VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/include/openssl/engine.h@ 95000

Last change on this file since 95000 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

File size: 33.8 KB
Line 
1/*
2 * Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11#ifndef HEADER_ENGINE_H
12# define HEADER_ENGINE_H
13
14# include <openssl/opensslconf.h>
15
16# ifndef OPENSSL_NO_ENGINE
17# if OPENSSL_API_COMPAT < 0x10100000L
18# include <openssl/bn.h>
19# include <openssl/rsa.h>
20# include <openssl/dsa.h>
21# include <openssl/dh.h>
22# include <openssl/ec.h>
23# include <openssl/rand.h>
24# include <openssl/ui.h>
25# include <openssl/err.h>
26# endif
27# include <openssl/ossl_typ.h>
28# include <openssl/symhacks.h>
29# include <openssl/x509.h>
30# include <openssl/engineerr.h>
31# ifdef __cplusplus
32extern "C" {
33# endif
34
35/*
36 * These flags are used to control combinations of algorithm (methods) by
37 * bitwise "OR"ing.
38 */
39# define ENGINE_METHOD_RSA (unsigned int)0x0001
40# define ENGINE_METHOD_DSA (unsigned int)0x0002
41# define ENGINE_METHOD_DH (unsigned int)0x0004
42# define ENGINE_METHOD_RAND (unsigned int)0x0008
43# define ENGINE_METHOD_CIPHERS (unsigned int)0x0040
44# define ENGINE_METHOD_DIGESTS (unsigned int)0x0080
45# define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200
46# define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400
47# define ENGINE_METHOD_EC (unsigned int)0x0800
48/* Obvious all-or-nothing cases. */
49# define ENGINE_METHOD_ALL (unsigned int)0xFFFF
50# define ENGINE_METHOD_NONE (unsigned int)0x0000
51
52/*
53 * This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
54 * internally to control registration of ENGINE implementations, and can be
55 * set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
56 * initialise registered ENGINEs if they are not already initialised.
57 */
58# define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001
59
60/* ENGINE flags that can be set by ENGINE_set_flags(). */
61/* Not used */
62/* #define ENGINE_FLAGS_MALLOCED 0x0001 */
63
64/*
65 * This flag is for ENGINEs that wish to handle the various 'CMD'-related
66 * control commands on their own. Without this flag, ENGINE_ctrl() handles
67 * these control commands on behalf of the ENGINE using their "cmd_defns"
68 * data.
69 */
70# define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002
71
72/*
73 * This flag is for ENGINEs who return new duplicate structures when found
74 * via "ENGINE_by_id()". When an ENGINE must store state (eg. if
75 * ENGINE_ctrl() commands are called in sequence as part of some stateful
76 * process like key-generation setup and execution), it can set this flag -
77 * then each attempt to obtain the ENGINE will result in it being copied into
78 * a new structure. Normally, ENGINEs don't declare this flag so
79 * ENGINE_by_id() just increments the existing ENGINE's structural reference
80 * count.
81 */
82# define ENGINE_FLAGS_BY_ID_COPY (int)0x0004
83
84/*
85 * This flag if for an ENGINE that does not want its methods registered as
86 * part of ENGINE_register_all_complete() for example if the methods are not
87 * usable as default methods.
88 */
89
90# define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008
91
92/*
93 * ENGINEs can support their own command types, and these flags are used in
94 * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input
95 * each command expects. Currently only numeric and string input is
96 * supported. If a control command supports none of the _NUMERIC, _STRING, or
97 * _NO_INPUT options, then it is regarded as an "internal" control command -
98 * and not for use in config setting situations. As such, they're not
99 * available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl()
100 * access. Changes to this list of 'command types' should be reflected
101 * carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string().
102 */
103
104/* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */
105# define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
106/*
107 * accepts string input (cast from 'void*' to 'const char *', 4th parameter
108 * to ENGINE_ctrl)
109 */
110# define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
111/*
112 * Indicates that the control command takes *no* input. Ie. the control
113 * command is unparameterised.
114 */
115# define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
116/*
117 * Indicates that the control command is internal. This control command won't
118 * be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
119 * function.
120 */
121# define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008
122
123/*
124 * NB: These 3 control commands are deprecated and should not be used.
125 * ENGINEs relying on these commands should compile conditional support for
126 * compatibility (eg. if these symbols are defined) but should also migrate
127 * the same functionality to their own ENGINE-specific control functions that
128 * can be "discovered" by calling applications. The fact these control
129 * commands wouldn't be "executable" (ie. usable by text-based config)
130 * doesn't change the fact that application code can find and use them
131 * without requiring per-ENGINE hacking.
132 */
133
134/*
135 * These flags are used to tell the ctrl function what should be done. All
136 * command numbers are shared between all engines, even if some don't make
137 * sense to some engines. In such a case, they do nothing but return the
138 * error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED.
139 */
140# define ENGINE_CTRL_SET_LOGSTREAM 1
141# define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2
142# define ENGINE_CTRL_HUP 3/* Close and reinitialise
143 * any handles/connections
144 * etc. */
145# define ENGINE_CTRL_SET_USER_INTERFACE 4/* Alternative to callback */
146# define ENGINE_CTRL_SET_CALLBACK_DATA 5/* User-specific data, used
147 * when calling the password
148 * callback and the user
149 * interface */
150# define ENGINE_CTRL_LOAD_CONFIGURATION 6/* Load a configuration,
151 * given a string that
152 * represents a file name
153 * or so */
154# define ENGINE_CTRL_LOAD_SECTION 7/* Load data from a given
155 * section in the already
156 * loaded configuration */
157
158/*
159 * These control commands allow an application to deal with an arbitrary
160 * engine in a dynamic way. Warn: Negative return values indicate errors FOR
161 * THESE COMMANDS because zero is used to indicate 'end-of-list'. Other
162 * commands, including ENGINE-specific command types, return zero for an
163 * error. An ENGINE can choose to implement these ctrl functions, and can
164 * internally manage things however it chooses - it does so by setting the
165 * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise
166 * the ENGINE_ctrl() code handles this on the ENGINE's behalf using the
167 * cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's
168 * ctrl() handler need only implement its own commands - the above "meta"
169 * commands will be taken care of.
170 */
171
172/*
173 * Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not",
174 * then all the remaining control commands will return failure, so it is
175 * worth checking this first if the caller is trying to "discover" the
176 * engine's capabilities and doesn't want errors generated unnecessarily.
177 */
178# define ENGINE_CTRL_HAS_CTRL_FUNCTION 10
179/*
180 * Returns a positive command number for the first command supported by the
181 * engine. Returns zero if no ctrl commands are supported.
182 */
183# define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
184/*
185 * The 'long' argument specifies a command implemented by the engine, and the
186 * return value is the next command supported, or zero if there are no more.
187 */
188# define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
189/*
190 * The 'void*' argument is a command name (cast from 'const char *'), and the
191 * return value is the command that corresponds to it.
192 */
193# define ENGINE_CTRL_GET_CMD_FROM_NAME 13
194/*
195 * The next two allow a command to be converted into its corresponding string
196 * form. In each case, the 'long' argument supplies the command. In the
197 * NAME_LEN case, the return value is the length of the command name (not
198 * counting a trailing EOL). In the NAME case, the 'void*' argument must be a
199 * string buffer large enough, and it will be populated with the name of the
200 * command (WITH a trailing EOL).
201 */
202# define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
203# define ENGINE_CTRL_GET_NAME_FROM_CMD 15
204/* The next two are similar but give a "short description" of a command. */
205# define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
206# define ENGINE_CTRL_GET_DESC_FROM_CMD 17
207/*
208 * With this command, the return value is the OR'd combination of
209 * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
210 * engine-specific ctrl command expects.
211 */
212# define ENGINE_CTRL_GET_CMD_FLAGS 18
213
214/*
215 * ENGINE implementations should start the numbering of their own control
216 * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc).
217 */
218# define ENGINE_CMD_BASE 200
219
220/*
221 * NB: These 2 nCipher "chil" control commands are deprecated, and their
222 * functionality is now available through ENGINE-specific control commands
223 * (exposed through the above-mentioned 'CMD'-handling). Code using these 2
224 * commands should be migrated to the more general command handling before
225 * these are removed.
226 */
227
228/* Flags specific to the nCipher "chil" engine */
229# define ENGINE_CTRL_CHIL_SET_FORKCHECK 100
230 /*
231 * Depending on the value of the (long)i argument, this sets or
232 * unsets the SimpleForkCheck flag in the CHIL API to enable or
233 * disable checking and workarounds for applications that fork().
234 */
235# define ENGINE_CTRL_CHIL_NO_LOCKING 101
236 /*
237 * This prevents the initialisation function from providing mutex
238 * callbacks to the nCipher library.
239 */
240
241/*
242 * If an ENGINE supports its own specific control commands and wishes the
243 * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on
244 * its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN
245 * entries to ENGINE_set_cmd_defns(). It should also implement a ctrl()
246 * handler that supports the stated commands (ie. the "cmd_num" entries as
247 * described by the array). NB: The array must be ordered in increasing order
248 * of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element
249 * has cmd_num set to zero and/or cmd_name set to NULL.
250 */
251typedef struct ENGINE_CMD_DEFN_st {
252 unsigned int cmd_num; /* The command number */
253 const char *cmd_name; /* The command name itself */
254 const char *cmd_desc; /* A short description of the command */
255 unsigned int cmd_flags; /* The input the command expects */
256} ENGINE_CMD_DEFN;
257
258/* Generic function pointer */
259typedef int (*ENGINE_GEN_FUNC_PTR) (void);
260/* Generic function pointer taking no arguments */
261typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *);
262/* Specific control function pointer */
263typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *,
264 void (*f) (void));
265/* Generic load_key function pointer */
266typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
267 UI_METHOD *ui_method,
268 void *callback_data);
269typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl,
270 STACK_OF(X509_NAME) *ca_dn,
271 X509 **pcert, EVP_PKEY **pkey,
272 STACK_OF(X509) **pother,
273 UI_METHOD *ui_method,
274 void *callback_data);
275/*-
276 * These callback types are for an ENGINE's handler for cipher and digest logic.
277 * These handlers have these prototypes;
278 * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
279 * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
280 * Looking at how to implement these handlers in the case of cipher support, if
281 * the framework wants the EVP_CIPHER for 'nid', it will call;
282 * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure)
283 * If the framework wants a list of supported 'nid's, it will call;
284 * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error)
285 */
286/*
287 * Returns to a pointer to the array of supported cipher 'nid's. If the
288 * second parameter is non-NULL it is set to the size of the returned array.
289 */
290typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **,
291 const int **, int);
292typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **,
293 int);
294typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **,
295 const int **, int);
296typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **,
297 const int **, int);
298/*
299 * STRUCTURE functions ... all of these functions deal with pointers to
300 * ENGINE structures where the pointers have a "structural reference". This
301 * means that their reference is to allowed access to the structure but it
302 * does not imply that the structure is functional. To simply increment or
303 * decrement the structural reference count, use ENGINE_by_id and
304 * ENGINE_free. NB: This is not required when iterating using ENGINE_get_next
305 * as it will automatically decrement the structural reference count of the
306 * "current" ENGINE and increment the structural reference count of the
307 * ENGINE it returns (unless it is NULL).
308 */
309
310/* Get the first/last "ENGINE" type available. */
311ENGINE *ENGINE_get_first(void);
312ENGINE *ENGINE_get_last(void);
313/* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
314ENGINE *ENGINE_get_next(ENGINE *e);
315ENGINE *ENGINE_get_prev(ENGINE *e);
316/* Add another "ENGINE" type into the array. */
317int ENGINE_add(ENGINE *e);
318/* Remove an existing "ENGINE" type from the array. */
319int ENGINE_remove(ENGINE *e);
320/* Retrieve an engine from the list by its unique "id" value. */
321ENGINE *ENGINE_by_id(const char *id);
322
323#if OPENSSL_API_COMPAT < 0x10100000L
324# define ENGINE_load_openssl() \
325 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_OPENSSL, NULL)
326# define ENGINE_load_dynamic() \
327 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_DYNAMIC, NULL)
328# ifndef OPENSSL_NO_STATIC_ENGINE
329# define ENGINE_load_padlock() \
330 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_PADLOCK, NULL)
331# define ENGINE_load_capi() \
332 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CAPI, NULL)
333# define ENGINE_load_afalg() \
334 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_AFALG, NULL)
335# endif
336# define ENGINE_load_cryptodev() \
337 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_CRYPTODEV, NULL)
338# define ENGINE_load_rdrand() \
339 OPENSSL_init_crypto(OPENSSL_INIT_ENGINE_RDRAND, NULL)
340#endif
341void ENGINE_load_builtin_engines(void);
342
343/*
344 * Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
345 * "registry" handling.
346 */
347unsigned int ENGINE_get_table_flags(void);
348void ENGINE_set_table_flags(unsigned int flags);
349
350/*- Manage registration of ENGINEs per "table". For each type, there are 3
351 * functions;
352 * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one)
353 * ENGINE_unregister_***(e) - unregister the implementation from 'e'
354 * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list
355 * Cleanup is automatically registered from each table when required.
356 */
357
358int ENGINE_register_RSA(ENGINE *e);
359void ENGINE_unregister_RSA(ENGINE *e);
360void ENGINE_register_all_RSA(void);
361
362int ENGINE_register_DSA(ENGINE *e);
363void ENGINE_unregister_DSA(ENGINE *e);
364void ENGINE_register_all_DSA(void);
365
366int ENGINE_register_EC(ENGINE *e);
367void ENGINE_unregister_EC(ENGINE *e);
368void ENGINE_register_all_EC(void);
369
370int ENGINE_register_DH(ENGINE *e);
371void ENGINE_unregister_DH(ENGINE *e);
372void ENGINE_register_all_DH(void);
373
374int ENGINE_register_RAND(ENGINE *e);
375void ENGINE_unregister_RAND(ENGINE *e);
376void ENGINE_register_all_RAND(void);
377
378int ENGINE_register_ciphers(ENGINE *e);
379void ENGINE_unregister_ciphers(ENGINE *e);
380void ENGINE_register_all_ciphers(void);
381
382int ENGINE_register_digests(ENGINE *e);
383void ENGINE_unregister_digests(ENGINE *e);
384void ENGINE_register_all_digests(void);
385
386int ENGINE_register_pkey_meths(ENGINE *e);
387void ENGINE_unregister_pkey_meths(ENGINE *e);
388void ENGINE_register_all_pkey_meths(void);
389
390int ENGINE_register_pkey_asn1_meths(ENGINE *e);
391void ENGINE_unregister_pkey_asn1_meths(ENGINE *e);
392void ENGINE_register_all_pkey_asn1_meths(void);
393
394/*
395 * These functions register all support from the above categories. Note, use
396 * of these functions can result in static linkage of code your application
397 * may not need. If you only need a subset of functionality, consider using
398 * more selective initialisation.
399 */
400int ENGINE_register_complete(ENGINE *e);
401int ENGINE_register_all_complete(void);
402
403/*
404 * Send parameterised control commands to the engine. The possibilities to
405 * send down an integer, a pointer to data or a function pointer are
406 * provided. Any of the parameters may or may not be NULL, depending on the
407 * command number. In actuality, this function only requires a structural
408 * (rather than functional) reference to an engine, but many control commands
409 * may require the engine be functional. The caller should be aware of trying
410 * commands that require an operational ENGINE, and only use functional
411 * references in such situations.
412 */
413int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
414
415/*
416 * This function tests if an ENGINE-specific command is usable as a
417 * "setting". Eg. in an application's config file that gets processed through
418 * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
419 * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl().
420 */
421int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
422
423/*
424 * This function works like ENGINE_ctrl() with the exception of taking a
425 * command name instead of a command number, and can handle optional
426 * commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation
427 * on how to use the cmd_name and cmd_optional.
428 */
429int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
430 long i, void *p, void (*f) (void), int cmd_optional);
431
432/*
433 * This function passes a command-name and argument to an ENGINE. The
434 * cmd_name is converted to a command number and the control command is
435 * called using 'arg' as an argument (unless the ENGINE doesn't support such
436 * a command, in which case no control command is called). The command is
437 * checked for input flags, and if necessary the argument will be converted
438 * to a numeric value. If cmd_optional is non-zero, then if the ENGINE
439 * doesn't support the given cmd_name the return value will be success
440 * anyway. This function is intended for applications to use so that users
441 * (or config files) can supply engine-specific config data to the ENGINE at
442 * run-time to control behaviour of specific engines. As such, it shouldn't
443 * be used for calling ENGINE_ctrl() functions that return data, deal with
444 * binary data, or that are otherwise supposed to be used directly through
445 * ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl()
446 * operation in this function will be lost - the return value is interpreted
447 * as failure if the return value is zero, success otherwise, and this
448 * function returns a boolean value as a result. In other words, vendors of
449 * 'ENGINE'-enabled devices should write ENGINE implementations with
450 * parameterisations that work in this scheme, so that compliant ENGINE-based
451 * applications can work consistently with the same configuration for the
452 * same ENGINE-enabled devices, across applications.
453 */
454int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
455 int cmd_optional);
456
457/*
458 * These functions are useful for manufacturing new ENGINE structures. They
459 * don't address reference counting at all - one uses them to populate an
460 * ENGINE structure with personalised implementations of things prior to
461 * using it directly or adding it to the builtin ENGINE list in OpenSSL.
462 * These are also here so that the ENGINE structure doesn't have to be
463 * exposed and break binary compatibility!
464 */
465ENGINE *ENGINE_new(void);
466int ENGINE_free(ENGINE *e);
467int ENGINE_up_ref(ENGINE *e);
468int ENGINE_set_id(ENGINE *e, const char *id);
469int ENGINE_set_name(ENGINE *e, const char *name);
470int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
471int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
472int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ecdsa_meth);
473int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
474int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
475int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
476int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
477int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
478int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
479int ENGINE_set_load_privkey_function(ENGINE *e,
480 ENGINE_LOAD_KEY_PTR loadpriv_f);
481int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
482int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
483 ENGINE_SSL_CLIENT_CERT_PTR
484 loadssl_f);
485int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
486int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
487int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f);
488int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f);
489int ENGINE_set_flags(ENGINE *e, int flags);
490int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
491/* These functions allow control over any per-structure ENGINE data. */
492#define ENGINE_get_ex_new_index(l, p, newf, dupf, freef) \
493 CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ENGINE, l, p, newf, dupf, freef)
494int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
495void *ENGINE_get_ex_data(const ENGINE *e, int idx);
496
497#if OPENSSL_API_COMPAT < 0x10100000L
498/*
499 * This function previously cleaned up anything that needs it. Auto-deinit will
500 * now take care of it so it is no longer required to call this function.
501 */
502# define ENGINE_cleanup() while(0) continue
503#endif
504
505/*
506 * These return values from within the ENGINE structure. These can be useful
507 * with functional references as well as structural references - it depends
508 * which you obtained. Using the result for functional purposes if you only
509 * obtained a structural reference may be problematic!
510 */
511const char *ENGINE_get_id(const ENGINE *e);
512const char *ENGINE_get_name(const ENGINE *e);
513const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
514const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
515const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e);
516const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
517const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
518ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
519ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
520ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
521ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
522ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
523ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
524ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE
525 *e);
526ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
527ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
528ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e);
529ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e);
530const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
531const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
532const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid);
533const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid);
534const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
535 const char *str,
536 int len);
537const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
538 const char *str,
539 int len);
540const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
541int ENGINE_get_flags(const ENGINE *e);
542
543/*
544 * FUNCTIONAL functions. These functions deal with ENGINE structures that
545 * have (or will) be initialised for use. Broadly speaking, the structural
546 * functions are useful for iterating the list of available engine types,
547 * creating new engine types, and other "list" operations. These functions
548 * actually deal with ENGINEs that are to be used. As such these functions
549 * can fail (if applicable) when particular engines are unavailable - eg. if
550 * a hardware accelerator is not attached or not functioning correctly. Each
551 * ENGINE has 2 reference counts; structural and functional. Every time a
552 * functional reference is obtained or released, a corresponding structural
553 * reference is automatically obtained or released too.
554 */
555
556/*
557 * Initialise a engine type for use (or up its reference count if it's
558 * already in use). This will fail if the engine is not currently operational
559 * and cannot initialise.
560 */
561int ENGINE_init(ENGINE *e);
562/*
563 * Free a functional reference to a engine type. This does not require a
564 * corresponding call to ENGINE_free as it also releases a structural
565 * reference.
566 */
567int ENGINE_finish(ENGINE *e);
568
569/*
570 * The following functions handle keys that are stored in some secondary
571 * location, handled by the engine. The storage may be on a card or
572 * whatever.
573 */
574EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
575 UI_METHOD *ui_method, void *callback_data);
576EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
577 UI_METHOD *ui_method, void *callback_data);
578int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
579 STACK_OF(X509_NAME) *ca_dn, X509 **pcert,
580 EVP_PKEY **ppkey, STACK_OF(X509) **pother,
581 UI_METHOD *ui_method, void *callback_data);
582
583/*
584 * This returns a pointer for the current ENGINE structure that is (by
585 * default) performing any RSA operations. The value returned is an
586 * incremented reference, so it should be free'd (ENGINE_finish) before it is
587 * discarded.
588 */
589ENGINE *ENGINE_get_default_RSA(void);
590/* Same for the other "methods" */
591ENGINE *ENGINE_get_default_DSA(void);
592ENGINE *ENGINE_get_default_EC(void);
593ENGINE *ENGINE_get_default_DH(void);
594ENGINE *ENGINE_get_default_RAND(void);
595/*
596 * These functions can be used to get a functional reference to perform
597 * ciphering or digesting corresponding to "nid".
598 */
599ENGINE *ENGINE_get_cipher_engine(int nid);
600ENGINE *ENGINE_get_digest_engine(int nid);
601ENGINE *ENGINE_get_pkey_meth_engine(int nid);
602ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid);
603
604/*
605 * This sets a new default ENGINE structure for performing RSA operations. If
606 * the result is non-zero (success) then the ENGINE structure will have had
607 * its reference count up'd so the caller should still free their own
608 * reference 'e'.
609 */
610int ENGINE_set_default_RSA(ENGINE *e);
611int ENGINE_set_default_string(ENGINE *e, const char *def_list);
612/* Same for the other "methods" */
613int ENGINE_set_default_DSA(ENGINE *e);
614int ENGINE_set_default_EC(ENGINE *e);
615int ENGINE_set_default_DH(ENGINE *e);
616int ENGINE_set_default_RAND(ENGINE *e);
617int ENGINE_set_default_ciphers(ENGINE *e);
618int ENGINE_set_default_digests(ENGINE *e);
619int ENGINE_set_default_pkey_meths(ENGINE *e);
620int ENGINE_set_default_pkey_asn1_meths(ENGINE *e);
621
622/*
623 * The combination "set" - the flags are bitwise "OR"d from the
624 * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
625 * function, this function can result in unnecessary static linkage. If your
626 * application requires only specific functionality, consider using more
627 * selective functions.
628 */
629int ENGINE_set_default(ENGINE *e, unsigned int flags);
630
631void ENGINE_add_conf_module(void);
632
633/* Deprecated functions ... */
634/* int ENGINE_clear_defaults(void); */
635
636/**************************/
637/* DYNAMIC ENGINE SUPPORT */
638/**************************/
639
640/* Binary/behaviour compatibility levels */
641# define OSSL_DYNAMIC_VERSION (unsigned long)0x00030000
642/*
643 * Binary versions older than this are too old for us (whether we're a loader
644 * or a loadee)
645 */
646# define OSSL_DYNAMIC_OLDEST (unsigned long)0x00030000
647
648/*
649 * When compiling an ENGINE entirely as an external shared library, loadable
650 * by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns'
651 * structure type provides the calling application's (or library's) error
652 * functionality and memory management function pointers to the loaded
653 * library. These should be used/set in the loaded library code so that the
654 * loading application's 'state' will be used/changed in all operations. The
655 * 'static_state' pointer allows the loaded library to know if it shares the
656 * same static data as the calling application (or library), and thus whether
657 * these callbacks need to be set or not.
658 */
659typedef void *(*dyn_MEM_malloc_fn) (size_t, const char *, int);
660typedef void *(*dyn_MEM_realloc_fn) (void *, size_t, const char *, int);
661typedef void (*dyn_MEM_free_fn) (void *, const char *, int);
662typedef struct st_dynamic_MEM_fns {
663 dyn_MEM_malloc_fn malloc_fn;
664 dyn_MEM_realloc_fn realloc_fn;
665 dyn_MEM_free_fn free_fn;
666} dynamic_MEM_fns;
667/*
668 * FIXME: Perhaps the memory and locking code (crypto.h) should declare and
669 * use these types so we (and any other dependent code) can simplify a bit??
670 */
671/* The top-level structure */
672typedef struct st_dynamic_fns {
673 void *static_state;
674 dynamic_MEM_fns mem_fns;
675} dynamic_fns;
676
677/*
678 * The version checking function should be of this prototype. NB: The
679 * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading
680 * code. If this function returns zero, it indicates a (potential) version
681 * incompatibility and the loaded library doesn't believe it can proceed.
682 * Otherwise, the returned value is the (latest) version supported by the
683 * loading library. The loader may still decide that the loaded code's
684 * version is unsatisfactory and could veto the load. The function is
685 * expected to be implemented with the symbol name "v_check", and a default
686 * implementation can be fully instantiated with
687 * IMPLEMENT_DYNAMIC_CHECK_FN().
688 */
689typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version);
690# define IMPLEMENT_DYNAMIC_CHECK_FN() \
691 OPENSSL_EXPORT unsigned long v_check(unsigned long v); \
692 OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \
693 if (v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
694 return 0; }
695
696/*
697 * This function is passed the ENGINE structure to initialise with its own
698 * function and command settings. It should not adjust the structural or
699 * functional reference counts. If this function returns zero, (a) the load
700 * will be aborted, (b) the previous ENGINE state will be memcpy'd back onto
701 * the structure, and (c) the shared library will be unloaded. So
702 * implementations should do their own internal cleanup in failure
703 * circumstances otherwise they could leak. The 'id' parameter, if non-NULL,
704 * represents the ENGINE id that the loader is looking for. If this is NULL,
705 * the shared library can choose to return failure or to initialise a
706 * 'default' ENGINE. If non-NULL, the shared library must initialise only an
707 * ENGINE matching the passed 'id'. The function is expected to be
708 * implemented with the symbol name "bind_engine". A standard implementation
709 * can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter
710 * 'fn' is a callback function that populates the ENGINE structure and
711 * returns an int value (zero for failure). 'fn' should have prototype;
712 * [static] int fn(ENGINE *e, const char *id);
713 */
714typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id,
715 const dynamic_fns *fns);
716# define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
717 OPENSSL_EXPORT \
718 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
719 OPENSSL_EXPORT \
720 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
721 if (ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
722 CRYPTO_set_mem_functions(fns->mem_fns.malloc_fn, \
723 fns->mem_fns.realloc_fn, \
724 fns->mem_fns.free_fn); \
725 skip_cbs: \
726 if (!fn(e, id)) return 0; \
727 return 1; }
728
729/*
730 * If the loading application (or library) and the loaded ENGINE library
731 * share the same static data (eg. they're both dynamically linked to the
732 * same libcrypto.so) we need a way to avoid trying to set system callbacks -
733 * this would fail, and for the same reason that it's unnecessary to try. If
734 * the loaded ENGINE has (or gets from through the loader) its own copy of
735 * the libcrypto static data, we will need to set the callbacks. The easiest
736 * way to detect this is to have a function that returns a pointer to some
737 * static data and let the loading application and loaded ENGINE compare
738 * their respective values.
739 */
740void *ENGINE_get_static_state(void);
741
742# if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
743DEPRECATEDIN_1_1_0(void ENGINE_setup_bsd_cryptodev(void))
744# endif
745
746
747# ifdef __cplusplus
748}
749# endif
750# endif
751#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette