1 | ///////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | /// \file simple_coder.c
|
---|
4 | /// \brief Wrapper for simple filters
|
---|
5 | ///
|
---|
6 | /// Simple filters don't change the size of the data i.e. number of bytes
|
---|
7 | /// in equals the number of bytes out.
|
---|
8 | //
|
---|
9 | // Author: Lasse Collin
|
---|
10 | //
|
---|
11 | // This file has been put into the public domain.
|
---|
12 | // You can do whatever you want with this file.
|
---|
13 | //
|
---|
14 | ///////////////////////////////////////////////////////////////////////////////
|
---|
15 |
|
---|
16 | #include "simple_private.h"
|
---|
17 |
|
---|
18 |
|
---|
19 | /// Copied or encodes/decodes more data to out[].
|
---|
20 | static lzma_ret
|
---|
21 | copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
|
---|
22 | const uint8_t *restrict in, size_t *restrict in_pos,
|
---|
23 | size_t in_size, uint8_t *restrict out,
|
---|
24 | size_t *restrict out_pos, size_t out_size, lzma_action action)
|
---|
25 | {
|
---|
26 | assert(!coder->end_was_reached);
|
---|
27 |
|
---|
28 | if (coder->next.code == NULL) {
|
---|
29 | lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
|
---|
30 |
|
---|
31 | // Check if end of stream was reached.
|
---|
32 | if (coder->is_encoder && action == LZMA_FINISH
|
---|
33 | && *in_pos == in_size)
|
---|
34 | coder->end_was_reached = true;
|
---|
35 |
|
---|
36 | } else {
|
---|
37 | // Call the next coder in the chain to provide us some data.
|
---|
38 | const lzma_ret ret = coder->next.code(
|
---|
39 | coder->next.coder, allocator,
|
---|
40 | in, in_pos, in_size,
|
---|
41 | out, out_pos, out_size, action);
|
---|
42 |
|
---|
43 | if (ret == LZMA_STREAM_END) {
|
---|
44 | assert(!coder->is_encoder
|
---|
45 | || action == LZMA_FINISH);
|
---|
46 | coder->end_was_reached = true;
|
---|
47 |
|
---|
48 | } else if (ret != LZMA_OK) {
|
---|
49 | return ret;
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | return LZMA_OK;
|
---|
54 | }
|
---|
55 |
|
---|
56 |
|
---|
57 | static size_t
|
---|
58 | call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
|
---|
59 | {
|
---|
60 | const size_t filtered = coder->filter(coder->simple,
|
---|
61 | coder->now_pos, coder->is_encoder,
|
---|
62 | buffer, size);
|
---|
63 | coder->now_pos += filtered;
|
---|
64 | return filtered;
|
---|
65 | }
|
---|
66 |
|
---|
67 |
|
---|
68 | static lzma_ret
|
---|
69 | simple_code(void *coder_ptr, const lzma_allocator *allocator,
|
---|
70 | const uint8_t *restrict in, size_t *restrict in_pos,
|
---|
71 | size_t in_size, uint8_t *restrict out,
|
---|
72 | size_t *restrict out_pos, size_t out_size, lzma_action action)
|
---|
73 | {
|
---|
74 | lzma_simple_coder *coder = coder_ptr;
|
---|
75 |
|
---|
76 | // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
|
---|
77 | // in cases when the filter is able to filter everything. With most
|
---|
78 | // simple filters it can be done at offset that is a multiple of 2,
|
---|
79 | // 4, or 16. With x86 filter, it needs good luck, and thus cannot
|
---|
80 | // be made to work predictably.
|
---|
81 | if (action == LZMA_SYNC_FLUSH)
|
---|
82 | return LZMA_OPTIONS_ERROR;
|
---|
83 |
|
---|
84 | // Flush already filtered data from coder->buffer[] to out[].
|
---|
85 | if (coder->pos < coder->filtered) {
|
---|
86 | lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
|
---|
87 | out, out_pos, out_size);
|
---|
88 |
|
---|
89 | // If we couldn't flush all the filtered data, return to
|
---|
90 | // application immediately.
|
---|
91 | if (coder->pos < coder->filtered)
|
---|
92 | return LZMA_OK;
|
---|
93 |
|
---|
94 | if (coder->end_was_reached) {
|
---|
95 | assert(coder->filtered == coder->size);
|
---|
96 | return LZMA_STREAM_END;
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | // If we get here, there is no filtered data left in the buffer.
|
---|
101 | coder->filtered = 0;
|
---|
102 |
|
---|
103 | assert(!coder->end_was_reached);
|
---|
104 |
|
---|
105 | // If there is more output space left than there is unfiltered data
|
---|
106 | // in coder->buffer[], flush coder->buffer[] to out[], and copy/code
|
---|
107 | // more data to out[] hopefully filling it completely. Then filter
|
---|
108 | // the data in out[]. This step is where most of the data gets
|
---|
109 | // filtered if the buffer sizes used by the application are reasonable.
|
---|
110 | const size_t out_avail = out_size - *out_pos;
|
---|
111 | const size_t buf_avail = coder->size - coder->pos;
|
---|
112 | if (out_avail > buf_avail || buf_avail == 0) {
|
---|
113 | // Store the old position so that we know from which byte
|
---|
114 | // to start filtering.
|
---|
115 | const size_t out_start = *out_pos;
|
---|
116 |
|
---|
117 | // Flush data from coder->buffer[] to out[], but don't reset
|
---|
118 | // coder->pos and coder->size yet. This way the coder can be
|
---|
119 | // restarted if the next filter in the chain returns e.g.
|
---|
120 | // LZMA_MEM_ERROR.
|
---|
121 | //
|
---|
122 | // Do the memcpy() conditionally because out can be NULL
|
---|
123 | // (in which case buf_avail is always 0). Calling memcpy()
|
---|
124 | // with a null-pointer is undefined even if the third
|
---|
125 | // argument is 0.
|
---|
126 | if (buf_avail > 0)
|
---|
127 | memcpy(out + *out_pos, coder->buffer + coder->pos,
|
---|
128 | buf_avail);
|
---|
129 |
|
---|
130 | *out_pos += buf_avail;
|
---|
131 |
|
---|
132 | // Copy/Encode/Decode more data to out[].
|
---|
133 | {
|
---|
134 | const lzma_ret ret = copy_or_code(coder, allocator,
|
---|
135 | in, in_pos, in_size,
|
---|
136 | out, out_pos, out_size, action);
|
---|
137 | assert(ret != LZMA_STREAM_END);
|
---|
138 | if (ret != LZMA_OK)
|
---|
139 | return ret;
|
---|
140 | }
|
---|
141 |
|
---|
142 | // Filter out[].
|
---|
143 | const size_t size = *out_pos - out_start;
|
---|
144 | const size_t filtered = call_filter(
|
---|
145 | coder, out + out_start, size);
|
---|
146 |
|
---|
147 | const size_t unfiltered = size - filtered;
|
---|
148 | assert(unfiltered <= coder->allocated / 2);
|
---|
149 |
|
---|
150 | // Now we can update coder->pos and coder->size, because
|
---|
151 | // the next coder in the chain (if any) was successful.
|
---|
152 | coder->pos = 0;
|
---|
153 | coder->size = unfiltered;
|
---|
154 |
|
---|
155 | if (coder->end_was_reached) {
|
---|
156 | // The last byte has been copied to out[] already.
|
---|
157 | // They are left as is.
|
---|
158 | coder->size = 0;
|
---|
159 |
|
---|
160 | } else if (unfiltered > 0) {
|
---|
161 | // There is unfiltered data left in out[]. Copy it to
|
---|
162 | // coder->buffer[] and rewind *out_pos appropriately.
|
---|
163 | *out_pos -= unfiltered;
|
---|
164 | memcpy(coder->buffer, out + *out_pos, unfiltered);
|
---|
165 | }
|
---|
166 | } else if (coder->pos > 0) {
|
---|
167 | memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
|
---|
168 | coder->size -= coder->pos;
|
---|
169 | coder->pos = 0;
|
---|
170 | }
|
---|
171 |
|
---|
172 | assert(coder->pos == 0);
|
---|
173 |
|
---|
174 | // If coder->buffer[] isn't empty, try to fill it by copying/decoding
|
---|
175 | // more data. Then filter coder->buffer[] and copy the successfully
|
---|
176 | // filtered data to out[]. It is probable, that some filtered and
|
---|
177 | // unfiltered data will be left to coder->buffer[].
|
---|
178 | if (coder->size > 0) {
|
---|
179 | {
|
---|
180 | const lzma_ret ret = copy_or_code(coder, allocator,
|
---|
181 | in, in_pos, in_size,
|
---|
182 | coder->buffer, &coder->size,
|
---|
183 | coder->allocated, action);
|
---|
184 | assert(ret != LZMA_STREAM_END);
|
---|
185 | if (ret != LZMA_OK)
|
---|
186 | return ret;
|
---|
187 | }
|
---|
188 |
|
---|
189 | coder->filtered = call_filter(
|
---|
190 | coder, coder->buffer, coder->size);
|
---|
191 |
|
---|
192 | // Everything is considered to be filtered if coder->buffer[]
|
---|
193 | // contains the last bytes of the data.
|
---|
194 | if (coder->end_was_reached)
|
---|
195 | coder->filtered = coder->size;
|
---|
196 |
|
---|
197 | // Flush as much as possible.
|
---|
198 | lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
|
---|
199 | out, out_pos, out_size);
|
---|
200 | }
|
---|
201 |
|
---|
202 | // Check if we got everything done.
|
---|
203 | if (coder->end_was_reached && coder->pos == coder->size)
|
---|
204 | return LZMA_STREAM_END;
|
---|
205 |
|
---|
206 | return LZMA_OK;
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | static void
|
---|
211 | simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
|
---|
212 | {
|
---|
213 | lzma_simple_coder *coder = coder_ptr;
|
---|
214 | lzma_next_end(&coder->next, allocator);
|
---|
215 | lzma_free(coder->simple, allocator);
|
---|
216 | lzma_free(coder, allocator);
|
---|
217 | return;
|
---|
218 | }
|
---|
219 |
|
---|
220 |
|
---|
221 | static lzma_ret
|
---|
222 | simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
|
---|
223 | const lzma_filter *filters_null lzma_attribute((__unused__)),
|
---|
224 | const lzma_filter *reversed_filters)
|
---|
225 | {
|
---|
226 | lzma_simple_coder *coder = coder_ptr;
|
---|
227 |
|
---|
228 | // No update support, just call the next filter in the chain.
|
---|
229 | return lzma_next_filter_update(
|
---|
230 | &coder->next, allocator, reversed_filters + 1);
|
---|
231 | }
|
---|
232 |
|
---|
233 |
|
---|
234 | extern lzma_ret
|
---|
235 | lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
---|
236 | const lzma_filter_info *filters,
|
---|
237 | size_t (*filter)(void *simple, uint32_t now_pos,
|
---|
238 | bool is_encoder, uint8_t *buffer, size_t size),
|
---|
239 | size_t simple_size, size_t unfiltered_max,
|
---|
240 | uint32_t alignment, bool is_encoder)
|
---|
241 | {
|
---|
242 | // Allocate memory for the lzma_simple_coder structure if needed.
|
---|
243 | lzma_simple_coder *coder = next->coder;
|
---|
244 | if (coder == NULL) {
|
---|
245 | // Here we allocate space also for the temporary buffer. We
|
---|
246 | // need twice the size of unfiltered_max, because then it
|
---|
247 | // is always possible to filter at least unfiltered_max bytes
|
---|
248 | // more data in coder->buffer[] if it can be filled completely.
|
---|
249 | coder = lzma_alloc(sizeof(lzma_simple_coder)
|
---|
250 | + 2 * unfiltered_max, allocator);
|
---|
251 | if (coder == NULL)
|
---|
252 | return LZMA_MEM_ERROR;
|
---|
253 |
|
---|
254 | next->coder = coder;
|
---|
255 | next->code = &simple_code;
|
---|
256 | next->end = &simple_coder_end;
|
---|
257 | next->update = &simple_coder_update;
|
---|
258 |
|
---|
259 | coder->next = LZMA_NEXT_CODER_INIT;
|
---|
260 | coder->filter = filter;
|
---|
261 | coder->allocated = 2 * unfiltered_max;
|
---|
262 |
|
---|
263 | // Allocate memory for filter-specific data structure.
|
---|
264 | if (simple_size > 0) {
|
---|
265 | coder->simple = lzma_alloc(simple_size, allocator);
|
---|
266 | if (coder->simple == NULL)
|
---|
267 | return LZMA_MEM_ERROR;
|
---|
268 | } else {
|
---|
269 | coder->simple = NULL;
|
---|
270 | }
|
---|
271 | }
|
---|
272 |
|
---|
273 | if (filters[0].options != NULL) {
|
---|
274 | const lzma_options_bcj *simple = filters[0].options;
|
---|
275 | coder->now_pos = simple->start_offset;
|
---|
276 | if (coder->now_pos & (alignment - 1))
|
---|
277 | return LZMA_OPTIONS_ERROR;
|
---|
278 | } else {
|
---|
279 | coder->now_pos = 0;
|
---|
280 | }
|
---|
281 |
|
---|
282 | // Reset variables.
|
---|
283 | coder->is_encoder = is_encoder;
|
---|
284 | coder->end_was_reached = false;
|
---|
285 | coder->pos = 0;
|
---|
286 | coder->filtered = 0;
|
---|
287 | coder->size = 0;
|
---|
288 |
|
---|
289 | return lzma_next_filter_init(&coder->next, allocator, filters + 1);
|
---|
290 | }
|
---|