/* $Id: tstMicro.cpp 26152 2010-02-02 16:00:35Z vboxsync $ */ /** @file * Micro Testcase, profiling special CPU operations. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tstMicro.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #define TESTCASE "tstVMM" static const char *GetDescription(TSTMICROTEST enmTest) { switch (enmTest) { case TSTMICROTEST_OVERHEAD: return "Overhead"; case TSTMICROTEST_INVLPG_0: return "invlpg [0]"; case TSTMICROTEST_INVLPG_EIP: return "invlpg [EIP]"; case TSTMICROTEST_INVLPG_ESP: return "invlpg [ESP]"; case TSTMICROTEST_CR3_RELOAD: return "cr3 reload"; case TSTMICROTEST_WP_DISABLE: return "CR0.WP <- 0"; case TSTMICROTEST_WP_ENABLE: return "CR0.WP <- 1"; case TSTMICROTEST_PF_R0: return "R0 #PG (NULL)"; case TSTMICROTEST_PF_R1: return "R1 #PG (NULL)"; case TSTMICROTEST_PF_R2: return "R2 #PG (NULL)"; case TSTMICROTEST_PF_R3: return "R3 #PG (NULL)"; default: { static char sz[64]; RTStrPrintf(sz, sizeof(sz), "%d?", enmTest); return sz; } } } static void PrintHeaderInstr(void) { RTPrintf(TESTCASE ": %-25s %10s %10s %10s\n", "Test name", "Min", "Avg", "Max"); } static void PrintResultInstr(PTSTMICRO pTst, TSTMICROTEST enmTest, int rc, uint64_t cMinTicks, uint64_t cAvgTicks, uint64_t cMaxTicks) { if (RT_FAILURE(rc)) RTPrintf(TESTCASE ": %-25s %10llu %10llu %10llu - %Rrc cr2=%x err=%x eip=%x!\n", GetDescription(enmTest), cMinTicks, cAvgTicks, cMaxTicks, rc, pTst->u32CR2, pTst->u32ErrCd, pTst->u32EIP); else RTPrintf(TESTCASE ": %-25s %10llu %10llu %10llu\n", GetDescription(enmTest), cMinTicks, cAvgTicks, cMaxTicks); } static void PrintHeaderTraps(void) { RTPrintf(TESTCASE ": %-25s %10s %10s %10s %10s %10s\n", "Test name", "Total", "ToRx", "Trap", "ToRxTrap", "int42-done"); } static void PrintResultTrap(PTSTMICRO pTst, TSTMICROTEST enmTest, int rc) { if (RT_FAILURE(rc)) RTPrintf(TESTCASE ": %-25s %10llu %10llu %10llu %10llu %10llu - %Rrc cr2=%x err=%x eip=%x!\n", GetDescription(enmTest), pTst->aResults[enmTest].cTotalTicks, pTst->aResults[enmTest].cToRxFirstTicks, pTst->aResults[enmTest].cTrapTicks, pTst->aResults[enmTest].cToRxTrapTicks, pTst->aResults[enmTest].cToR0Ticks, rc, pTst->u32CR2, pTst->u32ErrCd, pTst->u32EIP); else RTPrintf(TESTCASE ": %-25s %10llu %10llu %10llu %10llu %10llu\n", GetDescription(enmTest), pTst->aResults[enmTest].cTotalTicks, pTst->aResults[enmTest].cToRxFirstTicks, pTst->aResults[enmTest].cTrapTicks, pTst->aResults[enmTest].cToRxTrapTicks, pTst->aResults[enmTest].cToR0Ticks); } /** * 'Allocate' selectors for 32-bit code/data in rings 0-3. * * 0060 - r0 code * 0068 - r0 data * * 1060 - r1 code * 1068 - r1 data * * 2060 - r2 code * 2068 - r2 data * * 3060 - r3 code * 3068 - r3 data * */ static void SetupSelectors(PVM pVM) { /* * Find the GDT - This is a HACK :-) */ RTRCPTR RCPtr = CPUMGetHyperGDTR(VMMGetCpu0(pVM), NULL); PX86DESC paGDTEs = (PX86DESC)MMHyperRCToR3(pVM, RCPtr); for (unsigned i = 0; i <= 3; i++) { RTSEL Sel = (i << 12) + 0x60; /* 32-bit code selector. */ PX86DESC pGDTE = &paGDTEs[Sel >> X86_SEL_SHIFT]; pGDTE->au32[0] = pGDTE->au32[1] = 0; pGDTE->Gen.u16LimitLow = 0xffff; pGDTE->Gen.u4LimitHigh = 0xf; pGDTE->Gen.u1Granularity= 1; pGDTE->Gen.u1Present = 1; pGDTE->Gen.u2Dpl = i; pGDTE->Gen.u1DefBig = 1; pGDTE->Gen.u1DescType = 1; /* !system */ pGDTE->Gen.u4Type = X86_SEL_TYPE_ER_ACC; /* 32-bit data selector. */ pGDTE++; pGDTE->au32[0] = pGDTE->au32[1] = 0; pGDTE->Gen.u16LimitLow = 0xffff; pGDTE->Gen.u4LimitHigh = 0xf; pGDTE->Gen.u1Granularity= 1; pGDTE->Gen.u1Present = 1; pGDTE->Gen.u2Dpl = i; pGDTE->Gen.u1DefBig = 1; pGDTE->Gen.u1DescType = 1; /* !system */ pGDTE->Gen.u4Type = X86_SEL_TYPE_RW_ACC; } } static DECLCALLBACK(int) doit(PVM pVM) { RTPrintf(TESTCASE ": testing...\n"); SetupSelectors(pVM); /* * Loading the module and resolve the entry point. */ int rc = PDMR3LdrLoadRC(pVM, NULL, "tstMicroGC.gc"); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to load tstMicroGC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrEntry; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroGC.gc", "tstMicroGC", &RCPtrEntry); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroGC' entry point in tstMicroGC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrStart; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroGC.gc", "tstMicroGCAsmStart", &RCPtrStart); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroGCAsmStart' entry point in tstMicroGC.gc, rc=%Rra\n", rc); return rc; } RTRCPTR RCPtrEnd; rc = PDMR3LdrGetSymbolRC(pVM, "tstMicroGC.gc", "tstMicroGCAsmEnd", &RCPtrEnd); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve the 'tstMicroGCAsmEnd' entry point in tstMicroGC.gc, rc=%Rra\n", rc); return rc; } /* * Allocate and initialize the instance data. */ PTSTMICRO pTst; rc = MMHyperAlloc(pVM, RT_ALIGN_Z(sizeof(*pTst), PAGE_SIZE), PAGE_SIZE, MM_TAG_VM, (void **)&pTst); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": Failed to resolve allocate instance memory (%d bytes), rc=%Rra\n", sizeof(*pTst), rc); return rc; } pTst->RCPtr = MMHyperR3ToRC(pVM, pTst); pTst->RCPtrStack = MMHyperR3ToRC(pVM, &pTst->au8Stack[sizeof(pTst->au8Stack) - 32]); /* the page must be writable from user mode */ rc = PGMMapModifyPage(pVM, pTst->RCPtr, sizeof(*pTst), X86_PTE_US | X86_PTE_RW, ~(uint64_t)(X86_PTE_US | X86_PTE_RW)); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": PGMMapModifyPage -> rc=%Rra\n", rc); return rc; } /* all the code must be executable from R3. */ rc = PGMMapModifyPage(pVM, RCPtrStart, RCPtrEnd - RCPtrStart + PAGE_SIZE, X86_PTE_US, ~(uint64_t)X86_PTE_US); if (RT_FAILURE(rc)) { RTPrintf(TESTCASE ": PGMMapModifyPage -> rc=%Rra\n", rc); return rc; } PGMR3DumpHierarchyHC(pVM, PGMGetHyperCR3(VMMGetCpu0(pVM)), X86_CR4_PSE, false, 4, NULL); #if 0 /* * Disassemble the assembly... */ RTGCPTR GCPtr = RCPtrStart; while (GCPtr < RCPtrEnd) { size_t cb = 0; char sz[256]; int rc = DBGFR3DisasInstrEx(pVM, CPUMGetHyperCS(pVM), GCPtr, 0, sz, sizeof(sz), &cb); if (RT_SUCCESS(rc)) RTLogPrintf("%s\n", sz); else { RTLogPrintf("%RGv rc=%Rrc\n", GCPtr, rc); cb = 1; } GCPtr += cb; } #endif /* * Do the profiling. */ /* execute the instruction profiling tests */ PrintHeaderInstr(); int i; for (i = TSTMICROTEST_OVERHEAD; i < TSTMICROTEST_TRAP_FIRST; i++) { TSTMICROTEST enmTest = (TSTMICROTEST)i; uint64_t cMin = ~0; uint64_t cMax = 0; uint64_t cTotal = 0; unsigned cSamples = 0; rc = VINF_SUCCESS; for (int c = 0; c < 100; c++) { int rc2 = VMMR3CallRC(pVM, RCPtrEntry, 2, pTst->RCPtr, enmTest); if (RT_SUCCESS(rc2)) { uint64_t u64 = pTst->aResults[enmTest].cTotalTicks; if (cMin > u64) cMin = u64; if (cMax < u64) cMax = u64; cTotal += u64; cSamples++; } else if (RT_SUCCESS(rc)) rc = rc2; } uint64_t cAvg = cTotal / (cSamples ? cSamples : 1); pTst->aResults[enmTest].cTotalTicks = cAvg; PrintResultInstr(pTst, enmTest, rc, cMin, cAvg, cMax); /* store the overhead */ if (enmTest == TSTMICROTEST_OVERHEAD) pTst->u64Overhead = cMin; } /* execute the trap/cycle profiling tests. */ RTPrintf("\n"); PrintHeaderTraps(); for (i = TSTMICROTEST_TRAP_FIRST; i < TSTMICROTEST_MAX; i++) { TSTMICROTEST enmTest = (TSTMICROTEST)i; rc = VMMR3CallRC(pVM, RCPtrEntry, 2, pTst->RCPtr, enmTest); PrintResultTrap(pTst, enmTest, rc); } RTPrintf(TESTCASE ": done!\n"); return VINF_SUCCESS; } int main(int argc, char **argv) { int rcRet = 0; /* error count. */ RTR3InitAndSUPLib(); /* * Create empty VM. */ PVM pVM; int rc = VMR3Create(1, NULL, NULL, NULL, NULL, &pVM); if (RT_SUCCESS(rc)) { /* * Do testing. */ rc = VMR3ReqCallVoidWait(pVM, VMCPUID_ANY, (PFNRT)doit, 1, pVM); AssertRC(rc); STAMR3Dump(pVM, "*"); /* * Cleanup. */ rc = VMR3Destroy(pVM); if (!RT_SUCCESS(rc)) { RTPrintf(TESTCASE ": error: failed to destroy vm! rc=%d\n", rc); rcRet++; } } else { RTPrintf(TESTCASE ": fatal error: failed to create vm! rc=%d\n", rc); rcRet++; } return rcRet; }