1 | /*
|
---|
2 | * Copyright 2012-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/constant_time.h"
|
---|
11 | #include "ssl_local.h"
|
---|
12 | #include "internal/cryptlib.h"
|
---|
13 |
|
---|
14 | #include <openssl/md5.h>
|
---|
15 | #include <openssl/sha.h>
|
---|
16 |
|
---|
17 | /*
|
---|
18 | * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
|
---|
19 | * length field. (SHA-384/512 have 128-bit length.)
|
---|
20 | */
|
---|
21 | #define MAX_HASH_BIT_COUNT_BYTES 16
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
|
---|
25 | * Currently SHA-384/512 has a 128-byte block size and that's the largest
|
---|
26 | * supported by TLS.)
|
---|
27 | */
|
---|
28 | #define MAX_HASH_BLOCK_SIZE 128
|
---|
29 |
|
---|
30 | /*
|
---|
31 | * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
|
---|
32 | * little-endian order. The value of p is advanced by four.
|
---|
33 | */
|
---|
34 | #define u32toLE(n, p) \
|
---|
35 | (*((p)++)=(unsigned char)(n), \
|
---|
36 | *((p)++)=(unsigned char)(n>>8), \
|
---|
37 | *((p)++)=(unsigned char)(n>>16), \
|
---|
38 | *((p)++)=(unsigned char)(n>>24))
|
---|
39 |
|
---|
40 | /*
|
---|
41 | * These functions serialize the state of a hash and thus perform the
|
---|
42 | * standard "final" operation without adding the padding and length that such
|
---|
43 | * a function typically does.
|
---|
44 | */
|
---|
45 | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
|
---|
46 | {
|
---|
47 | MD5_CTX *md5 = ctx;
|
---|
48 | u32toLE(md5->A, md_out);
|
---|
49 | u32toLE(md5->B, md_out);
|
---|
50 | u32toLE(md5->C, md_out);
|
---|
51 | u32toLE(md5->D, md_out);
|
---|
52 | }
|
---|
53 |
|
---|
54 | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
|
---|
55 | {
|
---|
56 | SHA_CTX *sha1 = ctx;
|
---|
57 | l2n(sha1->h0, md_out);
|
---|
58 | l2n(sha1->h1, md_out);
|
---|
59 | l2n(sha1->h2, md_out);
|
---|
60 | l2n(sha1->h3, md_out);
|
---|
61 | l2n(sha1->h4, md_out);
|
---|
62 | }
|
---|
63 |
|
---|
64 | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
|
---|
65 | {
|
---|
66 | SHA256_CTX *sha256 = ctx;
|
---|
67 | unsigned i;
|
---|
68 |
|
---|
69 | for (i = 0; i < 8; i++) {
|
---|
70 | l2n(sha256->h[i], md_out);
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
|
---|
75 | {
|
---|
76 | SHA512_CTX *sha512 = ctx;
|
---|
77 | unsigned i;
|
---|
78 |
|
---|
79 | for (i = 0; i < 8; i++) {
|
---|
80 | l2n8(sha512->h[i], md_out);
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | #undef LARGEST_DIGEST_CTX
|
---|
85 | #define LARGEST_DIGEST_CTX SHA512_CTX
|
---|
86 |
|
---|
87 | /*
|
---|
88 | * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
|
---|
89 | * which ssl3_cbc_digest_record supports.
|
---|
90 | */
|
---|
91 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
|
---|
92 | {
|
---|
93 | switch (EVP_MD_CTX_type(ctx)) {
|
---|
94 | case NID_md5:
|
---|
95 | case NID_sha1:
|
---|
96 | case NID_sha224:
|
---|
97 | case NID_sha256:
|
---|
98 | case NID_sha384:
|
---|
99 | case NID_sha512:
|
---|
100 | return 1;
|
---|
101 | default:
|
---|
102 | return 0;
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | /*-
|
---|
107 | * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
|
---|
108 | * record.
|
---|
109 | *
|
---|
110 | * ctx: the EVP_MD_CTX from which we take the hash function.
|
---|
111 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
|
---|
112 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
|
---|
113 | * md_out_size: if non-NULL, the number of output bytes is written here.
|
---|
114 | * header: the 13-byte, TLS record header.
|
---|
115 | * data: the record data itself, less any preceding explicit IV.
|
---|
116 | * data_plus_mac_size: the secret, reported length of the data and MAC
|
---|
117 | * once the padding has been removed.
|
---|
118 | * data_plus_mac_plus_padding_size: the public length of the whole
|
---|
119 | * record, including padding.
|
---|
120 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
|
---|
121 | *
|
---|
122 | * On entry: by virtue of having been through one of the remove_padding
|
---|
123 | * functions, above, we know that data_plus_mac_size is large enough to contain
|
---|
124 | * a padding byte and MAC. (If the padding was invalid, it might contain the
|
---|
125 | * padding too. )
|
---|
126 | * Returns 1 on success or 0 on error
|
---|
127 | */
|
---|
128 | int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
|
---|
129 | unsigned char *md_out,
|
---|
130 | size_t *md_out_size,
|
---|
131 | const unsigned char header[13],
|
---|
132 | const unsigned char *data,
|
---|
133 | size_t data_plus_mac_size,
|
---|
134 | size_t data_plus_mac_plus_padding_size,
|
---|
135 | const unsigned char *mac_secret,
|
---|
136 | size_t mac_secret_length, char is_sslv3)
|
---|
137 | {
|
---|
138 | union {
|
---|
139 | double align;
|
---|
140 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
|
---|
141 | } md_state;
|
---|
142 | void (*md_final_raw) (void *ctx, unsigned char *md_out);
|
---|
143 | void (*md_transform) (void *ctx, const unsigned char *block);
|
---|
144 | size_t md_size, md_block_size = 64;
|
---|
145 | size_t sslv3_pad_length = 40, header_length, variance_blocks,
|
---|
146 | len, max_mac_bytes, num_blocks,
|
---|
147 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
|
---|
148 | size_t bits; /* at most 18 bits */
|
---|
149 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
|
---|
150 | /* hmac_pad is the masked HMAC key. */
|
---|
151 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
|
---|
152 | unsigned char first_block[MAX_HASH_BLOCK_SIZE];
|
---|
153 | unsigned char mac_out[EVP_MAX_MD_SIZE];
|
---|
154 | size_t i, j;
|
---|
155 | unsigned md_out_size_u;
|
---|
156 | EVP_MD_CTX *md_ctx = NULL;
|
---|
157 | /*
|
---|
158 | * mdLengthSize is the number of bytes in the length field that
|
---|
159 | * terminates * the hash.
|
---|
160 | */
|
---|
161 | size_t md_length_size = 8;
|
---|
162 | char length_is_big_endian = 1;
|
---|
163 | int ret;
|
---|
164 |
|
---|
165 | /*
|
---|
166 | * This is a, hopefully redundant, check that allows us to forget about
|
---|
167 | * many possible overflows later in this function.
|
---|
168 | */
|
---|
169 | if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
|
---|
170 | return 0;
|
---|
171 |
|
---|
172 | switch (EVP_MD_CTX_type(ctx)) {
|
---|
173 | case NID_md5:
|
---|
174 | if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
|
---|
175 | return 0;
|
---|
176 | md_final_raw = tls1_md5_final_raw;
|
---|
177 | md_transform =
|
---|
178 | (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
|
---|
179 | md_size = 16;
|
---|
180 | sslv3_pad_length = 48;
|
---|
181 | length_is_big_endian = 0;
|
---|
182 | break;
|
---|
183 | case NID_sha1:
|
---|
184 | if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
|
---|
185 | return 0;
|
---|
186 | md_final_raw = tls1_sha1_final_raw;
|
---|
187 | md_transform =
|
---|
188 | (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
|
---|
189 | md_size = 20;
|
---|
190 | break;
|
---|
191 | case NID_sha224:
|
---|
192 | if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
193 | return 0;
|
---|
194 | md_final_raw = tls1_sha256_final_raw;
|
---|
195 | md_transform =
|
---|
196 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
197 | md_size = 224 / 8;
|
---|
198 | break;
|
---|
199 | case NID_sha256:
|
---|
200 | if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
|
---|
201 | return 0;
|
---|
202 | md_final_raw = tls1_sha256_final_raw;
|
---|
203 | md_transform =
|
---|
204 | (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
|
---|
205 | md_size = 32;
|
---|
206 | break;
|
---|
207 | case NID_sha384:
|
---|
208 | if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
209 | return 0;
|
---|
210 | md_final_raw = tls1_sha512_final_raw;
|
---|
211 | md_transform =
|
---|
212 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
213 | md_size = 384 / 8;
|
---|
214 | md_block_size = 128;
|
---|
215 | md_length_size = 16;
|
---|
216 | break;
|
---|
217 | case NID_sha512:
|
---|
218 | if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
|
---|
219 | return 0;
|
---|
220 | md_final_raw = tls1_sha512_final_raw;
|
---|
221 | md_transform =
|
---|
222 | (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
|
---|
223 | md_size = 64;
|
---|
224 | md_block_size = 128;
|
---|
225 | md_length_size = 16;
|
---|
226 | break;
|
---|
227 | default:
|
---|
228 | /*
|
---|
229 | * ssl3_cbc_record_digest_supported should have been called first to
|
---|
230 | * check that the hash function is supported.
|
---|
231 | */
|
---|
232 | if (md_out_size != NULL)
|
---|
233 | *md_out_size = 0;
|
---|
234 | return ossl_assert(0);
|
---|
235 | }
|
---|
236 |
|
---|
237 | if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
|
---|
238 | || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
|
---|
239 | || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
|
---|
240 | return 0;
|
---|
241 |
|
---|
242 | header_length = 13;
|
---|
243 | if (is_sslv3) {
|
---|
244 | header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
|
---|
245 | * number */ +
|
---|
246 | 1 /* record type */ +
|
---|
247 | 2 /* record length */ ;
|
---|
248 | }
|
---|
249 |
|
---|
250 | /*
|
---|
251 | * variance_blocks is the number of blocks of the hash that we have to
|
---|
252 | * calculate in constant time because they could be altered by the
|
---|
253 | * padding value. In SSLv3, the padding must be minimal so the end of
|
---|
254 | * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
|
---|
255 | * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
|
---|
256 | * of hash termination (0x80 + 64-bit length) don't fit in the final
|
---|
257 | * block, we say that the final two blocks can vary based on the padding.
|
---|
258 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
|
---|
259 | * required to be minimal. Therefore we say that the final |variance_blocks|
|
---|
260 | * blocks can
|
---|
261 | * vary based on the padding. Later in the function, if the message is
|
---|
262 | * short and there obviously cannot be this many blocks then
|
---|
263 | * variance_blocks can be reduced.
|
---|
264 | */
|
---|
265 | variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
|
---|
266 | /*
|
---|
267 | * From now on we're dealing with the MAC, which conceptually has 13
|
---|
268 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes
|
---|
269 | * (SSLv3)
|
---|
270 | */
|
---|
271 | len = data_plus_mac_plus_padding_size + header_length;
|
---|
272 | /*
|
---|
273 | * max_mac_bytes contains the maximum bytes of bytes in the MAC,
|
---|
274 | * including * |header|, assuming that there's no padding.
|
---|
275 | */
|
---|
276 | max_mac_bytes = len - md_size - 1;
|
---|
277 | /* num_blocks is the maximum number of hash blocks. */
|
---|
278 | num_blocks =
|
---|
279 | (max_mac_bytes + 1 + md_length_size + md_block_size -
|
---|
280 | 1) / md_block_size;
|
---|
281 | /*
|
---|
282 | * In order to calculate the MAC in constant time we have to handle the
|
---|
283 | * final blocks specially because the padding value could cause the end
|
---|
284 | * to appear somewhere in the final |variance_blocks| blocks and we can't
|
---|
285 | * leak where. However, |num_starting_blocks| worth of data can be hashed
|
---|
286 | * right away because no padding value can affect whether they are
|
---|
287 | * plaintext.
|
---|
288 | */
|
---|
289 | num_starting_blocks = 0;
|
---|
290 | /*
|
---|
291 | * k is the starting byte offset into the conceptual header||data where
|
---|
292 | * we start processing.
|
---|
293 | */
|
---|
294 | k = 0;
|
---|
295 | /*
|
---|
296 | * mac_end_offset is the index just past the end of the data to be MACed.
|
---|
297 | */
|
---|
298 | mac_end_offset = data_plus_mac_size + header_length - md_size;
|
---|
299 | /*
|
---|
300 | * c is the index of the 0x80 byte in the final hash block that contains
|
---|
301 | * application data.
|
---|
302 | */
|
---|
303 | c = mac_end_offset % md_block_size;
|
---|
304 | /*
|
---|
305 | * index_a is the hash block number that contains the 0x80 terminating
|
---|
306 | * value.
|
---|
307 | */
|
---|
308 | index_a = mac_end_offset / md_block_size;
|
---|
309 | /*
|
---|
310 | * index_b is the hash block number that contains the 64-bit hash length,
|
---|
311 | * in bits.
|
---|
312 | */
|
---|
313 | index_b = (mac_end_offset + md_length_size) / md_block_size;
|
---|
314 | /*
|
---|
315 | * bits is the hash-length in bits. It includes the additional hash block
|
---|
316 | * for the masked HMAC key, or whole of |header| in the case of SSLv3.
|
---|
317 | */
|
---|
318 |
|
---|
319 | /*
|
---|
320 | * For SSLv3, if we're going to have any starting blocks then we need at
|
---|
321 | * least two because the header is larger than a single block.
|
---|
322 | */
|
---|
323 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
|
---|
324 | num_starting_blocks = num_blocks - variance_blocks;
|
---|
325 | k = md_block_size * num_starting_blocks;
|
---|
326 | }
|
---|
327 |
|
---|
328 | bits = 8 * mac_end_offset;
|
---|
329 | if (!is_sslv3) {
|
---|
330 | /*
|
---|
331 | * Compute the initial HMAC block. For SSLv3, the padding and secret
|
---|
332 | * bytes are included in |header| because they take more than a
|
---|
333 | * single block.
|
---|
334 | */
|
---|
335 | bits += 8 * md_block_size;
|
---|
336 | memset(hmac_pad, 0, md_block_size);
|
---|
337 | if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
|
---|
338 | return 0;
|
---|
339 | memcpy(hmac_pad, mac_secret, mac_secret_length);
|
---|
340 | for (i = 0; i < md_block_size; i++)
|
---|
341 | hmac_pad[i] ^= 0x36;
|
---|
342 |
|
---|
343 | md_transform(md_state.c, hmac_pad);
|
---|
344 | }
|
---|
345 |
|
---|
346 | if (length_is_big_endian) {
|
---|
347 | memset(length_bytes, 0, md_length_size - 4);
|
---|
348 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
|
---|
349 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
|
---|
350 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
|
---|
351 | length_bytes[md_length_size - 1] = (unsigned char)bits;
|
---|
352 | } else {
|
---|
353 | memset(length_bytes, 0, md_length_size);
|
---|
354 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
|
---|
355 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
|
---|
356 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
|
---|
357 | length_bytes[md_length_size - 8] = (unsigned char)bits;
|
---|
358 | }
|
---|
359 |
|
---|
360 | if (k > 0) {
|
---|
361 | if (is_sslv3) {
|
---|
362 | size_t overhang;
|
---|
363 |
|
---|
364 | /*
|
---|
365 | * The SSLv3 header is larger than a single block. overhang is
|
---|
366 | * the number of bytes beyond a single block that the header
|
---|
367 | * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
|
---|
368 | * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
|
---|
369 | * therefore we can be confident that the header_length will be
|
---|
370 | * greater than |md_block_size|. However we add a sanity check just
|
---|
371 | * in case
|
---|
372 | */
|
---|
373 | if (header_length <= md_block_size) {
|
---|
374 | /* Should never happen */
|
---|
375 | return 0;
|
---|
376 | }
|
---|
377 | overhang = header_length - md_block_size;
|
---|
378 | md_transform(md_state.c, header);
|
---|
379 | memcpy(first_block, header + md_block_size, overhang);
|
---|
380 | memcpy(first_block + overhang, data, md_block_size - overhang);
|
---|
381 | md_transform(md_state.c, first_block);
|
---|
382 | for (i = 1; i < k / md_block_size - 1; i++)
|
---|
383 | md_transform(md_state.c, data + md_block_size * i - overhang);
|
---|
384 | } else {
|
---|
385 | /* k is a multiple of md_block_size. */
|
---|
386 | memcpy(first_block, header, 13);
|
---|
387 | memcpy(first_block + 13, data, md_block_size - 13);
|
---|
388 | md_transform(md_state.c, first_block);
|
---|
389 | for (i = 1; i < k / md_block_size; i++)
|
---|
390 | md_transform(md_state.c, data + md_block_size * i - 13);
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | memset(mac_out, 0, sizeof(mac_out));
|
---|
395 |
|
---|
396 | /*
|
---|
397 | * We now process the final hash blocks. For each block, we construct it
|
---|
398 | * in constant time. If the |i==index_a| then we'll include the 0x80
|
---|
399 | * bytes and zero pad etc. For each block we selectively copy it, in
|
---|
400 | * constant time, to |mac_out|.
|
---|
401 | */
|
---|
402 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
|
---|
403 | i++) {
|
---|
404 | unsigned char block[MAX_HASH_BLOCK_SIZE];
|
---|
405 | unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
|
---|
406 | unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
|
---|
407 | for (j = 0; j < md_block_size; j++) {
|
---|
408 | unsigned char b = 0, is_past_c, is_past_cp1;
|
---|
409 | if (k < header_length)
|
---|
410 | b = header[k];
|
---|
411 | else if (k < data_plus_mac_plus_padding_size + header_length)
|
---|
412 | b = data[k - header_length];
|
---|
413 | k++;
|
---|
414 |
|
---|
415 | is_past_c = is_block_a & constant_time_ge_8_s(j, c);
|
---|
416 | is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
|
---|
417 | /*
|
---|
418 | * If this is the block containing the end of the application
|
---|
419 | * data, and we are at the offset for the 0x80 value, then
|
---|
420 | * overwrite b with 0x80.
|
---|
421 | */
|
---|
422 | b = constant_time_select_8(is_past_c, 0x80, b);
|
---|
423 | /*
|
---|
424 | * If this block contains the end of the application data
|
---|
425 | * and we're past the 0x80 value then just write zero.
|
---|
426 | */
|
---|
427 | b = b & ~is_past_cp1;
|
---|
428 | /*
|
---|
429 | * If this is index_b (the final block), but not index_a (the end
|
---|
430 | * of the data), then the 64-bit length didn't fit into index_a
|
---|
431 | * and we're having to add an extra block of zeros.
|
---|
432 | */
|
---|
433 | b &= ~is_block_b | is_block_a;
|
---|
434 |
|
---|
435 | /*
|
---|
436 | * The final bytes of one of the blocks contains the length.
|
---|
437 | */
|
---|
438 | if (j >= md_block_size - md_length_size) {
|
---|
439 | /* If this is index_b, write a length byte. */
|
---|
440 | b = constant_time_select_8(is_block_b,
|
---|
441 | length_bytes[j -
|
---|
442 | (md_block_size -
|
---|
443 | md_length_size)], b);
|
---|
444 | }
|
---|
445 | block[j] = b;
|
---|
446 | }
|
---|
447 |
|
---|
448 | md_transform(md_state.c, block);
|
---|
449 | md_final_raw(md_state.c, block);
|
---|
450 | /* If this is index_b, copy the hash value to |mac_out|. */
|
---|
451 | for (j = 0; j < md_size; j++)
|
---|
452 | mac_out[j] |= block[j] & is_block_b;
|
---|
453 | }
|
---|
454 |
|
---|
455 | md_ctx = EVP_MD_CTX_new();
|
---|
456 | if (md_ctx == NULL)
|
---|
457 | goto err;
|
---|
458 | if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
|
---|
459 | goto err;
|
---|
460 | if (is_sslv3) {
|
---|
461 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
|
---|
462 | memset(hmac_pad, 0x5c, sslv3_pad_length);
|
---|
463 |
|
---|
464 | if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
|
---|
465 | || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
|
---|
466 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
467 | goto err;
|
---|
468 | } else {
|
---|
469 | /* Complete the HMAC in the standard manner. */
|
---|
470 | for (i = 0; i < md_block_size; i++)
|
---|
471 | hmac_pad[i] ^= 0x6a;
|
---|
472 |
|
---|
473 | if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
|
---|
474 | || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
|
---|
475 | goto err;
|
---|
476 | }
|
---|
477 | /* TODO(size_t): Convert me */
|
---|
478 | ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
|
---|
479 | if (ret && md_out_size)
|
---|
480 | *md_out_size = md_out_size_u;
|
---|
481 | EVP_MD_CTX_free(md_ctx);
|
---|
482 |
|
---|
483 | return 1;
|
---|
484 | err:
|
---|
485 | EVP_MD_CTX_free(md_ctx);
|
---|
486 | return 0;
|
---|
487 | }
|
---|