1 | % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
|
---|
2 | %!TEX root = Vorbis_I_spec.tex
|
---|
3 | \section{Helper equations} \label{vorbis:spec:helper}
|
---|
4 |
|
---|
5 | \subsection{Overview}
|
---|
6 |
|
---|
7 | The equations below are used in multiple places by the Vorbis codec
|
---|
8 | specification. Rather than cluttering up the main specification
|
---|
9 | documents, they are defined here and referenced where appropriate.
|
---|
10 |
|
---|
11 |
|
---|
12 | \subsection{Functions}
|
---|
13 |
|
---|
14 | \subsubsection{ilog} \label{vorbis:spec:ilog}
|
---|
15 |
|
---|
16 | The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
|
---|
17 | \varname{[x]}. Values of \varname{[x]} less than zero are defined to return zero.
|
---|
18 |
|
---|
19 | \begin{programlisting}
|
---|
20 | 1) [return\_value] = 0;
|
---|
21 | 2) if ( [x] is greater than zero ) {
|
---|
22 |
|
---|
23 | 3) increment [return\_value];
|
---|
24 | 4) logical shift [x] one bit to the right, padding the MSb with zero
|
---|
25 | 5) repeat at step 2)
|
---|
26 |
|
---|
27 | }
|
---|
28 |
|
---|
29 | 6) done
|
---|
30 | \end{programlisting}
|
---|
31 |
|
---|
32 | Examples:
|
---|
33 |
|
---|
34 | \begin{itemize}
|
---|
35 | \item ilog(0) = 0;
|
---|
36 | \item ilog(1) = 1;
|
---|
37 | \item ilog(2) = 2;
|
---|
38 | \item ilog(3) = 2;
|
---|
39 | \item ilog(4) = 3;
|
---|
40 | \item ilog(7) = 3;
|
---|
41 | \item ilog(negative number) = 0;
|
---|
42 | \end{itemize}
|
---|
43 |
|
---|
44 |
|
---|
45 |
|
---|
46 |
|
---|
47 | \subsubsection{float32\_unpack} \label{vorbis:spec:float32:unpack}
|
---|
48 |
|
---|
49 | "float32\_unpack(x)" is intended to translate the packed binary
|
---|
50 | representation of a Vorbis codebook float value into the
|
---|
51 | representation used by the decoder for floating point numbers. For
|
---|
52 | purposes of this example, we will unpack a Vorbis float32 into a
|
---|
53 | host-native floating point number.
|
---|
54 |
|
---|
55 | \begin{programlisting}
|
---|
56 | 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
|
---|
57 | 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
|
---|
58 | 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
|
---|
59 | 4) if ( [sign] is nonzero ) then negate [mantissa]
|
---|
60 | 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
|
---|
61 | \end{programlisting}
|
---|
62 |
|
---|
63 |
|
---|
64 |
|
---|
65 | \subsubsection{lookup1\_values} \label{vorbis:spec:lookup1:values}
|
---|
66 |
|
---|
67 | "lookup1\_values(codebook\_entries,codebook\_dimensions)" is used to
|
---|
68 | compute the correct length of the value index for a codebook VQ lookup
|
---|
69 | table of lookup type 1. The values on this list are permuted to
|
---|
70 | construct the VQ vector lookup table of size
|
---|
71 | \varname{[codebook\_entries]}.
|
---|
72 |
|
---|
73 | The return value for this function is defined to be 'the greatest
|
---|
74 | integer value for which \varname{[return\_value]} to the power of
|
---|
75 | \varname{[codebook\_dimensions]} is less than or equal to
|
---|
76 | \varname{[codebook\_entries]}'.
|
---|
77 |
|
---|
78 |
|
---|
79 |
|
---|
80 | \subsubsection{low\_neighbor} \label{vorbis:spec:low:neighbor}
|
---|
81 |
|
---|
82 | "low\_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
|
---|
83 | the greatest value scalar element for which \varname{n} is less than
|
---|
84 | \varname{[x]} and vector \varname{[v]} element \varname{n} is less
|
---|
85 | than vector \varname{[v]} element \varname{[x]}.
|
---|
86 |
|
---|
87 | \subsubsection{high\_neighbor} \label{vorbis:spec:high:neighbor}
|
---|
88 |
|
---|
89 | "high\_neighbor(v,x)" finds the position \varname{n} in vector [v] of
|
---|
90 | the lowest value scalar element for which \varname{n} is less than
|
---|
91 | \varname{[x]} and vector \varname{[v]} element \varname{n} is greater
|
---|
92 | than vector \varname{[v]} element \varname{[x]}.
|
---|
93 |
|
---|
94 |
|
---|
95 |
|
---|
96 | \subsubsection{render\_point} \label{vorbis:spec:render:point}
|
---|
97 |
|
---|
98 | "render\_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
|
---|
99 | along the line specified by x0, x1, y0 and y1. This function uses an
|
---|
100 | integer algorithm to solve for the point directly without calculating
|
---|
101 | intervening values along the line.
|
---|
102 |
|
---|
103 | \begin{programlisting}
|
---|
104 | 1) [dy] = [y1] - [y0]
|
---|
105 | 2) [adx] = [x1] - [x0]
|
---|
106 | 3) [ady] = absolute value of [dy]
|
---|
107 | 4) [err] = [ady] * ([X] - [x0])
|
---|
108 | 5) [off] = [err] / [adx] using integer division
|
---|
109 | 6) if ( [dy] is less than zero ) {
|
---|
110 |
|
---|
111 | 7) [Y] = [y0] - [off]
|
---|
112 |
|
---|
113 | } else {
|
---|
114 |
|
---|
115 | 8) [Y] = [y0] + [off]
|
---|
116 |
|
---|
117 | }
|
---|
118 |
|
---|
119 | 9) done
|
---|
120 | \end{programlisting}
|
---|
121 |
|
---|
122 |
|
---|
123 |
|
---|
124 | \subsubsection{render\_line} \label{vorbis:spec:render:line}
|
---|
125 |
|
---|
126 | Floor decode type one uses the integer line drawing algorithm of
|
---|
127 | "render\_line(x0, y0, x1, y1, v)" to construct an integer floor
|
---|
128 | curve for contiguous piecewise line segments. Note that it has not
|
---|
129 | been relevant elsewhere, but here we must define integer division as
|
---|
130 | rounding division of both positive and negative numbers toward zero.
|
---|
131 |
|
---|
132 |
|
---|
133 | \begin{programlisting}
|
---|
134 | 1) [dy] = [y1] - [y0]
|
---|
135 | 2) [adx] = [x1] - [x0]
|
---|
136 | 3) [ady] = absolute value of [dy]
|
---|
137 | 4) [base] = [dy] / [adx] using integer division
|
---|
138 | 5) [x] = [x0]
|
---|
139 | 6) [y] = [y0]
|
---|
140 | 7) [err] = 0
|
---|
141 |
|
---|
142 | 8) if ( [dy] is less than 0 ) {
|
---|
143 |
|
---|
144 | 9) [sy] = [base] - 1
|
---|
145 |
|
---|
146 | } else {
|
---|
147 |
|
---|
148 | 10) [sy] = [base] + 1
|
---|
149 |
|
---|
150 | }
|
---|
151 |
|
---|
152 | 11) [ady] = [ady] - (absolute value of [base]) * [adx]
|
---|
153 | 12) vector [v] element [x] = [y]
|
---|
154 |
|
---|
155 | 13) iterate [x] over the range [x0]+1 ... [x1]-1 {
|
---|
156 |
|
---|
157 | 14) [err] = [err] + [ady];
|
---|
158 | 15) if ( [err] >= [adx] ) {
|
---|
159 |
|
---|
160 | 16) [err] = [err] - [adx]
|
---|
161 | 17) [y] = [y] + [sy]
|
---|
162 |
|
---|
163 | } else {
|
---|
164 |
|
---|
165 | 18) [y] = [y] + [base]
|
---|
166 |
|
---|
167 | }
|
---|
168 |
|
---|
169 | 19) vector [v] element [x] = [y]
|
---|
170 |
|
---|
171 | }
|
---|
172 | \end{programlisting}
|
---|
173 |
|
---|
174 |
|
---|
175 |
|
---|
176 |
|
---|
177 |
|
---|
178 |
|
---|
179 |
|
---|
180 |
|
---|