VirtualBox

source: vbox/trunk/src/libs/libogg-1.3.5/doc/framing.html@ 99196

Last change on this file since 99196 was 96360, checked in by vboxsync, 2 years ago

libogg, libvorbis: export to OSE

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 14.2 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
2<html>
3<head>
4
5<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/>
6<title>Ogg Documentation</title>
7
8<style type="text/css">
9body {
10 margin: 0 18px 0 18px;
11 padding-bottom: 30px;
12 font-family: Verdana, Arial, Helvetica, sans-serif;
13 color: #333333;
14 font-size: .8em;
15}
16
17a {
18 color: #3366cc;
19}
20
21img {
22 border: 0;
23}
24
25#xiphlogo {
26 margin: 30px 0 16px 0;
27}
28
29#content p {
30 line-height: 1.4;
31}
32
33h1, h1 a, h2, h2 a, h3, h3 a {
34 font-weight: bold;
35 color: #ff9900;
36 margin: 1.3em 0 8px 0;
37}
38
39h1 {
40 font-size: 1.3em;
41}
42
43h2 {
44 font-size: 1.2em;
45}
46
47h3 {
48 font-size: 1.1em;
49}
50
51li {
52 line-height: 1.4;
53}
54
55#copyright {
56 margin-top: 30px;
57 line-height: 1.5em;
58 text-align: center;
59 font-size: .8em;
60 color: #888888;
61 clear: both;
62}
63</style>
64
65</head>
66
67<body>
68
69<div id="xiphlogo">
70 <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a>
71</div>
72
73<h1>Ogg logical bitstream framing</h1>
74
75<h2>Ogg bitstreams</h2>
76
77<p>The Ogg transport bitstream is designed to provide framing, error
78protection and seeking structure for higher-level codec streams that
79consist of raw, unencapsulated data packets, such as the Vorbis audio
80codec or Theora video codec.</p>
81
82<h2>Application example: Vorbis</h2>
83
84<p>Vorbis encodes short-time blocks of PCM data into raw packets of
85bit-packed data. These raw packets may be used directly by transport
86mechanisms that provide their own framing and packet-separation
87mechanisms (such as UDP datagrams). For stream based storage (such as
88files) and transport (such as TCP streams or pipes), Vorbis uses the
89Ogg bitstream format to provide framing/sync, sync recapture
90after error, landmarks during seeking, and enough information to
91properly separate data back into packets at the original packet
92boundaries without relying on decoding to find packet boundaries.</p>
93
94<h2>Design constraints for Ogg bitstreams</h2>
95
96<ol>
97<li>True streaming; we must not need to seek to build a 100%
98 complete bitstream.</li>
99<li>Use no more than approximately 1-2% of bitstream bandwidth for
100 packet boundary marking, high-level framing, sync and seeking.</li>
101<li>Specification of absolute position within the original sample
102 stream.</li>
103<li>Simple mechanism to ease limited editing, such as a simplified
104 concatenation mechanism.</li>
105<li>Detection of corruption, recapture after error and direct, random
106 access to data at arbitrary positions in the bitstream.</li>
107</ol>
108
109<h2>Logical and Physical Bitstreams</h2>
110
111<p>A <em>logical</em> Ogg bitstream is a contiguous stream of
112sequential pages belonging only to the logical bitstream. A
113<em>physical</em> Ogg bitstream is constructed from one or more
114than one logical Ogg bitstream (the simplest physical bitstream
115is simply a single logical bitstream). We describe below the exact
116formatting of an Ogg logical bitstream. Combining logical
117bitstreams into more complex physical bitstreams is described in the
118<a href="oggstream.html">Ogg bitstream overview</a>. The exact
119mapping of raw Vorbis packets into a valid Ogg Vorbis physical
120bitstream is described in the Vorbis I Specification.</p>
121
122<h2>Bitstream structure</h2>
123
124<p>An Ogg stream is structured by dividing incoming packets into
125segments of up to 255 bytes and then wrapping a group of contiguous
126packet segments into a variable length page preceded by a page
127header. Both the header size and page size are variable; the page
128header contains sizing information and checksum data to determine
129header/page size and data integrity.</p>
130
131<p>The bitstream is captured (or recaptured) by looking for the beginning
132of a page, specifically the capture pattern. Once the capture pattern
133is found, the decoder verifies page sync and integrity by computing
134and comparing the checksum. At that point, the decoder can extract the
135packets themselves.</p>
136
137<h3>Packet segmentation</h3>
138
139<p>Packets are logically divided into multiple segments before encoding
140into a page. Note that the segmentation and fragmentation process is a
141logical one; it's used to compute page header values and the original
142page data need not be disturbed, even when a packet spans page
143boundaries.</p>
144
145<p>The raw packet is logically divided into [n] 255 byte segments and a
146last fractional segment of &lt; 255 bytes. A packet size may well
147consist only of the trailing fractional segment, and a fractional
148segment may be zero length. These values, called "lacing values" are
149then saved and placed into the header segment table.</p>
150
151<p>An example should make the basic concept clear:</p>
152
153<pre>
154<tt>
155raw packet:
156 ___________________________________________
157 |______________packet data__________________| 753 bytes
158
159lacing values for page header segment table: 255,255,243
160</tt>
161</pre>
162
163<p>We simply add the lacing values for the total size; the last lacing
164value for a packet is always the value that is less than 255. Note
165that this encoding both avoids imposing a maximum packet size as well
166as imposing minimum overhead on small packets (as opposed to, eg,
167simply using two bytes at the head of every packet and having a max
168packet size of 32k. Small packets (&lt;255, the typical case) are
169penalized with twice the segmentation overhead). Using the lacing
170values as suggested, small packets see the minimum possible
171byte-aligned overhead (1 byte) and large packets, over 512 bytes or
172so, see a fairly constant ~.5% overhead on encoding space.</p>
173
174<p>Note that a lacing value of 255 implies that a second lacing value
175follows in the packet, and a value of &lt; 255 marks the end of the
176packet after that many additional bytes. A packet of 255 bytes (or a
177multiple of 255 bytes) is terminated by a lacing value of 0:</p>
178
179<pre><tt>
180raw packet:
181 _______________________________
182 |________packet data____________| 255 bytes
183
184lacing values: 255, 0
185</tt></pre>
186
187<p>Note also that a 'nil' (zero length) packet is not an error; it
188consists of nothing more than a lacing value of zero in the header.</p>
189
190<h3>Packets spanning pages</h3>
191
192<p>Packets are not restricted to beginning and ending within a page,
193although individual segments are, by definition, required to do so.
194Packets are not restricted to a maximum size, although excessively
195large packets in the data stream are discouraged.</p>
196
197<p>After segmenting a packet, the encoder may decide not to place all the
198resulting segments into the current page; to do so, the encoder places
199the lacing values of the segments it wishes to belong to the current
200page into the current segment table, then finishes the page. The next
201page is begun with the first value in the segment table belonging to
202the next packet segment, thus continuing the packet (data in the
203packet body must also correspond properly to the lacing values in the
204spanned pages. The segment data in the first packet corresponding to
205the lacing values of the first page belong in that page; packet
206segments listed in the segment table of the following page must begin
207the page body of the subsequent page).</p>
208
209<p>The last mechanic to spanning a page boundary is to set the header
210flag in the new page to indicate that the first lacing value in the
211segment table continues rather than begins a packet; a header flag of
2120x01 is set to indicate a continued packet. Although mandatory, it
213is not actually algorithmically necessary; one could inspect the
214preceding segment table to determine if the packet is new or
215continued. Adding the information to the packet_header flag allows a
216simpler design (with no overhead) that needs only inspect the current
217page header after frame capture. This also allows faster error
218recovery in the event that the packet originates in a corrupt
219preceding page, implying that the previous page's segment table
220cannot be trusted.</p>
221
222<p>Note that a packet can span an arbitrary number of pages; the above
223spanning process is repeated for each spanned page boundary. Also a
224'zero termination' on a packet size that is an even multiple of 255
225must appear even if the lacing value appears in the next page as a
226zero-length continuation of the current packet. The header flag
227should be set to 0x01 to indicate that the packet spanned, even though
228the span is a nil case as far as data is concerned.</p>
229
230<p>The encoding looks odd, but is properly optimized for speed and the
231expected case of the majority of packets being between 50 and 200
232bytes (note that it is designed such that packets of wildly different
233sizes can be handled within the model; placing packet size
234restrictions on the encoder would have only slightly simplified design
235in page generation and increased overall encoder complexity).</p>
236
237<p>The main point behind tracking individual packets (and packet
238segments) is to allow more flexible encoding tricks that requiring
239explicit knowledge of packet size. An example is simple bandwidth
240limiting, implemented by simply truncating packets in the nominal case
241if the packet is arranged so that the least sensitive portion of the
242data comes last.</p>
243
244<a name="page_header"></a>
245<h3>Page header</h3>
246
247<p>The headering mechanism is designed to avoid copying and re-assembly
248of the packet data (ie, making the packet segmentation process a
249logical one); the header can be generated directly from incoming
250packet data. The encoder buffers packet data until it finishes a
251complete page at which point it writes the header followed by the
252buffered packet segments.</p>
253
254<h4>capture_pattern</h4>
255
256<p>A header begins with a capture pattern that simplifies identifying
257pages; once the decoder has found the capture pattern it can do a more
258intensive job of verifying that it has in fact found a page boundary
259(as opposed to an inadvertent coincidence in the byte stream).</p>
260
261<pre><tt>
262 byte value
263
264 0 0x4f 'O'
265 1 0x67 'g'
266 2 0x67 'g'
267 3 0x53 'S'
268</tt></pre>
269
270<h4>stream_structure_version</h4>
271
272<p>The capture pattern is followed by the stream structure revision:</p>
273
274<pre><tt>
275 byte value
276
277 4 0x00
278</tt></pre>
279
280<h4>header_type_flag</h4>
281
282<p>The header type flag identifies this page's context in the bitstream:</p>
283
284<pre><tt>
285 byte value
286
287 5 bitflags: 0x01: unset = fresh packet
288 set = continued packet
289 0x02: unset = not first page of logical bitstream
290 set = first page of logical bitstream (bos)
291 0x04: unset = not last page of logical bitstream
292 set = last page of logical bitstream (eos)
293</tt></pre>
294
295<h4>absolute granule position</h4>
296
297<p>(This is packed in the same way the rest of Ogg data is packed; LSb
298of LSB first. Note that the 'position' data specifies a 'sample'
299number (eg, in a CD quality sample is four octets, 16 bits for left
300and 16 bits for right; in video it would likely be the frame number.
301It is up to the specific codec in use to define the semantic meaning
302of the granule position value). The position specified is the total
303samples encoded after including all packets finished on this page
304(packets begun on this page but continuing on to the next page do not
305count). The rationale here is that the position specified in the
306frame header of the last page tells how long the data coded by the
307bitstream is. A truncated stream will still return the proper number
308of samples that can be decoded fully.</p>
309
310<p>A special value of '-1' (in two's complement) indicates that no packets
311finish on this page.</p>
312
313<pre><tt>
314 byte value
315
316 6 0xXX LSB
317 7 0xXX
318 8 0xXX
319 9 0xXX
320 10 0xXX
321 11 0xXX
322 12 0xXX
323 13 0xXX MSB
324</tt></pre>
325
326<h4>stream serial number</h4>
327
328<p>Ogg allows for separate logical bitstreams to be mixed at page
329granularity in a physical bitstream. The most common case would be
330sequential arrangement, but it is possible to interleave pages for
331two separate bitstreams to be decoded concurrently. The serial
332number is the means by which pages physical pages are associated with
333a particular logical stream. Each logical stream must have a unique
334serial number within a physical stream:</p>
335
336<pre><tt>
337 byte value
338
339 14 0xXX LSB
340 15 0xXX
341 16 0xXX
342 17 0xXX MSB
343</tt></pre>
344
345<h4>page sequence no</h4>
346
347<p>Page counter; lets us know if a page is lost (useful where packets
348span page boundaries).</p>
349
350<pre><tt>
351 byte value
352
353 18 0xXX LSB
354 19 0xXX
355 20 0xXX
356 21 0xXX MSB
357</tt></pre>
358
359<h4>page checksum</h4>
360
361<p>32 bit CRC value (direct algorithm, initial val and final XOR = 0,
362generator polynomial=0x04c11db7). The value is computed over the
363entire header (with the CRC field in the header set to zero) and then
364continued over the page. The CRC field is then filled with the
365computed value.</p>
366
367<p>(A thorough discussion of CRC algorithms can be found in <a
368href="http://www.ross.net/crc/download/crc_v3.txt">"A
369Painless Guide to CRC Error Detection Algorithms"</a> by Ross
370Williams <a href="mailto:ross@ross.net">ross@ross.net</a>.)</p>
371
372<pre><tt>
373 byte value
374
375 22 0xXX LSB
376 23 0xXX
377 24 0xXX
378 25 0xXX MSB
379</tt></pre>
380
381<h4>page_segments</h4>
382
383<p>The number of segment entries to appear in the segment table. The
384maximum number of 255 segments (255 bytes each) sets the maximum
385possible physical page size at 65307 bytes or just under 64kB (thus
386we know that a header corrupted so as destroy sizing/alignment
387information will not cause a runaway bitstream. We'll read in the
388page according to the corrupted size information that's guaranteed to
389be a reasonable size regardless, notice the checksum mismatch, drop
390sync and then look for recapture).</p>
391
392<pre><tt>
393 byte value
394
395 26 0x00-0xff (0-255)
396</tt></pre>
397
398<h4>segment_table (containing packet lacing values)</h4>
399
400<p>The lacing values for each packet segment physically appearing in
401this page are listed in contiguous order.</p>
402
403<pre><tt>
404 byte value
405
406 27 0x00-0xff (0-255)
407 [...]
408 n 0x00-0xff (0-255, n=page_segments+26)
409</tt></pre>
410
411<p>Total page size is calculated directly from the known header size and
412lacing values in the segment table. Packet data segments follow
413immediately after the header.</p>
414
415<p>Page headers typically impose a flat .25-.5% space overhead assuming
416nominal ~8k page sizes. The segmentation table needed for exact
417packet recovery in the streaming layer adds approximately .5-1%
418nominal assuming expected encoder behavior in the 44.1kHz, 128kbps
419stereo encodings.</p>
420
421<div id="copyright">
422 The Xiph Fish Logo is a
423 trademark (&trade;) of Xiph.Org.<br/>
424
425 These pages &copy; 1994 - 2005 Xiph.Org. All rights reserved.
426</div>
427
428</body>
429</html>
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette