1 | #!/bin/sh
|
---|
2 | #
|
---|
3 | # intgamma.sh
|
---|
4 | #
|
---|
5 | # Last changed in libpng 1.6.0 [February 14, 2013]
|
---|
6 | #
|
---|
7 | # COPYRIGHT: Written by John Cunningham Bowler, 2013.
|
---|
8 | # To the extent possible under law, the author has waived all copyright and
|
---|
9 | # related or neighboring rights to this work. This work is published from:
|
---|
10 | # United States.
|
---|
11 | #
|
---|
12 | # Shell script to generate png.c 8-bit and 16-bit log tables (see the code in
|
---|
13 | # png.c for details).
|
---|
14 | #
|
---|
15 | # This script uses the "bc" arbitrary precision calculator to calculate 32-bit
|
---|
16 | # fixed point values of logarithms appropriate to finding the log of an 8-bit
|
---|
17 | # (0..255) value and a similar table for the exponent calculation.
|
---|
18 | #
|
---|
19 | # "bc" must be on the path when the script is executed, and the math library
|
---|
20 | # (-lm) must be available
|
---|
21 | #
|
---|
22 | # function to print out a list of numbers as integers; the function truncates
|
---|
23 | # the integers which must be one-per-line
|
---|
24 | function print(){
|
---|
25 | awk 'BEGIN{
|
---|
26 | str = ""
|
---|
27 | }
|
---|
28 | {
|
---|
29 | sub("\\.[0-9]*$", "")
|
---|
30 | if ($0 == "")
|
---|
31 | $0 = "0"
|
---|
32 |
|
---|
33 | if (str == "")
|
---|
34 | t = " " $0 "U"
|
---|
35 | else
|
---|
36 | t = str ", " $0 "U"
|
---|
37 |
|
---|
38 | if (length(t) >= 80) {
|
---|
39 | print str ","
|
---|
40 | str = " " $0 "U"
|
---|
41 | } else
|
---|
42 | str = t
|
---|
43 | }
|
---|
44 | END{
|
---|
45 | print str
|
---|
46 | }'
|
---|
47 | }
|
---|
48 | #
|
---|
49 | # The logarithm table.
|
---|
50 | cat <<END
|
---|
51 | /* 8-bit log table: png_8bit_l2[128]
|
---|
52 | * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
|
---|
53 | * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
|
---|
54 | * mantissa. The numbers are 32-bit fractions.
|
---|
55 | */
|
---|
56 | static const png_uint_32
|
---|
57 | png_8bit_l2[128] =
|
---|
58 | {
|
---|
59 | END
|
---|
60 | #
|
---|
61 | bc -lqws <<END | print
|
---|
62 | f=65536*65536/l(2)
|
---|
63 | for (i=128;i<256;++i) { .5 - l(i/255)*f; }
|
---|
64 | END
|
---|
65 | echo '};'
|
---|
66 | echo
|
---|
67 | #
|
---|
68 | # The exponent table.
|
---|
69 | cat <<END
|
---|
70 | /* The 'exp()' case must invert the above, taking a 20-bit fixed point
|
---|
71 | * logarithmic value and returning a 16 or 8-bit number as appropriate. In
|
---|
72 | * each case only the low 16 bits are relevant - the fraction - since the
|
---|
73 | * integer bits (the top 4) simply determine a shift.
|
---|
74 | *
|
---|
75 | * The worst case is the 16-bit distinction between 65535 and 65534; this
|
---|
76 | * requires perhaps spurious accuracy in the decoding of the logarithm to
|
---|
77 | * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
|
---|
78 | * of getting this accuracy in practice.
|
---|
79 | *
|
---|
80 | * To deal with this the following exp() function works out the exponent of the
|
---|
81 | * frational part of the logarithm by using an accurate 32-bit value from the
|
---|
82 | * top four fractional bits then multiplying in the remaining bits.
|
---|
83 | */
|
---|
84 | static const png_uint_32
|
---|
85 | png_32bit_exp[16] =
|
---|
86 | {
|
---|
87 | END
|
---|
88 | #
|
---|
89 | bc -lqws <<END | print
|
---|
90 | f=l(2)/16
|
---|
91 | for (i=0;i<16;++i) {
|
---|
92 | x = .5 + e(-i*f)*2^32;
|
---|
93 | if (x >= 2^32) x = 2^32-1;
|
---|
94 | x;
|
---|
95 | }
|
---|
96 | END
|
---|
97 | echo '};'
|
---|
98 | echo
|
---|
99 | #
|
---|
100 | # And the table of adjustment values.
|
---|
101 | cat <<END
|
---|
102 | /* Adjustment table; provided to explain the numbers in the code below. */
|
---|
103 | #if 0
|
---|
104 | END
|
---|
105 | bc -lqws <<END | awk '{ printf "%5d %s\n", 12-NR, $0 }'
|
---|
106 | for (i=11;i>=0;--i){
|
---|
107 | (1 - e(-(2^i)/65536*l(2))) * 2^(32-i)
|
---|
108 | }
|
---|
109 | END
|
---|
110 | echo '#endif'
|
---|