391 return 0;
392 if (narg->nidcnt == MAX_CURVELIST)
393 return 0;
394 if (len > (int)(sizeof(etmp) - 1))
395 return 0;
396 memcpy(etmp, elem, len);
397 etmp[len] = 0;
398 nid = EC_curve_nist2nid(etmp);
399 if (nid == NID_undef)
400 nid = OBJ_sn2nid(etmp);
401 if (nid == NID_undef)
402 nid = OBJ_ln2nid(etmp);
403 if (nid == NID_undef)
404 return 0;
405 for (i = 0; i < narg->nidcnt; i++)
406 if (narg->nid_arr[i] == nid)
407 return 0;
408 narg->nid_arr[narg->nidcnt++] = nid;
409 return 1;
410}
411
412/* Set groups based on a colon separate list */
413int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
414{
415 nid_cb_st ncb;
416 ncb.nidcnt = 0;
417 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
418 return 0;
419 if (pext == NULL)
420 return 1;
421 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
422}
423/* Return group id of a key */
424static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
425{
426 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
427 const EC_GROUP *grp;
428
429 if (ec == NULL)
430 return 0;
431 grp = EC_KEY_get0_group(ec);
432 return tls1_nid2group_id(EC_GROUP_get_curve_name(grp));
433}
434
435/* Check a key is compatible with compression extension */
436static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
437{
438 const EC_KEY *ec;
439 const EC_GROUP *grp;
440 unsigned char comp_id;
441 size_t i;
442
443 /* If not an EC key nothing to check */
444 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
445 return 1;
446 ec = EVP_PKEY_get0_EC_KEY(pkey);
447 grp = EC_KEY_get0_group(ec);
448
449 /* Get required compression id */
450 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
451 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
452 } else if (SSL_IS_TLS13(s)) {
453 /*
454 * ec_point_formats extension is not used in TLSv1.3 so we ignore
455 * this check.
456 */
457 return 1;
458 } else {
459 int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp));
460
461 if (field_type == NID_X9_62_prime_field)
462 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
463 else if (field_type == NID_X9_62_characteristic_two_field)
464 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
465 else
466 return 0;
467 }
468 /*
469 * If point formats extension present check it, otherwise everything is
470 * supported (see RFC4492).
471 */
472 if (s->ext.peer_ecpointformats == NULL)
473 return 1;
474
475 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
476 if (s->ext.peer_ecpointformats[i] == comp_id)
477 return 1;
478 }
479 return 0;
480}
481
482/* Check a group id matches preferences */
483int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
484 {
485 const uint16_t *groups;
486 size_t groups_len;
487
488 if (group_id == 0)
489 return 0;
490
491 /* Check for Suite B compliance */
492 if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) {
493 unsigned long cid = s->s3->tmp.new_cipher->id;
494
495 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
496 if (group_id != TLSEXT_curve_P_256)
497 return 0;
498 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
499 if (group_id != TLSEXT_curve_P_384)
500 return 0;
501 } else {
502 /* Should never happen */
503 return 0;
504 }
505 }
506
507 if (check_own_groups) {
508 /* Check group is one of our preferences */
509 tls1_get_supported_groups(s, &groups, &groups_len);
510 if (!tls1_in_list(group_id, groups, groups_len))
511 return 0;
512 }
513
514 if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
515 return 0;
516
517 /* For clients, nothing more to check */
518 if (!s->server)
519 return 1;
520
521 /* Check group is one of peers preferences */
522 tls1_get_peer_groups(s, &groups, &groups_len);
523
524 /*
525 * RFC 4492 does not require the supported elliptic curves extension
526 * so if it is not sent we can just choose any curve.
527 * It is invalid to send an empty list in the supported groups
528 * extension, so groups_len == 0 always means no extension.
529 */
530 if (groups_len == 0)
531 return 1;
532 return tls1_in_list(group_id, groups, groups_len);
533}
534
535void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
536 size_t *num_formats)
537{
538 /*
539 * If we have a custom point format list use it otherwise use default
540 */
541 if (s->ext.ecpointformats) {
542 *pformats = s->ext.ecpointformats;
543 *num_formats = s->ext.ecpointformats_len;
544 } else {
545 *pformats = ecformats_default;
546 /* For Suite B we don't support char2 fields */
547 if (tls1_suiteb(s))
548 *num_formats = sizeof(ecformats_default) - 1;
549 else
550 *num_formats = sizeof(ecformats_default);
551 }
552}
553
554/*
555 * Check cert parameters compatible with extensions: currently just checks EC
556 * certificates have compatible curves and compression.
557 */
558static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
559{
560 uint16_t group_id;
561 EVP_PKEY *pkey;
562 pkey = X509_get0_pubkey(x);
563 if (pkey == NULL)
564 return 0;
565 /* If not EC nothing to do */
566 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
567 return 1;
568 /* Check compression */
569 if (!tls1_check_pkey_comp(s, pkey))
570 return 0;
571 group_id = tls1_get_group_id(pkey);
572 /*
573 * For a server we allow the certificate to not be in our list of supported
574 * groups.
575 */
576 if (!tls1_check_group_id(s, group_id, !s->server))
577 return 0;
578 /*
579 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
580 * SHA384+P-384.
581 */
582 if (check_ee_md && tls1_suiteb(s)) {
583 int check_md;
584 size_t i;
585
586 /* Check to see we have necessary signing algorithm */
587 if (group_id == TLSEXT_curve_P_256)
588 check_md = NID_ecdsa_with_SHA256;
589 else if (group_id == TLSEXT_curve_P_384)
590 check_md = NID_ecdsa_with_SHA384;
591 else
592 return 0; /* Should never happen */
593 for (i = 0; i < s->shared_sigalgslen; i++) {
594 if (check_md == s->shared_sigalgs[i]->sigandhash)
595 return 1;;
596 }
597 return 0;
598 }
599 return 1;
600}
601
602/*
603 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
604 * @s: SSL connection
605 * @cid: Cipher ID we're considering using
606 *
607 * Checks that the kECDHE cipher suite we're considering using
608 * is compatible with the client extensions.
609 *
610 * Returns 0 when the cipher can't be used or 1 when it can.
611 */
612int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
613{
614 /* If not Suite B just need a shared group */
615 if (!tls1_suiteb(s))
616 return tls1_shared_group(s, 0) != 0;
617 /*
618 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
619 * curves permitted.
620 */
621 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
622 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
623 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
624 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
625
626 return 0;
627}
628
629#else
630
631static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
632{
633 return 1;
634}
635
636#endif /* OPENSSL_NO_EC */
637
638/* Default sigalg schemes */
639static const uint16_t tls12_sigalgs[] = {
640#ifndef OPENSSL_NO_EC
641 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
642 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
643 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
644 TLSEXT_SIGALG_ed25519,
645 TLSEXT_SIGALG_ed448,
646#endif
647
648 TLSEXT_SIGALG_rsa_pss_pss_sha256,
649 TLSEXT_SIGALG_rsa_pss_pss_sha384,
650 TLSEXT_SIGALG_rsa_pss_pss_sha512,
651 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
652 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
653 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
654
655 TLSEXT_SIGALG_rsa_pkcs1_sha256,
656 TLSEXT_SIGALG_rsa_pkcs1_sha384,
657 TLSEXT_SIGALG_rsa_pkcs1_sha512,
658
659#ifndef OPENSSL_NO_EC
660 TLSEXT_SIGALG_ecdsa_sha224,
661 TLSEXT_SIGALG_ecdsa_sha1,
662#endif
663 TLSEXT_SIGALG_rsa_pkcs1_sha224,
664 TLSEXT_SIGALG_rsa_pkcs1_sha1,
665#ifndef OPENSSL_NO_DSA
666 TLSEXT_SIGALG_dsa_sha224,
667 TLSEXT_SIGALG_dsa_sha1,
668
669 TLSEXT_SIGALG_dsa_sha256,
670 TLSEXT_SIGALG_dsa_sha384,
671 TLSEXT_SIGALG_dsa_sha512,
672#endif
673#ifndef OPENSSL_NO_GOST
674 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
675 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
676 TLSEXT_SIGALG_gostr34102001_gostr3411,
677#endif
678};
679
680#ifndef OPENSSL_NO_EC
681static const uint16_t suiteb_sigalgs[] = {
682 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
683 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
684};
685#endif
686
687static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
688#ifndef OPENSSL_NO_EC
689 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
690 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
691 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
692 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
693 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
694 NID_ecdsa_with_SHA384, NID_secp384r1},
695 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
696 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
697 NID_ecdsa_with_SHA512, NID_secp521r1},
698 {"ed25519", TLSEXT_SIGALG_ed25519,
699 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
700 NID_undef, NID_undef},
701 {"ed448", TLSEXT_SIGALG_ed448,
702 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
703 NID_undef, NID_undef},
704 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
705 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
706 NID_ecdsa_with_SHA224, NID_undef},
707 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
708 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
709 NID_ecdsa_with_SHA1, NID_undef},
710#endif
711 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
712 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
713 NID_undef, NID_undef},
714 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
715 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
716 NID_undef, NID_undef},
717 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
718 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
719 NID_undef, NID_undef},
720 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
721 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
722 NID_undef, NID_undef},
723 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
724 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
725 NID_undef, NID_undef},
726 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
727 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
728 NID_undef, NID_undef},
729 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
730 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
731 NID_sha256WithRSAEncryption, NID_undef},
732 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
733 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
734 NID_sha384WithRSAEncryption, NID_undef},
735 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
736 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
737 NID_sha512WithRSAEncryption, NID_undef},
738 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
739 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
740 NID_sha224WithRSAEncryption, NID_undef},
741 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
742 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
743 NID_sha1WithRSAEncryption, NID_undef},
744#ifndef OPENSSL_NO_DSA
745 {NULL, TLSEXT_SIGALG_dsa_sha256,
746 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
747 NID_dsa_with_SHA256, NID_undef},
748 {NULL, TLSEXT_SIGALG_dsa_sha384,
749 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
750 NID_undef, NID_undef},
751 {NULL, TLSEXT_SIGALG_dsa_sha512,
752 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
753 NID_undef, NID_undef},
754 {NULL, TLSEXT_SIGALG_dsa_sha224,
755 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
756 NID_undef, NID_undef},
757 {NULL, TLSEXT_SIGALG_dsa_sha1,
758 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
759 NID_dsaWithSHA1, NID_undef},
760#endif
761#ifndef OPENSSL_NO_GOST
762 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
763 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
764 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
765 NID_undef, NID_undef},
766 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
767 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
768 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
769 NID_undef, NID_undef},
770 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
771 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
772 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
773 NID_undef, NID_undef}
774#endif
775};
776/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
777static const SIGALG_LOOKUP legacy_rsa_sigalg = {
778 "rsa_pkcs1_md5_sha1", 0,
779 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
780 EVP_PKEY_RSA, SSL_PKEY_RSA,
781 NID_undef, NID_undef
782};
783
784/*
785 * Default signature algorithm values used if signature algorithms not present.
786 * From RFC5246. Note: order must match certificate index order.
787 */
788static const uint16_t tls_default_sigalg[] = {
789 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
790 0, /* SSL_PKEY_RSA_PSS_SIGN */
791 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
792 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
793 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
794 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
795 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
796 0, /* SSL_PKEY_ED25519 */
797 0, /* SSL_PKEY_ED448 */
798};
799
800/* Lookup TLS signature algorithm */
801static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
802{
803 size_t i;
804 const SIGALG_LOOKUP *s;
805
806 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
807 i++, s++) {
808 if (s->sigalg == sigalg)
809 return s;
810 }
811 return NULL;
812}
813/* Lookup hash: return 0 if invalid or not enabled */
814int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
815{
816 const EVP_MD *md;
817 if (lu == NULL)
818 return 0;
819 /* lu->hash == NID_undef means no associated digest */
820 if (lu->hash == NID_undef) {
821 md = NULL;
822 } else {
823 md = ssl_md(lu->hash_idx);
824 if (md == NULL)
825 return 0;
826 }
827 if (pmd)
828 *pmd = md;
829 return 1;
830}
831
832/*
833 * Check if key is large enough to generate RSA-PSS signature.
834 *
835 * The key must greater than or equal to 2 * hash length + 2.
836 * SHA512 has a hash length of 64 bytes, which is incompatible
837 * with a 128 byte (1024 bit) key.
838 */
839#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
840static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu)
841{
842 const EVP_MD *md;
843
844 if (rsa == NULL)
845 return 0;
846 if (!tls1_lookup_md(lu, &md) || md == NULL)
847 return 0;
848 if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md))
849 return 0;
850 return 1;
851}
852
853/*
854 * Returns a signature algorithm when the peer did not send a list of supported
855 * signature algorithms. The signature algorithm is fixed for the certificate
856 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
857 * certificate type from |s| will be used.
858 * Returns the signature algorithm to use, or NULL on error.
859 */
860static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
861{
862 if (idx == -1) {
863 if (s->server) {
864 size_t i;
865
866 /* Work out index corresponding to ciphersuite */
867 for (i = 0; i < SSL_PKEY_NUM; i++) {
868 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
869
870 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) {
871 idx = i;
872 break;
873 }
874 }
875
876 /*
877 * Some GOST ciphersuites allow more than one signature algorithms
878 * */
879 if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
880 int real_idx;
881
882 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
883 real_idx--) {
884 if (s->cert->pkeys[real_idx].privatekey != NULL) {
885 idx = real_idx;
886 break;
887 }
888 }
889 }
890 } else {
891 idx = s->cert->key - s->cert->pkeys;
892 }
893 }
894 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
895 return NULL;
896 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
897 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
898
899 if (!tls1_lookup_md(lu, NULL))
900 return NULL;
901 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
902 return NULL;
903 return lu;
904 }
905 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
906 return NULL;
907 return &legacy_rsa_sigalg;
908}
909/* Set peer sigalg based key type */
910int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
911{
912 size_t idx;
913 const SIGALG_LOOKUP *lu;
914
915 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
916 return 0;
917 lu = tls1_get_legacy_sigalg(s, idx);
918 if (lu == NULL)
919 return 0;
920 s->s3->tmp.peer_sigalg = lu;
921 return 1;
922}
923
924size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
925{
926 /*
927 * If Suite B mode use Suite B sigalgs only, ignore any other
928 * preferences.
929 */
930#ifndef OPENSSL_NO_EC
931 switch (tls1_suiteb(s)) {
932 case SSL_CERT_FLAG_SUITEB_128_LOS:
933 *psigs = suiteb_sigalgs;
934 return OSSL_NELEM(suiteb_sigalgs);
935
936 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
937 *psigs = suiteb_sigalgs;
938 return 1;
939
940 case SSL_CERT_FLAG_SUITEB_192_LOS:
941 *psigs = suiteb_sigalgs + 1;
942 return 1;
943 }
944#endif
945 /*
946 * We use client_sigalgs (if not NULL) if we're a server
947 * and sending a certificate request or if we're a client and
948 * determining which shared algorithm to use.
949 */
950 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
951 *psigs = s->cert->client_sigalgs;
952 return s->cert->client_sigalgslen;
953 } else if (s->cert->conf_sigalgs) {
954 *psigs = s->cert->conf_sigalgs;
955 return s->cert->conf_sigalgslen;
956 } else {
957 *psigs = tls12_sigalgs;
958 return OSSL_NELEM(tls12_sigalgs);
959 }
960}
961
962#ifndef OPENSSL_NO_EC
963/*
964 * Called by servers only. Checks that we have a sig alg that supports the
965 * specified EC curve.
966 */
967int tls_check_sigalg_curve(const SSL *s, int curve)
968{
969 const uint16_t *sigs;
970 size_t siglen, i;
971
972 if (s->cert->conf_sigalgs) {
973 sigs = s->cert->conf_sigalgs;
974 siglen = s->cert->conf_sigalgslen;
975 } else {
976 sigs = tls12_sigalgs;
977 siglen = OSSL_NELEM(tls12_sigalgs);
978 }
979
980 for (i = 0; i < siglen; i++) {
981 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]);
982
983 if (lu == NULL)
984 continue;
985 if (lu->sig == EVP_PKEY_EC
986 && lu->curve != NID_undef
987 && curve == lu->curve)
988 return 1;
989 }
990
991 return 0;
992}
993#endif
994
995/*
996 * Return the number of security bits for the signature algorithm, or 0 on
997 * error.
998 */
999static int sigalg_security_bits(const SIGALG_LOOKUP *lu)
1000{
1001 const EVP_MD *md = NULL;
1002 int secbits = 0;
1003
1004 if (!tls1_lookup_md(lu, &md))
1005 return 0;
1006 if (md != NULL)
1007 {
1008 /* Security bits: half digest bits */
1009 secbits = EVP_MD_size(md) * 4;
1010 } else {
1011 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1012 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1013 secbits = 128;
1014 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1015 secbits = 224;
1016 }
1017 return secbits;
1018}
1019
1020/*
1021 * Check signature algorithm is consistent with sent supported signature
1022 * algorithms and if so set relevant digest and signature scheme in
1023 * s.
1024 */
1025int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1026{
1027 const uint16_t *sent_sigs;
1028 const EVP_MD *md = NULL;
1029 char sigalgstr[2];
1030 size_t sent_sigslen, i, cidx;
1031 int pkeyid = EVP_PKEY_id(pkey);
1032 const SIGALG_LOOKUP *lu;
1033 int secbits = 0;
1034
1035 /* Should never happen */
1036 if (pkeyid == -1)
1037 return -1;
1038 if (SSL_IS_TLS13(s)) {
1039 /* Disallow DSA for TLS 1.3 */
1040 if (pkeyid == EVP_PKEY_DSA) {
1041 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1042 SSL_R_WRONG_SIGNATURE_TYPE);
1043 return 0;
1044 }
1045 /* Only allow PSS for TLS 1.3 */
1046 if (pkeyid == EVP_PKEY_RSA)
1047 pkeyid = EVP_PKEY_RSA_PSS;
1048 }
1049 lu = tls1_lookup_sigalg(sig);
1050 /*
1051 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1052 * is consistent with signature: RSA keys can be used for RSA-PSS
1053 */
1054 if (lu == NULL
1055 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1056 || (pkeyid != lu->sig
1057 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1058 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1059 SSL_R_WRONG_SIGNATURE_TYPE);
1060 return 0;
1061 }
1062 /* Check the sigalg is consistent with the key OID */
1063 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1064 || lu->sig_idx != (int)cidx) {
1065 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1066 SSL_R_WRONG_SIGNATURE_TYPE);
1067 return 0;
1068 }
1069
1070#ifndef OPENSSL_NO_EC
1071 if (pkeyid == EVP_PKEY_EC) {
1072
1073 /* Check point compression is permitted */
1074 if (!tls1_check_pkey_comp(s, pkey)) {
1075 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1076 SSL_F_TLS12_CHECK_PEER_SIGALG,
1077 SSL_R_ILLEGAL_POINT_COMPRESSION);
1078 return 0;
1079 }
1080
1081 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1082 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1083 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1084 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1085
1086 if (lu->curve != NID_undef && curve != lu->curve) {
1087 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1088 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1089 return 0;
1090 }
1091 }
1092 if (!SSL_IS_TLS13(s)) {
1093 /* Check curve matches extensions */
1094 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1095 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1096 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1097 return 0;
1098 }
1099 if (tls1_suiteb(s)) {
1100 /* Check sigalg matches a permissible Suite B value */
1101 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1102 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1103 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1104 SSL_F_TLS12_CHECK_PEER_SIGALG,
1105 SSL_R_WRONG_SIGNATURE_TYPE);
1106 return 0;
1107 }
1108 }
1109 }
1110 } else if (tls1_suiteb(s)) {
1111 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1112 SSL_R_WRONG_SIGNATURE_TYPE);
1113 return 0;
1114 }
1115#endif
1116
1117 /* Check signature matches a type we sent */
1118 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1119 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1120 if (sig == *sent_sigs)
1121 break;
1122 }
1123 /* Allow fallback to SHA1 if not strict mode */
1124 if (i == sent_sigslen && (lu->hash != NID_sha1
1125 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1126 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1127 SSL_R_WRONG_SIGNATURE_TYPE);
1128 return 0;
1129 }
1130 if (!tls1_lookup_md(lu, &md)) {
1131 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1132 SSL_R_UNKNOWN_DIGEST);
1133 return 0;
1134 }
1135 /*
1136 * Make sure security callback allows algorithm. For historical
1137 * reasons we have to pass the sigalg as a two byte char array.
1138 */
1139 sigalgstr[0] = (sig >> 8) & 0xff;
1140 sigalgstr[1] = sig & 0xff;
1141 secbits = sigalg_security_bits(lu);
1142 if (secbits == 0 ||
1143 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1144 md != NULL ? EVP_MD_type(md) : NID_undef,
1145 (void *)sigalgstr)) {
1146 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1147 SSL_R_WRONG_SIGNATURE_TYPE);
1148 return 0;
1149 }
1150 /* Store the sigalg the peer uses */
1151 s->s3->tmp.peer_sigalg = lu;
1152 return 1;
1153}
1154
1155int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1156{
1157 if (s->s3->tmp.peer_sigalg == NULL)
1158 return 0;
1159 *pnid = s->s3->tmp.peer_sigalg->sig;
1160 return 1;
1161}
1162
1163int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1164{
1165 if (s->s3->tmp.sigalg == NULL)
1166 return 0;
1167 *pnid = s->s3->tmp.sigalg->sig;
1168 return 1;
1169}
1170
1171/*
1172 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1173 * supported, doesn't appear in supported signature algorithms, isn't supported
1174 * by the enabled protocol versions or by the security level.
1175 *
1176 * This function should only be used for checking which ciphers are supported
1177 * by the client.
1178 *
1179 * Call ssl_cipher_disabled() to check that it's enabled or not.
1180 */
1181int ssl_set_client_disabled(SSL *s)
1182{
1183 s->s3->tmp.mask_a = 0;
1184 s->s3->tmp.mask_k = 0;
1185 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1186 if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver,
1187 &s->s3->tmp.max_ver, NULL) != 0)
1188 return 0;
1189#ifndef OPENSSL_NO_PSK
1190 /* with PSK there must be client callback set */
1191 if (!s->psk_client_callback) {
1192 s->s3->tmp.mask_a |= SSL_aPSK;
1193 s->s3->tmp.mask_k |= SSL_PSK;
1194 }
1195#endif /* OPENSSL_NO_PSK */
1196#ifndef OPENSSL_NO_SRP
1197 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1198 s->s3->tmp.mask_a |= SSL_aSRP;
1199 s->s3->tmp.mask_k |= SSL_kSRP;
1200 }
1201#endif
1202 return 1;
1203}
1204
1205/*
1206 * ssl_cipher_disabled - check that a cipher is disabled or not
1207 * @s: SSL connection that you want to use the cipher on
1208 * @c: cipher to check
1209 * @op: Security check that you want to do
1210 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1211 *
1212 * Returns 1 when it's disabled, 0 when enabled.
1213 */
1214int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1215{
1216 if (c->algorithm_mkey & s->s3->tmp.mask_k
1217 || c->algorithm_auth & s->s3->tmp.mask_a)
1218 return 1;
1219 if (s->s3->tmp.max_ver == 0)
1220 return 1;
1221 if (!SSL_IS_DTLS(s)) {
1222 int min_tls = c->min_tls;
1223
1224 /*
1225 * For historical reasons we will allow ECHDE to be selected by a server
1226 * in SSLv3 if we are a client
1227 */
1228 if (min_tls == TLS1_VERSION && ecdhe
1229 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1230 min_tls = SSL3_VERSION;
1231
1232 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1233 return 1;
1234 }
1235 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1236 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1237 return 1;
1238
1239 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1240}
1241
1242int tls_use_ticket(SSL *s)
1243{
1244 if ((s->options & SSL_OP_NO_TICKET))
1245 return 0;
1246 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1247}
1248
1249int tls1_set_server_sigalgs(SSL *s)
1250{
1251 size_t i;
1252
1253 /* Clear any shared signature algorithms */
1254 OPENSSL_free(s->shared_sigalgs);
1255 s->shared_sigalgs = NULL;
1256 s->shared_sigalgslen = 0;
1257 /* Clear certificate validity flags */
1258 for (i = 0; i < SSL_PKEY_NUM; i++)
1259 s->s3->tmp.valid_flags[i] = 0;
1260 /*
1261 * If peer sent no signature algorithms check to see if we support
1262 * the default algorithm for each certificate type
1263 */
1264 if (s->s3->tmp.peer_cert_sigalgs == NULL
1265 && s->s3->tmp.peer_sigalgs == NULL) {
1266 const uint16_t *sent_sigs;
1267 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1268
1269 for (i = 0; i < SSL_PKEY_NUM; i++) {
1270 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1271 size_t j;
1272
1273 if (lu == NULL)
1274 continue;
1275 /* Check default matches a type we sent */
1276 for (j = 0; j < sent_sigslen; j++) {
1277 if (lu->sigalg == sent_sigs[j]) {
1278 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1279 break;
1280 }
1281 }
1282 }
1283 return 1;
1284 }
1285
1286 if (!tls1_process_sigalgs(s)) {
1287 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1288 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1289 return 0;
1290 }
1291 if (s->shared_sigalgs != NULL)
1292 return 1;
1293
1294 /* Fatal error if no shared signature algorithms */
1295 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1296 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1297 return 0;
1298}
1299
1300/*-
1301 * Gets the ticket information supplied by the client if any.
1302 *
1303 * hello: The parsed ClientHello data
1304 * ret: (output) on return, if a ticket was decrypted, then this is set to
1305 * point to the resulting session.
1306 */
1307SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1308 SSL_SESSION **ret)
1309{
1310 size_t size;
1311 RAW_EXTENSION *ticketext;
1312
1313 *ret = NULL;
1314 s->ext.ticket_expected = 0;
1315
1316 /*
1317 * If tickets disabled or not supported by the protocol version
1318 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1319 * resumption.
1320 */
1321 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1322 return SSL_TICKET_NONE;
1323
1324 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1325 if (!ticketext->present)
1326 return SSL_TICKET_NONE;
1327
1328 size = PACKET_remaining(&ticketext->data);
1329
1330 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1331 hello->session_id, hello->session_id_len, ret);
1332}
1333
1334/*-
1335 * tls_decrypt_ticket attempts to decrypt a session ticket.
1336 *
1337 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1338 * expecting a pre-shared key ciphersuite, in which case we have no use for
1339 * session tickets and one will never be decrypted, nor will
1340 * s->ext.ticket_expected be set to 1.
1341 *
1342 * Side effects:
1343 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1344 * a new session ticket to the client because the client indicated support
1345 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1346 * a session ticket or we couldn't use the one it gave us, or if
1347 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1348 * Otherwise, s->ext.ticket_expected is set to 0.
1349 *
1350 * etick: points to the body of the session ticket extension.
1351 * eticklen: the length of the session tickets extension.
1352 * sess_id: points at the session ID.
1353 * sesslen: the length of the session ID.
1354 * psess: (output) on return, if a ticket was decrypted, then this is set to
1355 * point to the resulting session.
1356 */
1357SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1358 size_t eticklen, const unsigned char *sess_id,
1359 size_t sesslen, SSL_SESSION **psess)
1360{
1361 SSL_SESSION *sess = NULL;
1362 unsigned char *sdec;
1363 const unsigned char *p;
1364 int slen, renew_ticket = 0, declen;
1365 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1366 size_t mlen;
1367 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1368 HMAC_CTX *hctx = NULL;
1369 EVP_CIPHER_CTX *ctx = NULL;
1370 SSL_CTX *tctx = s->session_ctx;
1371
1372 if (eticklen == 0) {
1373 /*
1374 * The client will accept a ticket but doesn't currently have
1375 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1376 */
1377 ret = SSL_TICKET_EMPTY;
1378 goto end;
1379 }
1380 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1381 /*
1382 * Indicate that the ticket couldn't be decrypted rather than
1383 * generating the session from ticket now, trigger
1384 * abbreviated handshake based on external mechanism to
1385 * calculate the master secret later.
1386 */
1387 ret = SSL_TICKET_NO_DECRYPT;
1388 goto end;
1389 }
1390
1391 /* Need at least keyname + iv */
1392 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1393 ret = SSL_TICKET_NO_DECRYPT;
1394 goto end;
1395 }
1396
1397 /* Initialize session ticket encryption and HMAC contexts */
1398 hctx = HMAC_CTX_new();
1399 if (hctx == NULL) {
1400 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1401 goto end;
1402 }
1403 ctx = EVP_CIPHER_CTX_new();
1404 if (ctx == NULL) {
1405 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1406 goto end;
1407 }
1408 if (tctx->ext.ticket_key_cb) {
1409 unsigned char *nctick = (unsigned char *)etick;
1410 int rv = tctx->ext.ticket_key_cb(s, nctick,
1411 nctick + TLSEXT_KEYNAME_LENGTH,
1412 ctx, hctx, 0);
1413 if (rv < 0) {
1414 ret = SSL_TICKET_FATAL_ERR_OTHER;
1415 goto end;
1416 }
1417 if (rv == 0) {
1418 ret = SSL_TICKET_NO_DECRYPT;
1419 goto end;
1420 }
1421 if (rv == 2)
1422 renew_ticket = 1;
1423 } else {
1424 /* Check key name matches */
1425 if (memcmp(etick, tctx->ext.tick_key_name,
1426 TLSEXT_KEYNAME_LENGTH) != 0) {
1427 ret = SSL_TICKET_NO_DECRYPT;
1428 goto end;
1429 }
1430 if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key,
1431 sizeof(tctx->ext.secure->tick_hmac_key),
1432 EVP_sha256(), NULL) <= 0
1433 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1434 tctx->ext.secure->tick_aes_key,
1435 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1436 ret = SSL_TICKET_FATAL_ERR_OTHER;
1437 goto end;
1438 }
1439 if (SSL_IS_TLS13(s))
1440 renew_ticket = 1;
1441 }
1442 /*
1443 * Attempt to process session ticket, first conduct sanity and integrity
1444 * checks on ticket.
1445 */
1446 mlen = HMAC_size(hctx);
1447 if (mlen == 0) {
1448 ret = SSL_TICKET_FATAL_ERR_OTHER;
1449 goto end;
1450 }
1451
1452 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1453 if (eticklen <=
1454 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1455 ret = SSL_TICKET_NO_DECRYPT;
1456 goto end;
1457 }
1458 eticklen -= mlen;
1459 /* Check HMAC of encrypted ticket */
1460 if (HMAC_Update(hctx, etick, eticklen) <= 0
1461 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1462 ret = SSL_TICKET_FATAL_ERR_OTHER;
1463 goto end;
1464 }
1465
1466 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1467 ret = SSL_TICKET_NO_DECRYPT;
1468 goto end;
1469 }
1470 /* Attempt to decrypt session data */
1471 /* Move p after IV to start of encrypted ticket, update length */
1472 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1473 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1474 sdec = OPENSSL_malloc(eticklen);
1475 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1476 (int)eticklen) <= 0) {
1477 OPENSSL_free(sdec);
1478 ret = SSL_TICKET_FATAL_ERR_OTHER;
1479 goto end;
1480 }
1481 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1482 OPENSSL_free(sdec);
1483 ret = SSL_TICKET_NO_DECRYPT;
1484 goto end;
1485 }
1486 slen += declen;
1487 p = sdec;
1488
1489 sess = d2i_SSL_SESSION(NULL, &p, slen);
1490 slen -= p - sdec;
1491 OPENSSL_free(sdec);
1492 if (sess) {
1493 /* Some additional consistency checks */
1494 if (slen != 0) {
1495 SSL_SESSION_free(sess);
1496 sess = NULL;
1497 ret = SSL_TICKET_NO_DECRYPT;
1498 goto end;
1499 }
1500 /*
1501 * The session ID, if non-empty, is used by some clients to detect
1502 * that the ticket has been accepted. So we copy it to the session
1503 * structure. If it is empty set length to zero as required by
1504 * standard.
1505 */
1506 if (sesslen) {
1507 memcpy(sess->session_id, sess_id, sesslen);
1508 sess->session_id_length = sesslen;
1509 }
1510 if (renew_ticket)
1511 ret = SSL_TICKET_SUCCESS_RENEW;
1512 else
1513 ret = SSL_TICKET_SUCCESS;
1514 goto end;
1515 }
1516 ERR_clear_error();
1517 /*
1518 * For session parse failure, indicate that we need to send a new ticket.
1519 */
1520 ret = SSL_TICKET_NO_DECRYPT;
1521
1522 end:
1523 EVP_CIPHER_CTX_free(ctx);
1524 HMAC_CTX_free(hctx);
1525
1526 /*
1527 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1528 * detected above. The callback is responsible for checking |ret| before it
1529 * performs any action
1530 */
1531 if (s->session_ctx->decrypt_ticket_cb != NULL
1532 && (ret == SSL_TICKET_EMPTY
1533 || ret == SSL_TICKET_NO_DECRYPT
1534 || ret == SSL_TICKET_SUCCESS
1535 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1536 size_t keyname_len = eticklen;
1537 int retcb;
1538
1539 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1540 keyname_len = TLSEXT_KEYNAME_LENGTH;
1541 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1542 ret,
1543 s->session_ctx->ticket_cb_data);
1544 switch (retcb) {
1545 case SSL_TICKET_RETURN_ABORT:
1546 ret = SSL_TICKET_FATAL_ERR_OTHER;
1547 break;
1548
1549 case SSL_TICKET_RETURN_IGNORE:
1550 ret = SSL_TICKET_NONE;
1551 SSL_SESSION_free(sess);
1552 sess = NULL;
1553 break;
1554
1555 case SSL_TICKET_RETURN_IGNORE_RENEW:
1556 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1557 ret = SSL_TICKET_NO_DECRYPT;
1558 /* else the value of |ret| will already do the right thing */
1559 SSL_SESSION_free(sess);
1560 sess = NULL;
1561 break;
1562
1563 case SSL_TICKET_RETURN_USE:
1564 case SSL_TICKET_RETURN_USE_RENEW:
1565 if (ret != SSL_TICKET_SUCCESS
1566 && ret != SSL_TICKET_SUCCESS_RENEW)
1567 ret = SSL_TICKET_FATAL_ERR_OTHER;
1568 else if (retcb == SSL_TICKET_RETURN_USE)
1569 ret = SSL_TICKET_SUCCESS;
1570 else
1571 ret = SSL_TICKET_SUCCESS_RENEW;
1572 break;
1573
1574 default:
1575 ret = SSL_TICKET_FATAL_ERR_OTHER;
1576 }
1577 }
1578
1579 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
1580 switch (ret) {
1581 case SSL_TICKET_NO_DECRYPT:
1582 case SSL_TICKET_SUCCESS_RENEW:
1583 case SSL_TICKET_EMPTY:
1584 s->ext.ticket_expected = 1;
1585 }
1586 }
1587
1588 *psess = sess;
1589
1590 return ret;
1591}
1592
1593/* Check to see if a signature algorithm is allowed */
1594static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
1595{
1596 unsigned char sigalgstr[2];
1597 int secbits;
1598
1599 /* See if sigalgs is recognised and if hash is enabled */
1600 if (!tls1_lookup_md(lu, NULL))
1601 return 0;
1602 /* DSA is not allowed in TLS 1.3 */
1603 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1604 return 0;
1605 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1606 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION
1607 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1608 || lu->hash_idx == SSL_MD_MD5_IDX
1609 || lu->hash_idx == SSL_MD_SHA224_IDX))
1610 return 0;
1611
1612 /* See if public key algorithm allowed */
1613 if (ssl_cert_is_disabled(lu->sig_idx))
1614 return 0;
1615
1616 if (lu->sig == NID_id_GostR3410_2012_256
1617 || lu->sig == NID_id_GostR3410_2012_512
1618 || lu->sig == NID_id_GostR3410_2001) {
1619 /* We never allow GOST sig algs on the server with TLSv1.3 */
1620 if (s->server && SSL_IS_TLS13(s))
1621 return 0;
1622 if (!s->server
1623 && s->method->version == TLS_ANY_VERSION
1624 && s->s3->tmp.max_ver >= TLS1_3_VERSION) {
1625 int i, num;
1626 STACK_OF(SSL_CIPHER) *sk;
1627
1628 /*
1629 * We're a client that could negotiate TLSv1.3. We only allow GOST
1630 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
1631 * ciphersuites enabled.
1632 */
1633
1634 if (s->s3->tmp.min_ver >= TLS1_3_VERSION)
1635 return 0;
1636
1637 sk = SSL_get_ciphers(s);
1638 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
1639 for (i = 0; i < num; i++) {
1640 const SSL_CIPHER *c;
1641
1642 c = sk_SSL_CIPHER_value(sk, i);
1643 /* Skip disabled ciphers */
1644 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
1645 continue;
1646
1647 if ((c->algorithm_mkey & SSL_kGOST) != 0)
1648 break;
1649 }
1650 if (i == num)
1651 return 0;
1652 }
1653 }
1654
1655 /* Finally see if security callback allows it */
1656 secbits = sigalg_security_bits(lu);
1657 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1658 sigalgstr[1] = lu->sigalg & 0xff;
1659 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1660}
1661
1662/*
1663 * Get a mask of disabled public key algorithms based on supported signature
1664 * algorithms. For example if no signature algorithm supports RSA then RSA is
1665 * disabled.
1666 */
1667
1668void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1669{
1670 const uint16_t *sigalgs;
1671 size_t i, sigalgslen;
1672 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1673 /*
1674 * Go through all signature algorithms seeing if we support any
1675 * in disabled_mask.
1676 */
1677 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1678 for (i = 0; i < sigalgslen; i++, sigalgs++) {
1679 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1680 const SSL_CERT_LOOKUP *clu;
1681
1682 if (lu == NULL)
1683 continue;
1684
1685 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1686 if (clu == NULL)
1687 continue;
1688
1689 /* If algorithm is disabled see if we can enable it */
1690 if ((clu->amask & disabled_mask) != 0
1691 && tls12_sigalg_allowed(s, op, lu))
1692 disabled_mask &= ~clu->amask;
1693 }
1694 *pmask_a |= disabled_mask;
1695}
1696
1697int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1698 const uint16_t *psig, size_t psiglen)
1699{
1700 size_t i;
1701 int rv = 0;
1702
1703 for (i = 0; i < psiglen; i++, psig++) {
1704 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1705
1706 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1707 continue;
1708 if (!WPACKET_put_bytes_u16(pkt, *psig))
1709 return 0;
1710 /*
1711 * If TLS 1.3 must have at least one valid TLS 1.3 message
1712 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1713 */
1714 if (rv == 0 && (!SSL_IS_TLS13(s)
1715 || (lu->sig != EVP_PKEY_RSA
1716 && lu->hash != NID_sha1
1717 && lu->hash != NID_sha224)))
1718 rv = 1;
1719 }
1720 if (rv == 0)
1721 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1722 return rv;
1723}
1724
1725/* Given preference and allowed sigalgs set shared sigalgs */
1726static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1727 const uint16_t *pref, size_t preflen,
1728 const uint16_t *allow, size_t allowlen)
1729{
1730 const uint16_t *ptmp, *atmp;
1731 size_t i, j, nmatch = 0;
1732 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1733 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1734
1735 /* Skip disabled hashes or signature algorithms */
1736 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1737 continue;
1738 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1739 if (*ptmp == *atmp) {
1740 nmatch++;
1741 if (shsig)
1742 *shsig++ = lu;
1743 break;
1744 }
1745 }
1746 }
1747 return nmatch;
1748}
1749
1750/* Set shared signature algorithms for SSL structures */
1751static int tls1_set_shared_sigalgs(SSL *s)
1752{
1753 const uint16_t *pref, *allow, *conf;
1754 size_t preflen, allowlen, conflen;
1755 size_t nmatch;
1756 const SIGALG_LOOKUP **salgs = NULL;
1757 CERT *c = s->cert;
1758 unsigned int is_suiteb = tls1_suiteb(s);
1759
1760 OPENSSL_free(s->shared_sigalgs);
1761 s->shared_sigalgs = NULL;
1762 s->shared_sigalgslen = 0;
1763 /* If client use client signature algorithms if not NULL */
1764 if (!s->server && c->client_sigalgs && !is_suiteb) {
1765 conf = c->client_sigalgs;
1766 conflen = c->client_sigalgslen;
1767 } else if (c->conf_sigalgs && !is_suiteb) {
1768 conf = c->conf_sigalgs;
1769 conflen = c->conf_sigalgslen;
1770 } else
1771 conflen = tls12_get_psigalgs(s, 0, &conf);
1772 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1773 pref = conf;
1774 preflen = conflen;
1775 allow = s->s3->tmp.peer_sigalgs;
1776 allowlen = s->s3->tmp.peer_sigalgslen;
1777 } else {
1778 allow = conf;
1779 allowlen = conflen;
1780 pref = s->s3->tmp.peer_sigalgs;
1781 preflen = s->s3->tmp.peer_sigalgslen;
1782 }
1783 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1784 if (nmatch) {
1785 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
1786 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
1787 return 0;
1788 }
1789 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1790 } else {
1791 salgs = NULL;
1792 }
1793 s->shared_sigalgs = salgs;
1794 s->shared_sigalgslen = nmatch;
1795 return 1;
1796}
1797
1798int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1799{
1800 unsigned int stmp;
1801 size_t size, i;
1802 uint16_t *buf;
1803
1804 size = PACKET_remaining(pkt);
1805
1806 /* Invalid data length */
1807 if (size == 0 || (size & 1) != 0)
1808 return 0;
1809
1810 size >>= 1;
1811
1812 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
1813 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
1814 return 0;
1815 }
1816 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1817 buf[i] = stmp;
1818
1819 if (i != size) {
1820 OPENSSL_free(buf);
1821 return 0;
1822 }
1823
1824 OPENSSL_free(*pdest);
1825 *pdest = buf;
1826 *pdestlen = size;
1827
1828 return 1;
1829}
1830
1831int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
1832{
1833 /* Extension ignored for inappropriate versions */
1834 if (!SSL_USE_SIGALGS(s))
1835 return 1;
1836 /* Should never happen */
1837 if (s->cert == NULL)
1838 return 0;
1839
1840 if (cert)
1841 return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs,
1842 &s->s3->tmp.peer_cert_sigalgslen);
1843 else
1844 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs,
1845 &s->s3->tmp.peer_sigalgslen);
1846
1847}
1848
1849/* Set preferred digest for each key type */
1850
1851int tls1_process_sigalgs(SSL *s)
1852{
1853 size_t i;
1854 uint32_t *pvalid = s->s3->tmp.valid_flags;
1855
1856 if (!tls1_set_shared_sigalgs(s))
1857 return 0;
1858
1859 for (i = 0; i < SSL_PKEY_NUM; i++)
1860 pvalid[i] = 0;
1861
1862 for (i = 0; i < s->shared_sigalgslen; i++) {
1863 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
1864 int idx = sigptr->sig_idx;
1865
1866 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1867 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1868 continue;
1869 /* If not disabled indicate we can explicitly sign */
1870 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1871 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1872 }
1873 return 1;
1874}
1875
1876int SSL_get_sigalgs(SSL *s, int idx,
1877 int *psign, int *phash, int *psignhash,
1878 unsigned char *rsig, unsigned char *rhash)
1879{
1880 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1881 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1882 if (psig == NULL || numsigalgs > INT_MAX)
1883 return 0;
1884 if (idx >= 0) {
1885 const SIGALG_LOOKUP *lu;
1886
1887 if (idx >= (int)numsigalgs)
1888 return 0;
1889 psig += idx;
1890 if (rhash != NULL)
1891 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1892 if (rsig != NULL)
1893 *rsig = (unsigned char)(*psig & 0xff);
1894 lu = tls1_lookup_sigalg(*psig);
1895 if (psign != NULL)
1896 *psign = lu != NULL ? lu->sig : NID_undef;
1897 if (phash != NULL)
1898 *phash = lu != NULL ? lu->hash : NID_undef;
1899 if (psignhash != NULL)
1900 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1901 }
1902 return (int)numsigalgs;
1903}
1904
1905int SSL_get_shared_sigalgs(SSL *s, int idx,
1906 int *psign, int *phash, int *psignhash,
1907 unsigned char *rsig, unsigned char *rhash)
1908{
1909 const SIGALG_LOOKUP *shsigalgs;
1910 if (s->shared_sigalgs == NULL
1911 || idx < 0
1912 || idx >= (int)s->shared_sigalgslen
1913 || s->shared_sigalgslen > INT_MAX)
1914 return 0;
1915 shsigalgs = s->shared_sigalgs[idx];
1916 if (phash != NULL)
1917 *phash = shsigalgs->hash;
1918 if (psign != NULL)
1919 *psign = shsigalgs->sig;
1920 if (psignhash != NULL)
1921 *psignhash = shsigalgs->sigandhash;
1922 if (rsig != NULL)
1923 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1924 if (rhash != NULL)
1925 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1926 return (int)s->shared_sigalgslen;
1927}
1928
1929/* Maximum possible number of unique entries in sigalgs array */
1930#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1931
1932typedef struct {
1933 size_t sigalgcnt;
1934 /* TLSEXT_SIGALG_XXX values */
1935 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
1936} sig_cb_st;
1937
1938static void get_sigorhash(int *psig, int *phash, const char *str)
1939{
1940 if (strcmp(str, "RSA") == 0) {
1941 *psig = EVP_PKEY_RSA;
1942 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1943 *psig = EVP_PKEY_RSA_PSS;
1944 } else if (strcmp(str, "DSA") == 0) {
1945 *psig = EVP_PKEY_DSA;
1946 } else if (strcmp(str, "ECDSA") == 0) {
1947 *psig = EVP_PKEY_EC;
1948 } else {
1949 *phash = OBJ_sn2nid(str);
1950 if (*phash == NID_undef)
1951 *phash = OBJ_ln2nid(str);
1952 }
1953}
1954/* Maximum length of a signature algorithm string component */
1955#define TLS_MAX_SIGSTRING_LEN 40
1956
1957static int sig_cb(const char *elem, int len, void *arg)
1958{
1959 sig_cb_st *sarg = arg;
1960 size_t i;
1961 const SIGALG_LOOKUP *s;
1962 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1963 int sig_alg = NID_undef, hash_alg = NID_undef;
1964 if (elem == NULL)
1965 return 0;
1966 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1967 return 0;
1968 if (len > (int)(sizeof(etmp) - 1))
1969 return 0;
1970 memcpy(etmp, elem, len);
1971 etmp[len] = 0;
1972 p = strchr(etmp, '+');
1973 /*
1974 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
1975 * if there's no '+' in the provided name, look for the new-style combined
1976 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
1977 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
1978 * rsa_pss_rsae_* that differ only by public key OID; in such cases
1979 * we will pick the _rsae_ variant, by virtue of them appearing earlier
1980 * in the table.
1981 */
1982 if (p == NULL) {
1983 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1984 i++, s++) {
1985 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1986 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
1987 break;
1988 }
1989 }
1990 if (i == OSSL_NELEM(sigalg_lookup_tbl))
1991 return 0;
1992 } else {
1993 *p = 0;
1994 p++;
1995 if (*p == 0)
1996 return 0;
1997 get_sigorhash(&sig_alg, &hash_alg, etmp);
1998 get_sigorhash(&sig_alg, &hash_alg, p);
1999 if (sig_alg == NID_undef || hash_alg == NID_undef)
2000 return 0;
2001 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2002 i++, s++) {
2003 if (s->hash == hash_alg && s->sig == sig_alg) {
2004 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2005 break;
2006 }
2007 }
2008 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2009 return 0;
2010 }
2011
2012 /* Reject duplicates */
2013 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2014 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2015 sarg->sigalgcnt--;
2016 return 0;
2017 }
2018 }
2019 return 1;
2020}
2021
2022/*
2023 * Set supported signature algorithms based on a colon separated list of the
2024 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2025 */
2026int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2027{
2028 sig_cb_st sig;
2029 sig.sigalgcnt = 0;
2030 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2031 return 0;
2032 if (c == NULL)
2033 return 1;
2034 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2035}
2036
2037int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2038 int client)
2039{
2040 uint16_t *sigalgs;
2041
2042 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2043 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2044 return 0;
2045 }
2046 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2047
2048 if (client) {
2049 OPENSSL_free(c->client_sigalgs);
2050 c->client_sigalgs = sigalgs;
2051 c->client_sigalgslen = salglen;
2052 } else {
2053 OPENSSL_free(c->conf_sigalgs);
2054 c->conf_sigalgs = sigalgs;
2055 c->conf_sigalgslen = salglen;
2056 }
2057
2058 return 1;
2059}
2060
2061int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2062{
2063 uint16_t *sigalgs, *sptr;
2064 size_t i;
2065
2066 if (salglen & 1)
2067 return 0;
2068 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2069 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2070 return 0;
2071 }
2072 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2073 size_t j;
2074 const SIGALG_LOOKUP *curr;
2075 int md_id = *psig_nids++;
2076 int sig_id = *psig_nids++;
2077
2078 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2079 j++, curr++) {
2080 if (curr->hash == md_id && curr->sig == sig_id) {
2081 *sptr++ = curr->sigalg;
2082 break;
2083 }
2084 }
2085
2086 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2087 goto err;
2088 }
2089
2090 if (client) {
2091 OPENSSL_free(c->client_sigalgs);
2092 c->client_sigalgs = sigalgs;
2093 c->client_sigalgslen = salglen / 2;
2094 } else {
2095 OPENSSL_free(c->conf_sigalgs);
2096 c->conf_sigalgs = sigalgs;
2097 c->conf_sigalgslen = salglen / 2;
2098 }
2099
2100 return 1;
2101
2102 err:
2103 OPENSSL_free(sigalgs);
2104 return 0;
2105}
2106
2107static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2108{
2109 int sig_nid, use_pc_sigalgs = 0;
2110 size_t i;
2111 const SIGALG_LOOKUP *sigalg;
2112 size_t sigalgslen;
2113 if (default_nid == -1)
2114 return 1;
2115 sig_nid = X509_get_signature_nid(x);
2116 if (default_nid)
2117 return sig_nid == default_nid ? 1 : 0;
2118
2119 if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) {
2120 /*
2121 * If we're in TLSv1.3 then we only get here if we're checking the
2122 * chain. If the peer has specified peer_cert_sigalgs then we use them
2123 * otherwise we default to normal sigalgs.
2124 */
2125 sigalgslen = s->s3->tmp.peer_cert_sigalgslen;
2126 use_pc_sigalgs = 1;
2127 } else {
2128 sigalgslen = s->shared_sigalgslen;
2129 }
2130 for (i = 0; i < sigalgslen; i++) {
2131 sigalg = use_pc_sigalgs
2132 ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i])
2133 : s->shared_sigalgs[i];
2134 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2135 return 1;
2136 }
2137 return 0;
2138}
2139
2140/* Check to see if a certificate issuer name matches list of CA names */
2141static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2142{
2143 X509_NAME *nm;
2144 int i;
2145 nm = X509_get_issuer_name(x);
2146 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2147 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2148 return 1;
2149 }
2150 return 0;
2151}
2152
2153/*
2154 * Check certificate chain is consistent with TLS extensions and is usable by
2155 * server. This servers two purposes: it allows users to check chains before
2156 * passing them to the server and it allows the server to check chains before
2157 * attempting to use them.
2158 */
2159
2160/* Flags which need to be set for a certificate when strict mode not set */
2161
2162#define CERT_PKEY_VALID_FLAGS \
2163 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2164/* Strict mode flags */
2165#define CERT_PKEY_STRICT_FLAGS \
2166 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2167 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2168
2169int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2170 int idx)
2171{
2172 int i;
2173 int rv = 0;
2174 int check_flags = 0, strict_mode;
2175 CERT_PKEY *cpk = NULL;
2176 CERT *c = s->cert;
2177 uint32_t *pvalid;
2178 unsigned int suiteb_flags = tls1_suiteb(s);
2179 /* idx == -1 means checking server chains */
2180 if (idx != -1) {
2181 /* idx == -2 means checking client certificate chains */
2182 if (idx == -2) {
2183 cpk = c->key;
2184 idx = (int)(cpk - c->pkeys);
2185 } else
2186 cpk = c->pkeys + idx;
2187 pvalid = s->s3->tmp.valid_flags + idx;
2188 x = cpk->x509;
2189 pk = cpk->privatekey;
2190 chain = cpk->chain;
2191 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2192 /* If no cert or key, forget it */
2193 if (!x || !pk)
2194 goto end;
2195 } else {
2196 size_t certidx;
2197
2198 if (!x || !pk)
2199 return 0;
2200
2201 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2202 return 0;
2203 idx = certidx;
2204 pvalid = s->s3->tmp.valid_flags + idx;
2205
2206 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2207 check_flags = CERT_PKEY_STRICT_FLAGS;
2208 else
2209 check_flags = CERT_PKEY_VALID_FLAGS;
2210 strict_mode = 1;
2211 }
2212
2213 if (suiteb_flags) {
2214 int ok;
2215 if (check_flags)
2216 check_flags |= CERT_PKEY_SUITEB;
2217 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2218 if (ok == X509_V_OK)
2219 rv |= CERT_PKEY_SUITEB;
2220 else if (!check_flags)
2221 goto end;
2222 }
2223
2224 /*
2225 * Check all signature algorithms are consistent with signature
2226 * algorithms extension if TLS 1.2 or later and strict mode.
2227 */
2228 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2229 int default_nid;
2230 int rsign = 0;
2231 if (s->s3->tmp.peer_cert_sigalgs != NULL
2232 || s->s3->tmp.peer_sigalgs != NULL) {
2233 default_nid = 0;
2234 /* If no sigalgs extension use defaults from RFC5246 */
2235 } else {
2236 switch (idx) {
2237 case SSL_PKEY_RSA:
2238 rsign = EVP_PKEY_RSA;
2239 default_nid = NID_sha1WithRSAEncryption;
2240 break;
2241
2242 case SSL_PKEY_DSA_SIGN:
2243 rsign = EVP_PKEY_DSA;
2244 default_nid = NID_dsaWithSHA1;
2245 break;
2246
2247 case SSL_PKEY_ECC:
2248 rsign = EVP_PKEY_EC;
2249 default_nid = NID_ecdsa_with_SHA1;
2250 break;
2251
2252 case SSL_PKEY_GOST01:
2253 rsign = NID_id_GostR3410_2001;
2254 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2255 break;
2256
2257 case SSL_PKEY_GOST12_256:
2258 rsign = NID_id_GostR3410_2012_256;
2259 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2260 break;
2261
2262 case SSL_PKEY_GOST12_512:
2263 rsign = NID_id_GostR3410_2012_512;
2264 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2265 break;
2266
2267 default:
2268 default_nid = -1;
2269 break;
2270 }
2271 }
2272 /*
2273 * If peer sent no signature algorithms extension and we have set
2274 * preferred signature algorithms check we support sha1.
2275 */
2276 if (default_nid > 0 && c->conf_sigalgs) {
2277 size_t j;
2278 const uint16_t *p = c->conf_sigalgs;
2279 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2280 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2281
2282 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2283 break;
2284 }
2285 if (j == c->conf_sigalgslen) {
2286 if (check_flags)
2287 goto skip_sigs;
2288 else
2289 goto end;
2290 }
2291 }
2292 /* Check signature algorithm of each cert in chain */
2293 if (SSL_IS_TLS13(s)) {
2294 /*
2295 * We only get here if the application has called SSL_check_chain(),
2296 * so check_flags is always set.
2297 */
2298 if (find_sig_alg(s, x, pk) != NULL)
2299 rv |= CERT_PKEY_EE_SIGNATURE;
2300 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2301 if (!check_flags)
2302 goto end;
2303 } else
2304 rv |= CERT_PKEY_EE_SIGNATURE;
2305 rv |= CERT_PKEY_CA_SIGNATURE;
2306 for (i = 0; i < sk_X509_num(chain); i++) {
2307 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2308 if (check_flags) {
2309 rv &= ~CERT_PKEY_CA_SIGNATURE;
2310 break;
2311 } else
2312 goto end;
2313 }
2314 }
2315 }
2316 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2317 else if (check_flags)
2318 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2319 skip_sigs:
2320 /* Check cert parameters are consistent */
2321 if (tls1_check_cert_param(s, x, 1))
2322 rv |= CERT_PKEY_EE_PARAM;
2323 else if (!check_flags)
2324 goto end;
2325 if (!s->server)
2326 rv |= CERT_PKEY_CA_PARAM;
2327 /* In strict mode check rest of chain too */
2328 else if (strict_mode) {
2329 rv |= CERT_PKEY_CA_PARAM;
2330 for (i = 0; i < sk_X509_num(chain); i++) {
2331 X509 *ca = sk_X509_value(chain, i);
2332 if (!tls1_check_cert_param(s, ca, 0)) {
2333 if (check_flags) {
2334 rv &= ~CERT_PKEY_CA_PARAM;
2335 break;
2336 } else
2337 goto end;
2338 }
2339 }
2340 }
2341 if (!s->server && strict_mode) {
2342 STACK_OF(X509_NAME) *ca_dn;
2343 int check_type = 0;
2344 switch (EVP_PKEY_id(pk)) {
2345 case EVP_PKEY_RSA:
2346 check_type = TLS_CT_RSA_SIGN;
2347 break;
2348 case EVP_PKEY_DSA:
2349 check_type = TLS_CT_DSS_SIGN;
2350 break;
2351 case EVP_PKEY_EC:
2352 check_type = TLS_CT_ECDSA_SIGN;
2353 break;
2354 }
2355 if (check_type) {
2356 const uint8_t *ctypes = s->s3->tmp.ctype;
2357 size_t j;
2358
2359 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2360 if (*ctypes == check_type) {
2361 rv |= CERT_PKEY_CERT_TYPE;
2362 break;
2363 }
2364 }
2365 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2366 goto end;
2367 } else {
2368 rv |= CERT_PKEY_CERT_TYPE;
2369 }
2370
2371 ca_dn = s->s3->tmp.peer_ca_names;
2372
2373 if (!sk_X509_NAME_num(ca_dn))
2374 rv |= CERT_PKEY_ISSUER_NAME;
2375
2376 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2377 if (ssl_check_ca_name(ca_dn, x))
2378 rv |= CERT_PKEY_ISSUER_NAME;
2379 }
2380 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2381 for (i = 0; i < sk_X509_num(chain); i++) {
2382 X509 *xtmp = sk_X509_value(chain, i);
2383 if (ssl_check_ca_name(ca_dn, xtmp)) {
2384 rv |= CERT_PKEY_ISSUER_NAME;
2385 break;
2386 }
2387 }
2388 }
2389 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2390 goto end;
2391 } else
2392 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2393
2394 if (!check_flags || (rv & check_flags) == check_flags)
2395 rv |= CERT_PKEY_VALID;
2396
2397 end:
2398
2399 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2400 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2401 else
2402 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2403
2404 /*
2405 * When checking a CERT_PKEY structure all flags are irrelevant if the
2406 * chain is invalid.
2407 */
2408 if (!check_flags) {
2409 if (rv & CERT_PKEY_VALID) {
2410 *pvalid = rv;
2411 } else {
2412 /* Preserve sign and explicit sign flag, clear rest */
2413 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2414 return 0;
2415 }
2416 }
2417 return rv;
2418}
2419
2420/* Set validity of certificates in an SSL structure */
2421void tls1_set_cert_validity(SSL *s)
2422{
2423 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2424 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2425 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2426 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2427 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2428 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2429 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2430 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2431 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2432}
2433
2434/* User level utility function to check a chain is suitable */
2435int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2436{
2437 return tls1_check_chain(s, x, pk, chain, -1);
2438}
2439
2440#ifndef OPENSSL_NO_DH
2441DH *ssl_get_auto_dh(SSL *s)
2442{
2443 DH *dhp = NULL;
2444 BIGNUM *p = NULL, *g = NULL;
2445 int dh_secbits = 80, sec_level_bits;
2446
2447 if (s->cert->dh_tmp_auto != 2) {
2448 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2449 if (s->s3->tmp.new_cipher->strength_bits == 256)
2450 dh_secbits = 128;
2451 else
2452 dh_secbits = 80;
2453 } else {
2454 if (s->s3->tmp.cert == NULL)
2455 return NULL;
2456 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2457 }
2458 }
2459
2460 dhp = DH_new();
2461 if (dhp == NULL)
2462 return NULL;
2463 g = BN_new();
2464 if (g == NULL || !BN_set_word(g, 2)) {
2465 DH_free(dhp);
2466 BN_free(g);
2467 return NULL;
2468 }
2469
2470 /* Do not pick a prime that is too weak for the current security level */
2471 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2472 if (dh_secbits < sec_level_bits)
2473 dh_secbits = sec_level_bits;
2474
2475 if (dh_secbits >= 192)
2476 p = BN_get_rfc3526_prime_8192(NULL);
2477 else if (dh_secbits >= 152)
2478 p = BN_get_rfc3526_prime_4096(NULL);
2479 else if (dh_secbits >= 128)
2480 p = BN_get_rfc3526_prime_3072(NULL);
2481 else if (dh_secbits >= 112)
2482 p = BN_get_rfc3526_prime_2048(NULL);
2483 else
2484 p = BN_get_rfc2409_prime_1024(NULL);
2485 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2486 DH_free(dhp);
2487 BN_free(p);
2488 BN_free(g);
2489 return NULL;
2490 }
2491 return dhp;
2492}
2493#endif
2494
2495static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2496{
2497 int secbits = -1;
2498 EVP_PKEY *pkey = X509_get0_pubkey(x);
2499 if (pkey) {
2500 /*
2501 * If no parameters this will return -1 and fail using the default
2502 * security callback for any non-zero security level. This will
2503 * reject keys which omit parameters but this only affects DSA and
2504 * omission of parameters is never (?) done in practice.
2505 */
2506 secbits = EVP_PKEY_security_bits(pkey);
2507 }
2508 if (s)
2509 return ssl_security(s, op, secbits, 0, x);
2510 else
2511 return ssl_ctx_security(ctx, op, secbits, 0, x);
2512}
2513
2514static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2515{
2516 /* Lookup signature algorithm digest */
2517 int secbits, nid, pknid;
2518 /* Don't check signature if self signed */
2519 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2520 return 1;
2521 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2522 secbits = -1;
2523 /* If digest NID not defined use signature NID */
2524 if (nid == NID_undef)
2525 nid = pknid;
2526 if (s)
2527 return ssl_security(s, op, secbits, nid, x);
2528 else
2529 return ssl_ctx_security(ctx, op, secbits, nid, x);
2530}
2531
2532int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2533{
2534 if (vfy)
2535 vfy = SSL_SECOP_PEER;
2536 if (is_ee) {
2537 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2538 return SSL_R_EE_KEY_TOO_SMALL;
2539 } else {
2540 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2541 return SSL_R_CA_KEY_TOO_SMALL;
2542 }
2543 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2544 return SSL_R_CA_MD_TOO_WEAK;
2545 return 1;
2546}
2547
2548/*
2549 * Check security of a chain, if |sk| includes the end entity certificate then
2550 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2551 * one to the peer. Return values: 1 if ok otherwise error code to use
2552 */
2553
2554int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2555{
2556 int rv, start_idx, i;
2557 if (x == NULL) {
2558 x = sk_X509_value(sk, 0);
2559 start_idx = 1;
2560 } else
2561 start_idx = 0;
2562
2563 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2564 if (rv != 1)
2565 return rv;
2566
2567 for (i = start_idx; i < sk_X509_num(sk); i++) {
2568 x = sk_X509_value(sk, i);
2569 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2570 if (rv != 1)
2571 return rv;
2572 }
2573 return 1;
2574}
2575
2576/*
2577 * For TLS 1.2 servers check if we have a certificate which can be used
2578 * with the signature algorithm "lu" and return index of certificate.
2579 */
2580
2581static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2582{
2583 int sig_idx = lu->sig_idx;
2584 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2585
2586 /* If not recognised or not supported by cipher mask it is not suitable */
2587 if (clu == NULL
2588 || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0
2589 || (clu->nid == EVP_PKEY_RSA_PSS
2590 && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
2591 return -1;
2592
2593 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2594}
2595
2596/*
2597 * Checks the given cert against signature_algorithm_cert restrictions sent by
2598 * the peer (if any) as well as whether the hash from the sigalg is usable with
2599 * the key.
2600 * Returns true if the cert is usable and false otherwise.
2601 */
2602static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2603 EVP_PKEY *pkey)
2604{
2605 const SIGALG_LOOKUP *lu;
2606 int mdnid, pknid, default_mdnid;
2607 size_t i;
2608
2609 /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */
2610 ERR_set_mark();
2611 if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 &&
2612 sig->hash != default_mdnid)
2613 return 0;
2614
2615 /* If it didn't report a mandatory NID, for whatever reasons,
2616 * just clear the error and allow all hashes to be used. */
2617 ERR_pop_to_mark();
2618
2619 if (s->s3->tmp.peer_cert_sigalgs != NULL) {
2620 for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) {
2621 lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]);
2622 if (lu == NULL
2623 || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
2624 continue;
2625 /*
2626 * TODO this does not differentiate between the
2627 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
2628 * have a chain here that lets us look at the key OID in the
2629 * signing certificate.
2630 */
2631 if (mdnid == lu->hash && pknid == lu->sig)
2632 return 1;
2633 }
2634 return 0;
2635 }
2636 return 1;
2637}
2638
2639/*
2640 * Returns true if |s| has a usable certificate configured for use
2641 * with signature scheme |sig|.
2642 * "Usable" includes a check for presence as well as applying
2643 * the signature_algorithm_cert restrictions sent by the peer (if any).
2644 * Returns false if no usable certificate is found.
2645 */
2646static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
2647{
2648 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
2649 if (idx == -1)
2650 idx = sig->sig_idx;
2651 if (!ssl_has_cert(s, idx))
2652 return 0;
2653
2654 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
2655 s->cert->pkeys[idx].privatekey);
2656}
2657
2658/*
2659 * Returns true if the supplied cert |x| and key |pkey| is usable with the
2660 * specified signature scheme |sig|, or false otherwise.
2661 */
2662static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
2663 EVP_PKEY *pkey)
2664{
2665 size_t idx;
2666
2667 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
2668 return 0;
2669
2670 /* Check the key is consistent with the sig alg */
2671 if ((int)idx != sig->sig_idx)
2672 return 0;
2673
2674 return check_cert_usable(s, sig, x, pkey);
2675}
2676
2677/*
2678 * Find a signature scheme that works with the supplied certificate |x| and key
2679 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
2680 * available certs/keys to find one that works.
2681 */
2682static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
2683{
2684 const SIGALG_LOOKUP *lu = NULL;
2685 size_t i;
2686#ifndef OPENSSL_NO_EC
2687 int curve = -1;
2688#endif
2689 EVP_PKEY *tmppkey;
2690
2691 /* Look for a shared sigalgs matching possible certificates */
2692 for (i = 0; i < s->shared_sigalgslen; i++) {
2693 lu = s->shared_sigalgs[i];
2694
2695 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2696 if (lu->hash == NID_sha1
2697 || lu->hash == NID_sha224
2698 || lu->sig == EVP_PKEY_DSA
2699 || lu->sig == EVP_PKEY_RSA)
2700 continue;
2701 /* Check that we have a cert, and signature_algorithms_cert */
2702 if (!tls1_lookup_md(lu, NULL))
2703 continue;
2704 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
2705 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
2706 continue;
2707
2708 tmppkey = (pkey != NULL) ? pkey
2709 : s->cert->pkeys[lu->sig_idx].privatekey;
2710
2711 if (lu->sig == EVP_PKEY_EC) {
2712#ifndef OPENSSL_NO_EC
2713 if (curve == -1) {
2714 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey);
2715 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2716 }
2717 if (lu->curve != NID_undef && curve != lu->curve)
2718 continue;
2719#else
2720 continue;
2721#endif
2722 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
2723 /* validate that key is large enough for the signature algorithm */
2724 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu))
2725 continue;
2726 }
2727 break;
2728 }
2729
2730 if (i == s->shared_sigalgslen)
2731 return NULL;
2732
2733 return lu;
2734}
2735
2736/*
2737 * Choose an appropriate signature algorithm based on available certificates
2738 * Sets chosen certificate and signature algorithm.
2739 *
2740 * For servers if we fail to find a required certificate it is a fatal error,
2741 * an appropriate error code is set and a TLS alert is sent.
2742 *
2743 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
2744 * a fatal error: we will either try another certificate or not present one
2745 * to the server. In this case no error is set.
2746 */
2747int tls_choose_sigalg(SSL *s, int fatalerrs)
2748{
2749 const SIGALG_LOOKUP *lu = NULL;
2750 int sig_idx = -1;
2751
2752 s->s3->tmp.cert = NULL;
2753 s->s3->tmp.sigalg = NULL;
2754
2755 if (SSL_IS_TLS13(s)) {
2756 lu = find_sig_alg(s, NULL, NULL);
2757 if (lu == NULL) {
2758 if (!fatalerrs)
2759 return 1;
2760 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
2761 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2762 return 0;
2763 }
2764 } else {
2765 /* If ciphersuite doesn't require a cert nothing to do */
2766 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT))
2767 return 1;
2768 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2769 return 1;
2770
2771 if (SSL_USE_SIGALGS(s)) {
2772 size_t i;
2773 if (s->s3->tmp.peer_sigalgs != NULL) {
2774#ifndef OPENSSL_NO_EC
2775 int curve;
2776
2777 /* For Suite B need to match signature algorithm to curve */
2778 if (tls1_suiteb(s)) {
2779 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2780 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2781 } else {
2782 curve = -1;
2783 }
2784#endif
2785
2786 /*
2787 * Find highest preference signature algorithm matching
2788 * cert type
2789 */
2790 for (i = 0; i < s->shared_sigalgslen; i++) {
2791 lu = s->shared_sigalgs[i];
2792
2793 if (s->server) {
2794 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2795 continue;
2796 } else {
2797 int cc_idx = s->cert->key - s->cert->pkeys;
2798
2799 sig_idx = lu->sig_idx;
2800 if (cc_idx != sig_idx)
2801 continue;
2802 }
2803 /* Check that we have a cert, and sig_algs_cert */
2804 if (!has_usable_cert(s, lu, sig_idx))
2805 continue;
2806 if (lu->sig == EVP_PKEY_RSA_PSS) {
2807 /* validate that key is large enough for the signature algorithm */
2808 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
2809
2810 if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu))
2811 continue;
2812 }
2813#ifndef OPENSSL_NO_EC
2814 if (curve == -1 || lu->curve == curve)
2815#endif
2816 break;
2817 }
2818#ifndef OPENSSL_NO_GOST
2819 /*
2820 * Some Windows-based implementations do not send GOST algorithms indication
2821 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
2822 * we have to assume GOST support.
2823 */
2824 if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
2825 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2826 if (!fatalerrs)
2827 return 1;
2828 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2829 SSL_F_TLS_CHOOSE_SIGALG,
2830 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2831 return 0;
2832 } else {
2833 i = 0;
2834 sig_idx = lu->sig_idx;
2835 }
2836 }
2837#endif
2838 if (i == s->shared_sigalgslen) {
2839 if (!fatalerrs)
2840 return 1;
2841 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2842 SSL_F_TLS_CHOOSE_SIGALG,
2843 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2844 return 0;
2845 }
2846 } else {
2847 /*
2848 * If we have no sigalg use defaults
2849 */
2850 const uint16_t *sent_sigs;
2851 size_t sent_sigslen;
2852
2853 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2854 if (!fatalerrs)
2855 return 1;
2856 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2857 ERR_R_INTERNAL_ERROR);
2858 return 0;
2859 }
2860
2861 /* Check signature matches a type we sent */
2862 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2863 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2864 if (lu->sigalg == *sent_sigs
2865 && has_usable_cert(s, lu, lu->sig_idx))
2866 break;
2867 }
2868 if (i == sent_sigslen) {
2869 if (!fatalerrs)
2870 return 1;
2871 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2872 SSL_F_TLS_CHOOSE_SIGALG,
2873 SSL_R_WRONG_SIGNATURE_TYPE);
2874 return 0;
2875 }
2876 }
2877 } else {
2878 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2879 if (!fatalerrs)
2880 return 1;
2881 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
2882 ERR_R_INTERNAL_ERROR);
2883 return 0;
2884 }
2885 }
2886 }
2887 if (sig_idx == -1)
2888 sig_idx = lu->sig_idx;
2889 s->s3->tmp.cert = &s->cert->pkeys[sig_idx];
2890 s->cert->key = s->s3->tmp.cert;
2891 s->s3->tmp.sigalg = lu;
2892 return 1;
2893}
2894
2895int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
2896{
2897 if (mode != TLSEXT_max_fragment_length_DISABLED
2898 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2899 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2900 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2901 return 0;
2902 }
2903
2904 ctx->ext.max_fragment_len_mode = mode;
2905 return 1;
2906}
2907
2908int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
2909{
2910 if (mode != TLSEXT_max_fragment_length_DISABLED
2911 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
2912 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
2913 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
2914 return 0;
2915 }
2916
2917 ssl->ext.max_fragment_len_mode = mode;
2918 return 1;
2919}
2920
2921uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
2922{
2923 return session->ext.max_fragment_len_mode;
2924}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette