VirtualBox

source: vbox/trunk/src/libs/ffmpeg-20060710/libavcodec/flacenc.c@ 7692

Last change on this file since 7692 was 5776, checked in by vboxsync, 17 years ago

ffmpeg: exported to OSE

File size: 35.0 KB
Line 
1/**
2 * FLAC audio encoder
3 * Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20#include "avcodec.h"
21#include "bitstream.h"
22#include "crc.h"
23#include "golomb.h"
24
25#define FLAC_MAX_CH 8
26#define FLAC_MIN_BLOCKSIZE 16
27#define FLAC_MAX_BLOCKSIZE 65535
28
29#define FLAC_SUBFRAME_CONSTANT 0
30#define FLAC_SUBFRAME_VERBATIM 1
31#define FLAC_SUBFRAME_FIXED 8
32#define FLAC_SUBFRAME_LPC 32
33
34#define FLAC_CHMODE_NOT_STEREO 0
35#define FLAC_CHMODE_LEFT_RIGHT 1
36#define FLAC_CHMODE_LEFT_SIDE 8
37#define FLAC_CHMODE_RIGHT_SIDE 9
38#define FLAC_CHMODE_MID_SIDE 10
39
40#define ORDER_METHOD_EST 0
41#define ORDER_METHOD_2LEVEL 1
42#define ORDER_METHOD_4LEVEL 2
43#define ORDER_METHOD_8LEVEL 3
44#define ORDER_METHOD_SEARCH 4
45
46#define FLAC_STREAMINFO_SIZE 34
47
48#define MIN_LPC_ORDER 1
49#define MAX_LPC_ORDER 32
50#define MAX_FIXED_ORDER 4
51#define MAX_PARTITION_ORDER 8
52#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
53#define MAX_LPC_PRECISION 15
54#define MAX_LPC_SHIFT 15
55#define MAX_RICE_PARAM 14
56
57typedef struct CompressionOptions {
58 int compression_level;
59 int block_time_ms;
60 int use_lpc;
61 int lpc_coeff_precision;
62 int min_prediction_order;
63 int max_prediction_order;
64 int prediction_order_method;
65 int min_partition_order;
66 int max_partition_order;
67} CompressionOptions;
68
69typedef struct RiceContext {
70 int porder;
71 int params[MAX_PARTITIONS];
72} RiceContext;
73
74typedef struct FlacSubframe {
75 int type;
76 int type_code;
77 int obits;
78 int order;
79 int32_t coefs[MAX_LPC_ORDER];
80 int shift;
81 RiceContext rc;
82 int32_t samples[FLAC_MAX_BLOCKSIZE];
83 int32_t residual[FLAC_MAX_BLOCKSIZE];
84} FlacSubframe;
85
86typedef struct FlacFrame {
87 FlacSubframe subframes[FLAC_MAX_CH];
88 int blocksize;
89 int bs_code[2];
90 uint8_t crc8;
91 int ch_mode;
92} FlacFrame;
93
94typedef struct FlacEncodeContext {
95 PutBitContext pb;
96 int channels;
97 int ch_code;
98 int samplerate;
99 int sr_code[2];
100 int blocksize;
101 int max_framesize;
102 uint32_t frame_count;
103 FlacFrame frame;
104 CompressionOptions options;
105 AVCodecContext *avctx;
106} FlacEncodeContext;
107
108static const int flac_samplerates[16] = {
109 0, 0, 0, 0,
110 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
111 0, 0, 0, 0
112};
113
114static const int flac_blocksizes[16] = {
115 0,
116 192,
117 576, 1152, 2304, 4608,
118 0, 0,
119 256, 512, 1024, 2048, 4096, 8192, 16384, 32768
120};
121
122/**
123 * Writes streaminfo metadata block to byte array
124 */
125static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
126{
127 PutBitContext pb;
128
129 memset(header, 0, FLAC_STREAMINFO_SIZE);
130 init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
131
132 /* streaminfo metadata block */
133 put_bits(&pb, 16, s->blocksize);
134 put_bits(&pb, 16, s->blocksize);
135 put_bits(&pb, 24, 0);
136 put_bits(&pb, 24, s->max_framesize);
137 put_bits(&pb, 20, s->samplerate);
138 put_bits(&pb, 3, s->channels-1);
139 put_bits(&pb, 5, 15); /* bits per sample - 1 */
140 flush_put_bits(&pb);
141 /* total samples = 0 */
142 /* MD5 signature = 0 */
143}
144
145/**
146 * Sets blocksize based on samplerate
147 * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
148 */
149static int select_blocksize(int samplerate, int block_time_ms)
150{
151 int i;
152 int target;
153 int blocksize;
154
155 assert(samplerate > 0);
156 blocksize = flac_blocksizes[1];
157 target = (samplerate * block_time_ms) / 1000;
158 for(i=0; i<16; i++) {
159 if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
160 blocksize = flac_blocksizes[i];
161 }
162 }
163 return blocksize;
164}
165
166static int flac_encode_init(AVCodecContext *avctx)
167{
168 int freq = avctx->sample_rate;
169 int channels = avctx->channels;
170 FlacEncodeContext *s = avctx->priv_data;
171 int i, level;
172 uint8_t *streaminfo;
173
174 s->avctx = avctx;
175
176 if(avctx->sample_fmt != SAMPLE_FMT_S16) {
177 return -1;
178 }
179
180 if(channels < 1 || channels > FLAC_MAX_CH) {
181 return -1;
182 }
183 s->channels = channels;
184 s->ch_code = s->channels-1;
185
186 /* find samplerate in table */
187 if(freq < 1)
188 return -1;
189 for(i=4; i<12; i++) {
190 if(freq == flac_samplerates[i]) {
191 s->samplerate = flac_samplerates[i];
192 s->sr_code[0] = i;
193 s->sr_code[1] = 0;
194 break;
195 }
196 }
197 /* if not in table, samplerate is non-standard */
198 if(i == 12) {
199 if(freq % 1000 == 0 && freq < 255000) {
200 s->sr_code[0] = 12;
201 s->sr_code[1] = freq / 1000;
202 } else if(freq % 10 == 0 && freq < 655350) {
203 s->sr_code[0] = 14;
204 s->sr_code[1] = freq / 10;
205 } else if(freq < 65535) {
206 s->sr_code[0] = 13;
207 s->sr_code[1] = freq;
208 } else {
209 return -1;
210 }
211 s->samplerate = freq;
212 }
213
214 /* set compression option defaults based on avctx->compression_level */
215 if(avctx->compression_level < 0) {
216 s->options.compression_level = 5;
217 } else {
218 s->options.compression_level = avctx->compression_level;
219 }
220 av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
221
222 level= s->options.compression_level;
223 if(level > 5) {
224 av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
225 s->options.compression_level);
226 return -1;
227 }
228
229 s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105})[level];
230 s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1})[level];
231 s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1})[level];
232 s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8})[level];
233 s->options.prediction_order_method = ORDER_METHOD_EST;
234 s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0})[level];
235 s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8})[level];
236
237 /* set compression option overrides from AVCodecContext */
238 if(avctx->use_lpc >= 0) {
239 s->options.use_lpc = !!avctx->use_lpc;
240 }
241 av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
242 s->options.use_lpc? "yes" : "no");
243
244 if(avctx->min_prediction_order >= 0) {
245 if(s->options.use_lpc) {
246 if(avctx->min_prediction_order < MIN_LPC_ORDER ||
247 avctx->min_prediction_order > MAX_LPC_ORDER) {
248 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
249 avctx->min_prediction_order);
250 return -1;
251 }
252 } else {
253 if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
254 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
255 avctx->min_prediction_order);
256 return -1;
257 }
258 }
259 s->options.min_prediction_order = avctx->min_prediction_order;
260 }
261 if(avctx->max_prediction_order >= 0) {
262 if(s->options.use_lpc) {
263 if(avctx->max_prediction_order < MIN_LPC_ORDER ||
264 avctx->max_prediction_order > MAX_LPC_ORDER) {
265 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
266 avctx->max_prediction_order);
267 return -1;
268 }
269 } else {
270 if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
271 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
272 avctx->max_prediction_order);
273 return -1;
274 }
275 }
276 s->options.max_prediction_order = avctx->max_prediction_order;
277 }
278 if(s->options.max_prediction_order < s->options.min_prediction_order) {
279 av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
280 s->options.min_prediction_order, s->options.max_prediction_order);
281 return -1;
282 }
283 av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
284 s->options.min_prediction_order, s->options.max_prediction_order);
285
286 if(avctx->prediction_order_method >= 0) {
287 if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) {
288 av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
289 avctx->prediction_order_method);
290 return -1;
291 }
292 s->options.prediction_order_method = avctx->prediction_order_method;
293 }
294 switch(avctx->prediction_order_method) {
295 case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
296 "estimate"); break;
297 case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
298 "2-level"); break;
299 case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
300 "4-level"); break;
301 case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
302 "8-level"); break;
303 case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
304 "full search"); break;
305 }
306
307 if(avctx->min_partition_order >= 0) {
308 if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
309 av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
310 avctx->min_partition_order);
311 return -1;
312 }
313 s->options.min_partition_order = avctx->min_partition_order;
314 }
315 if(avctx->max_partition_order >= 0) {
316 if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
317 av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
318 avctx->max_partition_order);
319 return -1;
320 }
321 s->options.max_partition_order = avctx->max_partition_order;
322 }
323 if(s->options.max_partition_order < s->options.min_partition_order) {
324 av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
325 s->options.min_partition_order, s->options.max_partition_order);
326 return -1;
327 }
328 av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
329 s->options.min_partition_order, s->options.max_partition_order);
330
331 if(avctx->frame_size > 0) {
332 if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
333 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
334 av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
335 avctx->frame_size);
336 return -1;
337 }
338 s->blocksize = avctx->frame_size;
339 } else {
340 s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
341 avctx->frame_size = s->blocksize;
342 }
343 av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
344
345 /* set LPC precision */
346 if(avctx->lpc_coeff_precision > 0) {
347 if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
348 av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
349 avctx->lpc_coeff_precision);
350 return -1;
351 }
352 s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
353 } else {
354 /* select LPC precision based on block size */
355 if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
356 else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
357 else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
358 else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
359 else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
360 else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
361 else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
362 else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
363 else s->options.lpc_coeff_precision = 15;
364 }
365 av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
366 s->options.lpc_coeff_precision);
367
368 /* set maximum encoded frame size in verbatim mode */
369 if(s->channels == 2) {
370 s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
371 } else {
372 s->max_framesize = 14 + (s->blocksize * s->channels * 2);
373 }
374
375 streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
376 write_streaminfo(s, streaminfo);
377 avctx->extradata = streaminfo;
378 avctx->extradata_size = FLAC_STREAMINFO_SIZE;
379
380 s->frame_count = 0;
381
382 avctx->coded_frame = avcodec_alloc_frame();
383 avctx->coded_frame->key_frame = 1;
384
385 return 0;
386}
387
388static void init_frame(FlacEncodeContext *s)
389{
390 int i, ch;
391 FlacFrame *frame;
392
393 frame = &s->frame;
394
395 for(i=0; i<16; i++) {
396 if(s->blocksize == flac_blocksizes[i]) {
397 frame->blocksize = flac_blocksizes[i];
398 frame->bs_code[0] = i;
399 frame->bs_code[1] = 0;
400 break;
401 }
402 }
403 if(i == 16) {
404 frame->blocksize = s->blocksize;
405 if(frame->blocksize <= 256) {
406 frame->bs_code[0] = 6;
407 frame->bs_code[1] = frame->blocksize-1;
408 } else {
409 frame->bs_code[0] = 7;
410 frame->bs_code[1] = frame->blocksize-1;
411 }
412 }
413
414 for(ch=0; ch<s->channels; ch++) {
415 frame->subframes[ch].obits = 16;
416 }
417}
418
419/**
420 * Copy channel-interleaved input samples into separate subframes
421 */
422static void copy_samples(FlacEncodeContext *s, int16_t *samples)
423{
424 int i, j, ch;
425 FlacFrame *frame;
426
427 frame = &s->frame;
428 for(i=0,j=0; i<frame->blocksize; i++) {
429 for(ch=0; ch<s->channels; ch++,j++) {
430 frame->subframes[ch].samples[i] = samples[j];
431 }
432 }
433}
434
435
436#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
437
438static int find_optimal_param(uint32_t sum, int n)
439{
440 int k, k_opt;
441 uint32_t nbits[MAX_RICE_PARAM+1];
442
443 k_opt = 0;
444 nbits[0] = UINT32_MAX;
445 for(k=0; k<=MAX_RICE_PARAM; k++) {
446 nbits[k] = rice_encode_count(sum, n, k);
447 if(nbits[k] < nbits[k_opt]) {
448 k_opt = k;
449 }
450 }
451 return k_opt;
452}
453
454static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
455 uint32_t *sums, int n, int pred_order)
456{
457 int i;
458 int k, cnt, part;
459 uint32_t all_bits;
460
461 part = (1 << porder);
462 all_bits = 0;
463
464 cnt = (n >> porder) - pred_order;
465 for(i=0; i<part; i++) {
466 if(i == 1) cnt = (n >> porder);
467 k = find_optimal_param(sums[i], cnt);
468 rc->params[i] = k;
469 all_bits += rice_encode_count(sums[i], cnt, k);
470 }
471 all_bits += (4 * part);
472
473 rc->porder = porder;
474
475 return all_bits;
476}
477
478static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
479 uint32_t sums[][MAX_PARTITIONS])
480{
481 int i, j;
482 int parts;
483 uint32_t *res, *res_end;
484
485 /* sums for highest level */
486 parts = (1 << pmax);
487 res = &data[pred_order];
488 res_end = &data[n >> pmax];
489 for(i=0; i<parts; i++) {
490 sums[pmax][i] = 0;
491 while(res < res_end){
492 sums[pmax][i] += *(res++);
493 }
494 res_end+= n >> pmax;
495 }
496 /* sums for lower levels */
497 for(i=pmax-1; i>=pmin; i--) {
498 parts = (1 << i);
499 for(j=0; j<parts; j++) {
500 sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
501 }
502 }
503}
504
505static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
506 int32_t *data, int n, int pred_order)
507{
508 int i;
509 uint32_t bits[MAX_PARTITION_ORDER+1];
510 int opt_porder;
511 RiceContext tmp_rc;
512 uint32_t *udata;
513 uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
514
515 assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
516 assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
517 assert(pmin <= pmax);
518
519 udata = av_malloc(n * sizeof(uint32_t));
520 for(i=0; i<n; i++) {
521 udata[i] = (2*data[i]) ^ (data[i]>>31);
522 }
523
524 calc_sums(pmin, pmax, udata, n, pred_order, sums);
525
526 opt_porder = pmin;
527 bits[pmin] = UINT32_MAX;
528 for(i=pmin; i<=pmax; i++) {
529 bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
530 if(bits[i] <= bits[opt_porder]) {
531 opt_porder = i;
532 *rc= tmp_rc;
533 }
534 }
535
536 av_freep(&udata);
537 return bits[opt_porder];
538}
539
540static int get_max_p_order(int max_porder, int n, int order)
541{
542 int porder = FFMIN(max_porder, av_log2(n^(n-1)));
543 if(order > 0)
544 porder = FFMIN(porder, av_log2(n/order));
545 return porder;
546}
547
548static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
549 int32_t *data, int n, int pred_order,
550 int bps)
551{
552 uint32_t bits;
553 pmin = get_max_p_order(pmin, n, pred_order);
554 pmax = get_max_p_order(pmax, n, pred_order);
555 bits = pred_order*bps + 6;
556 bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
557 return bits;
558}
559
560static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
561 int32_t *data, int n, int pred_order,
562 int bps, int precision)
563{
564 uint32_t bits;
565 pmin = get_max_p_order(pmin, n, pred_order);
566 pmax = get_max_p_order(pmax, n, pred_order);
567 bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
568 bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
569 return bits;
570}
571
572/**
573 * Apply Welch window function to audio block
574 */
575static void apply_welch_window(const int32_t *data, int len, double *w_data)
576{
577 int i, n2;
578 double w;
579 double c;
580
581 n2 = (len >> 1);
582 c = 2.0 / (len - 1.0);
583 for(i=0; i<n2; i++) {
584 w = c - i - 1.0;
585 w = 1.0 - (w * w);
586 w_data[i] = data[i] * w;
587 w_data[len-1-i] = data[len-1-i] * w;
588 }
589}
590
591/**
592 * Calculates autocorrelation data from audio samples
593 * A Welch window function is applied before calculation.
594 */
595static void compute_autocorr(const int32_t *data, int len, int lag,
596 double *autoc)
597{
598 int i, lag_ptr;
599 double tmp[len + lag];
600 double *data1= tmp + lag;
601
602 apply_welch_window(data, len, data1);
603
604 for(i=0; i<lag; i++){
605 autoc[i] = 1.0;
606 data1[i-lag]= 0.0;
607 }
608
609 for(i=0; i<len; i++){
610 for(lag_ptr= i-lag; lag_ptr<=i; lag_ptr++){
611 autoc[i-lag_ptr] += data1[i] * data1[lag_ptr];
612 }
613 }
614}
615
616/**
617 * Levinson-Durbin recursion.
618 * Produces LPC coefficients from autocorrelation data.
619 */
620static void compute_lpc_coefs(const double *autoc, int max_order,
621 double lpc[][MAX_LPC_ORDER], double *ref)
622{
623 int i, j, i2;
624 double r, err, tmp;
625 double lpc_tmp[MAX_LPC_ORDER];
626
627 for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
628 err = autoc[0];
629
630 for(i=0; i<max_order; i++) {
631 r = -autoc[i+1];
632 for(j=0; j<i; j++) {
633 r -= lpc_tmp[j] * autoc[i-j];
634 }
635 r /= err;
636 ref[i] = fabs(r);
637
638 err *= 1.0 - (r * r);
639
640 i2 = (i >> 1);
641 lpc_tmp[i] = r;
642 for(j=0; j<i2; j++) {
643 tmp = lpc_tmp[j];
644 lpc_tmp[j] += r * lpc_tmp[i-1-j];
645 lpc_tmp[i-1-j] += r * tmp;
646 }
647 if(i & 1) {
648 lpc_tmp[j] += lpc_tmp[j] * r;
649 }
650
651 for(j=0; j<=i; j++) {
652 lpc[i][j] = -lpc_tmp[j];
653 }
654 }
655}
656
657/**
658 * Quantize LPC coefficients
659 */
660static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
661 int32_t *lpc_out, int *shift)
662{
663 int i;
664 double cmax;
665 int32_t qmax;
666 int sh;
667
668 /* define maximum levels */
669 qmax = (1 << (precision - 1)) - 1;
670
671 /* find maximum coefficient value */
672 cmax = 0.0;
673 for(i=0; i<order; i++) {
674 cmax= FFMAX(cmax, fabs(lpc_in[i]));
675 }
676
677 /* if maximum value quantizes to zero, return all zeros */
678 if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
679 *shift = 0;
680 memset(lpc_out, 0, sizeof(int32_t) * order);
681 return;
682 }
683
684 /* calculate level shift which scales max coeff to available bits */
685 sh = MAX_LPC_SHIFT;
686 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
687 sh--;
688 }
689
690 /* since negative shift values are unsupported in decoder, scale down
691 coefficients instead */
692 if(sh == 0 && cmax > qmax) {
693 double scale = ((double)qmax) / cmax;
694 for(i=0; i<order; i++) {
695 lpc_in[i] *= scale;
696 }
697 }
698
699 /* output quantized coefficients and level shift */
700 for(i=0; i<order; i++) {
701 lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh));
702 }
703 *shift = sh;
704}
705
706static int estimate_best_order(double *ref, int max_order)
707{
708 int i, est;
709
710 est = 1;
711 for(i=max_order-1; i>=0; i--) {
712 if(ref[i] > 0.10) {
713 est = i+1;
714 break;
715 }
716 }
717 return est;
718}
719
720/**
721 * Calculate LPC coefficients for multiple orders
722 */
723static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
724 int precision, int32_t coefs[][MAX_LPC_ORDER],
725 int *shift)
726{
727 double autoc[MAX_LPC_ORDER+1];
728 double ref[MAX_LPC_ORDER];
729 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
730 int i;
731 int opt_order;
732
733 assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
734
735 compute_autocorr(samples, blocksize, max_order+1, autoc);
736
737 compute_lpc_coefs(autoc, max_order, lpc, ref);
738
739 opt_order = estimate_best_order(ref, max_order);
740
741 i = opt_order-1;
742 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
743
744 return opt_order;
745}
746
747
748static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
749{
750 assert(n > 0);
751 memcpy(res, smp, n * sizeof(int32_t));
752}
753
754static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
755 int order)
756{
757 int i;
758
759 for(i=0; i<order; i++) {
760 res[i] = smp[i];
761 }
762
763 if(order==0){
764 for(i=order; i<n; i++)
765 res[i]= smp[i];
766 }else if(order==1){
767 for(i=order; i<n; i++)
768 res[i]= smp[i] - smp[i-1];
769 }else if(order==2){
770 for(i=order; i<n; i++)
771 res[i]= smp[i] - 2*smp[i-1] + smp[i-2];
772 }else if(order==3){
773 for(i=order; i<n; i++)
774 res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3];
775 }else{
776 for(i=order; i<n; i++)
777 res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4];
778 }
779}
780
781static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
782 int order, const int32_t *coefs, int shift)
783{
784 int i, j;
785 int32_t pred;
786
787 for(i=0; i<order; i++) {
788 res[i] = smp[i];
789 }
790 for(i=order; i<n; i++) {
791 pred = 0;
792 for(j=0; j<order; j++) {
793 pred += coefs[j] * smp[i-j-1];
794 }
795 res[i] = smp[i] - (pred >> shift);
796 }
797}
798
799static int encode_residual(FlacEncodeContext *ctx, int ch)
800{
801 int i, n;
802 int min_order, max_order, opt_order, precision;
803 int min_porder, max_porder;
804 FlacFrame *frame;
805 FlacSubframe *sub;
806 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
807 int shift[MAX_LPC_ORDER];
808 int32_t *res, *smp;
809
810 frame = &ctx->frame;
811 sub = &frame->subframes[ch];
812 res = sub->residual;
813 smp = sub->samples;
814 n = frame->blocksize;
815
816 /* CONSTANT */
817 for(i=1; i<n; i++) {
818 if(smp[i] != smp[0]) break;
819 }
820 if(i == n) {
821 sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
822 res[0] = smp[0];
823 return sub->obits;
824 }
825
826 /* VERBATIM */
827 if(n < 5) {
828 sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
829 encode_residual_verbatim(res, smp, n);
830 return sub->obits * n;
831 }
832
833 min_order = ctx->options.min_prediction_order;
834 max_order = ctx->options.max_prediction_order;
835 min_porder = ctx->options.min_partition_order;
836 max_porder = ctx->options.max_partition_order;
837 precision = ctx->options.lpc_coeff_precision;
838
839 /* FIXED */
840 if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
841 uint32_t bits[MAX_FIXED_ORDER+1];
842 if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
843 opt_order = 0;
844 bits[0] = UINT32_MAX;
845 for(i=min_order; i<=max_order; i++) {
846 encode_residual_fixed(res, smp, n, i);
847 bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
848 n, i, sub->obits);
849 if(bits[i] < bits[opt_order]) {
850 opt_order = i;
851 }
852 }
853 sub->order = opt_order;
854 sub->type = FLAC_SUBFRAME_FIXED;
855 sub->type_code = sub->type | sub->order;
856 if(sub->order != max_order) {
857 encode_residual_fixed(res, smp, n, sub->order);
858 return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
859 sub->order, sub->obits);
860 }
861 return bits[sub->order];
862 }
863
864 /* LPC */
865 sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
866 sub->type = FLAC_SUBFRAME_LPC;
867 sub->type_code = sub->type | (sub->order-1);
868 sub->shift = shift[sub->order-1];
869 for(i=0; i<sub->order; i++) {
870 sub->coefs[i] = coefs[sub->order-1][i];
871 }
872 encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
873 return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
874 sub->obits, precision);
875}
876
877static int encode_residual_v(FlacEncodeContext *ctx, int ch)
878{
879 int i, n;
880 FlacFrame *frame;
881 FlacSubframe *sub;
882 int32_t *res, *smp;
883
884 frame = &ctx->frame;
885 sub = &frame->subframes[ch];
886 res = sub->residual;
887 smp = sub->samples;
888 n = frame->blocksize;
889
890 /* CONSTANT */
891 for(i=1; i<n; i++) {
892 if(smp[i] != smp[0]) break;
893 }
894 if(i == n) {
895 sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
896 res[0] = smp[0];
897 return sub->obits;
898 }
899
900 /* VERBATIM */
901 sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
902 encode_residual_verbatim(res, smp, n);
903 return sub->obits * n;
904}
905
906static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
907{
908 int i, best;
909 int32_t lt, rt;
910 uint64_t sum[4];
911 uint64_t score[4];
912 int k;
913
914 /* calculate sum of 2nd order residual for each channel */
915 sum[0] = sum[1] = sum[2] = sum[3] = 0;
916 for(i=2; i<n; i++) {
917 lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
918 rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
919 sum[2] += ABS((lt + rt) >> 1);
920 sum[3] += ABS(lt - rt);
921 sum[0] += ABS(lt);
922 sum[1] += ABS(rt);
923 }
924 /* estimate bit counts */
925 for(i=0; i<4; i++) {
926 k = find_optimal_param(2*sum[i], n);
927 sum[i] = rice_encode_count(2*sum[i], n, k);
928 }
929
930 /* calculate score for each mode */
931 score[0] = sum[0] + sum[1];
932 score[1] = sum[0] + sum[3];
933 score[2] = sum[1] + sum[3];
934 score[3] = sum[2] + sum[3];
935
936 /* return mode with lowest score */
937 best = 0;
938 for(i=1; i<4; i++) {
939 if(score[i] < score[best]) {
940 best = i;
941 }
942 }
943 if(best == 0) {
944 return FLAC_CHMODE_LEFT_RIGHT;
945 } else if(best == 1) {
946 return FLAC_CHMODE_LEFT_SIDE;
947 } else if(best == 2) {
948 return FLAC_CHMODE_RIGHT_SIDE;
949 } else {
950 return FLAC_CHMODE_MID_SIDE;
951 }
952}
953
954/**
955 * Perform stereo channel decorrelation
956 */
957static void channel_decorrelation(FlacEncodeContext *ctx)
958{
959 FlacFrame *frame;
960 int32_t *left, *right;
961 int i, n;
962
963 frame = &ctx->frame;
964 n = frame->blocksize;
965 left = frame->subframes[0].samples;
966 right = frame->subframes[1].samples;
967
968 if(ctx->channels != 2) {
969 frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
970 return;
971 }
972
973 frame->ch_mode = estimate_stereo_mode(left, right, n);
974
975 /* perform decorrelation and adjust bits-per-sample */
976 if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
977 return;
978 }
979 if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
980 int32_t tmp;
981 for(i=0; i<n; i++) {
982 tmp = left[i];
983 left[i] = (tmp + right[i]) >> 1;
984 right[i] = tmp - right[i];
985 }
986 frame->subframes[1].obits++;
987 } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
988 for(i=0; i<n; i++) {
989 right[i] = left[i] - right[i];
990 }
991 frame->subframes[1].obits++;
992 } else {
993 for(i=0; i<n; i++) {
994 left[i] -= right[i];
995 }
996 frame->subframes[0].obits++;
997 }
998}
999
1000static void put_sbits(PutBitContext *pb, int bits, int32_t val)
1001{
1002 assert(bits >= 0 && bits <= 31);
1003
1004 put_bits(pb, bits, val & ((1<<bits)-1));
1005}
1006
1007static void write_utf8(PutBitContext *pb, uint32_t val)
1008{
1009 int bytes, shift;
1010
1011 if(val < 0x80){
1012 put_bits(pb, 8, val);
1013 return;
1014 }
1015
1016 bytes= (av_log2(val)+4) / 5;
1017 shift = (bytes - 1) * 6;
1018 put_bits(pb, 8, (256 - (256>>bytes)) | (val >> shift));
1019 while(shift >= 6){
1020 shift -= 6;
1021 put_bits(pb, 8, 0x80 | ((val >> shift) & 0x3F));
1022 }
1023}
1024
1025static void output_frame_header(FlacEncodeContext *s)
1026{
1027 FlacFrame *frame;
1028 int crc;
1029
1030 frame = &s->frame;
1031
1032 put_bits(&s->pb, 16, 0xFFF8);
1033 put_bits(&s->pb, 4, frame->bs_code[0]);
1034 put_bits(&s->pb, 4, s->sr_code[0]);
1035 if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
1036 put_bits(&s->pb, 4, s->ch_code);
1037 } else {
1038 put_bits(&s->pb, 4, frame->ch_mode);
1039 }
1040 put_bits(&s->pb, 3, 4); /* bits-per-sample code */
1041 put_bits(&s->pb, 1, 0);
1042 write_utf8(&s->pb, s->frame_count);
1043 if(frame->bs_code[0] == 6) {
1044 put_bits(&s->pb, 8, frame->bs_code[1]);
1045 } else if(frame->bs_code[0] == 7) {
1046 put_bits(&s->pb, 16, frame->bs_code[1]);
1047 }
1048 if(s->sr_code[0] == 12) {
1049 put_bits(&s->pb, 8, s->sr_code[1]);
1050 } else if(s->sr_code[0] > 12) {
1051 put_bits(&s->pb, 16, s->sr_code[1]);
1052 }
1053 flush_put_bits(&s->pb);
1054 crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3);
1055 put_bits(&s->pb, 8, crc);
1056}
1057
1058static void output_subframe_constant(FlacEncodeContext *s, int ch)
1059{
1060 FlacSubframe *sub;
1061 int32_t res;
1062
1063 sub = &s->frame.subframes[ch];
1064 res = sub->residual[0];
1065 put_sbits(&s->pb, sub->obits, res);
1066}
1067
1068static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
1069{
1070 int i;
1071 FlacFrame *frame;
1072 FlacSubframe *sub;
1073 int32_t res;
1074
1075 frame = &s->frame;
1076 sub = &frame->subframes[ch];
1077
1078 for(i=0; i<frame->blocksize; i++) {
1079 res = sub->residual[i];
1080 put_sbits(&s->pb, sub->obits, res);
1081 }
1082}
1083
1084static void output_residual(FlacEncodeContext *ctx, int ch)
1085{
1086 int i, j, p, n, parts;
1087 int k, porder, psize, res_cnt;
1088 FlacFrame *frame;
1089 FlacSubframe *sub;
1090 int32_t *res;
1091
1092 frame = &ctx->frame;
1093 sub = &frame->subframes[ch];
1094 res = sub->residual;
1095 n = frame->blocksize;
1096
1097 /* rice-encoded block */
1098 put_bits(&ctx->pb, 2, 0);
1099
1100 /* partition order */
1101 porder = sub->rc.porder;
1102 psize = n >> porder;
1103 parts = (1 << porder);
1104 put_bits(&ctx->pb, 4, porder);
1105 res_cnt = psize - sub->order;
1106
1107 /* residual */
1108 j = sub->order;
1109 for(p=0; p<parts; p++) {
1110 k = sub->rc.params[p];
1111 put_bits(&ctx->pb, 4, k);
1112 if(p == 1) res_cnt = psize;
1113 for(i=0; i<res_cnt && j<n; i++, j++) {
1114 set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
1115 }
1116 }
1117}
1118
1119static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
1120{
1121 int i;
1122 FlacFrame *frame;
1123 FlacSubframe *sub;
1124
1125 frame = &ctx->frame;
1126 sub = &frame->subframes[ch];
1127
1128 /* warm-up samples */
1129 for(i=0; i<sub->order; i++) {
1130 put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1131 }
1132
1133 /* residual */
1134 output_residual(ctx, ch);
1135}
1136
1137static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
1138{
1139 int i, cbits;
1140 FlacFrame *frame;
1141 FlacSubframe *sub;
1142
1143 frame = &ctx->frame;
1144 sub = &frame->subframes[ch];
1145
1146 /* warm-up samples */
1147 for(i=0; i<sub->order; i++) {
1148 put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1149 }
1150
1151 /* LPC coefficients */
1152 cbits = ctx->options.lpc_coeff_precision;
1153 put_bits(&ctx->pb, 4, cbits-1);
1154 put_sbits(&ctx->pb, 5, sub->shift);
1155 for(i=0; i<sub->order; i++) {
1156 put_sbits(&ctx->pb, cbits, sub->coefs[i]);
1157 }
1158
1159 /* residual */
1160 output_residual(ctx, ch);
1161}
1162
1163static void output_subframes(FlacEncodeContext *s)
1164{
1165 FlacFrame *frame;
1166 FlacSubframe *sub;
1167 int ch;
1168
1169 frame = &s->frame;
1170
1171 for(ch=0; ch<s->channels; ch++) {
1172 sub = &frame->subframes[ch];
1173
1174 /* subframe header */
1175 put_bits(&s->pb, 1, 0);
1176 put_bits(&s->pb, 6, sub->type_code);
1177 put_bits(&s->pb, 1, 0); /* no wasted bits */
1178
1179 /* subframe */
1180 if(sub->type == FLAC_SUBFRAME_CONSTANT) {
1181 output_subframe_constant(s, ch);
1182 } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
1183 output_subframe_verbatim(s, ch);
1184 } else if(sub->type == FLAC_SUBFRAME_FIXED) {
1185 output_subframe_fixed(s, ch);
1186 } else if(sub->type == FLAC_SUBFRAME_LPC) {
1187 output_subframe_lpc(s, ch);
1188 }
1189 }
1190}
1191
1192static void output_frame_footer(FlacEncodeContext *s)
1193{
1194 int crc;
1195 flush_put_bits(&s->pb);
1196 crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3));
1197 put_bits(&s->pb, 16, crc);
1198 flush_put_bits(&s->pb);
1199}
1200
1201static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
1202 int buf_size, void *data)
1203{
1204 int ch;
1205 FlacEncodeContext *s;
1206 int16_t *samples = data;
1207 int out_bytes;
1208
1209 s = avctx->priv_data;
1210
1211 s->blocksize = avctx->frame_size;
1212 init_frame(s);
1213
1214 copy_samples(s, samples);
1215
1216 channel_decorrelation(s);
1217
1218 for(ch=0; ch<s->channels; ch++) {
1219 encode_residual(s, ch);
1220 }
1221 init_put_bits(&s->pb, frame, buf_size);
1222 output_frame_header(s);
1223 output_subframes(s);
1224 output_frame_footer(s);
1225 out_bytes = put_bits_count(&s->pb) >> 3;
1226
1227 if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
1228 /* frame too large. use verbatim mode */
1229 for(ch=0; ch<s->channels; ch++) {
1230 encode_residual_v(s, ch);
1231 }
1232 init_put_bits(&s->pb, frame, buf_size);
1233 output_frame_header(s);
1234 output_subframes(s);
1235 output_frame_footer(s);
1236 out_bytes = put_bits_count(&s->pb) >> 3;
1237
1238 if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
1239 /* still too large. must be an error. */
1240 av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
1241 return -1;
1242 }
1243 }
1244
1245 s->frame_count++;
1246 return out_bytes;
1247}
1248
1249static int flac_encode_close(AVCodecContext *avctx)
1250{
1251 av_freep(&avctx->extradata);
1252 avctx->extradata_size = 0;
1253 av_freep(&avctx->coded_frame);
1254 return 0;
1255}
1256
1257AVCodec flac_encoder = {
1258 "flac",
1259 CODEC_TYPE_AUDIO,
1260 CODEC_ID_FLAC,
1261 sizeof(FlacEncodeContext),
1262 flac_encode_init,
1263 flac_encode_frame,
1264 flac_encode_close,
1265 NULL,
1266 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
1267};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette