VirtualBox

source: vbox/trunk/src/libs/liblzma-5.4.1/lzma/lzma_encoder.c@ 107044

Last change on this file since 107044 was 98730, checked in by vboxsync, 21 months ago

libs/liblzma-5.4.1: Export to OSE, bugref:10254

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 21.7 KB
Line 
1///////////////////////////////////////////////////////////////////////////////
2//
3/// \file lzma_encoder.c
4/// \brief LZMA encoder
5///
6// Authors: Igor Pavlov
7// Lasse Collin
8//
9// This file has been put into the public domain.
10// You can do whatever you want with this file.
11//
12///////////////////////////////////////////////////////////////////////////////
13
14#include "lzma2_encoder.h"
15#include "lzma_encoder_private.h"
16#include "fastpos.h"
17
18
19/////////////
20// Literal //
21/////////////
22
23static inline void
24literal_matched(lzma_range_encoder *rc, probability *subcoder,
25 uint32_t match_byte, uint32_t symbol)
26{
27 uint32_t offset = 0x100;
28 symbol += UINT32_C(1) << 8;
29
30 do {
31 match_byte <<= 1;
32 const uint32_t match_bit = match_byte & offset;
33 const uint32_t subcoder_index
34 = offset + match_bit + (symbol >> 8);
35 const uint32_t bit = (symbol >> 7) & 1;
36 rc_bit(rc, &subcoder[subcoder_index], bit);
37
38 symbol <<= 1;
39 offset &= ~(match_byte ^ symbol);
40
41 } while (symbol < (UINT32_C(1) << 16));
42}
43
44
45static inline void
46literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
47{
48 // Locate the literal byte to be encoded and the subcoder.
49 const uint8_t cur_byte = mf->buffer[
50 mf->read_pos - mf->read_ahead];
51 probability *subcoder = literal_subcoder(coder->literal,
52 coder->literal_context_bits, coder->literal_pos_mask,
53 position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
54
55 if (is_literal_state(coder->state)) {
56 // Previous LZMA-symbol was a literal. Encode a normal
57 // literal without a match byte.
58 rc_bittree(&coder->rc, subcoder, 8, cur_byte);
59 } else {
60 // Previous LZMA-symbol was a match. Use the last byte of
61 // the match as a "match byte". That is, compare the bits
62 // of the current literal and the match byte.
63 const uint8_t match_byte = mf->buffer[
64 mf->read_pos - coder->reps[0] - 1
65 - mf->read_ahead];
66 literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
67 }
68
69 update_literal(coder->state);
70}
71
72
73//////////////////
74// Match length //
75//////////////////
76
77static void
78length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
79{
80 const uint32_t table_size = lc->table_size;
81 lc->counters[pos_state] = table_size;
82
83 const uint32_t a0 = rc_bit_0_price(lc->choice);
84 const uint32_t a1 = rc_bit_1_price(lc->choice);
85 const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
86 const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
87 uint32_t *const prices = lc->prices[pos_state];
88
89 uint32_t i;
90 for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
91 prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
92 LEN_LOW_BITS, i);
93
94 for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
95 prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
96 LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
97
98 for (; i < table_size; ++i)
99 prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
100 i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
101
102 return;
103}
104
105
106static inline void
107length(lzma_range_encoder *rc, lzma_length_encoder *lc,
108 const uint32_t pos_state, uint32_t len, const bool fast_mode)
109{
110 assert(len <= MATCH_LEN_MAX);
111 len -= MATCH_LEN_MIN;
112
113 if (len < LEN_LOW_SYMBOLS) {
114 rc_bit(rc, &lc->choice, 0);
115 rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
116 } else {
117 rc_bit(rc, &lc->choice, 1);
118 len -= LEN_LOW_SYMBOLS;
119
120 if (len < LEN_MID_SYMBOLS) {
121 rc_bit(rc, &lc->choice2, 0);
122 rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
123 } else {
124 rc_bit(rc, &lc->choice2, 1);
125 len -= LEN_MID_SYMBOLS;
126 rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
127 }
128 }
129
130 // Only getoptimum uses the prices so don't update the table when
131 // in fast mode.
132 if (!fast_mode)
133 if (--lc->counters[pos_state] == 0)
134 length_update_prices(lc, pos_state);
135}
136
137
138///////////
139// Match //
140///////////
141
142static inline void
143match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
144 const uint32_t distance, const uint32_t len)
145{
146 update_match(coder->state);
147
148 length(&coder->rc, &coder->match_len_encoder, pos_state, len,
149 coder->fast_mode);
150
151 const uint32_t dist_slot = get_dist_slot(distance);
152 const uint32_t dist_state = get_dist_state(len);
153 rc_bittree(&coder->rc, coder->dist_slot[dist_state],
154 DIST_SLOT_BITS, dist_slot);
155
156 if (dist_slot >= DIST_MODEL_START) {
157 const uint32_t footer_bits = (dist_slot >> 1) - 1;
158 const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
159 const uint32_t dist_reduced = distance - base;
160
161 if (dist_slot < DIST_MODEL_END) {
162 // Careful here: base - dist_slot - 1 can be -1, but
163 // rc_bittree_reverse starts at probs[1], not probs[0].
164 rc_bittree_reverse(&coder->rc,
165 coder->dist_special + base - dist_slot - 1,
166 footer_bits, dist_reduced);
167 } else {
168 rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
169 footer_bits - ALIGN_BITS);
170 rc_bittree_reverse(
171 &coder->rc, coder->dist_align,
172 ALIGN_BITS, dist_reduced & ALIGN_MASK);
173 ++coder->align_price_count;
174 }
175 }
176
177 coder->reps[3] = coder->reps[2];
178 coder->reps[2] = coder->reps[1];
179 coder->reps[1] = coder->reps[0];
180 coder->reps[0] = distance;
181 ++coder->match_price_count;
182}
183
184
185////////////////////
186// Repeated match //
187////////////////////
188
189static inline void
190rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
191 const uint32_t rep, const uint32_t len)
192{
193 if (rep == 0) {
194 rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
195 rc_bit(&coder->rc,
196 &coder->is_rep0_long[coder->state][pos_state],
197 len != 1);
198 } else {
199 const uint32_t distance = coder->reps[rep];
200 rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
201
202 if (rep == 1) {
203 rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
204 } else {
205 rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
206 rc_bit(&coder->rc, &coder->is_rep2[coder->state],
207 rep - 2);
208
209 if (rep == 3)
210 coder->reps[3] = coder->reps[2];
211
212 coder->reps[2] = coder->reps[1];
213 }
214
215 coder->reps[1] = coder->reps[0];
216 coder->reps[0] = distance;
217 }
218
219 if (len == 1) {
220 update_short_rep(coder->state);
221 } else {
222 length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
223 coder->fast_mode);
224 update_long_rep(coder->state);
225 }
226}
227
228
229//////////
230// Main //
231//////////
232
233static void
234encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
235 uint32_t back, uint32_t len, uint32_t position)
236{
237 const uint32_t pos_state = position & coder->pos_mask;
238
239 if (back == UINT32_MAX) {
240 // Literal i.e. eight-bit byte
241 assert(len == 1);
242 rc_bit(&coder->rc,
243 &coder->is_match[coder->state][pos_state], 0);
244 literal(coder, mf, position);
245 } else {
246 // Some type of match
247 rc_bit(&coder->rc,
248 &coder->is_match[coder->state][pos_state], 1);
249
250 if (back < REPS) {
251 // It's a repeated match i.e. the same distance
252 // has been used earlier.
253 rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
254 rep_match(coder, pos_state, back, len);
255 } else {
256 // Normal match
257 rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
258 match(coder, pos_state, back - REPS, len);
259 }
260 }
261
262 assert(mf->read_ahead >= len);
263 mf->read_ahead -= len;
264}
265
266
267static bool
268encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
269{
270 assert(mf_position(mf) == 0);
271 assert(coder->uncomp_size == 0);
272
273 if (mf->read_pos == mf->read_limit) {
274 if (mf->action == LZMA_RUN)
275 return false; // We cannot do anything.
276
277 // We are finishing (we cannot get here when flushing).
278 assert(mf->write_pos == mf->read_pos);
279 assert(mf->action == LZMA_FINISH);
280 } else {
281 // Do the actual initialization. The first LZMA symbol must
282 // always be a literal.
283 mf_skip(mf, 1);
284 mf->read_ahead = 0;
285 rc_bit(&coder->rc, &coder->is_match[0][0], 0);
286 rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
287 ++coder->uncomp_size;
288 }
289
290 // Initialization is done (except if empty file).
291 coder->is_initialized = true;
292
293 return true;
294}
295
296
297static void
298encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
299{
300 const uint32_t pos_state = position & coder->pos_mask;
301 rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
302 rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
303 match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
304}
305
306
307/// Number of bytes that a single encoding loop in lzma_lzma_encode() can
308/// consume from the dictionary. This limit comes from lzma_lzma_optimum()
309/// and may need to be updated if that function is significantly modified.
310#define LOOP_INPUT_MAX (OPTS + 1)
311
312
313extern lzma_ret
314lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
315 uint8_t *restrict out, size_t *restrict out_pos,
316 size_t out_size, uint32_t limit)
317{
318 // Initialize the stream if no data has been encoded yet.
319 if (!coder->is_initialized && !encode_init(coder, mf))
320 return LZMA_OK;
321
322 // Encode pending output bytes from the range encoder.
323 // At the start of the stream, encode_init() encodes one literal.
324 // Later there can be pending output only with LZMA1 because LZMA2
325 // ensures that there is always enough output space. Thus when using
326 // LZMA2, rc_encode() calls in this function will always return false.
327 if (rc_encode(&coder->rc, out, out_pos, out_size)) {
328 // We don't get here with LZMA2.
329 assert(limit == UINT32_MAX);
330 return LZMA_OK;
331 }
332
333 // If the range encoder was flushed in an earlier call to this
334 // function but there wasn't enough output buffer space, those
335 // bytes would have now been encoded by the above rc_encode() call
336 // and the stream has now been finished. This can only happen with
337 // LZMA1 as LZMA2 always provides enough output buffer space.
338 if (coder->is_flushed) {
339 assert(limit == UINT32_MAX);
340 return LZMA_STREAM_END;
341 }
342
343 while (true) {
344 // With LZMA2 we need to take care that compressed size of
345 // a chunk doesn't get too big.
346 // FIXME? Check if this could be improved.
347 if (limit != UINT32_MAX
348 && (mf->read_pos - mf->read_ahead >= limit
349 || *out_pos + rc_pending(&coder->rc)
350 >= LZMA2_CHUNK_MAX
351 - LOOP_INPUT_MAX))
352 break;
353
354 // Check that there is some input to process.
355 if (mf->read_pos >= mf->read_limit) {
356 if (mf->action == LZMA_RUN)
357 return LZMA_OK;
358
359 if (mf->read_ahead == 0)
360 break;
361 }
362
363 // Get optimal match (repeat position and length).
364 // Value ranges for pos:
365 // - [0, REPS): repeated match
366 // - [REPS, UINT32_MAX):
367 // match at (pos - REPS)
368 // - UINT32_MAX: not a match but a literal
369 // Value ranges for len:
370 // - [MATCH_LEN_MIN, MATCH_LEN_MAX]
371 uint32_t len;
372 uint32_t back;
373
374 if (coder->fast_mode)
375 lzma_lzma_optimum_fast(coder, mf, &back, &len);
376 else
377 lzma_lzma_optimum_normal(coder, mf, &back, &len,
378 (uint32_t)(coder->uncomp_size));
379
380 encode_symbol(coder, mf, back, len,
381 (uint32_t)(coder->uncomp_size));
382
383 // If output size limiting is active (out_limit != 0), check
384 // if encoding this LZMA symbol would make the output size
385 // exceed the specified limit.
386 if (coder->out_limit != 0 && rc_encode_dummy(
387 &coder->rc, coder->out_limit)) {
388 // The most recent LZMA symbol would make the output
389 // too big. Throw it away.
390 rc_forget(&coder->rc);
391
392 // FIXME: Tell the LZ layer to not read more input as
393 // it would be waste of time. This doesn't matter if
394 // output-size-limited encoding is done with a single
395 // call though.
396
397 break;
398 }
399
400 // This symbol will be encoded so update the uncompressed size.
401 coder->uncomp_size += len;
402
403 // Encode the LZMA symbol.
404 if (rc_encode(&coder->rc, out, out_pos, out_size)) {
405 // Once again, this can only happen with LZMA1.
406 assert(limit == UINT32_MAX);
407 return LZMA_OK;
408 }
409 }
410
411 // Make the uncompressed size available to the application.
412 if (coder->uncomp_size_ptr != NULL)
413 *coder->uncomp_size_ptr = coder->uncomp_size;
414
415 // LZMA2 doesn't use EOPM at LZMA level.
416 //
417 // Plain LZMA streams without EOPM aren't supported except when
418 // output size limiting is enabled.
419 if (coder->use_eopm)
420 encode_eopm(coder, (uint32_t)(coder->uncomp_size));
421
422 // Flush the remaining bytes from the range encoder.
423 rc_flush(&coder->rc);
424
425 // Copy the remaining bytes to the output buffer. If there
426 // isn't enough output space, we will copy out the remaining
427 // bytes on the next call to this function.
428 if (rc_encode(&coder->rc, out, out_pos, out_size)) {
429 // This cannot happen with LZMA2.
430 assert(limit == UINT32_MAX);
431
432 coder->is_flushed = true;
433 return LZMA_OK;
434 }
435
436 return LZMA_STREAM_END;
437}
438
439
440static lzma_ret
441lzma_encode(void *coder, lzma_mf *restrict mf,
442 uint8_t *restrict out, size_t *restrict out_pos,
443 size_t out_size)
444{
445 // Plain LZMA has no support for sync-flushing.
446 if (unlikely(mf->action == LZMA_SYNC_FLUSH))
447 return LZMA_OPTIONS_ERROR;
448
449 return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
450}
451
452
453static lzma_ret
454lzma_lzma_set_out_limit(
455 void *coder_ptr, uint64_t *uncomp_size, uint64_t out_limit)
456{
457 // Minimum output size is 5 bytes but that cannot hold any output
458 // so we use 6 bytes.
459 if (out_limit < 6)
460 return LZMA_BUF_ERROR;
461
462 lzma_lzma1_encoder *coder = coder_ptr;
463 coder->out_limit = out_limit;
464 coder->uncomp_size_ptr = uncomp_size;
465 coder->use_eopm = false;
466 return LZMA_OK;
467}
468
469
470////////////////////
471// Initialization //
472////////////////////
473
474static bool
475is_options_valid(const lzma_options_lzma *options)
476{
477 // Validate some of the options. LZ encoder validates nice_len too
478 // but we need a valid value here earlier.
479 return is_lclppb_valid(options)
480 && options->nice_len >= MATCH_LEN_MIN
481 && options->nice_len <= MATCH_LEN_MAX
482 && (options->mode == LZMA_MODE_FAST
483 || options->mode == LZMA_MODE_NORMAL);
484}
485
486
487static void
488set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
489{
490 // LZ encoder initialization does the validation for these so we
491 // don't need to validate here.
492 lz_options->before_size = OPTS;
493 lz_options->dict_size = options->dict_size;
494 lz_options->after_size = LOOP_INPUT_MAX;
495 lz_options->match_len_max = MATCH_LEN_MAX;
496 lz_options->nice_len = my_max(mf_get_hash_bytes(options->mf),
497 options->nice_len);
498 lz_options->match_finder = options->mf;
499 lz_options->depth = options->depth;
500 lz_options->preset_dict = options->preset_dict;
501 lz_options->preset_dict_size = options->preset_dict_size;
502 return;
503}
504
505
506static void
507length_encoder_reset(lzma_length_encoder *lencoder,
508 const uint32_t num_pos_states, const bool fast_mode)
509{
510 bit_reset(lencoder->choice);
511 bit_reset(lencoder->choice2);
512
513 for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
514 bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
515 bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
516 }
517
518 bittree_reset(lencoder->high, LEN_HIGH_BITS);
519
520 if (!fast_mode)
521 for (uint32_t pos_state = 0; pos_state < num_pos_states;
522 ++pos_state)
523 length_update_prices(lencoder, pos_state);
524
525 return;
526}
527
528
529extern lzma_ret
530lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
531 const lzma_options_lzma *options)
532{
533 if (!is_options_valid(options))
534 return LZMA_OPTIONS_ERROR;
535
536 coder->pos_mask = (1U << options->pb) - 1;
537 coder->literal_context_bits = options->lc;
538 coder->literal_pos_mask = (1U << options->lp) - 1;
539
540 // Range coder
541 rc_reset(&coder->rc);
542
543 // State
544 coder->state = STATE_LIT_LIT;
545 for (size_t i = 0; i < REPS; ++i)
546 coder->reps[i] = 0;
547
548 literal_init(coder->literal, options->lc, options->lp);
549
550 // Bit encoders
551 for (size_t i = 0; i < STATES; ++i) {
552 for (size_t j = 0; j <= coder->pos_mask; ++j) {
553 bit_reset(coder->is_match[i][j]);
554 bit_reset(coder->is_rep0_long[i][j]);
555 }
556
557 bit_reset(coder->is_rep[i]);
558 bit_reset(coder->is_rep0[i]);
559 bit_reset(coder->is_rep1[i]);
560 bit_reset(coder->is_rep2[i]);
561 }
562
563 for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
564 bit_reset(coder->dist_special[i]);
565
566 // Bit tree encoders
567 for (size_t i = 0; i < DIST_STATES; ++i)
568 bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
569
570 bittree_reset(coder->dist_align, ALIGN_BITS);
571
572 // Length encoders
573 length_encoder_reset(&coder->match_len_encoder,
574 1U << options->pb, coder->fast_mode);
575
576 length_encoder_reset(&coder->rep_len_encoder,
577 1U << options->pb, coder->fast_mode);
578
579 // Price counts are incremented every time appropriate probabilities
580 // are changed. price counts are set to zero when the price tables
581 // are updated, which is done when the appropriate price counts have
582 // big enough value, and lzma_mf.read_ahead == 0 which happens at
583 // least every OPTS (a few thousand) possible price count increments.
584 //
585 // By resetting price counts to UINT32_MAX / 2, we make sure that the
586 // price tables will be initialized before they will be used (since
587 // the value is definitely big enough), and that it is OK to increment
588 // price counts without risk of integer overflow (since UINT32_MAX / 2
589 // is small enough). The current code doesn't increment price counts
590 // before initializing price tables, but it maybe done in future if
591 // we add support for saving the state between LZMA2 chunks.
592 coder->match_price_count = UINT32_MAX / 2;
593 coder->align_price_count = UINT32_MAX / 2;
594
595 coder->opts_end_index = 0;
596 coder->opts_current_index = 0;
597
598 return LZMA_OK;
599}
600
601
602extern lzma_ret
603lzma_lzma_encoder_create(void **coder_ptr, const lzma_allocator *allocator,
604 lzma_vli id, const lzma_options_lzma *options,
605 lzma_lz_options *lz_options)
606{
607 assert(id == LZMA_FILTER_LZMA1 || id == LZMA_FILTER_LZMA1EXT
608 || id == LZMA_FILTER_LZMA2);
609
610 // Allocate lzma_lzma1_encoder if it wasn't already allocated.
611 if (*coder_ptr == NULL) {
612 *coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
613 if (*coder_ptr == NULL)
614 return LZMA_MEM_ERROR;
615 }
616
617 lzma_lzma1_encoder *coder = *coder_ptr;
618
619 // Set compression mode. Note that we haven't validated the options
620 // yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
621 // call at the end of this function.
622 switch (options->mode) {
623 case LZMA_MODE_FAST:
624 coder->fast_mode = true;
625 break;
626
627 case LZMA_MODE_NORMAL: {
628 coder->fast_mode = false;
629
630 // Set dist_table_size.
631 // Round the dictionary size up to next 2^n.
632 //
633 // Currently the maximum encoder dictionary size
634 // is 1.5 GiB due to lz_encoder.c and here we need
635 // to be below 2 GiB to make the rounded up value
636 // fit in an uint32_t and avoid an infite while-loop
637 // (and undefined behavior due to a too large shift).
638 // So do the same check as in LZ encoder,
639 // limiting to 1.5 GiB.
640 if (options->dict_size > (UINT32_C(1) << 30)
641 + (UINT32_C(1) << 29))
642 return LZMA_OPTIONS_ERROR;
643
644 uint32_t log_size = 0;
645 while ((UINT32_C(1) << log_size) < options->dict_size)
646 ++log_size;
647
648 coder->dist_table_size = log_size * 2;
649
650 // Length encoders' price table size
651 const uint32_t nice_len = my_max(
652 mf_get_hash_bytes(options->mf),
653 options->nice_len);
654
655 coder->match_len_encoder.table_size
656 = nice_len + 1 - MATCH_LEN_MIN;
657 coder->rep_len_encoder.table_size
658 = nice_len + 1 - MATCH_LEN_MIN;
659 break;
660 }
661
662 default:
663 return LZMA_OPTIONS_ERROR;
664 }
665
666 // We don't need to write the first byte as literal if there is
667 // a non-empty preset dictionary. encode_init() wouldn't even work
668 // if there is a non-empty preset dictionary, because encode_init()
669 // assumes that position is zero and previous byte is also zero.
670 coder->is_initialized = options->preset_dict != NULL
671 && options->preset_dict_size > 0;
672 coder->is_flushed = false;
673 coder->uncomp_size = 0;
674 coder->uncomp_size_ptr = NULL;
675
676 // Output size limitting is disabled by default.
677 coder->out_limit = 0;
678
679 // Determine if end marker is wanted:
680 // - It is never used with LZMA2.
681 // - It is always used with LZMA_FILTER_LZMA1 (unless
682 // lzma_lzma_set_out_limit() is called later).
683 // - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
684 coder->use_eopm = (id == LZMA_FILTER_LZMA1);
685 if (id == LZMA_FILTER_LZMA1EXT) {
686 // Check if unsupported flags are present.
687 if (options->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
688 return LZMA_OPTIONS_ERROR;
689
690 coder->use_eopm = (options->ext_flags
691 & LZMA_LZMA1EXT_ALLOW_EOPM) != 0;
692
693 // TODO? As long as there are no filters that change the size
694 // of the data, it is enough to look at lzma_stream.total_in
695 // after encoding has been finished to know the uncompressed
696 // size of the LZMA1 stream. But in the future there could be
697 // filters that change the size of the data and then total_in
698 // doesn't work as the LZMA1 stream size might be different
699 // due to another filter in the chain. The problem is simple
700 // to solve: Add another flag to ext_flags and then set
701 // coder->uncomp_size_ptr to the address stored in
702 // lzma_options_lzma.reserved_ptr2 (or _ptr1).
703 }
704
705 set_lz_options(lz_options, options);
706
707 return lzma_lzma_encoder_reset(coder, options);
708}
709
710
711static lzma_ret
712lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
713 lzma_vli id, const void *options, lzma_lz_options *lz_options)
714{
715 lz->code = &lzma_encode;
716 lz->set_out_limit = &lzma_lzma_set_out_limit;
717 return lzma_lzma_encoder_create(
718 &lz->coder, allocator, id, options, lz_options);
719}
720
721
722extern lzma_ret
723lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
724 const lzma_filter_info *filters)
725{
726 return lzma_lz_encoder_init(
727 next, allocator, filters, &lzma_encoder_init);
728}
729
730
731extern uint64_t
732lzma_lzma_encoder_memusage(const void *options)
733{
734 if (!is_options_valid(options))
735 return UINT64_MAX;
736
737 lzma_lz_options lz_options;
738 set_lz_options(&lz_options, options);
739
740 const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
741 if (lz_memusage == UINT64_MAX)
742 return UINT64_MAX;
743
744 return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
745}
746
747
748extern bool
749lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
750{
751 if (!is_lclppb_valid(options))
752 return true;
753
754 *byte = (options->pb * 5 + options->lp) * 9 + options->lc;
755 assert(*byte <= (4 * 5 + 4) * 9 + 8);
756
757 return false;
758}
759
760
761#ifdef HAVE_ENCODER_LZMA1
762extern lzma_ret
763lzma_lzma_props_encode(const void *options, uint8_t *out)
764{
765 if (options == NULL)
766 return LZMA_PROG_ERROR;
767
768 const lzma_options_lzma *const opt = options;
769
770 if (lzma_lzma_lclppb_encode(opt, out))
771 return LZMA_PROG_ERROR;
772
773 write32le(out + 1, opt->dict_size);
774
775 return LZMA_OK;
776}
777#endif
778
779
780extern LZMA_API(lzma_bool)
781lzma_mode_is_supported(lzma_mode mode)
782{
783 return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
784}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette