/* $Id: TestBoxHelper.cpp 93515 2022-01-31 22:17:19Z vboxsync $ */ /** @file * VirtualBox Validation Kit - Testbox C Helper Utility. */ /* * Copyright (C) 2012-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include # include #endif #ifdef RT_OS_DARWIN # include # include #endif /** * Does one free space wipe, using the given filename. * * @returns RTEXITCODE_SUCCESS on success, RTEXITCODE_FAILURE on failure (fully * bitched). * @param pszFilename The filename to use for wiping free space. Will be * replaced and afterwards deleted. * @param pvFiller The filler block buffer. * @param cbFiller The size of the filler block buffer. * @param cbMinLeftOpt When to stop wiping. */ static RTEXITCODE doOneFreeSpaceWipe(const char *pszFilename, void const *pvFiller, size_t cbFiller, uint64_t cbMinLeftOpt) { /* * Open the file. */ RTEXITCODE rcExit = RTEXITCODE_SUCCESS; RTFILE hFile = NIL_RTFILE; int rc = RTFileOpen(&hFile, pszFilename, RTFILE_O_WRITE | RTFILE_O_DENY_NONE | RTFILE_O_CREATE_REPLACE | (0775 << RTFILE_O_CREATE_MODE_SHIFT)); if (RT_SUCCESS(rc)) { /* * Query the amount of available free space. Figure out which API we should use. */ RTFOFF cbTotal = 0; RTFOFF cbFree = 0; rc = RTFileQueryFsSizes(hFile, &cbTotal, &cbFree, NULL, NULL); bool const fFileHandleApiSupported = rc != VERR_NOT_SUPPORTED && rc != VERR_NOT_IMPLEMENTED; if (!fFileHandleApiSupported) rc = RTFsQuerySizes(pszFilename, &cbTotal, &cbFree, NULL, NULL); if (RT_SUCCESS(rc)) { RTPrintf("%s: %'9RTfoff MiB out of %'9RTfoff are free\n", pszFilename, cbFree / _1M, cbTotal / _1M); /* * Start filling up the free space, down to the last 32MB. */ uint64_t const nsStart = RTTimeNanoTS(); /* for speed calcs */ uint64_t nsStat = nsStart; /* for speed calcs */ uint64_t cbStatWritten = 0; /* for speed calcs */ RTFOFF const cbMinLeft = RT_MAX(cbMinLeftOpt, cbFiller * 2); RTFOFF cbLeftToWrite = cbFree - cbMinLeft; uint64_t cbWritten = 0; uint32_t iLoop = 0; while (cbLeftToWrite >= (RTFOFF)cbFiller) { rc = RTFileWrite(hFile, pvFiller, cbFiller, NULL); if (RT_FAILURE(rc)) { if (rc == VERR_DISK_FULL) RTPrintf("%s: Disk full after writing %'9RU64 MiB\n", pszFilename, cbWritten / _1M); else rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Write error after %'RU64 bytes: %Rrc\n", pszFilename, cbWritten, rc); break; } /* Flush every now and then as we approach a completely full disk. */ if (cbLeftToWrite <= _1G && (iLoop & (cbLeftToWrite > _128M ? 15 : 3)) == 0) RTFileFlush(hFile); /* * Advance and maybe recheck the amount of free space. */ cbWritten += cbFiller; cbLeftToWrite -= (ssize_t)cbFiller; iLoop++; if ((iLoop & (16 - 1)) == 0 || cbLeftToWrite < _256M) { RTFOFF cbFreeUpdated; if (fFileHandleApiSupported) rc = RTFileQueryFsSizes(hFile, NULL, &cbFreeUpdated, NULL, NULL); else rc = RTFsQuerySizes(pszFilename, NULL, &cbFreeUpdated, NULL, NULL); if (RT_SUCCESS(rc)) { cbFree = cbFreeUpdated; cbLeftToWrite = cbFree - cbMinLeft; } else { rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Failed to query free space after %'RU64 bytes: %Rrc\n", pszFilename, cbWritten, rc); break; } if ((iLoop & (512 - 1)) == 0) { uint64_t const nsNow = RTTimeNanoTS(); uint64_t cNsInterval = nsNow - nsStat; uint64_t cbInterval = cbWritten - cbStatWritten; uint64_t cbIntervalPerSec = !cbInterval ? 0 : (uint64_t)((double)cbInterval / ((double)cNsInterval / (double)RT_NS_1SEC)); RTPrintf("%s: %'9RTfoff MiB out of %'9RTfoff are free after writing %'9RU64 MiB (%'5RU64 MiB/s)\n", pszFilename, cbFree / _1M, cbTotal / _1M, cbWritten / _1M, cbIntervalPerSec / _1M); nsStat = nsNow; cbStatWritten = cbWritten; } } } /* * Now flush the file and then reduce the size a little before closing * it so the system won't entirely run out of space. The flush should * ensure the data has actually hit the disk. */ rc = RTFileFlush(hFile); if (RT_FAILURE(rc)) rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Flush failed at %'RU64 bytes: %Rrc\n", pszFilename, cbWritten, rc); uint64_t cbReduced = cbWritten > _512M ? cbWritten - _512M : cbWritten / 2; rc = RTFileSetSize(hFile, cbReduced); if (RT_FAILURE(rc)) rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Failed to reduce file size from %'RU64 to %'RU64 bytes: %Rrc\n", pszFilename, cbWritten, cbReduced, rc); /* Issue a summary statements. */ uint64_t cNsElapsed = RTTimeNanoTS() - nsStart; uint64_t cbPerSec = cbWritten ? (uint64_t)((double)cbWritten / ((double)cNsElapsed / (double)RT_NS_1SEC)) : 0; RTPrintf("%s: Wrote %'RU64 MiB in %'RU64 s, avg %'RU64 MiB/s.\n", pszFilename, cbWritten / _1M, cNsElapsed / RT_NS_1SEC, cbPerSec / _1M); } else rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Initial free space query failed: %Rrc \n", pszFilename, rc); RTFileClose(hFile); /* * Delete the file. */ rc = RTFileDelete(pszFilename); if (RT_FAILURE(rc)) rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Delete failed: %Rrc !!\n", pszFilename, rc); } else rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "%s: Open failed: %Rrc\n", pszFilename, rc); return rcExit; } /** * Wipes free space on one or more volumes by creating large files. */ static RTEXITCODE handlerWipeFreeSpace(int argc, char **argv) { /* * Parse arguments. */ const char *apszDefFiles[2] = { "./wipefree.spc", NULL }; bool fAll = false; uint32_t u32Filler = UINT32_C(0xf6f6f6f6); uint64_t cbMinLeftOpt = _32M; static RTGETOPTDEF const s_aOptions[] = { { "--all", 'a', RTGETOPT_REQ_NOTHING }, { "--filler", 'f', RTGETOPT_REQ_UINT32 }, { "--min-free", 'm', RTGETOPT_REQ_UINT64 }, }; RTGETOPTSTATE State; RTGetOptInit(&State, argc, argv, &s_aOptions[0], RT_ELEMENTS(s_aOptions), 1, RTGETOPTINIT_FLAGS_OPTS_FIRST); RTGETOPTUNION ValueUnion; int chOpt; while ( (chOpt = RTGetOpt(&State, &ValueUnion)) != 0 && chOpt != VINF_GETOPT_NOT_OPTION) { switch (chOpt) { case 'a': fAll = true; break; case 'f': u32Filler = ValueUnion.u32; break; case 'm': cbMinLeftOpt = ValueUnion.u64; break; case 'h': RTPrintf("usage: wipefrespace [options] [filename1 [..]]\n" "\n" "Options:\n" " -a, --all\n" " Try do the free space wiping on all seemingly relevant file systems.\n" " Changes the meaning of the filenames " " This is not yet implemented\n" " -p, --filler <32-bit value>\n" " What to fill the blocks we write with.\n" " Default: 0xf6f6f6f6\n" " -m, --min-free <64-bit byte count>\n" " Specifies when to stop in terms of free disk space (in bytes).\n" " Default: 32MB\n" "\n" "Zero or more names of files to do the free space wiping thru can be given.\n" "When --all is NOT used, each of the files are used to do free space wiping on\n" "the volume they will live on. However, when --all is in effect the files are\n" "appended to the volume mountpoints and only the first that can be created will\n" "be used. Files (used ones) will be removed when done.\n" "\n" "If no filename is given, the default is: %s\n" , apszDefFiles[0]); return RTEXITCODE_SUCCESS; default: return RTGetOptPrintError(chOpt, &ValueUnion); } } char **papszFiles; if (chOpt == 0) papszFiles = (char **)apszDefFiles; else papszFiles = RTGetOptNonOptionArrayPtr(&State); /* * Allocate and prep a memory which we'll write over and over again. */ uint32_t cbFiller = _2M; uint32_t *pu32Filler = (uint32_t *)RTMemPageAlloc(cbFiller); while (!pu32Filler) { cbFiller <<= 1; if (cbFiller >= _4K) pu32Filler = (uint32_t *)RTMemPageAlloc(cbFiller); else return RTMsgErrorExit(RTEXITCODE_FAILURE, "RTMemPageAlloc failed for sizes between 4KB and 2MB!\n"); } for (uint32_t i = 0; i < cbFiller / sizeof(pu32Filler[0]); i++) pu32Filler[i] = u32Filler; /* * Do the requested work. */ RTEXITCODE rcExit = RTEXITCODE_SUCCESS; if (!fAll) { for (uint32_t iFile = 0; papszFiles[iFile] != NULL; iFile++) { RTEXITCODE rcExit2 = doOneFreeSpaceWipe(papszFiles[iFile], pu32Filler, cbFiller, cbMinLeftOpt); if (rcExit2 != RTEXITCODE_SUCCESS && rcExit == RTEXITCODE_SUCCESS) rcExit = rcExit2; } } else { /* * Reject --all for now. */ rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "The --all option is not yet implemented!\n"); } RTMemPageFree(pu32Filler, cbFiller); return rcExit; } /** * Generates a kind of report of the hardware, software and whatever else we * think might be useful to know about the testbox. */ static RTEXITCODE handlerReport(int argc, char **argv) { NOREF(argc); NOREF(argv); #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /* * For now, a simple CPUID dump. Need to figure out how to share code * like this with other bits, putting it in IPRT. */ RTPrintf("CPUID Dump\n" "Leaf eax ebx ecx edx\n" "---------------------------------------------\n"); static uint32_t const s_auRanges[] = { UINT32_C(0x00000000), UINT32_C(0x80000000), UINT32_C(0x80860000), UINT32_C(0xc0000000), UINT32_C(0x40000000), }; for (uint32_t iRange = 0; iRange < RT_ELEMENTS(s_auRanges); iRange++) { uint32_t const uFirst = s_auRanges[iRange]; uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuIdExSlow(uFirst, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx); if (uEax >= uFirst && uEax < uFirst + 100) { uint32_t const cLeafs = RT_MIN(uEax - uFirst + 1, 32); for (uint32_t iLeaf = 0; iLeaf < cLeafs; iLeaf++) { uint32_t uLeaf = uFirst + iLeaf; ASMCpuIdExSlow(uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx); /* Clear APIC IDs to avoid submitting new reports all the time. */ if (uLeaf == 1) uEbx &= UINT32_C(0x00ffffff); if (uLeaf == 0xb) uEdx = 0; if (uLeaf == 0x8000001e) uEax = 0; /* Clear some other node/cpu/core/thread ids. */ if (uLeaf == 0x8000001e) { uEbx &= UINT32_C(0xffffff00); uEcx &= UINT32_C(0xffffff00); } RTPrintf("%08x: %08x %08x %08x %08x\n", uLeaf, uEax, uEbx, uEcx, uEdx); } } } RTPrintf("\n"); /* * DMI info. */ RTPrintf("DMI Info\n" "--------\n"); static const struct { const char *pszName; RTSYSDMISTR enmDmiStr; } s_aDmiStrings[] = { { "Product Name", RTSYSDMISTR_PRODUCT_NAME }, { "Product version", RTSYSDMISTR_PRODUCT_VERSION }, { "Product UUID", RTSYSDMISTR_PRODUCT_UUID }, { "Product Serial", RTSYSDMISTR_PRODUCT_SERIAL }, { "System Manufacturer", RTSYSDMISTR_MANUFACTURER }, }; for (uint32_t iDmiString = 0; iDmiString < RT_ELEMENTS(s_aDmiStrings); iDmiString++) { char szTmp[4096]; RT_ZERO(szTmp); int rc = RTSystemQueryDmiString(s_aDmiStrings[iDmiString].enmDmiStr, szTmp, sizeof(szTmp) - 1); if (RT_SUCCESS(rc)) RTPrintf("%25s: %s\n", s_aDmiStrings[iDmiString].pszName, RTStrStrip(szTmp)); else RTPrintf("%25s: %s [rc=%Rrc]\n", s_aDmiStrings[iDmiString].pszName, RTStrStrip(szTmp), rc); } RTPrintf("\n"); #else #endif /* * Dump the environment. */ RTPrintf("Environment\n" "-----------\n"); RTENV hEnv; int rc = RTEnvClone(&hEnv, RTENV_DEFAULT); if (RT_SUCCESS(rc)) { uint32_t cVars = RTEnvCountEx(hEnv); for (uint32_t iVar = 0; iVar < cVars; iVar++) { char szVar[1024]; char szValue[16384]; rc = RTEnvGetByIndexEx(hEnv, iVar, szVar, sizeof(szVar), szValue, sizeof(szValue)); /* zap the value of variables that are subject to change. */ if ( (RT_SUCCESS(rc) || rc == VERR_BUFFER_OVERFLOW) && ( !strcmp(szVar, "TESTBOX_SCRIPT_REV") || !strcmp(szVar, "TESTBOX_ID") || !strcmp(szVar, "TESTBOX_SCRATCH_SIZE") || !strcmp(szVar, "TESTBOX_TIMEOUT") || !strcmp(szVar, "TESTBOX_TIMEOUT_ABS") || !strcmp(szVar, "TESTBOX_TEST_SET_ID") ) ) strcpy(szValue, ""); if (RT_SUCCESS(rc)) RTPrintf("%25s=%s\n", szVar, szValue); else if (rc == VERR_BUFFER_OVERFLOW) RTPrintf("%25s=%s [VERR_BUFFER_OVERFLOW]\n", szVar, szValue); else RTPrintf("rc=%Rrc\n", rc); } RTEnvDestroy(hEnv); } /** @todo enumerate volumes and whatnot. */ int cch = RTPrintf("\n"); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } /** Print the total memory size in bytes. */ static RTEXITCODE handlerMemSize(int argc, char **argv) { NOREF(argc); NOREF(argv); uint64_t cb; int rc = RTSystemQueryTotalRam(&cb); if (RT_SUCCESS(rc)) { int cch = RTPrintf("%llu\n", cb); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } RTPrintf("%Rrc\n", rc); return RTEXITCODE_FAILURE; } typedef enum { HWVIRTTYPE_NONE, HWVIRTTYPE_VTX, HWVIRTTYPE_AMDV } HWVIRTTYPE; static HWVIRTTYPE isHwVirtSupported(void) { #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) uint32_t uEax, uEbx, uEcx, uEdx; /* VT-x */ ASMCpuId(0x00000000, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidStdRange(uEax)) { ASMCpuId(0x00000001, &uEax, &uEbx, &uEcx, &uEdx); if (uEcx & X86_CPUID_FEATURE_ECX_VMX) return HWVIRTTYPE_VTX; } /* AMD-V */ ASMCpuId(0x80000000, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidExtRange(uEax)) { ASMCpuId(0x80000001, &uEax, &uEbx, &uEcx, &uEdx); if (uEcx & X86_CPUID_AMD_FEATURE_ECX_SVM) return HWVIRTTYPE_AMDV; } #endif return HWVIRTTYPE_NONE; } /** Print the 'true' if VT-x or AMD-v is supported, 'false' it not. */ static RTEXITCODE handlerCpuHwVirt(int argc, char **argv) { NOREF(argc); NOREF(argv); int cch = RTPrintf(isHwVirtSupported() != HWVIRTTYPE_NONE ? "true\n" : "false\n"); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } /** Print the 'true' if nested paging is supported, 'false' if not and * 'dunno' if we cannot tell. */ static RTEXITCODE handlerCpuNestedPaging(int argc, char **argv) { NOREF(argc); NOREF(argv); HWVIRTTYPE enmHwVirt = isHwVirtSupported(); int fSupported = -1; #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) if (enmHwVirt == HWVIRTTYPE_AMDV) { uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuId(0x80000000, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidExtRange(uEax) && uEax >= 0x8000000a) { ASMCpuId(0x8000000a, &uEax, &uEbx, &uEcx, &uEdx); if (uEdx & RT_BIT(0) /* AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING */) fSupported = 1; else fSupported = 0; } } # if defined(RT_OS_LINUX) else if (enmHwVirt == HWVIRTTYPE_VTX) { /* * For Intel there is no generic way to query EPT support but on * Linux we can resort to checking for the EPT flag in /proc/cpuinfo */ RTFILE hFileCpu; int rc = RTFileOpen(&hFileCpu, "/proc/cpuinfo", RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE); if (RT_SUCCESS(rc)) { /* * Read enough to fit the first CPU entry in, we only check the first * CPU as all the others should have the same features. */ char szBuf[_4K]; size_t cbRead = 0; RT_ZERO(szBuf); /* Ensure proper termination. */ rc = RTFileRead(hFileCpu, &szBuf[0], sizeof(szBuf) - 1, &cbRead); if (RT_SUCCESS(rc)) { /* Look for the start of the flags section. */ char *pszStrFlags = RTStrStr(&szBuf[0], "flags"); if (pszStrFlags) { /* Look for the end as indicated by new line. */ char *pszEnd = pszStrFlags; while ( *pszEnd != '\0' && *pszEnd != '\n') pszEnd++; *pszEnd = '\0'; /* Cut off everything after the flags section. */ /* * Search for the ept flag indicating support and the absence meaning * not supported. */ if (RTStrStr(pszStrFlags, "ept")) fSupported = 1; else fSupported = 0; } } RTFileClose(hFileCpu); } } # elif defined(RT_OS_DARWIN) else if (enmHwVirt == HWVIRTTYPE_VTX) { /* * The kern.hv_support parameter indicates support for the hypervisor API in the * kernel, which in turn is documented require nested paging and unrestricted * guest mode. So, if it's there and set we've got nested paging. Howeber, if * it's there and clear we have not definite answer as it might be due to lack * of unrestricted guest mode support. */ int32_t fHvSupport = 0; size_t cbOld = sizeof(fHvSupport); if (sysctlbyname("kern.hv_support", &fHvSupport, &cbOld, NULL, 0) == 0) { if (fHvSupport != 0) fSupported = true; } } # endif #endif int cch = RTPrintf(fSupported == 1 ? "true\n" : fSupported == 0 ? "false\n" : "dunno\n"); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } /** Print the 'true' if long mode guests are supported, 'false' if not and * 'dunno' if we cannot tell. */ static RTEXITCODE handlerCpuLongMode(int argc, char **argv) { NOREF(argc); NOREF(argv); HWVIRTTYPE enmHwVirt = isHwVirtSupported(); int fSupported = 0; if (enmHwVirt != HWVIRTTYPE_NONE) { #if defined(RT_ARCH_AMD64) fSupported = 1; /* We're running long mode, so it must be supported. */ #elif defined(RT_ARCH_X86) # ifdef RT_OS_DARWIN /* On darwin, we just ask the kernel via sysctl. Rules are a bit different here. */ int f64bitCapable = 0; size_t cbParameter = sizeof(f64bitCapable); int rc = sysctlbyname("hw.cpu64bit_capable", &f64bitCapable, &cbParameter, NULL, NULL); if (rc != -1) fSupported = f64bitCapable != 0; else # endif { /* PAE and HwVirt are required */ uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuId(0x00000000, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidStdRange(uEax)) { ASMCpuId(0x00000001, &uEax, &uEbx, &uEcx, &uEdx); if (uEdx & X86_CPUID_FEATURE_EDX_PAE) { /* AMD will usually advertise long mode in 32-bit mode. Intel OTOH, won't necessarily do so. */ ASMCpuId(0x80000000, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidExtRange(uEax)) { ASMCpuId(0x80000001, &uEax, &uEbx, &uEcx, &uEdx); if (uEdx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE) fSupported = 1; else if (enmHwVirt != HWVIRTTYPE_AMDV) fSupported = -1; } } } } #endif } int cch = RTPrintf(fSupported == 1 ? "true\n" : fSupported == 0 ? "false\n" : "dunno\n"); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } /** Print the CPU 'revision', if available. */ static RTEXITCODE handlerCpuRevision(int argc, char **argv) { NOREF(argc); NOREF(argv); #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuId(0, &uEax, &uEbx, &uEcx, &uEdx); if (RTX86IsValidStdRange(uEax) && uEax >= 1) { uint32_t uEax1 = ASMCpuId_EAX(1); uint32_t uVersion = (RTX86GetCpuFamily(uEax1) << 24) | (RTX86GetCpuModel(uEax1, RTX86IsIntelCpu(uEbx, uEcx, uEdx)) << 8) | RTX86GetCpuStepping(uEax1); int cch = RTPrintf("%#x\n", uVersion); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } #endif return RTEXITCODE_FAILURE; } /** Print the CPU name, if available. */ static RTEXITCODE handlerCpuName(int argc, char **argv) { NOREF(argc); NOREF(argv); char szTmp[1024]; int rc = RTMpGetDescription(NIL_RTCPUID, szTmp, sizeof(szTmp)); if (RT_SUCCESS(rc)) { int cch = RTPrintf("%s\n", RTStrStrip(szTmp)); return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } return RTEXITCODE_FAILURE; } /** Print the CPU vendor name, 'GenuineIntel' and such. */ static RTEXITCODE handlerCpuVendor(int argc, char **argv) { NOREF(argc); NOREF(argv); #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuId(0, &uEax, &uEbx, &uEcx, &uEdx); int cch = RTPrintf("%.04s%.04s%.04s\n", &uEbx, &uEdx, &uEcx); #else int cch = RTPrintf("%s\n", RTBldCfgTargetArch()); #endif return cch > 0 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } int main(int argc, char **argv) { int rc = RTR3InitExe(argc, &argv, 0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * The first argument is a command. Figure out which and call its handler. */ static const struct { const char *pszCommand; RTEXITCODE (*pfnHandler)(int argc, char **argv); bool fNoArgs; } s_aHandlers[] = { { "cpuvendor", handlerCpuVendor, true }, { "cpuname", handlerCpuName, true }, { "cpurevision", handlerCpuRevision, true }, { "cpuhwvirt", handlerCpuHwVirt, true }, { "nestedpaging", handlerCpuNestedPaging, true }, { "longmode", handlerCpuLongMode, true }, { "memsize", handlerMemSize, true }, { "report", handlerReport, true }, { "wipefreespace", handlerWipeFreeSpace, false } }; if (argc < 2) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "expected command as the first argument"); for (unsigned i = 0; i < RT_ELEMENTS(s_aHandlers); i++) { if (!strcmp(argv[1], s_aHandlers[i].pszCommand)) { if ( s_aHandlers[i].fNoArgs && argc != 2) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "the command '%s' does not take any arguments", argv[1]); return s_aHandlers[i].pfnHandler(argc - 1, argv + 1); } } /* * Help or version query? */ for (int i = 1; i < argc; i++) if ( !strcmp(argv[i], "--help") || !strcmp(argv[i], "-h") || !strcmp(argv[i], "-?") || !strcmp(argv[i], "help") ) { RTPrintf("usage: %s [cmd specific args]\n" "\n" "commands:\n", argv[0]); for (unsigned j = 0; j < RT_ELEMENTS(s_aHandlers); j++) RTPrintf(" %s\n", s_aHandlers[j].pszCommand); return RTEXITCODE_FAILURE; } else if ( !strcmp(argv[i], "--version") || !strcmp(argv[i], "-V") ) { RTPrintf("%sr%u", RTBldCfgVersion(), RTBldCfgRevision()); return argc == 2 ? RTEXITCODE_SUCCESS : RTEXITCODE_FAILURE; } /* * Syntax error. */ return RTMsgErrorExit(RTEXITCODE_SYNTAX, "unknown command '%s'", argv[1]); }