/* $Id: PGMInternal.h 62478 2016-07-22 18:29:06Z vboxsync $ */ /** @file * PGM - Internal header file. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #ifndef ___PGMInternal_h #define ___PGMInternal_h #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** @defgroup grp_pgm_int Internals * @ingroup grp_pgm * @internal * @{ */ /** @name PGM Compile Time Config * @{ */ /** * Indicates that there are no guest mappings in the shadow tables. * * Note! In ring-3 the macro is also used to exclude the managment of the * intermediate context page tables. On 32-bit systems we use the intermediate * context to support 64-bit guest execution. Thus, we cannot fully make it * without mappings there even when VBOX_WITH_RAW_MODE is not defined. * * In raw-mode context there are by design always guest mappings (the code is * executed from one), while in ring-0 there are none at all. Neither context * manages the page tables for intermediate switcher context, that's all done in * ring-3. */ #if defined(IN_RING0) \ || ( !defined(VBOX_WITH_RAW_MODE) \ && ( HC_ARCH_BITS != 32 \ || !defined(VBOX_WITH_64_BITS_GUESTS) \ ) \ ) # define PGM_WITHOUT_MAPPINGS #endif /** * Check and skip global PDEs for non-global flushes */ #define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH /** * Optimization for PAE page tables that are modified often */ //#if 0 /* disabled again while debugging */ #ifndef IN_RC # define PGMPOOL_WITH_OPTIMIZED_DIRTY_PT #endif //#endif /** * Large page support enabled only on 64 bits hosts; applies to nested paging only. */ #if (HC_ARCH_BITS == 64) && !defined(IN_RC) # define PGM_WITH_LARGE_PAGES #endif /** * Enables optimizations for MMIO handlers that exploits X86_TRAP_PF_RSVD and * VMX_EXIT_EPT_MISCONFIG. */ #if 1 /* testing */ # define PGM_WITH_MMIO_OPTIMIZATIONS #endif /** * Sync N pages instead of a whole page table */ #define PGM_SYNC_N_PAGES /** * Number of pages to sync during a page fault * * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here * causes a lot of unnecessary extents and also is slower than taking more \#PFs. * * Note that \#PFs are much more expensive in the VT-x/AMD-V case due to * world switch overhead, so let's sync more. */ # ifdef IN_RING0 /* Chose 32 based on the compile test in @bugref{4219}; 64 shows worse stats. * 32 again shows better results than 16; slightly more overhead in the \#PF handler, * but ~5% fewer faults. */ # define PGM_SYNC_NR_PAGES 32 #else # define PGM_SYNC_NR_PAGES 8 #endif /** * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t)) */ #define PGM_MAX_PHYSCACHE_ENTRIES 64 #define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1) /** @def PGMPOOL_CFG_MAX_GROW * The maximum number of pages to add to the pool in one go. */ #define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT) /** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL * Enables some extra assertions for virtual handlers (mainly phys2virt related). */ #ifdef VBOX_STRICT # define VBOX_STRICT_PGM_HANDLER_VIRTUAL #endif /** @def VBOX_WITH_NEW_LAZY_PAGE_ALLOC * Enables the experimental lazy page allocation code. */ #ifdef DOXYGEN_RUNNING # define VBOX_WITH_NEW_LAZY_PAGE_ALLOC #endif /** @def VBOX_WITH_REAL_WRITE_MONITORED_PAGES * Enables real write monitoring of pages, i.e. mapping them read-only and * only making them writable when getting a write access \#PF. */ #define VBOX_WITH_REAL_WRITE_MONITORED_PAGES /** @} */ /** @name PDPT and PML4 flags. * These are placed in the three bits available for system programs in * the PDPT and PML4 entries. * @{ */ /** The entry is a permanent one and it's must always be present. * Never free such an entry. */ #define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10) /** Mapping (hypervisor allocated pagetable). */ #define PGM_PLXFLAGS_MAPPING RT_BIT_64(11) /** @} */ /** @name Page directory flags. * These are placed in the three bits available for system programs in * the page directory entries. * @{ */ /** Mapping (hypervisor allocated pagetable). */ #define PGM_PDFLAGS_MAPPING RT_BIT_64(10) /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11) /** @} */ /** @name Page flags. * These are placed in the three bits available for system programs in * the page entries. * @{ */ /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9) #ifndef PGM_PTFLAGS_CSAM_VALIDATED /** Scanned and approved by CSAM (tm). * NOTE: Must be identical to the one defined in CSAMInternal.h!! * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/vmm/pgm.h. */ #define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11) #endif /** @} */ /** @name Defines used to indicate the shadow and guest paging in the templates. * @{ */ #define PGM_TYPE_REAL 1 #define PGM_TYPE_PROT 2 #define PGM_TYPE_32BIT 3 #define PGM_TYPE_PAE 4 #define PGM_TYPE_AMD64 5 #define PGM_TYPE_NESTED 6 #define PGM_TYPE_EPT 7 #define PGM_TYPE_MAX PGM_TYPE_EPT /** @} */ /** Macro for checking if the guest is using paging. * @param uGstType PGM_TYPE_* * @param uShwType PGM_TYPE_* * @remark ASSUMES certain order of the PGM_TYPE_* values. */ #define PGM_WITH_PAGING(uGstType, uShwType) \ ( (uGstType) >= PGM_TYPE_32BIT \ && (uShwType) != PGM_TYPE_NESTED \ && (uShwType) != PGM_TYPE_EPT) /** Macro for checking if the guest supports the NX bit. * @param uGstType PGM_TYPE_* * @param uShwType PGM_TYPE_* * @remark ASSUMES certain order of the PGM_TYPE_* values. */ #define PGM_WITH_NX(uGstType, uShwType) \ ( (uGstType) >= PGM_TYPE_PAE \ && (uShwType) != PGM_TYPE_NESTED \ && (uShwType) != PGM_TYPE_EPT) /** @def PGM_HCPHYS_2_PTR * Maps a HC physical page pool address to a virtual address. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param HCPhys The HC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast * this. * * @remark Use with care as we don't have so much dynamic mapping space in * ring-0 on 32-bit darwin and in RC. * @remark There is no need to assert on the result. */ #if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) # define PGM_HCPHYS_2_PTR(pVM, pVCpu, HCPhys, ppv) \ pgmRZDynMapHCPageInlined(pVCpu, HCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS) #else # define PGM_HCPHYS_2_PTR(pVM, pVCpu, HCPhys, ppv) \ MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv)) #endif /** @def PGM_GCPHYS_2_PTR_V2 * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark Use with care as we don't have so much dynamic mapping space in * ring-0 on 32-bit darwin and in RC. * @remark There is no need to assert on the result. */ #if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) # define PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhys, ppv) \ pgmRZDynMapGCPageV2Inlined(pVM, pVCpu, GCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS) #else # define PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GCPhys, ppv) \ pgmPhysGCPhys2R3Ptr(pVM, GCPhys, (PRTR3PTR)(ppv)) /** @todo this isn't asserting! */ #endif /** @def PGM_GCPHYS_2_PTR * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark Use with care as we don't have so much dynamic mapping space in * ring-0 on 32-bit darwin and in RC. * @remark There is no need to assert on the result. */ #define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGM_GCPHYS_2_PTR_V2(pVM, VMMGetCpu(pVM), GCPhys, ppv) /** @def PGM_GCPHYS_2_PTR_BY_VMCPU * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark Use with care as we don't have so much dynamic mapping space in * ring-0 on 32-bit darwin and in RC. * @remark There is no need to assert on the result. */ #define PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, GCPhys, ppv) PGM_GCPHYS_2_PTR_V2((pVCpu)->CTX_SUFF(pVM), pVCpu, GCPhys, ppv) /** @def PGM_GCPHYS_2_PTR_EX * Maps a unaligned GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark Use with care as we don't have so much dynamic mapping space in * ring-0 on 32-bit darwin and in RC. * @remark There is no need to assert on the result. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \ pgmRZDynMapGCPageOffInlined(VMMGetCpu(pVM), GCPhys, (void **)(ppv) RTLOG_COMMA_SRC_POS) #else # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \ pgmPhysGCPhys2R3Ptr(pVM, GCPhys, (PRTR3PTR)(ppv)) /** @todo this isn't asserting! */ #endif /** @def PGM_DYNMAP_UNUSED_HINT * Hints to the dynamic mapping code in RC and R0/darwin that the specified page * is no longer used. * * For best effect only apply this to the page that was mapped most recently. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvPage The pool page. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # ifdef LOG_ENABLED # define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) pgmRZDynMapUnusedHint(pVCpu, pvPage, RT_SRC_POS) # else # define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) pgmRZDynMapUnusedHint(pVCpu, pvPage) # endif #else # define PGM_DYNMAP_UNUSED_HINT(pVCpu, pvPage) do {} while (0) #endif /** @def PGM_DYNMAP_UNUSED_HINT_VM * Hints to the dynamic mapping code in RC and R0/darwin that the specified page * is no longer used. * * For best effect only apply this to the page that was mapped most recently. * * @param pVM The cross context VM structure. * @param pvPage The pool page. */ #define PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvPage) PGM_DYNMAP_UNUSED_HINT(VMMGetCpu(pVM), pvPage) /** @def PGM_INVL_PG * Invalidates a page. * * @param pVCpu The cross context virtual CPU structure. * @param GCVirt The virtual address of the page to invalidate. */ #ifdef IN_RC # define PGM_INVL_PG(pVCpu, GCVirt) ASMInvalidatePage((uintptr_t)(GCVirt)) #elif defined(IN_RING0) # define PGM_INVL_PG(pVCpu, GCVirt) HMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt)) #else # define PGM_INVL_PG(pVCpu, GCVirt) HMInvalidatePage(pVCpu, (RTGCPTR)(GCVirt)) #endif /** @def PGM_INVL_PG_ALL_VCPU * Invalidates a page on all VCPUs * * @param pVM The cross context VM structure. * @param GCVirt The virtual address of the page to invalidate. */ #ifdef IN_RC # define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) ASMInvalidatePage((uintptr_t)(GCVirt)) #elif defined(IN_RING0) # define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) HMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt)) #else # define PGM_INVL_PG_ALL_VCPU(pVM, GCVirt) HMInvalidatePageOnAllVCpus(pVM, (RTGCPTR)(GCVirt)) #endif /** @def PGM_INVL_BIG_PG * Invalidates a 4MB page directory entry. * * @param pVCpu The cross context virtual CPU structure. * @param GCVirt The virtual address within the page directory to invalidate. */ #ifdef IN_RC # define PGM_INVL_BIG_PG(pVCpu, GCVirt) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_BIG_PG(pVCpu, GCVirt) HMFlushTLB(pVCpu) #else # define PGM_INVL_BIG_PG(pVCpu, GCVirt) HMFlushTLB(pVCpu) #endif /** @def PGM_INVL_VCPU_TLBS() * Invalidates the TLBs of the specified VCPU * * @param pVCpu The cross context virtual CPU structure. */ #ifdef IN_RC # define PGM_INVL_VCPU_TLBS(pVCpu) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_VCPU_TLBS(pVCpu) HMFlushTLB(pVCpu) #else # define PGM_INVL_VCPU_TLBS(pVCpu) HMFlushTLB(pVCpu) #endif /** @def PGM_INVL_ALL_VCPU_TLBS() * Invalidates the TLBs of all VCPUs * * @param pVM The cross context VM structure. */ #ifdef IN_RC # define PGM_INVL_ALL_VCPU_TLBS(pVM) ASMReloadCR3() #elif defined(IN_RING0) # define PGM_INVL_ALL_VCPU_TLBS(pVM) HMFlushTLBOnAllVCpus(pVM) #else # define PGM_INVL_ALL_VCPU_TLBS(pVM) HMFlushTLBOnAllVCpus(pVM) #endif /** @name Safer Shadow PAE PT/PTE * For helping avoid misinterpreting invalid PAE/AMD64 page table entries as * present. * * @{ */ #if 1 /** * For making sure that u1Present and X86_PTE_P checks doesn't mistake * invalid entries for present. * @sa X86PTEPAE. */ typedef union PGMSHWPTEPAE { /** Unsigned integer view */ X86PGPAEUINT uCareful; /* Not other views. */ } PGMSHWPTEPAE; # define PGMSHWPTEPAE_IS_P(Pte) ( ((Pte).uCareful & (X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == X86_PTE_P ) # define PGMSHWPTEPAE_IS_RW(Pte) ( !!((Pte).uCareful & X86_PTE_RW)) # define PGMSHWPTEPAE_IS_US(Pte) ( !!((Pte).uCareful & X86_PTE_US)) # define PGMSHWPTEPAE_IS_A(Pte) ( !!((Pte).uCareful & X86_PTE_A)) # define PGMSHWPTEPAE_IS_D(Pte) ( !!((Pte).uCareful & X86_PTE_D)) # define PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) ( !!((Pte).uCareful & PGM_PTFLAGS_TRACK_DIRTY) ) # define PGMSHWPTEPAE_IS_P_RW(Pte) ( ((Pte).uCareful & (X86_PTE_P | X86_PTE_RW | X86_PTE_PAE_MBZ_MASK_NX)) == (X86_PTE_P | X86_PTE_RW) ) # define PGMSHWPTEPAE_GET_LOG(Pte) ( (Pte).uCareful ) # define PGMSHWPTEPAE_GET_HCPHYS(Pte) ( (Pte).uCareful & X86_PTE_PAE_PG_MASK ) # define PGMSHWPTEPAE_GET_U(Pte) ( (Pte).uCareful ) /**< Use with care. */ # define PGMSHWPTEPAE_SET(Pte, uVal) do { (Pte).uCareful = (uVal); } while (0) # define PGMSHWPTEPAE_SET2(Pte, Pte2) do { (Pte).uCareful = (Pte2).uCareful; } while (0) # define PGMSHWPTEPAE_ATOMIC_SET(Pte, uVal) do { ASMAtomicWriteU64(&(Pte).uCareful, (uVal)); } while (0) # define PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).uCareful, (Pte2).uCareful); } while (0) # define PGMSHWPTEPAE_SET_RO(Pte) do { (Pte).uCareful &= ~(X86PGPAEUINT)X86_PTE_RW; } while (0) # define PGMSHWPTEPAE_SET_RW(Pte) do { (Pte).uCareful |= X86_PTE_RW; } while (0) /** * For making sure that u1Present and X86_PTE_P checks doesn't mistake * invalid entries for present. * @sa X86PTPAE. */ typedef struct PGMSHWPTPAE { PGMSHWPTEPAE a[X86_PG_PAE_ENTRIES]; } PGMSHWPTPAE; #else typedef X86PTEPAE PGMSHWPTEPAE; typedef X86PTPAE PGMSHWPTPAE; # define PGMSHWPTEPAE_IS_P(Pte) ( (Pte).n.u1Present ) # define PGMSHWPTEPAE_IS_RW(Pte) ( (Pte).n.u1Write ) # define PGMSHWPTEPAE_IS_US(Pte) ( (Pte).n.u1User ) # define PGMSHWPTEPAE_IS_A(Pte) ( (Pte).n.u1Accessed ) # define PGMSHWPTEPAE_IS_D(Pte) ( (Pte).n.u1Dirty ) # define PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) ) # define PGMSHWPTEPAE_IS_P_RW(Pte) ( ((Pte).u & (X86_PTE_P | X86_PTE_RW)) == (X86_PTE_P | X86_PTE_RW) ) # define PGMSHWPTEPAE_GET_LOG(Pte) ( (Pte).u ) # define PGMSHWPTEPAE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PAE_PG_MASK ) # define PGMSHWPTEPAE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */ # define PGMSHWPTEPAE_SET(Pte, uVal) do { (Pte).u = (uVal); } while (0) # define PGMSHWPTEPAE_SET2(Pte, Pte2) do { (Pte).u = (Pte2).u; } while (0) # define PGMSHWPTEPAE_ATOMIC_SET(Pte, uVal) do { ASMAtomicWriteU64(&(Pte).u, (uVal)); } while (0) # define PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0) # define PGMSHWPTEPAE_SET_RO(Pte) do { (Pte).u &= ~(X86PGPAEUINT)X86_PTE_RW; } while (0) # define PGMSHWPTEPAE_SET_RW(Pte) do { (Pte).u |= X86_PTE_RW; } while (0) #endif /** Pointer to a shadow PAE PTE. */ typedef PGMSHWPTEPAE *PPGMSHWPTEPAE; /** Pointer to a const shadow PAE PTE. */ typedef PGMSHWPTEPAE const *PCPGMSHWPTEPAE; /** Pointer to a shadow PAE page table. */ typedef PGMSHWPTPAE *PPGMSHWPTPAE; /** Pointer to a const shadow PAE page table. */ typedef PGMSHWPTPAE const *PCPGMSHWPTPAE; /** @} */ /** Size of the GCPtrConflict array in PGMMAPPING. * @remarks Must be a power of two. */ #define PGMMAPPING_CONFLICT_MAX 8 /** * Structure for tracking GC Mappings. * * This structure is used by linked list in both GC and HC. */ typedef struct PGMMAPPING { /** Pointer to next entry. */ R3PTRTYPE(struct PGMMAPPING *) pNextR3; /** Pointer to next entry. */ R0PTRTYPE(struct PGMMAPPING *) pNextR0; /** Pointer to next entry. */ RCPTRTYPE(struct PGMMAPPING *) pNextRC; /** Indicate whether this entry is finalized. */ bool fFinalized; /** Start Virtual address. */ RTGCPTR GCPtr; /** Last Virtual address (inclusive). */ RTGCPTR GCPtrLast; /** Range size (bytes). */ RTGCPTR cb; /** Pointer to relocation callback function. */ R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate; /** User argument to the callback. */ R3PTRTYPE(void *) pvUser; /** Mapping description / name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; /** Last 8 addresses that caused conflicts. */ RTGCPTR aGCPtrConflicts[PGMMAPPING_CONFLICT_MAX]; /** Number of conflicts for this hypervisor mapping. */ uint32_t cConflicts; /** Number of page tables. */ uint32_t cPTs; /** Array of page table mapping data. Each entry * describes one page table. The array can be longer * than the declared length. */ struct { /** The HC physical address of the page table. */ RTHCPHYS HCPhysPT; /** The HC physical address of the first PAE page table. */ RTHCPHYS HCPhysPaePT0; /** The HC physical address of the second PAE page table. */ RTHCPHYS HCPhysPaePT1; /** The HC virtual address of the 32-bit page table. */ R3PTRTYPE(PX86PT) pPTR3; /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */ R3PTRTYPE(PPGMSHWPTPAE) paPaePTsR3; /** The RC virtual address of the 32-bit page table. */ RCPTRTYPE(PX86PT) pPTRC; /** The RC virtual address of the two PAE page table. */ RCPTRTYPE(PPGMSHWPTPAE) paPaePTsRC; /** The R0 virtual address of the 32-bit page table. */ R0PTRTYPE(PX86PT) pPTR0; /** The R0 virtual address of the two PAE page table. */ R0PTRTYPE(PPGMSHWPTPAE) paPaePTsR0; } aPTs[1]; } PGMMAPPING; /** Pointer to structure for tracking GC Mappings. */ typedef struct PGMMAPPING *PPGMMAPPING; /** * Physical page access handler type registration. */ typedef struct PGMPHYSHANDLERTYPEINT { /** Number of references. */ uint32_t volatile cRefs; /** Magic number (PGMPHYSHANDLERTYPEINT_MAGIC). */ uint32_t u32Magic; /** Link of handler types anchored in PGMTREES::HeadPhysHandlerTypes. */ RTLISTOFF32NODE ListNode; /** The kind of accesses we're handling. */ PGMPHYSHANDLERKIND enmKind; /** The PGM_PAGE_HNDL_PHYS_STATE_XXX value corresponding to enmKind. */ uint32_t uState; /** Pointer to RC callback function. */ RCPTRTYPE(PFNPGMPHYSHANDLER) pfnHandlerRC; /** Pointer to RC callback function for \#PFs. */ RCPTRTYPE(PFNPGMRZPHYSPFHANDLER) pfnPfHandlerRC; /** Pointer to R3 callback function. */ R3PTRTYPE(PFNPGMPHYSHANDLER) pfnHandlerR3; /** Pointer to R0 callback function. */ R0PTRTYPE(PFNPGMPHYSHANDLER) pfnHandlerR0; /** Pointer to R0 callback function for \#PFs. */ R0PTRTYPE(PFNPGMRZPHYSPFHANDLER) pfnPfHandlerR0; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; } PGMPHYSHANDLERTYPEINT; /** Pointer to a physical access handler type registration. */ typedef PGMPHYSHANDLERTYPEINT *PPGMPHYSHANDLERTYPEINT; /** Magic value for the physical handler callbacks (Robert A. Heinlein). */ #define PGMPHYSHANDLERTYPEINT_MAGIC UINT32_C(0x19070707) /** Magic value for the physical handler callbacks. */ #define PGMPHYSHANDLERTYPEINT_MAGIC_DEAD UINT32_C(0x19880508) /** * Converts a handle to a pointer. * @returns PPGMPHYSHANDLERTYPEINT * @param a_pVM The cross context VM structure. * @param a_hType Physical access handler type handle. */ #define PGMPHYSHANDLERTYPEINT_FROM_HANDLE(a_pVM, a_hType) ((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(a_pVM, a_hType)) /** * Physical page access handler structure. * * This is used to keep track of physical address ranges * which are being monitored in some kind of way. */ typedef struct PGMPHYSHANDLER { AVLROGCPHYSNODECORE Core; /** Number of pages to update. */ uint32_t cPages; /** Set if we have pages that have been aliased. */ uint32_t cAliasedPages; /** Set if we have pages that have temporarily been disabled. */ uint32_t cTmpOffPages; /** Registered handler type handle (heap offset). */ PGMPHYSHANDLERTYPE hType; /** User argument for RC handlers. */ RCPTRTYPE(void *) pvUserRC; #if HC_ARCH_BITS == 64 RTRCPTR Padding0; /**< Explicit alignment padding. */ #endif /** User argument for R3 handlers. */ R3PTRTYPE(void *) pvUserR3; /** User argument for R0 handlers. */ R0PTRTYPE(void *) pvUserR0; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; #ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; #endif } PGMPHYSHANDLER; /** Pointer to a physical page access handler structure. */ typedef PGMPHYSHANDLER *PPGMPHYSHANDLER; /** * Gets the type record for a physical handler (no reference added). * @returns PPGMPHYSHANDLERTYPEINT * @param a_pVM The cross context VM structure. * @param a_pPhysHandler Pointer to the physical handler structure * (PGMPHYSHANDLER). */ #define PGMPHYSHANDLER_GET_TYPE(a_pVM, a_pPhysHandler) PGMPHYSHANDLERTYPEINT_FROM_HANDLE(a_pVM, (a_pPhysHandler)->hType) #ifdef VBOX_WITH_RAW_MODE /** * Cache node for the physical addresses covered by a virtual handler. */ typedef struct PGMPHYS2VIRTHANDLER { /** Core node for the tree based on physical ranges. */ AVLROGCPHYSNODECORE Core; /** Offset from this struct to the PGMVIRTHANDLER structure. */ int32_t offVirtHandler; /** Offset of the next alias relative to this one. * Bit 0 is used for indicating whether we're in the tree. * Bit 1 is used for indicating that we're the head node. */ int32_t offNextAlias; } PGMPHYS2VIRTHANDLER; /** Pointer to a phys to virtual handler structure. */ typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER; /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the tree. */ # define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0) /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the head of an alias chain. * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */ # define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1) /** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */ # define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3) /** * Virtual page access handler type registration. */ typedef struct PGMVIRTANDLERTYPEINT { /** Number of references. */ uint32_t volatile cRefs; /** Magic number (PGMVIRTHANDLERTYPEINT_MAGIC). */ uint32_t u32Magic; /** Link of handler types anchored in PGMTREES::HeadVirtHandlerTypes. */ RTLISTOFF32NODE ListNode; /** The kind of accesses we're handling. */ PGMVIRTHANDLERKIND enmKind; /** The PGM_PAGE_HNDL_PHYS_STATE_XXX value corresponding to enmKind. */ uint32_t uState; /** Whether the pvUserRC argument should be automatically relocated or not. */ bool fRelocUserRC; bool afPadding[HC_ARCH_BITS == 64 ? 7 : 3]; /** Pointer to RC callback function. */ RCPTRTYPE(PFNPGMVIRTHANDLER) pfnHandlerRC; /** Pointer to RC callback function for \#PFs. */ RCPTRTYPE(PFNPGMRCVIRTPFHANDLER) pfnPfHandlerRC; /** Pointer to the R3 callback function for invalidation. */ R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3; /** Pointer to R3 callback function. */ R3PTRTYPE(PFNPGMVIRTHANDLER) pfnHandlerR3; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; } PGMVIRTHANDLERTYPEINT; /** Pointer to a virtual access handler type registration. */ typedef PGMVIRTHANDLERTYPEINT *PPGMVIRTHANDLERTYPEINT; /** Magic value for the virtual handler callbacks (Sir Arthur Charles Clarke). */ # define PGMVIRTHANDLERTYPEINT_MAGIC UINT32_C(0x19171216) /** Magic value for the virtual handler callbacks. */ # define PGMVIRTHANDLERTYPEINT_MAGIC_DEAD UINT32_C(0x20080319) /** * Converts a handle to a pointer. * @returns PPGMVIRTHANDLERTYPEINT * @param a_pVM The cross context VM structure. * @param a_hType Vitual access handler type handle. */ # define PGMVIRTHANDLERTYPEINT_FROM_HANDLE(a_pVM, a_hType) ((PPGMVIRTHANDLERTYPEINT)MMHyperHeapOffsetToPtr(a_pVM, a_hType)) /** * Virtual page access handler structure. * * This is used to keep track of virtual address ranges * which are being monitored in some kind of way. */ typedef struct PGMVIRTHANDLER { /** Core node for the tree based on virtual ranges. */ AVLROGCPTRNODECORE Core; /** Size of the range (in bytes). */ uint32_t cb; /** Number of cache pages. */ uint32_t cPages; /** Registered handler type handle (heap offset). */ PGMVIRTHANDLERTYPE hType; /** User argument for RC handlers. */ RCPTRTYPE(void *) pvUserRC; /** User argument for R3 handlers. */ R3PTRTYPE(void *) pvUserR3; /** Description / Name. For easing debugging. */ R3PTRTYPE(const char *) pszDesc; # ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; # endif /** Array of cached physical addresses for the monitored ranged. */ PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2]; } PGMVIRTHANDLER; /** Pointer to a virtual page access handler structure. */ typedef PGMVIRTHANDLER *PPGMVIRTHANDLER; /** * Gets the type record for a virtual handler (no reference added). * @returns PPGMVIRTHANDLERTYPEINT * @param a_pVM The cross context VM structure. * @param a_pVirtHandler Pointer to the virtual handler structure * (PGMVIRTHANDLER). */ # define PGMVIRTANDLER_GET_TYPE(a_pVM, a_pVirtHandler) PGMVIRTHANDLERTYPEINT_FROM_HANDLE(a_pVM, (a_pVirtHandler)->hType) #endif /* VBOX_WITH_RAW_MODE */ /** @name Page type predicates. * @{ */ #define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM ) #define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW ) #define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW ) #define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM ) #define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO ) /** @} */ /** * A Physical Guest Page tracking structure. * * The format of this structure is complicated because we have to fit a lot * of information into as few bits as possible. The format is also subject * to change (there is one coming up soon). Which means that for we'll be * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all* * accesses to the structure. */ typedef union PGMPAGE { /** Structured view. */ struct { /** 1:0 - The physical handler state (PGM_PAGE_HNDL_PHYS_STATE_*). */ uint64_t u2HandlerPhysStateY : 2; /** 3:2 - Paging structure needed to map the page * (PGM_PAGE_PDE_TYPE_*). */ uint64_t u2PDETypeY : 2; /** 4 - Indicator of dirty page for fault tolerance tracking. */ uint64_t fFTDirtyY : 1; /** 5 - Flag indicating that a write monitored page was written to * when set. */ uint64_t fWrittenToY : 1; /** 7:6 - Unused. */ uint64_t u2Unused0 : 2; /** 9:8 - The physical handler state (PGM_PAGE_HNDL_VIRT_STATE_*). */ uint64_t u2HandlerVirtStateY : 2; /** 11:10 - Unused. */ uint64_t u2Unused1 : 2; /** 12:48 - The host physical frame number (shift left to get the * address). */ uint64_t HCPhysFN : 36; /** 50:48 - The page state. */ uint64_t uStateY : 3; /** 51:53 - The page type (PGMPAGETYPE). */ uint64_t uTypeY : 3; /** 63:54 - PTE index for usage tracking (page pool). */ uint64_t u10PteIdx : 10; /** The GMM page ID. * @remarks In the current implementation, MMIO2 and pages aliased to * MMIO2 pages will be exploiting this field to calculate the * ring-3 mapping address corresponding to the page. * Later we may consider including MMIO2 management into GMM. */ uint32_t idPage; /** Usage tracking (page pool). */ uint16_t u16TrackingY; /** The number of read locks on this page. */ uint8_t cReadLocksY; /** The number of write locks on this page. */ uint8_t cWriteLocksY; } s; /** 64-bit integer view. */ uint64_t au64[2]; /** 16-bit view. */ uint32_t au32[4]; /** 16-bit view. */ uint16_t au16[8]; /** 8-bit view. */ uint8_t au8[16]; } PGMPAGE; AssertCompileSize(PGMPAGE, 16); /** Pointer to a physical guest page. */ typedef PGMPAGE *PPGMPAGE; /** Pointer to a const physical guest page. */ typedef const PGMPAGE *PCPGMPAGE; /** Pointer to a physical guest page pointer. */ typedef PPGMPAGE *PPPGMPAGE; /** * Clears the page structure. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_CLEAR(a_pPage) \ do { \ (a_pPage)->au64[0] = 0; \ (a_pPage)->au64[1] = 0; \ } while (0) /** * Initializes the page structure. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_HCPhys The host physical address of the page. * @param a_idPage The (GMM) page ID of the page. * @param a_uType The page type (PGMPAGETYPE). * @param a_uState The page state (PGM_PAGE_STATE_XXX). */ #define PGM_PAGE_INIT(a_pPage, a_HCPhys, a_idPage, a_uType, a_uState) \ do { \ RTHCPHYS SetHCPhysTmp = (a_HCPhys); \ AssertFatal(!(SetHCPhysTmp & ~UINT64_C(0x0000fffffffff000))); \ (a_pPage)->au64[0] = SetHCPhysTmp; \ (a_pPage)->au64[1] = 0; \ (a_pPage)->s.idPage = (a_idPage); \ (a_pPage)->s.uStateY = (a_uState); \ (a_pPage)->s.uTypeY = (a_uType); \ } while (0) /** * Initializes the page structure of a ZERO page. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_pVM The VM handle (for getting the zero page address). * @param a_uType The page type (PGMPAGETYPE). */ #define PGM_PAGE_INIT_ZERO(a_pPage, a_pVM, a_uType) \ PGM_PAGE_INIT((a_pPage), (a_pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (a_uType), PGM_PAGE_STATE_ZERO) /** @name The Page state, PGMPAGE::uStateY. * @{ */ /** The zero page. * This is a per-VM page that's never ever mapped writable. */ #define PGM_PAGE_STATE_ZERO 0 /** A allocated page. * This is a per-VM page allocated from the page pool (or wherever * we get MMIO2 pages from if the type is MMIO2). */ #define PGM_PAGE_STATE_ALLOCATED 1 /** A allocated page that's being monitored for writes. * The shadow page table mappings are read-only. When a write occurs, the * fWrittenTo member is set, the page remapped as read-write and the state * moved back to allocated. */ #define PGM_PAGE_STATE_WRITE_MONITORED 2 /** The page is shared, aka. copy-on-write. * This is a page that's shared with other VMs. */ #define PGM_PAGE_STATE_SHARED 3 /** The page is ballooned, so no longer available for this VM. */ #define PGM_PAGE_STATE_BALLOONED 4 /** @} */ /** Asserts lock ownership in some of the PGM_PAGE_XXX macros. */ #if defined(VBOX_STRICT) && 0 /** @todo triggers in pgmRZDynMapGCPageV2Inlined */ # define PGM_PAGE_ASSERT_LOCK(a_pVM) PGM_LOCK_ASSERT_OWNER(a_pVM) #else # define PGM_PAGE_ASSERT_LOCK(a_pVM) do { } while (0) #endif /** * Gets the page state. * @returns page state (PGM_PAGE_STATE_*). * @param a_pPage Pointer to the physical guest page tracking structure. * * @remarks See PGM_PAGE_GET_HCPHYS_NA for remarks about GCC and strict * builds. */ #define PGM_PAGE_GET_STATE_NA(a_pPage) ( (a_pPage)->s.uStateY ) #if defined(__GNUC__) && defined(VBOX_STRICT) # define PGM_PAGE_GET_STATE(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_STATE_NA(a_pPage); }) #else # define PGM_PAGE_GET_STATE PGM_PAGE_GET_STATE_NA #endif /** * Sets the page state. * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_uState The new page state. */ #define PGM_PAGE_SET_STATE(a_pVM, a_pPage, a_uState) \ do { (a_pPage)->s.uStateY = (a_uState); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Gets the host physical address of the guest page. * @returns host physical address (RTHCPHYS). * @param a_pPage Pointer to the physical guest page tracking structure. * * @remarks In strict builds on gcc platforms, this macro will make some ugly * assumption about a valid pVM variable/parameter being in the * current context. It will use this pVM variable to assert that the * PGM lock is held. Use the PGM_PAGE_GET_HCPHYS_NA in contexts where * pVM is not around. */ #if 0 # define PGM_PAGE_GET_HCPHYS_NA(a_pPage) ( (a_pPage)->s.HCPhysFN << 12 ) # define PGM_PAGE_GET_HCPHYS PGM_PAGE_GET_HCPHYS_NA #else # define PGM_PAGE_GET_HCPHYS_NA(a_pPage) ( (a_pPage)->au64[0] & UINT64_C(0x0000fffffffff000) ) # if defined(__GNUC__) && defined(VBOX_STRICT) # define PGM_PAGE_GET_HCPHYS(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_HCPHYS_NA(a_pPage); }) # else # define PGM_PAGE_GET_HCPHYS PGM_PAGE_GET_HCPHYS_NA # endif #endif /** * Sets the host physical address of the guest page. * * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_HCPhys The new host physical address. */ #define PGM_PAGE_SET_HCPHYS(a_pVM, a_pPage, a_HCPhys) \ do { \ RTHCPHYS const SetHCPhysTmp = (a_HCPhys); \ AssertFatal(!(SetHCPhysTmp & ~UINT64_C(0x0000fffffffff000))); \ (a_pPage)->s.HCPhysFN = SetHCPhysTmp >> 12; \ PGM_PAGE_ASSERT_LOCK(a_pVM); \ } while (0) /** * Get the Page ID. * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PAGEID(a_pPage) ( (uint32_t)(a_pPage)->s.idPage ) /** * Sets the Page ID. * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_idPage The new page ID. */ #define PGM_PAGE_SET_PAGEID(a_pVM, a_pPage, a_idPage) \ do { \ (a_pPage)->s.idPage = (a_idPage); \ PGM_PAGE_ASSERT_LOCK(a_pVM); \ } while (0) /** * Get the Chunk ID. * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_CHUNKID(a_pPage) ( PGM_PAGE_GET_PAGEID(a_pPage) >> GMM_CHUNKID_SHIFT ) /** * Get the index of the page within the allocation chunk. * @returns The page index. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PAGE_IN_CHUNK(a_pPage) ( PGM_PAGE_GET_PAGEID(a_pPage) & GMM_PAGEID_IDX_MASK ) /** * Gets the page type. * @returns The page type. * @param a_pPage Pointer to the physical guest page tracking structure. * * @remarks See PGM_PAGE_GET_HCPHYS_NA for remarks about GCC and strict * builds. */ #define PGM_PAGE_GET_TYPE_NA(a_pPage) ( (a_pPage)->s.uTypeY ) #if defined(__GNUC__) && defined(VBOX_STRICT) # define PGM_PAGE_GET_TYPE(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_TYPE_NA(a_pPage); }) #else # define PGM_PAGE_GET_TYPE PGM_PAGE_GET_TYPE_NA #endif /** * Sets the page type. * * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_enmType The new page type (PGMPAGETYPE). */ #define PGM_PAGE_SET_TYPE(a_pVM, a_pPage, a_enmType) \ do { (a_pPage)->s.uTypeY = (a_enmType); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Gets the page table index * @returns The page table index. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PTE_INDEX(a_pPage) ( (a_pPage)->s.u10PteIdx ) /** * Sets the page table index. * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_iPte New page table index. */ #define PGM_PAGE_SET_PTE_INDEX(a_pVM, a_pPage, a_iPte) \ do { (a_pPage)->s.u10PteIdx = (a_iPte); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Checks if the page is marked for MMIO, no MMIO2 aliasing. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_MMIO(a_pPage) ( (a_pPage)->s.uTypeY == PGMPAGETYPE_MMIO ) /** * Checks if the page is marked for MMIO, including both aliases. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_MMIO_OR_ALIAS(a_pPage) ( (a_pPage)->s.uTypeY == PGMPAGETYPE_MMIO \ || (a_pPage)->s.uTypeY == PGMPAGETYPE_MMIO2_ALIAS_MMIO \ || (a_pPage)->s.uTypeY == PGMPAGETYPE_SPECIAL_ALIAS_MMIO \ ) /** * Checks if the page is marked for MMIO, including special aliases. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(a_pPage) ( (a_pPage)->s.uTypeY == PGMPAGETYPE_MMIO \ || (a_pPage)->s.uTypeY == PGMPAGETYPE_SPECIAL_ALIAS_MMIO ) /** * Checks if the page is a special aliased MMIO page. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(a_pPage) ( (a_pPage)->s.uTypeY == PGMPAGETYPE_SPECIAL_ALIAS_MMIO ) /** * Checks if the page is backed by the ZERO page. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_ZERO(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_ZERO ) /** * Checks if the page is backed by a SHARED page. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_SHARED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_SHARED ) /** * Checks if the page is ballooned. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_BALLOONED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_BALLOONED ) /** * Checks if the page is allocated. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_ALLOCATED(a_pPage) ( (a_pPage)->s.uStateY == PGM_PAGE_STATE_ALLOCATED ) /** * Marks the page as written to (for GMM change monitoring). * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_SET_WRITTEN_TO(a_pVM, a_pPage) \ do { (a_pPage)->s.fWrittenToY = 1; PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Clears the written-to indicator. * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_CLEAR_WRITTEN_TO(a_pVM, a_pPage) \ do { (a_pPage)->s.fWrittenToY = 0; PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Checks if the page was marked as written-to. * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_WRITTEN_TO(a_pPage) ( (a_pPage)->s.fWrittenToY ) /** * Marks the page as dirty for FTM * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_SET_FT_DIRTY(a_pPage) do { (a_pPage)->s.fFTDirtyY = 1; } while (0) /** * Clears the FTM dirty indicator * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_CLEAR_FT_DIRTY(a_pPage) do { (a_pPage)->s.fFTDirtyY = 0; } while (0) /** * Checks if the page was marked as dirty for FTM * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_IS_FT_DIRTY(a_pPage) ( (a_pPage)->s.fFTDirtyY ) /** @name PT usage values (PGMPAGE::u2PDEType). * * @{ */ /** Either as a PT or PDE. */ #define PGM_PAGE_PDE_TYPE_DONTCARE 0 /** Must use a page table to map the range. */ #define PGM_PAGE_PDE_TYPE_PT 1 /** Can use a page directory entry to map the continuous range. */ #define PGM_PAGE_PDE_TYPE_PDE 2 /** Can use a page directory entry to map the continuous range - temporarily disabled (by page monitoring). */ #define PGM_PAGE_PDE_TYPE_PDE_DISABLED 3 /** @} */ /** * Set the PDE type of the page * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_uType PGM_PAGE_PDE_TYPE_*. */ #define PGM_PAGE_SET_PDE_TYPE(a_pVM, a_pPage, a_uType) \ do { (a_pPage)->s.u2PDETypeY = (a_uType); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** * Checks if the page was marked being part of a large page * @returns true/false. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_PDE_TYPE(a_pPage) ( (a_pPage)->s.u2PDETypeY ) /** Enabled optimized access handler tests. * These optimizations makes ASSUMPTIONS about the state values and the s1 * layout. When enabled, the compiler should normally generate more compact * code. */ #define PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS 1 /** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateY). * * @remarks The values are assigned in order of priority, so we can calculate * the correct state for a page with different handlers installed. * @{ */ /** No handler installed. */ #define PGM_PAGE_HNDL_PHYS_STATE_NONE 0 /** Monitoring is temporarily disabled. */ #define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1 /** Write access is monitored. */ #define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2 /** All access is monitored. */ #define PGM_PAGE_HNDL_PHYS_STATE_ALL 3 /** @} */ /** * Gets the physical access handler state of a page. * @returns PGM_PAGE_HNDL_PHYS_STATE_* value. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) ( (a_pPage)->s.u2HandlerPhysStateY ) /** * Sets the physical access handler state of a page. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_uState The new state value. */ #define PGM_PAGE_SET_HNDL_PHYS_STATE(a_pPage, a_uState) \ do { (a_pPage)->s.u2HandlerPhysStateY = (a_uState); } while (0) /** * Checks if the page has any physical access handlers, including temporarily disabled ones. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE ) /** * Checks if the page has any active physical access handlers. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE ) /** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateY). * * @remarks The values are assigned in order of priority, so we can calculate * the correct state for a page with different handlers installed. * @{ */ /** No handler installed. */ #define PGM_PAGE_HNDL_VIRT_STATE_NONE 0 /* 1 is reserved so the lineup is identical with the physical ones. */ /** Write access is monitored. */ #define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2 /** All access is monitored. */ #define PGM_PAGE_HNDL_VIRT_STATE_ALL 3 /** @} */ /** * Gets the virtual access handler state of a page. * @returns PGM_PAGE_HNDL_VIRT_STATE_* value. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) ( (a_pPage)->s.u2HandlerVirtStateY ) /** * Sets the virtual access handler state of a page. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_uState The new state value. */ #define PGM_PAGE_SET_HNDL_VIRT_STATE(a_pPage, a_uState) \ do { (a_pPage)->s.u2HandlerVirtStateY = (a_uState); } while (0) /** * Checks if the page has any virtual access handlers. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) != PGM_PAGE_HNDL_VIRT_STATE_NONE ) /** * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in * virtual handlers. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(a_pPage) \ PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(a_pPage) /** * Checks if the page has any access handlers, including temporarily disabled ones. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS # define PGM_PAGE_HAS_ANY_HANDLERS(a_pPage) \ ( ((a_pPage)->au32[0] & UINT16_C(0x0303)) != 0 ) #else # define PGM_PAGE_HAS_ANY_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) != PGM_PAGE_HNDL_PHYS_STATE_NONE \ || PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) != PGM_PAGE_HNDL_VIRT_STATE_NONE ) #endif /** * Checks if the page has any active access handlers. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS # define PGM_PAGE_HAS_ACTIVE_HANDLERS(a_pPage) \ ( ((a_pPage)->au32[0] & UINT16_C(0x0202)) != 0 ) #else # define PGM_PAGE_HAS_ACTIVE_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \ || PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) >= PGM_PAGE_HNDL_VIRT_STATE_WRITE ) #endif /** * Checks if the page has any active access handlers catching all accesses. * @returns true/false * @param a_pPage Pointer to the physical guest page tracking structure. */ #ifdef PGM_PAGE_WITH_OPTIMIZED_HANDLER_ACCESS # define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(a_pPage) \ ( ( ((a_pPage)->au8[0] | (a_pPage)->au8[1]) & UINT8_C(0x3) ) \ == PGM_PAGE_HNDL_PHYS_STATE_ALL ) #else # define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(a_pPage) \ ( PGM_PAGE_GET_HNDL_PHYS_STATE(a_pPage) == PGM_PAGE_HNDL_PHYS_STATE_ALL \ || PGM_PAGE_GET_HNDL_VIRT_STATE(a_pPage) == PGM_PAGE_HNDL_VIRT_STATE_ALL ) #endif /** @def PGM_PAGE_GET_TRACKING * Gets the packed shadow page pool tracking data associated with a guest page. * @returns uint16_t containing the data. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TRACKING_NA(a_pPage) ( (a_pPage)->s.u16TrackingY ) #if defined(__GNUC__) && defined(VBOX_STRICT) # define PGM_PAGE_GET_TRACKING(a_pPage) __extension__ ({ PGM_PAGE_ASSERT_LOCK(pVM); PGM_PAGE_GET_TRACKING_NA(a_pPage); }) #else # define PGM_PAGE_GET_TRACKING PGM_PAGE_GET_TRACKING_NA #endif /** @def PGM_PAGE_SET_TRACKING * Sets the packed shadow page pool tracking data associated with a guest page. * @param a_pVM The VM handle, only used for lock ownership assertions. * @param a_pPage Pointer to the physical guest page tracking structure. * @param a_u16TrackingData The tracking data to store. */ #define PGM_PAGE_SET_TRACKING(a_pVM, a_pPage, a_u16TrackingData) \ do { (a_pPage)->s.u16TrackingY = (a_u16TrackingData); PGM_PAGE_ASSERT_LOCK(a_pVM); } while (0) /** @def PGM_PAGE_GET_TD_CREFS * Gets the @a cRefs tracking data member. * @returns cRefs. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TD_CREFS(a_pPage) \ ((PGM_PAGE_GET_TRACKING(a_pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK) #define PGM_PAGE_GET_TD_CREFS_NA(a_pPage) \ ((PGM_PAGE_GET_TRACKING_NA(a_pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK) /** @def PGM_PAGE_GET_TD_IDX * Gets the @a idx tracking data member. * @returns idx. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_TD_IDX(a_pPage) \ ((PGM_PAGE_GET_TRACKING(a_pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK) #define PGM_PAGE_GET_TD_IDX_NA(a_pPage) \ ((PGM_PAGE_GET_TRACKING_NA(a_pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK) /** Max number of locks on a page. */ #define PGM_PAGE_MAX_LOCKS UINT8_C(254) /** Get the read lock count. * @returns count. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_READ_LOCKS(a_pPage) ( (a_pPage)->s.cReadLocksY ) /** Get the write lock count. * @returns count. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_GET_WRITE_LOCKS(a_pPage) ( (a_pPage)->s.cWriteLocksY ) /** Decrement the read lock counter. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_DEC_READ_LOCKS(a_pPage) do { --(a_pPage)->s.cReadLocksY; } while (0) /** Decrement the write lock counter. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_DEC_WRITE_LOCKS(a_pPage) do { --(a_pPage)->s.cWriteLocksY; } while (0) /** Increment the read lock counter. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_INC_READ_LOCKS(a_pPage) do { ++(a_pPage)->s.cReadLocksY; } while (0) /** Increment the write lock counter. * @param a_pPage Pointer to the physical guest page tracking structure. */ #define PGM_PAGE_INC_WRITE_LOCKS(a_pPage) do { ++(a_pPage)->s.cWriteLocksY; } while (0) #if 0 /** Enables sanity checking of write monitoring using CRC-32. */ # define PGMLIVESAVERAMPAGE_WITH_CRC32 #endif /** * Per page live save tracking data. */ typedef struct PGMLIVESAVERAMPAGE { /** Number of times it has been dirtied. */ uint32_t cDirtied : 24; /** Whether it is currently dirty. */ uint32_t fDirty : 1; /** Ignore the page. * This is used for pages that has been MMIO, MMIO2 or ROM pages once. We will * deal with these after pausing the VM and DevPCI have said it bit about * remappings. */ uint32_t fIgnore : 1; /** Was a ZERO page last time around. */ uint32_t fZero : 1; /** Was a SHARED page last time around. */ uint32_t fShared : 1; /** Whether the page is/was write monitored in a previous pass. */ uint32_t fWriteMonitored : 1; /** Whether the page is/was write monitored earlier in this pass. */ uint32_t fWriteMonitoredJustNow : 1; /** Bits reserved for future use. */ uint32_t u2Reserved : 2; #ifdef PGMLIVESAVERAMPAGE_WITH_CRC32 /** CRC-32 for the page. This is for internal consistency checks. */ uint32_t u32Crc; #endif } PGMLIVESAVERAMPAGE; #ifdef PGMLIVESAVERAMPAGE_WITH_CRC32 AssertCompileSize(PGMLIVESAVERAMPAGE, 8); #else AssertCompileSize(PGMLIVESAVERAMPAGE, 4); #endif /** Pointer to the per page live save tracking data. */ typedef PGMLIVESAVERAMPAGE *PPGMLIVESAVERAMPAGE; /** The max value of PGMLIVESAVERAMPAGE::cDirtied. */ #define PGMLIVSAVEPAGE_MAX_DIRTIED 0x00fffff0 /** * RAM range for GC Phys to HC Phys conversion. * * Can be used for HC Virt to GC Phys and HC Virt to HC Phys * conversions too, but we'll let MM handle that for now. * * This structure is used by linked lists in both GC and HC. */ typedef struct PGMRAMRANGE { /** Start of the range. Page aligned. */ RTGCPHYS GCPhys; /** Size of the range. (Page aligned of course). */ RTGCPHYS cb; /** Pointer to the next RAM range - for R3. */ R3PTRTYPE(struct PGMRAMRANGE *) pNextR3; /** Pointer to the next RAM range - for R0. */ R0PTRTYPE(struct PGMRAMRANGE *) pNextR0; /** Pointer to the next RAM range - for RC. */ RCPTRTYPE(struct PGMRAMRANGE *) pNextRC; /** PGM_RAM_RANGE_FLAGS_* flags. */ uint32_t fFlags; /** Last address in the range (inclusive). Page aligned (-1). */ RTGCPHYS GCPhysLast; /** Start of the HC mapping of the range. This is only used for MMIO2. */ R3PTRTYPE(void *) pvR3; /** Live save per page tracking data. */ R3PTRTYPE(PPGMLIVESAVERAMPAGE) paLSPages; /** The range description. */ R3PTRTYPE(const char *) pszDesc; /** Pointer to self - R0 pointer. */ R0PTRTYPE(struct PGMRAMRANGE *) pSelfR0; /** Pointer to self - RC pointer. */ RCPTRTYPE(struct PGMRAMRANGE *) pSelfRC; /** Alignment padding. */ RTRCPTR Alignment0; /** Pointer to the left search three node - ring-3 context. */ R3PTRTYPE(struct PGMRAMRANGE *) pLeftR3; /** Pointer to the right search three node - ring-3 context. */ R3PTRTYPE(struct PGMRAMRANGE *) pRightR3; /** Pointer to the left search three node - ring-0 context. */ R0PTRTYPE(struct PGMRAMRANGE *) pLeftR0; /** Pointer to the right search three node - ring-0 context. */ R0PTRTYPE(struct PGMRAMRANGE *) pRightR0; /** Pointer to the left search three node - raw-mode context. */ RCPTRTYPE(struct PGMRAMRANGE *) pLeftRC; /** Pointer to the right search three node - raw-mode context. */ RCPTRTYPE(struct PGMRAMRANGE *) pRightRC; /** Padding to make aPage aligned on sizeof(PGMPAGE). */ #if HC_ARCH_BITS == 32 uint32_t au32Alignment2[HC_ARCH_BITS == 32 ? 2 : 0]; #endif /** Array of physical guest page tracking structures. */ PGMPAGE aPages[1]; } PGMRAMRANGE; /** Pointer to RAM range for GC Phys to HC Phys conversion. */ typedef PGMRAMRANGE *PPGMRAMRANGE; /** @name PGMRAMRANGE::fFlags * @{ */ /** The RAM range is floating around as an independent guest mapping. */ #define PGM_RAM_RANGE_FLAGS_FLOATING RT_BIT(20) /** Ad hoc RAM range for an ROM mapping. */ #define PGM_RAM_RANGE_FLAGS_AD_HOC_ROM RT_BIT(21) /** Ad hoc RAM range for an MMIO mapping. */ #define PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO RT_BIT(22) /** Ad hoc RAM range for an MMIO2 mapping. */ #define PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2 RT_BIT(23) /** @} */ /** Tests if a RAM range is an ad hoc one or not. * @returns true/false. * @param pRam The RAM range. */ #define PGM_RAM_RANGE_IS_AD_HOC(pRam) \ (!!( (pRam)->fFlags & (PGM_RAM_RANGE_FLAGS_AD_HOC_ROM | PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO | PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2) ) ) /** The number of entries in the RAM range TLBs (there is one for each * context). Must be a power of two. */ #define PGM_RAMRANGE_TLB_ENTRIES 8 /** * Calculates the RAM range TLB index for the physical address. * * @returns RAM range TLB index. * @param a_GCPhys The guest physical address. */ #define PGM_RAMRANGE_TLB_IDX(a_GCPhys) ( ((a_GCPhys) >> 20) & (PGM_RAMRANGE_TLB_ENTRIES - 1) ) /** * Per page tracking structure for ROM image. * * A ROM image may have a shadow page, in which case we may have two pages * backing it. This structure contains the PGMPAGE for both while * PGMRAMRANGE have a copy of the active one. It is important that these * aren't out of sync in any regard other than page pool tracking data. */ typedef struct PGMROMPAGE { /** The page structure for the virgin ROM page. */ PGMPAGE Virgin; /** The page structure for the shadow RAM page. */ PGMPAGE Shadow; /** The current protection setting. */ PGMROMPROT enmProt; /** Live save status information. Makes use of unused alignment space. */ struct { /** The previous protection value. */ uint8_t u8Prot; /** Written to flag set by the handler. */ bool fWrittenTo; /** Whether the shadow page is dirty or not. */ bool fDirty; /** Whether it was dirtied in the recently. */ bool fDirtiedRecently; } LiveSave; } PGMROMPAGE; AssertCompileSizeAlignment(PGMROMPAGE, 8); /** Pointer to a ROM page tracking structure. */ typedef PGMROMPAGE *PPGMROMPAGE; /** * A registered ROM image. * * This is needed to keep track of ROM image since they generally intrude * into a PGMRAMRANGE. It also keeps track of additional info like the * two page sets (read-only virgin and read-write shadow), the current * state of each page. * * Because access handlers cannot easily be executed in a different * context, the ROM ranges needs to be accessible and in all contexts. */ typedef struct PGMROMRANGE { /** Pointer to the next range - R3. */ R3PTRTYPE(struct PGMROMRANGE *) pNextR3; /** Pointer to the next range - R0. */ R0PTRTYPE(struct PGMROMRANGE *) pNextR0; /** Pointer to the next range - RC. */ RCPTRTYPE(struct PGMROMRANGE *) pNextRC; /** Pointer alignment */ RTRCPTR RCPtrAlignment; /** Address of the range. */ RTGCPHYS GCPhys; /** Address of the last byte in the range. */ RTGCPHYS GCPhysLast; /** Size of the range. */ RTGCPHYS cb; /** The flags (PGMPHYS_ROM_FLAGS_*). */ uint32_t fFlags; /** The saved state range ID. */ uint8_t idSavedState; /** Alignment padding. */ uint8_t au8Alignment[3]; /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */ uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 5 : 1]; /** The size bits pvOriginal points to. */ uint32_t cbOriginal; /** Pointer to the original bits when PGMPHYS_ROM_FLAGS_PERMANENT_BINARY was specified. * This is used for strictness checks. */ R3PTRTYPE(const void *) pvOriginal; /** The ROM description. */ R3PTRTYPE(const char *) pszDesc; /** The per page tracking structures. */ PGMROMPAGE aPages[1]; } PGMROMRANGE; /** Pointer to a ROM range. */ typedef PGMROMRANGE *PPGMROMRANGE; /** * Live save per page data for an MMIO2 page. * * Not using PGMLIVESAVERAMPAGE here because we cannot use normal write monitoring * of MMIO2 pages. The current approach is using some optimistic SHA-1 + * CRC-32 for detecting changes as well as special handling of zero pages. This * is a TEMPORARY measure which isn't perfect, but hopefully it is good enough * for speeding things up. (We're using SHA-1 and not SHA-256 or SHA-512 * because of speed (2.5x and 6x slower).) * * @todo Implement dirty MMIO2 page reporting that can be enabled during live * save but normally is disabled. Since we can write monitor guest * accesses on our own, we only need this for host accesses. Shouldn't be * too difficult for DevVGA, VMMDev might be doable, the planned * networking fun will be fun since it involves ring-0. */ typedef struct PGMLIVESAVEMMIO2PAGE { /** Set if the page is considered dirty. */ bool fDirty; /** The number of scans this page has remained unchanged for. * Only updated for dirty pages. */ uint8_t cUnchangedScans; /** Whether this page was zero at the last scan. */ bool fZero; /** Alignment padding. */ bool fReserved; /** CRC-32 for the first half of the page. * This is used together with u32CrcH2 to quickly detect changes in the page * during the non-final passes. */ uint32_t u32CrcH1; /** CRC-32 for the second half of the page. */ uint32_t u32CrcH2; /** SHA-1 for the saved page. * This is used in the final pass to skip pages without changes. */ uint8_t abSha1Saved[RTSHA1_HASH_SIZE]; } PGMLIVESAVEMMIO2PAGE; /** Pointer to a live save status data for an MMIO2 page. */ typedef PGMLIVESAVEMMIO2PAGE *PPGMLIVESAVEMMIO2PAGE; /** * A registered MMIO2 (= Device RAM) range. * * There are a few reason why we need to keep track of these * registrations. One of them is the deregistration & cleanup stuff, * while another is that the PGMRAMRANGE associated with such a region may * have to be removed from the ram range list. * * Overlapping with a RAM range has to be 100% or none at all. The pages * in the existing RAM range must not be ROM nor MMIO. A guru meditation * will be raised if a partial overlap or an overlap of ROM pages is * encountered. On an overlap we will free all the existing RAM pages and * put in the ram range pages instead. */ typedef struct PGMMMIO2RANGE { /** The owner of the range. (a device) */ PPDMDEVINSR3 pDevInsR3; /** Pointer to the ring-3 mapping of the allocation. */ RTR3PTR pvR3; /** Pointer to the next range - R3. */ R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3; /** Whether it's mapped or not. */ bool fMapped; /** Whether it's overlapping or not. */ bool fOverlapping; /** The PCI region number. * @remarks This ASSUMES that nobody will ever really need to have multiple * PCI devices with matching MMIO region numbers on a single device. */ uint8_t iRegion; /** The saved state range ID. */ uint8_t idSavedState; /** MMIO2 range identifier, for page IDs (PGMPAGE::s.idPage). */ uint8_t idMmio2; /** Alignment padding for putting the ram range on a PGMPAGE alignment boundary. */ uint8_t abAlignment[HC_ARCH_BITS == 32 ? 11 : 11]; /** Live save per page tracking data. */ R3PTRTYPE(PPGMLIVESAVEMMIO2PAGE) paLSPages; /** The associated RAM range. */ PGMRAMRANGE RamRange; } PGMMMIO2RANGE; /** Pointer to a MMIO2 range. */ typedef PGMMMIO2RANGE *PPGMMMIO2RANGE; /** @name Intenal MMIO2 constants. * @{ */ /** The maximum number of MMIO2 ranges. */ #define PGM_MMIO2_MAX_RANGES 8 /** The maximum number of pages in a MMIO2 range. */ #define PGM_MMIO2_MAX_PAGE_COUNT UINT32_C(0x00ffffff) /** Makes a MMIO2 page ID out of a MMIO2 range ID and page index number. */ #define PGM_MMIO2_PAGEID_MAKE(a_idMmio2, a_iPage) ( ((uint32_t)(a_idMmio2) << 24) | (uint32_t)(a_iPage) ) /** Gets the MMIO2 range ID from an MMIO2 page ID. */ #define PGM_MMIO2_PAGEID_GET_MMIO2_ID(a_idPage) ( (uint8_t)((a_idPage) >> 24) ) /** Gets the MMIO2 page index from an MMIO2 page ID. */ #define PGM_MMIO2_PAGEID_GET_IDX(a_idPage) ( ((a_idPage) & UINT32_C(0x00ffffff)) ) /** @} */ /** * PGMPhysRead/Write cache entry */ typedef struct PGMPHYSCACHEENTRY { /** R3 pointer to physical page. */ R3PTRTYPE(uint8_t *) pbR3; /** GC Physical address for cache entry */ RTGCPHYS GCPhys; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 RTGCPHYS u32Padding0; /**< alignment padding. */ #endif } PGMPHYSCACHEENTRY; /** * PGMPhysRead/Write cache to reduce REM memory access overhead */ typedef struct PGMPHYSCACHE { /** Bitmap of valid cache entries */ uint64_t aEntries; /** Cache entries */ PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES]; } PGMPHYSCACHE; /** Pointer to an allocation chunk ring-3 mapping. */ typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP; /** Pointer to an allocation chunk ring-3 mapping pointer. */ typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP; /** * Ring-3 tracking structure for an allocation chunk ring-3 mapping. * * The primary tree (Core) uses the chunk id as key. */ typedef struct PGMCHUNKR3MAP { /** The key is the chunk id. */ AVLU32NODECORE Core; /** The time (ChunkR3Map.iNow) this chunk was last used. Used for unmap * selection. */ uint32_t iLastUsed; /** The current reference count. */ uint32_t volatile cRefs; /** The current permanent reference count. */ uint32_t volatile cPermRefs; /** The mapping address. */ void *pv; } PGMCHUNKR3MAP; /** * Allocation chunk ring-3 mapping TLB entry. */ typedef struct PGMCHUNKR3MAPTLBE { /** The chunk id. */ uint32_t volatile idChunk; #if HC_ARCH_BITS == 64 uint32_t u32Padding; /**< alignment padding. */ #endif /** The chunk map. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk; #else R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk; #endif } PGMCHUNKR3MAPTLBE; /** Pointer to the an allocation chunk ring-3 mapping TLB entry. */ typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE; /** The number of TLB entries in PGMCHUNKR3MAPTLB. * @remark Must be a power of two value. */ #define PGM_CHUNKR3MAPTLB_ENTRIES 64 /** * Allocation chunk ring-3 mapping TLB. * * @remarks We use a TLB to speed up lookups by avoiding walking the AVL. * At first glance this might look kinda odd since AVL trees are * supposed to give the most optimal lookup times of all trees * due to their balancing. However, take a tree with 1023 nodes * in it, that's 10 levels, meaning that most searches has to go * down 9 levels before they find what they want. This isn't fast * compared to a TLB hit. There is the factor of cache misses, * and of course the problem with trees and branch prediction. * This is why we use TLBs in front of most of the trees. * * @todo Generalize this TLB + AVL stuff, shouldn't be all that * difficult when we switch to the new inlined AVL trees (from kStuff). */ typedef struct PGMCHUNKR3MAPTLB { /** The TLB entries. */ PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES]; } PGMCHUNKR3MAPTLB; /** * Calculates the index of a guest page in the Ring-3 Chunk TLB. * @returns Chunk TLB index. * @param idChunk The Chunk ID. */ #define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) ) /** * Ring-3 guest page mapping TLB entry. * @remarks used in ring-0 as well at the moment. */ typedef struct PGMPAGER3MAPTLBE { /** Address of the page. */ RTGCPHYS volatile GCPhys; /** The guest page. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMPAGE) volatile pPage; #else R3R0PTRTYPE(PPGMPAGE) volatile pPage; #endif /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap; #else R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap; #endif /** The address */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(void *) volatile pv; #else R3R0PTRTYPE(void *) volatile pv; #endif #if HC_ARCH_BITS == 32 uint32_t u32Padding; /**< alignment padding. */ #endif } PGMPAGER3MAPTLBE; /** Pointer to an entry in the HC physical TLB. */ typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE; /** The number of entries in the ring-3 guest page mapping TLB. * @remarks The value must be a power of two. */ #define PGM_PAGER3MAPTLB_ENTRIES 256 /** * Ring-3 guest page mapping TLB. * @remarks used in ring-0 as well at the moment. */ typedef struct PGMPAGER3MAPTLB { /** The TLB entries. */ PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES]; } PGMPAGER3MAPTLB; /** Pointer to the ring-3 guest page mapping TLB. */ typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB; /** * Calculates the index of the TLB entry for the specified guest page. * @returns Physical TLB index. * @param GCPhys The guest physical address. */ #define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) ) /** * Raw-mode context dynamic mapping cache entry. * * Because of raw-mode context being reloctable and all relocations are applied * in ring-3, this has to be defined here and be RC specific. * * @sa PGMRZDYNMAPENTRY, PGMR0DYNMAPENTRY. */ typedef struct PGMRCDYNMAPENTRY { /** The physical address of the currently mapped page. * This is duplicate for three reasons: cache locality, cache policy of the PT * mappings and sanity checks. */ RTHCPHYS HCPhys; /** Pointer to the page. */ RTRCPTR pvPage; /** The number of references. */ int32_t volatile cRefs; /** PTE pointer union. */ struct PGMRCDYNMAPENTRY_PPTE { /** PTE pointer, 32-bit legacy version. */ RCPTRTYPE(PX86PTE) pLegacy; /** PTE pointer, PAE version. */ RCPTRTYPE(PX86PTEPAE) pPae; } uPte; } PGMRCDYNMAPENTRY; /** Pointer to a dynamic mapping cache entry for the raw-mode context. */ typedef PGMRCDYNMAPENTRY *PPGMRCDYNMAPENTRY; /** * Dynamic mapping cache for the raw-mode context. * * This is initialized during VMMRC init based upon the pbDynPageMapBaseGC and * paDynPageMap* PGM members. However, it has to be defined in PGMInternal.h * so that we can perform relocations from PGMR3Relocate. This has the * consequence that we must have separate ring-0 and raw-mode context versions * of this struct even if they share the basic elements. * * @sa PPGMRZDYNMAP, PGMR0DYNMAP. */ typedef struct PGMRCDYNMAP { /** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */ uint32_t u32Magic; /** Array for tracking and managing the pages. */ RCPTRTYPE(PPGMRCDYNMAPENTRY) paPages; /** The cache size given as a number of pages. */ uint32_t cPages; /** The current load. * This does not include guard pages. */ uint32_t cLoad; /** The max load ever. * This is maintained to get trigger adding of more mapping space. */ uint32_t cMaxLoad; /** The number of guard pages. */ uint32_t cGuardPages; /** The number of users (protected by hInitLock). */ uint32_t cUsers; } PGMRCDYNMAP; /** Pointer to the dynamic cache for the raw-mode context. */ typedef PGMRCDYNMAP *PPGMRCDYNMAP; /** * Mapping cache usage set entry. * * @remarks 16-bit ints was chosen as the set is not expected to be used beyond * the dynamic ring-0 and (to some extent) raw-mode context mapping * cache. If it's extended to include ring-3, well, then something * will have be changed here... */ typedef struct PGMMAPSETENTRY { /** Pointer to the page. */ #ifndef IN_RC RTR0PTR pvPage; #else RTRCPTR pvPage; # if HC_ARCH_BITS == 64 uint32_t u32Alignment2; # endif #endif /** The mapping cache index. */ uint16_t iPage; /** The number of references. * The max is UINT16_MAX - 1. */ uint16_t cRefs; /** The number inlined references. * The max is UINT16_MAX - 1. */ uint16_t cInlinedRefs; /** Unreferences. */ uint16_t cUnrefs; #if HC_ARCH_BITS == 32 uint32_t u32Alignment1; #endif /** The physical address for this entry. */ RTHCPHYS HCPhys; } PGMMAPSETENTRY; AssertCompileMemberOffset(PGMMAPSETENTRY, iPage, RT_MAX(sizeof(RTR0PTR), sizeof(RTRCPTR))); AssertCompileMemberAlignment(PGMMAPSETENTRY, HCPhys, sizeof(RTHCPHYS)); /** Pointer to a mapping cache usage set entry. */ typedef PGMMAPSETENTRY *PPGMMAPSETENTRY; /** * Mapping cache usage set. * * This is used in ring-0 and the raw-mode context to track dynamic mappings * done during exits / traps. The set is */ typedef struct PGMMAPSET { /** The number of occupied entries. * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do * dynamic mappings. */ uint32_t cEntries; /** The start of the current subset. * This is UINT32_MAX if no subset is currently open. */ uint32_t iSubset; /** The index of the current CPU, only valid if the set is open. */ int32_t iCpu; uint32_t alignment; /** The entries. */ PGMMAPSETENTRY aEntries[64]; /** HCPhys -> iEntry fast lookup table. * Use PGMMAPSET_HASH for hashing. * The entries may or may not be valid, check against cEntries. */ uint8_t aiHashTable[128]; } PGMMAPSET; AssertCompileSizeAlignment(PGMMAPSET, 8); /** Pointer to the mapping cache set. */ typedef PGMMAPSET *PPGMMAPSET; /** PGMMAPSET::cEntries value for a closed set. */ #define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe) /** Hash function for aiHashTable. */ #define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127) /** @name Context neutral page mapper TLB. * * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr * code is writting in a kind of context neutral way. Time will show whether * this actually makes sense or not... * * @todo this needs to be reconsidered and dropped/redone since the ring-0 * context ends up using a global mapping cache on some platforms * (darwin). * * @{ */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB pointer type for the current context. */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB entry pointer type for the current context. */ /** @typedef PPGMPAGEMAPTLB * The page mapper TLB entry pointer pointer type for the current context. */ /** @def PGM_PAGEMAPTLB_ENTRIES * The number of TLB entries in the page mapper TLB for the current context. */ /** @def PGM_PAGEMAPTLB_IDX * Calculate the TLB index for a guest physical address. * @returns The TLB index. * @param GCPhys The guest physical address. */ /** @typedef PPGMPAGEMAP * Pointer to a page mapper unit for current context. */ /** @typedef PPPGMPAGEMAP * Pointer to a page mapper unit pointer for current context. */ #if defined(IN_RC) && !defined(DOXYGEN_RUNNING) // typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB; // typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE; // typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE; # define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES # define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys) typedef void * PPGMPAGEMAP; typedef void ** PPPGMPAGEMAP; //#elif IN_RING0 // typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB; // typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE; // typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE; //# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES //# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys) // typedef PPGMCHUNKR0MAP PPGMPAGEMAP; // typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP; #else typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB; typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE; typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE; # define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES # define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys) typedef PPGMCHUNKR3MAP PPGMPAGEMAP; typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP; #endif /** @} */ /** @name PGM Pool Indexes. * Aka. the unique shadow page identifier. * @{ */ /** NIL page pool IDX. */ #define NIL_PGMPOOL_IDX 0 /** The first normal index. There used to be 5 fictive pages up front, now * there is only the NIL page. */ #define PGMPOOL_IDX_FIRST 1 /** The last valid index. (inclusive, 14 bits) */ #define PGMPOOL_IDX_LAST 0x3fff /** @} */ /** The NIL index for the parent chain. */ #define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff) #define NIL_PGMPOOL_PRESENT_INDEX ((uint16_t)0xffff) /** * Node in the chain linking a shadowed page to it's parent (user). */ #pragma pack(1) typedef struct PGMPOOLUSER { /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */ uint16_t iNext; /** The user page index. */ uint16_t iUser; /** Index into the user table. */ uint32_t iUserTable; } PGMPOOLUSER, *PPGMPOOLUSER; typedef const PGMPOOLUSER *PCPGMPOOLUSER; #pragma pack() /** The NIL index for the phys ext chain. */ #define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff) /** The NIL pte index for a phys ext chain slot. */ #define NIL_PGMPOOL_PHYSEXT_IDX_PTE ((uint16_t)0xffff) /** * Node in the chain of physical cross reference extents. * @todo Calling this an 'extent' is not quite right, find a better name. * @todo find out the optimal size of the aidx array */ #pragma pack(1) typedef struct PGMPOOLPHYSEXT { /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */ uint16_t iNext; /** Alignment. */ uint16_t u16Align; /** The user page index. */ uint16_t aidx[3]; /** The page table index or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown. */ uint16_t apte[3]; } PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT; typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT; #pragma pack() /** * The kind of page that's being shadowed. */ typedef enum PGMPOOLKIND { /** The virtual invalid 0 entry. */ PGMPOOLKIND_INVALID = 0, /** The entry is free (=unused). */ PGMPOOLKIND_FREE, /** Shw: 32-bit page table; Gst: no paging. */ PGMPOOLKIND_32BIT_PT_FOR_PHYS, /** Shw: 32-bit page table; Gst: 32-bit page table. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT, /** Shw: 32-bit page table; Gst: 4MB page. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: no paging. */ PGMPOOLKIND_PAE_PT_FOR_PHYS, /** Shw: PAE page table; Gst: 32-bit page table. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_PT, /** Shw: PAE page table; Gst: Half of a 4MB page. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: PAE page table. */ PGMPOOLKIND_PAE_PT_FOR_PAE_PT, /** Shw: PAE page table; Gst: 2MB page. */ PGMPOOLKIND_PAE_PT_FOR_PAE_2MB, /** Shw: 32-bit page directory. Gst: 32-bit page directory. */ PGMPOOLKIND_32BIT_PD, /** Shw: 32-bit page directory. Gst: no paging. */ PGMPOOLKIND_32BIT_PD_PHYS, /** Shw: PAE page directory 0; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD, /** Shw: PAE page directory 1; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD, /** Shw: PAE page directory 2; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD, /** Shw: PAE page directory 3; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD, /** Shw: PAE page directory; Gst: PAE page directory. */ PGMPOOLKIND_PAE_PD_FOR_PAE_PD, /** Shw: PAE page directory; Gst: no paging. Note: +NP. */ PGMPOOLKIND_PAE_PD_PHYS, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */ PGMPOOLKIND_PAE_PDPT_FOR_32BIT, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */ PGMPOOLKIND_PAE_PDPT, /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst: no paging. */ PGMPOOLKIND_PAE_PDPT_PHYS, /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */ PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT, /** Shw: 64-bit page directory pointer table; Gst: no paging. */ PGMPOOLKIND_64BIT_PDPT_FOR_PHYS, /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */ PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD, /** Shw: 64-bit page directory table; Gst: no paging. */ PGMPOOLKIND_64BIT_PD_FOR_PHYS, /* 24 */ /** Shw: 64-bit PML4; Gst: 64-bit PML4. */ PGMPOOLKIND_64BIT_PML4, /** Shw: EPT page directory pointer table; Gst: no paging. */ PGMPOOLKIND_EPT_PDPT_FOR_PHYS, /** Shw: EPT page directory table; Gst: no paging. */ PGMPOOLKIND_EPT_PD_FOR_PHYS, /** Shw: EPT page table; Gst: no paging. */ PGMPOOLKIND_EPT_PT_FOR_PHYS, /** Shw: Root Nested paging table. */ PGMPOOLKIND_ROOT_NESTED, /** The last valid entry. */ PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED } PGMPOOLKIND; /** * The access attributes of the page; only applies to big pages. */ typedef enum { PGMPOOLACCESS_DONTCARE = 0, PGMPOOLACCESS_USER_RW, PGMPOOLACCESS_USER_R, PGMPOOLACCESS_USER_RW_NX, PGMPOOLACCESS_USER_R_NX, PGMPOOLACCESS_SUPERVISOR_RW, PGMPOOLACCESS_SUPERVISOR_R, PGMPOOLACCESS_SUPERVISOR_RW_NX, PGMPOOLACCESS_SUPERVISOR_R_NX } PGMPOOLACCESS; /** * The tracking data for a page in the pool. */ typedef struct PGMPOOLPAGE { /** AVL node code with the (HC) physical address of this page. */ AVLOHCPHYSNODECORE Core; /** Pointer to the R3 mapping of the page. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(void *) pvPageR3; #else R3R0PTRTYPE(void *) pvPageR3; #endif #if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64 uint32_t Alignment0; #endif /** The guest physical address. */ RTGCPHYS GCPhys; /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */ uint8_t enmKind; /** The subkind of page we're shadowing. (This is really a PGMPOOLACCESS enum.) */ uint8_t enmAccess; /** This supplements enmKind and enmAccess */ bool fA20Enabled : 1; /** Used to indicate that the page is zeroed. */ bool fZeroed : 1; /** Used to indicate that a PT has non-global entries. */ bool fSeenNonGlobal : 1; /** Used to indicate that we're monitoring writes to the guest page. */ bool fMonitored : 1; /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash). * (All pages are in the age list.) */ bool fCached : 1; /** This is used by the R3 access handlers when invoked by an async thread. * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */ bool volatile fReusedFlushPending : 1; /** Used to mark the page as dirty (write monitoring is temporarily * off). */ bool fDirty : 1; bool fPadding1 : 1; bool fPadding2; /** The index of this page. */ uint16_t idx; /** The next entry in the list this page currently resides in. * It's either in the free list or in the GCPhys hash. */ uint16_t iNext; /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */ uint16_t iUserHead; /** The number of present entries. */ uint16_t cPresent; /** The first entry in the table which is present. */ uint16_t iFirstPresent; /** The number of modifications to the monitored page. */ uint16_t cModifications; /** The next modified page. NIL_PGMPOOL_IDX if tail. */ uint16_t iModifiedNext; /** The previous modified page. NIL_PGMPOOL_IDX if head. */ uint16_t iModifiedPrev; /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */ uint16_t iMonitoredNext; /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */ uint16_t iMonitoredPrev; /** The next page in the age list. */ uint16_t iAgeNext; /** The previous page in the age list. */ uint16_t iAgePrev; /** Index into PGMPOOL::aDirtyPages if fDirty is set. */ uint8_t idxDirtyEntry; /** @name Access handler statistics to determine whether the guest is * (re)initializing a page table. * @{ */ RTGCPTR GCPtrLastAccessHandlerRip; RTGCPTR GCPtrLastAccessHandlerFault; uint64_t cLastAccessHandler; /** @} */ /** Used to indicate that this page can't be flushed. Important for cr3 root pages or shadow pae pd pages. */ uint32_t volatile cLocked; #if GC_ARCH_BITS == 64 uint32_t u32Alignment3; #endif # ifdef VBOX_STRICT RTGCPTR GCPtrDirtyFault; # endif } PGMPOOLPAGE; /** Pointer to a pool page. */ typedef PGMPOOLPAGE *PPGMPOOLPAGE; /** Pointer to a const pool page. */ typedef PGMPOOLPAGE const *PCPGMPOOLPAGE; /** Pointer to a pool page pointer. */ typedef PGMPOOLPAGE **PPPGMPOOLPAGE; /** The hash table size. */ # define PGMPOOL_HASH_SIZE 0x40 /** The hash function. */ # define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) ) /** * The shadow page pool instance data. * * It's all one big allocation made at init time, except for the * pages that is. The user nodes follows immediately after the * page structures. */ typedef struct PGMPOOL { /** The VM handle - R3 Ptr. */ PVMR3 pVMR3; /** The VM handle - R0 Ptr. */ PVMR0 pVMR0; /** The VM handle - RC Ptr. */ PVMRC pVMRC; /** The max pool size. This includes the special IDs. */ uint16_t cMaxPages; /** The current pool size. */ uint16_t cCurPages; /** The head of the free page list. */ uint16_t iFreeHead; /* Padding. */ uint16_t u16Padding; /** Head of the chain of free user nodes. */ uint16_t iUserFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxUsers; /** The number of present page table entries in the entire pool. */ uint32_t cPresent; /** Pointer to the array of user nodes - RC pointer. */ RCPTRTYPE(PPGMPOOLUSER) paUsersRC; /** Pointer to the array of user nodes - R3 pointer. */ R3PTRTYPE(PPGMPOOLUSER) paUsersR3; /** Pointer to the array of user nodes - R0 pointer. */ R0PTRTYPE(PPGMPOOLUSER) paUsersR0; /** Head of the chain of free phys ext nodes. */ uint16_t iPhysExtFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxPhysExts; /** Pointer to the array of physical xref extent - RC pointer. */ RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC; /** Pointer to the array of physical xref extent nodes - R3 pointer. */ R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3; /** Pointer to the array of physical xref extent nodes - R0 pointer. */ R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0; /** Hash table for GCPhys addresses. */ uint16_t aiHash[PGMPOOL_HASH_SIZE]; /** The head of the age list. */ uint16_t iAgeHead; /** The tail of the age list. */ uint16_t iAgeTail; /** Set if the cache is enabled. */ bool fCacheEnabled; /** Alignment padding. */ bool afPadding1[3]; /** Head of the list of modified pages. */ uint16_t iModifiedHead; /** The current number of modified pages. */ uint16_t cModifiedPages; /** Physical access handler type registration handle. */ PGMPHYSHANDLERTYPE hAccessHandlerType; /** Next available slot (in aDirtyPages). */ uint32_t idxFreeDirtyPage; /** Number of active dirty pages. */ uint32_t cDirtyPages; /** Array of current dirty pgm pool page indices. */ struct { uint16_t uIdx; uint16_t Alignment[3]; uint64_t aPage[512]; } aDirtyPages[16]; /** The number of pages currently in use. */ uint16_t cUsedPages; #ifdef VBOX_WITH_STATISTICS /** The high water mark for cUsedPages. */ uint16_t cUsedPagesHigh; uint32_t Alignment1; /**< Align the next member on a 64-bit boundary. */ /** Profiling pgmPoolAlloc(). */ STAMPROFILEADV StatAlloc; /** Profiling pgmR3PoolClearDoIt(). */ STAMPROFILE StatClearAll; /** Profiling pgmR3PoolReset(). */ STAMPROFILE StatR3Reset; /** Profiling pgmPoolFlushPage(). */ STAMPROFILE StatFlushPage; /** Profiling pgmPoolFree(). */ STAMPROFILE StatFree; /** Counting explicit flushes by PGMPoolFlushPage(). */ STAMCOUNTER StatForceFlushPage; /** Counting explicit flushes of dirty pages by PGMPoolFlushPage(). */ STAMCOUNTER StatForceFlushDirtyPage; /** Counting flushes for reused pages. */ STAMCOUNTER StatForceFlushReused; /** Profiling time spent zeroing pages. */ STAMPROFILE StatZeroPage; /** Profiling of pgmPoolTrackDeref. */ STAMPROFILE StatTrackDeref; /** Profiling pgmTrackFlushGCPhysPT. */ STAMPROFILE StatTrackFlushGCPhysPT; /** Profiling pgmTrackFlushGCPhysPTs. */ STAMPROFILE StatTrackFlushGCPhysPTs; /** Profiling pgmTrackFlushGCPhysPTsSlow. */ STAMPROFILE StatTrackFlushGCPhysPTsSlow; /** Number of times we've been out of user records. */ STAMCOUNTER StatTrackFreeUpOneUser; /** Nr of flushed entries. */ STAMCOUNTER StatTrackFlushEntry; /** Nr of updated entries. */ STAMCOUNTER StatTrackFlushEntryKeep; /** Profiling deref activity related tracking GC physical pages. */ STAMPROFILE StatTrackDerefGCPhys; /** Number of linear searches for a HCPhys in the ram ranges. */ STAMCOUNTER StatTrackLinearRamSearches; /** The number of failing pgmPoolTrackPhysExtAlloc calls. */ STAMCOUNTER StamTrackPhysExtAllocFailures; /** Profiling the RC/R0 access handler. */ STAMPROFILE StatMonitorRZ; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorRZEmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */ STAMPROFILE StatMonitorRZFlushPage; /* Times we've detected a page table reinit. */ STAMCOUNTER StatMonitorRZFlushReinit; /** Counting flushes for pages that are modified too often. */ STAMCOUNTER StatMonitorRZFlushModOverflow; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorRZFork; /** Profiling the RC/R0 access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorRZHandled; /** Times we've failed interpreting a patch code instruction. */ STAMCOUNTER StatMonitorRZIntrFailPatch1; /** Times we've failed interpreting a patch code instruction during flushing. */ STAMCOUNTER StatMonitorRZIntrFailPatch2; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorRZRepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorRZRepStosd; /** Nr of handled PT faults. */ STAMCOUNTER StatMonitorRZFaultPT; /** Nr of handled PD faults. */ STAMCOUNTER StatMonitorRZFaultPD; /** Nr of handled PDPT faults. */ STAMCOUNTER StatMonitorRZFaultPDPT; /** Nr of handled PML4 faults. */ STAMCOUNTER StatMonitorRZFaultPML4; /** Profiling the R3 access handler. */ STAMPROFILE StatMonitorR3; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorR3EmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */ STAMPROFILE StatMonitorR3FlushPage; /* Times we've detected a page table reinit. */ STAMCOUNTER StatMonitorR3FlushReinit; /** Counting flushes for pages that are modified too often. */ STAMCOUNTER StatMonitorR3FlushModOverflow; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorR3Fork; /** Profiling the R3 access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorR3Handled; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorR3RepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorR3RepStosd; /** Nr of handled PT faults. */ STAMCOUNTER StatMonitorR3FaultPT; /** Nr of handled PD faults. */ STAMCOUNTER StatMonitorR3FaultPD; /** Nr of handled PDPT faults. */ STAMCOUNTER StatMonitorR3FaultPDPT; /** Nr of handled PML4 faults. */ STAMCOUNTER StatMonitorR3FaultPML4; /** The number of times we're called in an async thread an need to flush. */ STAMCOUNTER StatMonitorR3Async; /** Times we've called pgmPoolResetDirtyPages (and there were dirty page). */ STAMCOUNTER StatResetDirtyPages; /** Times we've called pgmPoolAddDirtyPage. */ STAMCOUNTER StatDirtyPage; /** Times we've had to flush duplicates for dirty page management. */ STAMCOUNTER StatDirtyPageDupFlush; /** Times we've had to flush because of overflow. */ STAMCOUNTER StatDirtyPageOverFlowFlush; /** The high water mark for cModifiedPages. */ uint16_t cModifiedPagesHigh; uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundary. */ /** The number of cache hits. */ STAMCOUNTER StatCacheHits; /** The number of cache misses. */ STAMCOUNTER StatCacheMisses; /** The number of times we've got a conflict of 'kind' in the cache. */ STAMCOUNTER StatCacheKindMismatches; /** Number of times we've been out of pages. */ STAMCOUNTER StatCacheFreeUpOne; /** The number of cacheable allocations. */ STAMCOUNTER StatCacheCacheable; /** The number of uncacheable allocations. */ STAMCOUNTER StatCacheUncacheable; #else uint32_t Alignment3; /**< Align the next member on a 64-bit boundary. */ #endif /** The AVL tree for looking up a page by its HC physical address. */ AVLOHCPHYSTREE HCPhysTree; uint32_t Alignment4; /**< Align the next member on a 64-bit boundary. */ /** Array of pages. (cMaxPages in length) * The Id is the index into thist array. */ PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST]; } PGMPOOL, *PPGMPOOL, **PPPGMPOOL; AssertCompileMemberAlignment(PGMPOOL, iModifiedHead, 8); AssertCompileMemberAlignment(PGMPOOL, aDirtyPages, 8); AssertCompileMemberAlignment(PGMPOOL, cUsedPages, 8); #ifdef VBOX_WITH_STATISTICS AssertCompileMemberAlignment(PGMPOOL, StatAlloc, 8); #endif AssertCompileMemberAlignment(PGMPOOL, aPages, 8); /** @def PGMPOOL_PAGE_2_PTR * Maps a pool page pool into the current context. * * @returns VBox status code. * @param a_pVM Pointer to the VM. * @param a_pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGMPOOL_PAGE_2_PTR(a_pVM, a_pPage) pgmPoolMapPageInlined((a_pVM), (a_pPage) RTLOG_COMMA_SRC_POS) #elif defined(VBOX_STRICT) || 1 /* temporarily going strict here */ # define PGMPOOL_PAGE_2_PTR(a_pVM, a_pPage) pgmPoolMapPageStrict(a_pPage, __FUNCTION__) DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE a_pPage, const char *pszCaller) { AssertPtr(a_pPage); AssertReleaseMsg(RT_VALID_PTR(a_pPage->pvPageR3), ("enmKind=%d idx=%#x HCPhys=%RHp GCPhys=%RGp caller=%s\n", a_pPage->enmKind, a_pPage->idx, a_pPage->Core.Key, a_pPage->GCPhys, pszCaller)); return a_pPage->pvPageR3; } #else # define PGMPOOL_PAGE_2_PTR(pVM, a_pPage) ((a_pPage)->pvPageR3) #endif /** @def PGMPOOL_PAGE_2_PTR_V2 * Maps a pool page pool into the current context, taking both VM and VMCPU. * * @returns VBox status code. * @param a_pVM Pointer to the VM. * @param a_pVCpu The current CPU. * @param a_pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) # define PGMPOOL_PAGE_2_PTR_V2(a_pVM, a_pVCpu, a_pPage) pgmPoolMapPageV2Inlined((a_pVM), (a_pVCpu), (a_pPage) RTLOG_COMMA_SRC_POS) #else # define PGMPOOL_PAGE_2_PTR_V2(a_pVM, a_pVCpu, a_pPage) PGMPOOL_PAGE_2_PTR((a_pVM), (a_pPage)) #endif /** @name Per guest page tracking data. * This is currently as a 16-bit word in the PGMPAGE structure, the idea though * is to use more bits for it and split it up later on. But for now we'll play * safe and change as little as possible. * * The 16-bit word has two parts: * * The first 14-bit forms the @a idx field. It is either the index of a page in * the shadow page pool, or and index into the extent list. * * The 2 topmost bits makes up the @a cRefs field, which counts the number of * shadow page pool references to the page. If cRefs equals * PGMPOOL_CREFS_PHYSEXT, then the @a idx field is an indext into the extent * (misnomer) table and not the shadow page pool. * * See PGM_PAGE_GET_TRACKING and PGM_PAGE_SET_TRACKING for how to get and set * the 16-bit word. * * @{ */ /** The shift count for getting to the cRefs part. */ #define PGMPOOL_TD_CREFS_SHIFT 14 /** The mask applied after shifting the tracking data down by * PGMPOOL_TD_CREFS_SHIFT. */ #define PGMPOOL_TD_CREFS_MASK 0x3 /** The cRefs value used to indicate that the idx is the head of a * physical cross reference list. */ #define PGMPOOL_TD_CREFS_PHYSEXT PGMPOOL_TD_CREFS_MASK /** The shift used to get idx. */ #define PGMPOOL_TD_IDX_SHIFT 0 /** The mask applied to the idx after shifting down by PGMPOOL_TD_IDX_SHIFT. */ #define PGMPOOL_TD_IDX_MASK 0x3fff /** The idx value when we're out of of PGMPOOLPHYSEXT entries or/and there are * simply too many mappings of this page. */ #define PGMPOOL_TD_IDX_OVERFLOWED PGMPOOL_TD_IDX_MASK /** @def PGMPOOL_TD_MAKE * Makes a 16-bit tracking data word. * * @returns tracking data. * @param cRefs The @a cRefs field. Must be within bounds! * @param idx The @a idx field. Must also be within bounds! */ #define PGMPOOL_TD_MAKE(cRefs, idx) ( ((cRefs) << PGMPOOL_TD_CREFS_SHIFT) | (idx) ) /** @def PGMPOOL_TD_GET_CREFS * Get the @a cRefs field from a tracking data word. * * @returns The @a cRefs field * @param u16 The tracking data word. * @remarks This will only return 1 or PGMPOOL_TD_CREFS_PHYSEXT for a * non-zero @a u16. */ #define PGMPOOL_TD_GET_CREFS(u16) ( ((u16) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK ) /** @def PGMPOOL_TD_GET_IDX * Get the @a idx field from a tracking data word. * * @returns The @a idx field * @param u16 The tracking data word. */ #define PGMPOOL_TD_GET_IDX(u16) ( ((u16) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK ) /** @} */ /** @name A20 gate macros * @{ */ #define PGM_WITH_A20 #ifdef PGM_WITH_A20 # define PGM_A20_IS_ENABLED(a_pVCpu) ((a_pVCpu)->pgm.s.fA20Enabled) # define PGM_A20_APPLY(a_pVCpu, a_GCPhys) ((a_GCPhys) & (a_pVCpu)->pgm.s.GCPhysA20Mask) # define PGM_A20_APPLY_TO_VAR(a_pVCpu, a_GCPhysVar) \ do { a_GCPhysVar &= (a_pVCpu)->pgm.s.GCPhysA20Mask; } while (0) # define PGM_A20_ASSERT_MASKED(pVCpu, a_GCPhys) Assert(PGM_A20_APPLY(pVCpu, a_GCPhys) == (a_GCPhys)) #else # define PGM_A20_IS_ENABLED(a_pVCpu) (true) # define PGM_A20_APPLY(a_pVCpu, a_GCPhys) (a_GCPhys) # define PGM_A20_APPLY_TO_VAR(a_pVCpu, a_GCPhysVar) do { } while (0) # define PGM_A20_ASSERT_MASKED(pVCpu, a_GCPhys) do { } while (0) #endif /** @} */ /** * Roots and anchors for trees and list employing self relative offsets as * pointers. * * When using self-relative offsets instead of pointers, the offsets needs to be * the same in all offsets. Thus the roots and anchors needs to live on the * hyper heap just like the nodes. */ typedef struct PGMTREES { /** List of physical access handler types (offset pointers) of type * PGMPHYSHANDLERTYPEINT. This is needed for relocations. */ RTLISTOFF32ANCHOR HeadPhysHandlerTypes; /** Physical access handlers (AVL range+offsetptr tree). */ AVLROGCPHYSTREE PhysHandlers; #ifdef VBOX_WITH_RAW_MODE /** Virtual access handlers (AVL range + GC ptr tree). */ AVLROGCPTRTREE VirtHandlers; /** Virtual access handlers (Phys range AVL range + offsetptr tree). * @remarks Handler of the hypervisor kind are of course not present. */ AVLROGCPHYSTREE PhysToVirtHandlers; /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */ AVLROGCPTRTREE HyperVirtHandlers; /** List of virtual access handler types (offset pointers) of type * PGMVIRTHANDLERTYPEINT. This is needed for relocations. */ RTLISTOFF32ANCHOR HeadVirtHandlerTypes; #endif } PGMTREES; /** Pointer to PGM trees. */ typedef PGMTREES *PPGMTREES; /** * Page fault guest state for the AMD64 paging mode. */ typedef struct PGMPTWALKCORE { /** The guest virtual address that is being resolved by the walk * (input). */ RTGCPTR GCPtr; /** The guest physical address that is the result of the walk. * @remarks only valid if fSucceeded is set. */ RTGCPHYS GCPhys; /** Set if the walk succeeded, i.d. GCPhys is valid. */ bool fSucceeded; /** The level problem arrised at. * PTE is level 1, PDE is level 2, PDPE is level 3, PML4 is level 4, CR3 is * level 8. This is 0 on success. */ uint8_t uLevel; /** Set if the page isn't present. */ bool fNotPresent; /** Encountered a bad physical address. */ bool fBadPhysAddr; /** Set if there was reserved bit violations. */ bool fRsvdError; /** Set if it involves a big page (2/4 MB). */ bool fBigPage; /** Set if it involves a gigantic page (1 GB). */ bool fGigantPage; /** The effect X86_PTE_US flag for the address. */ bool fEffectiveUS; /** The effect X86_PTE_RW flag for the address. */ bool fEffectiveRW; /** The effect X86_PTE_NX flag for the address. */ bool fEffectiveNX; } PGMPTWALKCORE; /** * Guest page table walk for the AMD64 mode. */ typedef struct PGMPTWALKGSTAMD64 { /** The common core. */ PGMPTWALKCORE Core; PX86PML4 pPml4; PX86PML4E pPml4e; X86PML4E Pml4e; PX86PDPT pPdpt; PX86PDPE pPdpe; X86PDPE Pdpe; PX86PDPAE pPd; PX86PDEPAE pPde; X86PDEPAE Pde; PX86PTPAE pPt; PX86PTEPAE pPte; X86PTEPAE Pte; } PGMPTWALKGSTAMD64; /** Pointer to a AMD64 guest page table walk. */ typedef PGMPTWALKGSTAMD64 *PPGMPTWALKGSTAMD64; /** Pointer to a const AMD64 guest page table walk. */ typedef PGMPTWALKGSTAMD64 const *PCPGMPTWALKGSTAMD64; /** * Guest page table walk for the PAE mode. */ typedef struct PGMPTWALKGSTPAE { /** The common core. */ PGMPTWALKCORE Core; PX86PDPT pPdpt; PX86PDPE pPdpe; X86PDPE Pdpe; PX86PDPAE pPd; PX86PDEPAE pPde; X86PDEPAE Pde; PX86PTPAE pPt; PX86PTEPAE pPte; X86PTEPAE Pte; } PGMPTWALKGSTPAE; /** Pointer to a PAE guest page table walk. */ typedef PGMPTWALKGSTPAE *PPGMPTWALKGSTPAE; /** Pointer to a const AMD64 guest page table walk. */ typedef PGMPTWALKGSTPAE const *PCPGMPTWALKGSTPAE; /** * Guest page table walk for the 32-bit mode. */ typedef struct PGMPTWALKGST32BIT { /** The common core. */ PGMPTWALKCORE Core; PX86PD pPd; PX86PDE pPde; X86PDE Pde; PX86PT pPt; PX86PTE pPte; X86PTE Pte; } PGMPTWALKGST32BIT; /** Pointer to a 32-bit guest page table walk. */ typedef PGMPTWALKGST32BIT *PPGMPTWALKGST32BIT; /** Pointer to a const 32-bit guest page table walk. */ typedef PGMPTWALKGST32BIT const *PCPGMPTWALKGST32BIT; /** * Which part of PGMPTWALKGST that is valid. */ typedef enum PGMPTWALKGSTTYPE { /** Customary invalid 0 value. */ PGMPTWALKGSTTYPE_INVALID = 0, /** PGMPTWALKGST::u.Amd64 is valid. */ PGMPTWALKGSTTYPE_AMD64, /** PGMPTWALKGST::u.Pae is valid. */ PGMPTWALKGSTTYPE_PAE, /** PGMPTWALKGST::u.Legacy is valid. */ PGMPTWALKGSTTYPE_32BIT, /** Customary 32-bit type hack. */ PGMPTWALKGSTTYPE_32BIT_HACK = 0x7fff0000 } PGMPTWALKGSTTYPE; /** * Combined guest page table walk result. */ typedef struct PGMPTWALKGST { union { /** The page walker core - always valid. */ PGMPTWALKCORE Core; /** The page walker for AMD64. */ PGMPTWALKGSTAMD64 Amd64; /** The page walker for PAE (32-bit). */ PGMPTWALKGSTPAE Pae; /** The page walker for 32-bit paging (called legacy due to C naming * convension). */ PGMPTWALKGST32BIT Legacy; } u; /** Indicates which part of the union is valid. */ PGMPTWALKGSTTYPE enmType; } PGMPTWALKGST; /** Pointer to a combined guest page table walk result. */ typedef PGMPTWALKGST *PPGMPTWALKGST; /** Pointer to a read-only combined guest page table walk result. */ typedef PGMPTWALKGST const *PCPGMPTWALKGST; /** @name Paging mode macros * @{ */ #ifdef IN_RC # define PGM_CTX(a,b) a##RC##b # define PGM_CTX_STR(a,b) a "GC" b # define PGM_CTX_DECL(type) VMMRCDECL(type) #else # ifdef IN_RING3 # define PGM_CTX(a,b) a##R3##b # define PGM_CTX_STR(a,b) a "R3" b # define PGM_CTX_DECL(type) DECLCALLBACK(type) # else # define PGM_CTX(a,b) a##R0##b # define PGM_CTX_STR(a,b) a "R0" b # define PGM_CTX_DECL(type) VMMDECL(type) # endif #endif #define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name) #define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name #define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name #define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name) #define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name #define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name #define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name) #define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name #define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name #define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name) #define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name #define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name #define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name) #define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name #define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name #define PGM_GST_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Gst##name)) #define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name) #define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name) #define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name #define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name #define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name) #define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name #define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name #define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name) #define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name #define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name #define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name) #define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name #define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name #define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name) #define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name #define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name #define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name) #define PGM_SHW_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Shw##name)) /* Shw_Gst */ #define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name) #define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name) #define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name) #define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name) #define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name) #define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name) #define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name) #define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name) #define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name) #define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name) #define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name) #define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name) #define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name) #define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name) #define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name) #define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name) #define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name) #define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name) #define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name) #define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name #define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name #define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name #define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name #define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name #define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name #define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name #define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name #define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name #define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name #define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name #define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name #define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name #define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name #define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name #define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name #define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name #define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name #define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name #define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name #define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name #define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name #define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name #define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name #define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name #define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name #define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name #define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name #define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name #define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name #define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name #define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name #define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name #define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name #define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name #define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name #define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name #define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name) #define PGM_BTH_PFN(name, pVCpu) ((pVCpu)->pgm.s.PGM_CTX(pfn,Bth##name)) /** @} */ /** * Data for each paging mode. */ typedef struct PGMMODEDATA { /** The guest mode type. */ uint32_t uGstType; /** The shadow mode type. */ uint32_t uShwType; /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); /* no pfnR3BthTrap0eHandler */ DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu)); DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)); DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu)); DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); #endif DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu)); /** @} */ } PGMMODEDATA, *PPGMMODEDATA; #ifdef VBOX_WITH_STATISTICS /** * PGM statistics. * * These lives on the heap when compiled in as they would otherwise waste * unnecessary space in release builds. */ typedef struct PGMSTATS { /* R3 only: */ STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */ STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */ /* R3+RZ */ STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */ STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */ STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */ STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */ STAMCOUNTER StatPageMapTlbFlushes; /**< ALL: Ring-3/0 page mapper TLB flushes. */ STAMCOUNTER StatPageMapTlbFlushEntry; /**< ALL: Ring-3/0 page mapper TLB flushes. */ STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */ STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */ STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */ STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */ STAMCOUNTER StatRZRamRangeTlbHits; /**< RC/R0: RAM range TLB hits. */ STAMCOUNTER StatRZRamRangeTlbMisses; /**< RC/R0: RAM range TLB misses. */ STAMCOUNTER StatR3RamRangeTlbHits; /**< R3: RAM range TLB hits. */ STAMCOUNTER StatR3RamRangeTlbMisses; /**< R3: RAM range TLB misses. */ STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */ STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */ STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */ STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */ STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */ STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */ STAMCOUNTER StatR3PhysHandlerLookupHits; /**< R3: Number of cache hits when looking up physical handlers. */ STAMCOUNTER StatR3PhysHandlerLookupMisses; /**< R3: Number of cache misses when looking up physical handlers. */ STAMCOUNTER StatRZPhysHandlerLookupHits; /**< RC/R0: Number of cache hits when lookup up physical handlers. */ STAMCOUNTER StatRZPhysHandlerLookupMisses; /**< RC/R0: Number of cache misses when looking up physical handlers */ STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */ STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */ /// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */ STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */ STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */ /// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */ /* RC only: */ STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */ STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */ STAMCOUNTER StatRZPhysRead; STAMCOUNTER StatRZPhysReadBytes; STAMCOUNTER StatRZPhysWrite; STAMCOUNTER StatRZPhysWriteBytes; STAMCOUNTER StatR3PhysRead; STAMCOUNTER StatR3PhysReadBytes; STAMCOUNTER StatR3PhysWrite; STAMCOUNTER StatR3PhysWriteBytes; STAMCOUNTER StatRCPhysRead; STAMCOUNTER StatRCPhysReadBytes; STAMCOUNTER StatRCPhysWrite; STAMCOUNTER StatRCPhysWriteBytes; STAMCOUNTER StatRZPhysSimpleRead; STAMCOUNTER StatRZPhysSimpleReadBytes; STAMCOUNTER StatRZPhysSimpleWrite; STAMCOUNTER StatRZPhysSimpleWriteBytes; STAMCOUNTER StatR3PhysSimpleRead; STAMCOUNTER StatR3PhysSimpleReadBytes; STAMCOUNTER StatR3PhysSimpleWrite; STAMCOUNTER StatR3PhysSimpleWriteBytes; STAMCOUNTER StatRCPhysSimpleRead; STAMCOUNTER StatRCPhysSimpleReadBytes; STAMCOUNTER StatRCPhysSimpleWrite; STAMCOUNTER StatRCPhysSimpleWriteBytes; STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */ STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */ STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */ STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */ STAMCOUNTER StatTrackNoExtentsLeft; /**< The number of times the extent list was exhausted. */ STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */ STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */ /** Time spent by the host OS for large page allocation. */ STAMPROFILE StatAllocLargePage; /** Time spent clearing the newly allocated large pages. */ STAMPROFILE StatClearLargePage; /** The number of times allocating a large pages takes more than the allowed period. */ STAMCOUNTER StatLargePageOverflow; /** pgmPhysIsValidLargePage profiling - R3 */ STAMPROFILE StatR3IsValidLargePage; /** pgmPhysIsValidLargePage profiling - RZ*/ STAMPROFILE StatRZIsValidLargePage; STAMPROFILE StatChunkAging; STAMPROFILE StatChunkFindCandidate; STAMPROFILE StatChunkUnmap; STAMPROFILE StatChunkMap; } PGMSTATS; #endif /* VBOX_WITH_STATISTICS */ /** * Converts a PGM pointer into a VM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGM instance data. */ #define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) ) /** * PGM Data (part of VM) */ typedef struct PGM { /** Offset to the VM structure. */ int32_t offVM; /** Offset of the PGMCPU structure relative to VMCPU. */ int32_t offVCpuPGM; /** @cfgm{/RamPreAlloc, boolean, false} * Indicates whether the base RAM should all be allocated before starting * the VM (default), or if it should be allocated when first written to. */ bool fRamPreAlloc; /** Indicates whether write monitoring is currently in use. * This is used to prevent conflicts between live saving and page sharing * detection. */ bool fPhysWriteMonitoringEngaged; /** Set if the CPU has less than 52-bit physical address width. * This is used */ bool fLessThan52PhysicalAddressBits; /** Set when nested paging is active. * This is meant to save calls to HMIsNestedPagingActive and let the * compilers optimize the code better. Whether we use nested paging or * not is something we find out during VMM initialization and we won't * change this later on. */ bool fNestedPaging; /** The host paging mode. (This is what SUPLib reports.) */ SUPPAGINGMODE enmHostMode; /** We're not in a state which permits writes to guest memory. * (Only used in strict builds.) */ bool fNoMorePhysWrites; /** @cfgm{/PageFusionAllowed, boolean, false} * Whether page fusion is allowed. */ bool fPageFusionAllowed; /** @cfgm{/PGM/PciPassThrough, boolean, false} * Whether PCI passthrough is enabled. */ bool fPciPassthrough; /** The number of MMIO2 regions (serves as the next MMIO2 ID). */ uint8_t cMmio2Regions; /** Restore original ROM page content when resetting after loading state. * The flag is set by pgmR3LoadRomRanges and cleared at reset. This * enables the VM to start using an updated ROM without requiring powering * down the VM, just rebooting or resetting it. */ bool fRestoreRomPagesOnReset; /** Whether to automatically clear all RAM pages on reset. */ bool fZeroRamPagesOnReset; /** Alignment padding. */ bool afAlignment3[7]; /** Indicates that PGMR3FinalizeMappings has been called and that further * PGMR3MapIntermediate calls will be rejected. */ bool fFinalizedMappings; /** If set no conflict checks are required. */ bool fMappingsFixed; /** If set if restored as fixed but we were unable to re-fixate at the old * location because of room or address incompatibilities. */ bool fMappingsFixedRestored; /** Size of fixed mapping. * This is valid if either fMappingsFixed or fMappingsFixedRestored is set. */ uint32_t cbMappingFixed; /** Generation ID for the RAM ranges. This member is incremented everytime * a RAM range is linked or unlinked. */ uint32_t volatile idRamRangesGen; /** Base address (GC) of fixed mapping. * This is valid if either fMappingsFixed or fMappingsFixedRestored is set. */ RTGCPTR GCPtrMappingFixed; /** The address of the previous RAM range mapping. */ RTGCPTR GCPtrPrevRamRangeMapping; /** Physical access handler type for ROM protection. */ PGMPHYSHANDLERTYPE hRomPhysHandlerType; /** Alignment padding. */ uint32_t u32Padding; /** 4 MB page mask; 32 or 36 bits depending on PSE-36 (identical for all VCPUs) */ RTGCPHYS GCPhys4MBPSEMask; /** Mask containing the invalid bits of a guest physical address. * @remarks this does not stop at bit 52. */ RTGCPHYS GCPhysInvAddrMask; /** RAM range TLB for R3. */ R3PTRTYPE(PPGMRAMRANGE) apRamRangesTlbR3[PGM_RAMRANGE_TLB_ENTRIES]; /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3. * This is sorted by physical address and contains no overlapping ranges. */ R3PTRTYPE(PPGMRAMRANGE) pRamRangesXR3; /** Root of the RAM range search tree for ring-3. */ R3PTRTYPE(PPGMRAMRANGE) pRamRangeTreeR3; /** PGM offset based trees - R3 Ptr. */ R3PTRTYPE(PPGMTREES) pTreesR3; /** Caching the last physical handler we looked up in R3. */ R3PTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerR3; /** Shadow Page Pool - R3 Ptr. */ R3PTRTYPE(PPGMPOOL) pPoolR3; /** Linked list of GC mappings - for HC. * The list is sorted ascending on address. */ R3PTRTYPE(PPGMMAPPING) pMappingsR3; /** Pointer to the list of ROM ranges - for R3. * This is sorted by physical address and contains no overlapping ranges. */ R3PTRTYPE(PPGMROMRANGE) pRomRangesR3; /** Pointer to the list of MMIO2 ranges - for R3. * Registration order. */ R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3; /** Pointer to SHW+GST mode data (function pointers). * The index into this table is made up from */ R3PTRTYPE(PPGMMODEDATA) paModeData; RTR3PTR R3PtrAlignment0; /** MMIO2 lookup array for ring-3. Indexed by idMmio2 minus 1. */ R3PTRTYPE(PPGMMMIO2RANGE) apMmio2RangesR3[PGM_MMIO2_MAX_RANGES]; /** RAM range TLB for R0. */ R0PTRTYPE(PPGMRAMRANGE) apRamRangesTlbR0[PGM_RAMRANGE_TLB_ENTRIES]; /** R0 pointer corresponding to PGM::pRamRangesXR3. */ R0PTRTYPE(PPGMRAMRANGE) pRamRangesXR0; /** Root of the RAM range search tree for ring-0. */ R0PTRTYPE(PPGMRAMRANGE) pRamRangeTreeR0; /** PGM offset based trees - R0 Ptr. */ R0PTRTYPE(PPGMTREES) pTreesR0; /** Caching the last physical handler we looked up in R0. */ R0PTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerR0; /** Shadow Page Pool - R0 Ptr. */ R0PTRTYPE(PPGMPOOL) pPoolR0; /** Linked list of GC mappings - for R0. * The list is sorted ascending on address. */ R0PTRTYPE(PPGMMAPPING) pMappingsR0; /** R0 pointer corresponding to PGM::pRomRangesR3. */ R0PTRTYPE(PPGMROMRANGE) pRomRangesR0; RTR0PTR R0PtrAlignment0; /** MMIO2 lookup array for ring-3. Indexed by idMmio2 minus 1. */ R0PTRTYPE(PPGMMMIO2RANGE) apMmio2RangesR0[PGM_MMIO2_MAX_RANGES]; /** RAM range TLB for RC. */ RCPTRTYPE(PPGMRAMRANGE) apRamRangesTlbRC[PGM_RAMRANGE_TLB_ENTRIES]; /** RC pointer corresponding to PGM::pRamRangesXR3. */ RCPTRTYPE(PPGMRAMRANGE) pRamRangesXRC; /** Root of the RAM range search tree for raw-mode context. */ RCPTRTYPE(PPGMRAMRANGE) pRamRangeTreeRC; /** PGM offset based trees - RC Ptr. */ RCPTRTYPE(PPGMTREES) pTreesRC; /** Caching the last physical handler we looked up in RC. */ RCPTRTYPE(PPGMPHYSHANDLER) pLastPhysHandlerRC; /** Shadow Page Pool - RC Ptr. */ RCPTRTYPE(PPGMPOOL) pPoolRC; /** Linked list of GC mappings - for RC. * The list is sorted ascending on address. */ RCPTRTYPE(PPGMMAPPING) pMappingsRC; /** RC pointer corresponding to PGM::pRomRangesR3. */ RCPTRTYPE(PPGMROMRANGE) pRomRangesRC; RTRCPTR RCPtrAlignment0; /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC; /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ RCPTRTYPE(PPGMSHWPTEPAE) paDynPageMapPaePTEsGC; /** Pointer to the 5 page CR3 content mapping. * The first page is always the CR3 (in some form) while the 4 other pages * are used of the PDs in PAE mode. */ RTGCPTR GCPtrCR3Mapping; /** @name Intermediate Context * @{ */ /** Pointer to the intermediate page directory - Normal. */ R3PTRTYPE(PX86PD) pInterPD; /** Pointer to the intermediate page tables - Normal. * There are two page tables, one for the identity mapping and one for * the host context mapping (of the core code). */ R3PTRTYPE(PX86PT) apInterPTs[2]; /** Pointer to the intermediate page tables - PAE. */ R3PTRTYPE(PX86PTPAE) apInterPaePTs[2]; /** Pointer to the intermediate page directory - PAE. */ R3PTRTYPE(PX86PDPAE) apInterPaePDs[4]; /** Pointer to the intermediate page directory - PAE. */ R3PTRTYPE(PX86PDPT) pInterPaePDPT; /** Pointer to the intermediate page-map level 4 - AMD64. */ R3PTRTYPE(PX86PML4) pInterPaePML4; /** Pointer to the intermediate page directory - AMD64. */ R3PTRTYPE(PX86PDPT) pInterPaePDPT64; /** The Physical Address (HC) of the intermediate Page Directory - Normal. */ RTHCPHYS HCPhysInterPD; /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */ RTHCPHYS HCPhysInterPaePDPT; /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */ RTHCPHYS HCPhysInterPaePML4; /** @} */ /** Base address of the dynamic page mapping area. * The array is MM_HYPER_DYNAMIC_SIZE bytes big. * * @todo The plan of keeping PGMRCDYNMAP private to PGMRZDynMap.cpp didn't * work out. Some cleaning up of the initialization that would * remove this memory is yet to be done... */ RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC; /** The address of the raw-mode context mapping cache. */ RCPTRTYPE(PPGMRCDYNMAP) pRCDynMap; /** The address of the ring-0 mapping cache if we're making use of it. */ RTR0PTR pvR0DynMapUsed; /** Hack: Number of deprecated page mapping locks taken by the current lock * owner via pgmPhysGCPhys2CCPtrInternalDepr. */ uint32_t cDeprecatedPageLocks; #if HC_ARCH_BITS == 64 /** Alignment padding. */ uint32_t u32Alignment2; #endif /** PGM critical section. * This protects the physical & virtual access handlers, ram ranges, * and the page flag updating (some of it anyway). */ PDMCRITSECT CritSectX; /** * Data associated with managing the ring-3 mappings of the allocation chunks. */ struct { /** The chunk tree, ordered by chunk id. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(PAVLU32NODECORE) pTree; #else R3R0PTRTYPE(PAVLU32NODECORE) pTree; #endif #if HC_ARCH_BITS == 32 uint32_t u32Alignment0; #endif /** The chunk mapping TLB. */ PGMCHUNKR3MAPTLB Tlb; /** The number of mapped chunks. */ uint32_t c; /** @cfgm{/PGM/MaxRing3Chunks, uint32_t, host dependent} * The maximum number of mapped chunks. On 64-bit this is unlimited by default, * on 32-bit it defaults to 1 or 3 GB depending on the host. */ uint32_t cMax; /** The current time. This is incremented whenever a chunk is inserted. */ uint32_t iNow; /** Alignment padding. */ uint32_t u32Alignment1; } ChunkR3Map; /** * The page mapping TLB for ring-3 and (for the time being) ring-0. */ PGMPAGER3MAPTLB PhysTlbHC; /** @name The zero page. * @{ */ /** The host physical address of the zero page. */ RTHCPHYS HCPhysZeroPg; /** The ring-3 mapping of the zero page. */ RTR3PTR pvZeroPgR3; /** The ring-0 mapping of the zero page. */ RTR0PTR pvZeroPgR0; /** The GC mapping of the zero page. */ RTRCPTR pvZeroPgRC; RTRCPTR RCPtrAlignment3; /** @}*/ /** @name The Invalid MMIO page. * This page is filled with 0xfeedface. * @{ */ /** The host physical address of the invalid MMIO page. */ RTHCPHYS HCPhysMmioPg; /** The host pysical address of the invalid MMIO page plus all invalid * physical address bits set. This is used to trigger X86_TRAP_PF_RSVD. * @remarks Check fLessThan52PhysicalAddressBits before use. */ RTHCPHYS HCPhysInvMmioPg; /** The ring-3 mapping of the invalid MMIO page. */ RTR3PTR pvMmioPgR3; #if HC_ARCH_BITS == 32 RTR3PTR R3PtrAlignment4; #endif /** @} */ /** The number of handy pages. */ uint32_t cHandyPages; /** The number of large handy pages. */ uint32_t cLargeHandyPages; /** * Array of handy pages. * * This array is used in a two way communication between pgmPhysAllocPage * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as * an intermediary. * * The size of this array is important, see pgmPhysEnsureHandyPage for details. * (The current size of 32 pages, means 128 KB of handy memory.) */ GMMPAGEDESC aHandyPages[PGM_HANDY_PAGES]; /** * Array of large handy pages. (currently size 1) * * This array is used in a two way communication between pgmPhysAllocLargePage * and GMMR0AllocateLargePage, with PGMR3PhysAllocateLargePage serving as * an intermediary. */ GMMPAGEDESC aLargeHandyPage[1]; /** * Live save data. */ struct { /** Per type statistics. */ struct { /** The number of ready pages. */ uint32_t cReadyPages; /** The number of dirty pages. */ uint32_t cDirtyPages; /** The number of ready zero pages. */ uint32_t cZeroPages; /** The number of write monitored pages. */ uint32_t cMonitoredPages; } Rom, Mmio2, Ram; /** The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM). */ uint32_t cIgnoredPages; /** Indicates that a live save operation is active. */ bool fActive; /** Padding. */ bool afReserved[2]; /** The next history index. */ uint8_t iDirtyPagesHistory; /** History of the total amount of dirty pages. */ uint32_t acDirtyPagesHistory[64]; /** Short term dirty page average. */ uint32_t cDirtyPagesShort; /** Long term dirty page average. */ uint32_t cDirtyPagesLong; /** The number of saved pages. This is used to get some kind of estimate of the * link speed so we can decide when we're done. It is reset after the first * 7 passes so the speed estimate doesn't get inflated by the initial set of * zero pages. */ uint64_t cSavedPages; /** The nanosecond timestamp when cSavedPages was 0. */ uint64_t uSaveStartNS; /** Pages per second (for statistics). */ uint32_t cPagesPerSecond; uint32_t cAlignment; } LiveSave; /** @name Error injection. * @{ */ /** Inject handy page allocation errors pretending we're completely out of * memory. */ bool volatile fErrInjHandyPages; /** Padding. */ bool afReserved[3]; /** @} */ /** @name Release Statistics * @{ */ uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero + Pure MMIO.) */ uint32_t cPrivatePages; /**< The number of private pages. */ uint32_t cSharedPages; /**< The number of shared pages. */ uint32_t cReusedSharedPages; /**< The number of reused shared pages. */ uint32_t cZeroPages; /**< The number of zero backed pages. */ uint32_t cPureMmioPages; /**< The number of pure MMIO pages. */ uint32_t cMonitoredPages; /**< The number of write monitored pages. */ uint32_t cWrittenToPages; /**< The number of previously write monitored pages. */ uint32_t cWriteLockedPages; /**< The number of write locked pages. */ uint32_t cReadLockedPages; /**< The number of read locked pages. */ uint32_t cBalloonedPages; /**< The number of ballooned pages. */ uint32_t cMappedChunks; /**< Number of times we mapped a chunk. */ uint32_t cUnmappedChunks; /**< Number of times we unmapped a chunk. */ uint32_t cLargePages; /**< The number of large pages. */ uint32_t cLargePagesDisabled; /**< The number of disabled large pages. */ /* uint32_t aAlignment4[1]; */ /** The number of times we were forced to change the hypervisor region location. */ STAMCOUNTER cRelocations; STAMCOUNTER StatLargePageReused; /**< The number of large pages we've reused.*/ STAMCOUNTER StatLargePageRefused; /**< The number of times we couldn't use a large page.*/ STAMCOUNTER StatLargePageRecheck; /**< The number of times we rechecked a disabled large page.*/ STAMPROFILE StatShModCheck; /**< Profiles shared module checks. */ /** @} */ #ifdef VBOX_WITH_STATISTICS /** @name Statistics on the heap. * @{ */ R3PTRTYPE(PGMSTATS *) pStatsR3; R0PTRTYPE(PGMSTATS *) pStatsR0; RCPTRTYPE(PGMSTATS *) pStatsRC; RTRCPTR RCPtrAlignment; /** @} */ #endif } PGM; #ifndef IN_TSTVMSTRUCTGC /* HACK */ AssertCompileMemberAlignment(PGM, paDynPageMap32BitPTEsGC, 8); AssertCompileMemberAlignment(PGM, GCPtrMappingFixed, sizeof(RTGCPTR)); AssertCompileMemberAlignment(PGM, HCPhysInterPD, 8); AssertCompileMemberAlignment(PGM, CritSectX, 8); AssertCompileMemberAlignment(PGM, ChunkR3Map, 8); AssertCompileMemberAlignment(PGM, PhysTlbHC, 8); AssertCompileMemberAlignment(PGM, HCPhysZeroPg, 8); AssertCompileMemberAlignment(PGM, aHandyPages, 8); AssertCompileMemberAlignment(PGM, cRelocations, 8); #endif /* !IN_TSTVMSTRUCTGC */ /** Pointer to the PGM instance data. */ typedef PGM *PPGM; typedef struct PGMCPUSTATS { /* Common */ STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */ STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */ /* R0 only: */ STAMPROFILE StatR0NpMiscfg; /**< R0: PGMR0Trap0eHandlerNPMisconfig() profiling. */ STAMCOUNTER StatR0NpMiscfgSyncPage; /**< R0: SyncPage calls from PGMR0Trap0eHandlerNPMisconfig(). */ /* RZ only: */ STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */ STAMPROFILE StatRZTrap0eTime2Ballooned; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is read access to a ballooned page. */ STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */ STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */ STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */ STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */ STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */ STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */ STAMPROFILE StatRZTrap0eTime2InvalidPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address. */ STAMPROFILE StatRZTrap0eTime2MakeWritable; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a page that needed to be made writable. */ STAMPROFILE StatRZTrap0eTime2Mapping; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is the guest mappings. */ STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */ STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */ STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */ STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */ STAMPROFILE StatRZTrap0eTime2WPEmulation; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CR0.WP emulation. */ STAMPROFILE StatRZTrap0eTime2Wp0RoUsHack; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled. */ STAMPROFILE StatRZTrap0eTime2Wp0RoUsUnhack; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled. */ STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */ STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */ STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */ STAMCOUNTER StatRZTrap0eHandlersPhysAll; /**< RC/R0: Number of traps due to physical all-access handlers. */ STAMCOUNTER StatRZTrap0eHandlersPhysAllOpt; /**< RC/R0: Number of the physical all-access handler traps using the optimization. */ STAMCOUNTER StatRZTrap0eHandlersPhysWrite; /**< RC/R0: Number of traps due to write-physical access handlers. */ STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */ STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */ STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */ STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */ STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */ STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: \#PF err kind */ STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest \#PFs. */ STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest \#PF to HMA or other mapping. */ STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */ STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */ STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the \#PFs. */ STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */ STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */ STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */ STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */ STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */ STAMCOUNTER StatRZDynMapMigrateInvlPg; /**< RZ: invlpg in PGMR0DynMapMigrateAutoSet. */ STAMPROFILE StatRZDynMapGCPageInl; /**< RZ: Calls to pgmRZDynMapGCPageInlined. */ STAMCOUNTER StatRZDynMapGCPageInlHits; /**< RZ: Hash table lookup hits. */ STAMCOUNTER StatRZDynMapGCPageInlMisses; /**< RZ: Misses that falls back to the code common. */ STAMCOUNTER StatRZDynMapGCPageInlRamHits; /**< RZ: 1st ram range hits. */ STAMCOUNTER StatRZDynMapGCPageInlRamMisses; /**< RZ: 1st ram range misses, takes slow path. */ STAMPROFILE StatRZDynMapHCPageInl; /**< RZ: Calls to pgmRZDynMapHCPageInlined. */ STAMCOUNTER StatRZDynMapHCPageInlHits; /**< RZ: Hash table lookup hits. */ STAMCOUNTER StatRZDynMapHCPageInlMisses; /**< RZ: Misses that falls back to the code common. */ STAMPROFILE StatRZDynMapHCPage; /**< RZ: Calls to pgmRZDynMapHCPageCommon. */ STAMCOUNTER StatRZDynMapSetOptimize; /**< RZ: Calls to pgmRZDynMapOptimizeAutoSet. */ STAMCOUNTER StatRZDynMapSetSearchFlushes; /**< RZ: Set search restoring to subset flushes. */ STAMCOUNTER StatRZDynMapSetSearchHits; /**< RZ: Set search hits. */ STAMCOUNTER StatRZDynMapSetSearchMisses; /**< RZ: Set search misses. */ STAMCOUNTER StatRZDynMapPage; /**< RZ: Calls to pgmR0DynMapPage. */ STAMCOUNTER StatRZDynMapPageHits0; /**< RZ: Hits at iPage+0. */ STAMCOUNTER StatRZDynMapPageHits1; /**< RZ: Hits at iPage+1. */ STAMCOUNTER StatRZDynMapPageHits2; /**< RZ: Hits at iPage+2. */ STAMCOUNTER StatRZDynMapPageInvlPg; /**< RZ: invlpg. */ STAMCOUNTER StatRZDynMapPageSlow; /**< RZ: Calls to pgmR0DynMapPageSlow. */ STAMCOUNTER StatRZDynMapPageSlowLoopHits; /**< RZ: Hits in the pgmR0DynMapPageSlow search loop. */ STAMCOUNTER StatRZDynMapPageSlowLoopMisses; /**< RZ: Misses in the pgmR0DynMapPageSlow search loop. */ //STAMCOUNTER StatRZDynMapPageSlowLostHits; /**< RZ: Lost hits. */ STAMCOUNTER StatRZDynMapSubsets; /**< RZ: Times PGMDynMapPushAutoSubset was called. */ STAMCOUNTER StatRZDynMapPopFlushes; /**< RZ: Times PGMDynMapPopAutoSubset flushes the subset. */ STAMCOUNTER aStatRZDynMapSetFilledPct[11]; /**< RZ: Set fill distribution, percent. */ /* HC - R3 and (maybe) R0: */ /* RZ & R3: */ STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */ STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */ STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */ STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */ STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */ STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */ STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */ STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */ STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */ STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */ STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */ STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault(). */ STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */ STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatRZDirtyPageStale; /**< RC/R0: The number of traps generated for dirty bit tracking. (stale tlb entries) */ STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */ STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */ STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */ STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */ STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in \#PF or VerifyAccessSyncPage. */ STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in \#PF or VerifyAccessSyncPage. */ STAMCOUNTER StatRZPageOutOfSyncUserWrite; /**< RC/R0: The number of times user page is out of sync was detected in \#PF. */ STAMCOUNTER StatRZPageOutOfSyncSupervisorWrite; /**< RC/R0: The number of times supervisor page is out of sync was detected in in \#PF. */ STAMCOUNTER StatRZPageOutOfSyncBallloon; /**< RC/R0: The number of times a ballooned page was accessed (read). */ STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */ STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */ STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */ STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */ STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */ STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */ STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */ STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */ STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */ STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */ STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */ STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */ STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */ STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */ STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */ STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */ STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */ STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */ STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */ STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */ STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */ STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */ STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */ STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */ STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in \#PF or VerifyAccessSyncPage. */ STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in \#PF or VerifyAccessSyncPage. */ STAMCOUNTER StatR3PageOutOfSyncUserWrite; /**< R3: The number of times user page is out of sync was detected in \#PF. */ STAMCOUNTER StatR3PageOutOfSyncSupervisorWrite; /**< R3: The number of times supervisor page is out of sync was detected in in \#PF. */ STAMCOUNTER StatR3PageOutOfSyncBallloon; /**< R3: The number of times a ballooned page was accessed (read). */ STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */ STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */ STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */ STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */ STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */ STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */ STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */ /** @} */ } PGMCPUSTATS; /** * Converts a PGMCPU pointer into a VM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGMCPU instance data. */ #define PGMCPU2VM(pPGM) ( (PVM)((char*)(pPGM) - (pPGM)->offVM) ) /** * Converts a PGMCPU pointer into a PGM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGMCpu Pointer to PGMCPU instance data. */ #define PGMCPU2PGM(pPGMCpu) ( (PPGM)((char *)(pPGMCpu) - (pPGMCpu)->offPGM) ) /** * PGMCPU Data (part of VMCPU). */ typedef struct PGMCPU { /** Offset to the VM structure. */ int32_t offVM; /** Offset to the VMCPU structure. */ int32_t offVCpu; /** Offset of the PGM structure relative to VMCPU. */ int32_t offPGM; uint32_t uPadding0; /**< structure size alignment. */ #if defined(VBOX_WITH_2X_4GB_ADDR_SPACE) || defined(VBOX_WITH_RAW_MODE) /** Automatically tracked physical memory mapping set. * Ring-0 and strict raw-mode builds. */ PGMMAPSET AutoSet; #endif /** A20 gate mask. * Our current approach to A20 emulation is to let REM do it and don't bother * anywhere else. The interesting Guests will be operating with it enabled anyway. * But whould need arrise, we'll subject physical addresses to this mask. */ RTGCPHYS GCPhysA20Mask; /** A20 gate state - boolean! */ bool fA20Enabled; /** Mirror of the EFER.NXE bit. Managed by PGMNotifyNxeChanged. */ bool fNoExecuteEnabled; /** Unused bits. */ bool afUnused[2]; /** What needs syncing (PGM_SYNC_*). * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage, * PGMFlushTLB, and PGMR3Load. */ uint32_t fSyncFlags; /** The shadow paging mode. */ PGMMODE enmShadowMode; /** The guest paging mode. */ PGMMODE enmGuestMode; /** The current physical address representing in the guest CR3 register. */ RTGCPHYS GCPhysCR3; /** @name 32-bit Guest Paging. * @{ */ /** The guest's page directory, R3 pointer. */ R3PTRTYPE(PX86PD) pGst32BitPdR3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory, R0 pointer. */ R0PTRTYPE(PX86PD) pGst32BitPdR0; #endif /** The guest's page directory, static RC mapping. */ RCPTRTYPE(PX86PD) pGst32BitPdRC; /** Mask containing the MBZ bits of a big page PDE. */ uint32_t fGst32BitMbzBigPdeMask; /** Set if the page size extension (PSE) is enabled. */ bool fGst32BitPageSizeExtension; /** Alignment padding. */ bool afAlignment2[3]; /** @} */ /** @name PAE Guest Paging. * @{ */ /** The guest's page directory pointer table, static RC mapping. */ RCPTRTYPE(PX86PDPT) pGstPaePdptRC; /** The guest's page directory pointer table, R3 pointer. */ R3PTRTYPE(PX86PDPT) pGstPaePdptR3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory pointer table, R0 pointer. */ R0PTRTYPE(PX86PDPT) pGstPaePdptR0; #endif /** The guest's page directories, R3 pointers. * These are individual pointers and don't have to be adjacent. * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */ R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4]; /** The guest's page directories, R0 pointers. * Same restrictions as apGstPaePDsR3. */ #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4]; #endif /** The guest's page directories, static GC mapping. * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD. * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */ RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4]; /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. * @todo Remove this and use aGstPaePdpeRegs instead? */ RTGCPHYS aGCPhysGstPaePDs[4]; /** The values of the 4 PDPE CPU registers (PAE). */ X86PDPE aGstPaePdpeRegs[4]; /** The physical addresses of the monitored guest page directories (PAE). */ RTGCPHYS aGCPhysGstPaePDsMonitored[4]; /** Mask containing the MBZ PTE bits. */ uint64_t fGstPaeMbzPteMask; /** Mask containing the MBZ PDE bits. */ uint64_t fGstPaeMbzPdeMask; /** Mask containing the MBZ big page PDE bits. */ uint64_t fGstPaeMbzBigPdeMask; /** Mask containing the MBZ PDPE bits. */ uint64_t fGstPaeMbzPdpeMask; /** @} */ /** @name AMD64 Guest Paging. * @{ */ /** The guest's page directory pointer table, R3 pointer. */ R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE /** The guest's page directory pointer table, R0 pointer. */ R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0; #else RTR0PTR alignment6b; /**< alignment equalizer. */ #endif /** Mask containing the MBZ PTE bits. */ uint64_t fGstAmd64MbzPteMask; /** Mask containing the MBZ PDE bits. */ uint64_t fGstAmd64MbzPdeMask; /** Mask containing the MBZ big page PDE bits. */ uint64_t fGstAmd64MbzBigPdeMask; /** Mask containing the MBZ PDPE bits. */ uint64_t fGstAmd64MbzPdpeMask; /** Mask containing the MBZ big page PDPE bits. */ uint64_t fGstAmd64MbzBigPdpeMask; /** Mask containing the MBZ PML4E bits. */ uint64_t fGstAmd64MbzPml4eMask; /** Mask containing the PDPE bits that we shadow. */ uint64_t fGstAmd64ShadowedPdpeMask; /** Mask containing the PML4E bits that we shadow. */ uint64_t fGstAmd64ShadowedPml4eMask; /** @} */ /** @name PAE and AMD64 Guest Paging. * @{ */ /** Mask containing the PTE bits that we shadow. */ uint64_t fGst64ShadowedPteMask; /** Mask containing the PDE bits that we shadow. */ uint64_t fGst64ShadowedPdeMask; /** Mask containing the big page PDE bits that we shadow in the PDE. */ uint64_t fGst64ShadowedBigPdeMask; /** Mask containing the big page PDE bits that we shadow in the PTE. */ uint64_t fGst64ShadowedBigPde4PteMask; /** @} */ /** Pointer to the page of the current active CR3 - R3 Ptr. */ R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3; /** Pointer to the page of the current active CR3 - R0 Ptr. */ R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0; /** Pointer to the page of the current active CR3 - RC Ptr. */ RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC; # if HC_ARCH_BITS == 64 RTRCPTR alignment6; /**< structure size alignment. */ # endif /** @} */ /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVMCPU pVCpu)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); #if HC_ARCH_BITS == 64 RTRCPTR alignment3; /**< structure size alignment. */ #endif DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDEPAE pPde)); /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVMCPU pVCpu, RTGCPTR offDelta)); /* no pfnR3BthTrap0eHandler */ DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVMCPU pVCpu)); DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVMCPU pVCpu)); DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken)); DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)); DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage)); DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb)); DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVMCPU pVCpu, RTGCPHYS GCPhysCR3)); DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVMCPU pVCpu)); #if 0 RTRCPTR alignment2; /**< structure size alignment. */ #endif /** @} */ /** For saving stack space, the disassembler state is allocated here instead of * on the stack. */ DISCPUSTATE DisState; /** Counts the number of times the netware WP0+RO+US hack has been applied. */ uint64_t cNetwareWp0Hacks; /** Count the number of pgm pool access handler calls. */ uint64_t cPoolAccessHandler; /** @name Release Statistics * @{ */ /** The number of times the guest has switched mode since last reset or statistics reset. */ STAMCOUNTER cGuestModeChanges; /** The number of times the guest has switched mode since last reset or statistics reset. */ STAMCOUNTER cA20Changes; /** @} */ #ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */ /** @name Statistics * @{ */ /** RC: Pointer to the statistics. */ RCPTRTYPE(PGMCPUSTATS *) pStatsRC; /** RC: Which statistic this \#PF should be attributed to. */ RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC; /** R0: Pointer to the statistics. */ R0PTRTYPE(PGMCPUSTATS *) pStatsR0; /** R0: Which statistic this \#PF should be attributed to. */ R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0; /** R3: Pointer to the statistics. */ R3PTRTYPE(PGMCPUSTATS *) pStatsR3; /** Alignment padding. */ RTR3PTR pPaddingR3; /** @} */ #endif /* VBOX_WITH_STATISTICS */ } PGMCPU; /** Pointer to the per-cpu PGM data. */ typedef PGMCPU *PPGMCPU; /** @name PGM::fSyncFlags Flags * @{ */ /** Updates the virtual access handler state bit in PGMPAGE. */ #define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0) /** Always sync CR3. */ #define PGM_SYNC_ALWAYS RT_BIT(1) /** Check monitoring on next CR3 (re)load and invalidate page. * @todo This is obsolete now. Remove after 2.2.0 is branched off. */ #define PGM_SYNC_MONITOR_CR3 RT_BIT(2) /** Check guest mapping in SyncCR3. */ #define PGM_SYNC_MAP_CR3 RT_BIT(3) /** Clear the page pool (a light weight flush). */ #define PGM_SYNC_CLEAR_PGM_POOL_BIT 8 #define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(PGM_SYNC_CLEAR_PGM_POOL_BIT) /** @} */ RT_C_DECLS_BEGIN #if defined(VBOX_STRICT) && defined(IN_RING3) int pgmLockDebug(PVM pVM, RT_SRC_POS_DECL); # define pgmLock(a_pVM) pgmLockDebug(a_pVM, RT_SRC_POS) #else int pgmLock(PVM pVM); #endif void pgmUnlock(PVM pVM); /** * Asserts that the caller owns the PDM lock. * This is the internal variant of PGMIsLockOwner. * @param a_pVM Pointer to the VM. */ #define PGM_LOCK_ASSERT_OWNER(a_pVM) Assert(PDMCritSectIsOwner(&(a_pVM)->pgm.s.CritSectX)) /** * Asserts that the caller owns the PDM lock. * This is the internal variant of PGMIsLockOwner. * @param a_pVM Pointer to the VM. * @param a_pVCpu The current CPU handle. */ #define PGM_LOCK_ASSERT_OWNER_EX(a_pVM, a_pVCpu) Assert(PDMCritSectIsOwnerEx(&(a_pVM)->pgm.s.CritSectX, pVCpu)) #ifndef PGM_WITHOUT_MAPPINGS int pgmR3MappingsFixInternal(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb); int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping); int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping); int pgmMapResolveConflicts(PVM pVM); #endif /* !PGM_WITHOUT_MAPPINGS */ PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr); DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); void pgmR3HandlerPhysicalUpdateAll(PVM pVM); bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys); void pgmHandlerPhysicalResetAliasedPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhysPage, bool fDoAccounting); #ifdef VBOX_WITH_RAW_MODE PPGMVIRTHANDLER pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, unsigned *piPage); DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser); # if defined(VBOX_STRICT) || defined(LOG_ENABLED) void pgmHandlerVirtualDumpPhysPages(PVM pVM); # else # define pgmHandlerVirtualDumpPhysPages(a) do { } while (0) # endif #endif /* VBOX_WITH_RAW_MODE */ DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); int pgmR3InitSavedState(PVM pVM, uint64_t cbRam); int pgmPhysAllocPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysAllocLargePage(PVM pVM, RTGCPHYS GCPhys); int pgmPhysRecheckLargePage(PVM pVM, RTGCPHYS GCPhys, PPGMPAGE pLargePage); int pgmPhysPageLoadIntoTlb(PVM pVM, RTGCPHYS GCPhys); int pgmPhysPageLoadIntoTlbWithPage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); void pgmPhysPageMakeWriteMonitoredWritable(PVM pVM, PPGMPAGE pPage); int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys); int pgmPhysPageMakeWritableAndMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv); int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv); int pgmPhysPageMapReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void const **ppv); int pgmPhysPageMapByPageID(PVM pVM, uint32_t idPage, RTHCPHYS HCPhys, void **ppv); int pgmPhysGCPhys2R3Ptr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr); int pgmPhysCr3ToHCPtr(PVM pVM, RTGCPHYS GCPhys, PRTR3PTR pR3Ptr); int pgmPhysGCPhys2CCPtrInternalDepr(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv); int pgmPhysGCPhys2CCPtrInternal(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock); int pgmPhysGCPhys2CCPtrInternalReadOnly(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, const void **ppv, PPGMPAGEMAPLOCK pLock); void pgmPhysReleaseInternalPageMappingLock(PVM pVM, PPGMPAGEMAPLOCK pLock); PGM_ALL_CB2_DECL(FNPGMPHYSHANDLER) pgmPhysRomWriteHandler; #ifndef IN_RING3 DECLEXPORT(FNPGMPHYSHANDLER) pgmPhysHandlerRedirectToHC; DECLEXPORT(FNPGMRZPHYSPFHANDLER) pgmPhysPfHandlerRedirectToHC; DECLEXPORT(FNPGMRZPHYSPFHANDLER) pgmPhysRomWritePfHandler; #endif int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys); void pgmPhysInvalidRamRangeTlbs(PVM pVM); void pgmPhysInvalidatePageMapTLB(PVM pVM); void pgmPhysInvalidatePageMapTLBEntry(PVM pVM, RTGCPHYS GCPhys); PPGMRAMRANGE pgmPhysGetRangeSlow(PVM pVM, RTGCPHYS GCPhys); PPGMRAMRANGE pgmPhysGetRangeAtOrAboveSlow(PVM pVM, RTGCPHYS GCPhys); PPGMPAGE pgmPhysGetPageSlow(PVM pVM, RTGCPHYS GCPhys); int pgmPhysGetPageExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage); int pgmPhysGetPageAndRangeExSlow(PVM pVM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam); #ifdef IN_RING3 void pgmR3PhysRelinkRamRanges(PVM pVM); int pgmR3PhysRamPreAllocate(PVM pVM); int pgmR3PhysRamReset(PVM pVM); int pgmR3PhysRomReset(PVM pVM); int pgmR3PhysRamZeroAll(PVM pVM); int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk); int pgmR3PhysRamTerm(PVM pVM); void pgmR3PhysRomTerm(PVM pVM); void pgmR3PhysAssertSharedPageChecksums(PVM pVM); int pgmR3PoolInit(PVM pVM); void pgmR3PoolRelocate(PVM pVM); void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu); void pgmR3PoolReset(PVM pVM); void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb); DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl); void pgmR3PoolWriteProtectPages(PVM pVM); #endif /* IN_RING3 */ #if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL); int pgmRZDynMapGCPageCommon(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL); # ifdef LOG_ENABLED void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL); # else void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint); # endif #endif int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled, uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage); void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable); void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable); int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush = true /* DO NOT USE false UNLESS YOU KNOWN WHAT YOU'RE DOING!! */); void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys); PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys); PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys); int pgmPoolSyncCR3(PVMCPU pVCpu); bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys); void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT); int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs); void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte); uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte); void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage, uint16_t iPte); int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage); PGM_ALL_CB2_DECL(FNPGMPHYSHANDLER) pgmPoolAccessHandler; #ifndef IN_RING3 DECLEXPORT(FNPGMRZPHYSPFHANDLER) pgmPoolAccessPfHandler; #endif void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolResetDirtyPages(PVM pVM); void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage); int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu); int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu); void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu); void pgmMapSetShadowPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE); void pgmMapClearShadowPDEs(PVM pVM, PPGMPOOLPAGE pShwPageCR3, PPGMMAPPING pMap, unsigned iOldPDE, bool fDeactivateCR3); int pgmMapActivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3); int pgmMapDeactivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3); int pgmShwMakePageSupervisorAndWritable(PVMCPU pVCpu, RTGCPTR GCPtr, bool fBigPage, uint32_t fOpFlags); int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, X86PGPAEUINT uGstPdpe, PX86PDPAE *ppPD); int pgmShwSyncNestedPageLocked(PVMCPU pVCpu, RTGCPHYS GCPhysFault, uint32_t cPages, PGMMODE enmShwPagingMode); int pgmGstLazyMap32BitPD(PVMCPU pVCpu, PX86PD *ppPd); int pgmGstLazyMapPaePDPT(PVMCPU pVCpu, PX86PDPT *ppPdpt); int pgmGstLazyMapPaePD(PVMCPU pVCpu, uint32_t iPdpt, PX86PDPAE *ppPd); int pgmGstLazyMapPml4(PVMCPU pVCpu, PX86PML4 *ppPml4); int pgmGstPtWalk(PVMCPU pVCpu, RTGCPTR GCPtr, PPGMPTWALKGST pWalk); # if defined(VBOX_STRICT) && HC_ARCH_BITS == 64 && defined(IN_RING3) FNDBGCCMD pgmR3CmdCheckDuplicatePages; FNDBGCCMD pgmR3CmdShowSharedModules; # endif RT_C_DECLS_END /** @} */ #endif