VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMN8veRecompiler.h@ 106683

Last change on this file since 106683 was 106622, checked in by vboxsync, 5 weeks ago

VMM/IEM: linux build fixes. bugref:10720

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 163.9 KB
Line 
1/* $Id: IEMN8veRecompiler.h 106622 2024-10-23 13:33:38Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - Native Recompiler Internals.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
29#define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @defgroup grp_iem_n8ve_re Native Recompiler Internals.
36 * @ingroup grp_iem_int
37 * @{
38 */
39
40#include <iprt/assertcompile.h> /* for RT_IN_ASSEMBLER mode */
41
42/** @def IEMNATIVE_WITH_TB_DEBUG_INFO
43 * Enables generating internal debug info for better TB disassembly dumping. */
44#if defined(DEBUG) || defined(DOXYGEN_RUNNING) || 0
45# define IEMNATIVE_WITH_TB_DEBUG_INFO
46#endif
47
48/** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS
49 * Enables liveness analysis. */
50#if 1 || defined(DOXYGEN_RUNNING)
51# define IEMNATIVE_WITH_LIVENESS_ANALYSIS
52#endif
53
54/** @def IEMNATIVE_WITH_EFLAGS_SKIPPING
55 * Enables skipping EFLAGS calculations/updating based on liveness info. */
56#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
57# define IEMNATIVE_WITH_EFLAGS_SKIPPING
58#endif
59
60/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING
61 * Enables strict consistency checks around EFLAGS skipping.
62 * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */
63#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
64# ifdef VBOX_STRICT
65# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
66# endif
67#elif defined(DOXYGEN_RUNNING)
68# define IEMNATIVE_STRICT_EFLAGS_SKIPPING
69#endif
70
71/** @def IEMNATIVE_WITH_EFLAGS_POSTPONING
72 * Enables delaying EFLAGS calculations/updating to conditional code paths
73 * that are (hopefully) not taken so frequently.
74 *
75 * This can only help with case where there is an conditional
76 * call/exception/tbexit that needs the flag, but in the default code stream the
77 * flag will be clobbered. Useful for TlbMiss scenarios and sequences of memory
78 * based instructions clobbering status flags. */
79#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING)
80# if 1 || defined(DOXYGEN_RUNNING)
81# define IEMNATIVE_WITH_EFLAGS_POSTPONING
82# endif
83#endif
84#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
85# ifndef IEMNATIVE_WITH_EFLAGS_SKIPPING
86# error "IEMNATIVE_WITH_EFLAGS_POSTPONING requires IEMNATIVE_WITH_EFLAGS_SKIPPING at present"
87# endif
88#endif
89
90/** @def IEMLIVENESS_EXTENDED_LAYOUT
91 * Enables the extended liveness data layout. */
92#if defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) || defined(DOXYGEN_RUNNING) || 0
93# define IEMLIVENESS_EXTENDED_LAYOUT
94#endif
95
96
97#ifdef VBOX_WITH_STATISTICS
98/** Always count instructions for now. */
99# define IEMNATIVE_WITH_INSTRUCTION_COUNTING
100#endif
101
102
103/** @name Stack Frame Layout
104 *
105 * @{ */
106/** The size of the area for stack variables and spills and stuff.
107 * @note This limit is duplicated in the python script(s). We add 0x40 for
108 * alignment padding. */
109#define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40)
110/** Number of 64-bit variable slots (0x100 / 8 = 32. */
111#define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8)
112AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32);
113
114#ifdef RT_ARCH_AMD64
115/** An stack alignment adjustment (between non-volatile register pushes and
116 * the stack variable area, so the latter better aligned). */
117# define IEMNATIVE_FRAME_ALIGN_SIZE 8
118
119/** Number of stack arguments slots for calls made from the frame. */
120# ifdef RT_OS_WINDOWS
121# define IEMNATIVE_FRAME_STACK_ARG_COUNT 4
122# else
123# define IEMNATIVE_FRAME_STACK_ARG_COUNT 2
124# endif
125/** Number of any shadow arguments (spill area) for calls we make. */
126# ifdef RT_OS_WINDOWS
127# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4
128# else
129# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
130# endif
131
132/** Frame pointer (RBP) relative offset of the last push. */
133# ifdef RT_OS_WINDOWS
134# define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8)
135# else
136# define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8)
137# endif
138/** Frame pointer (RBP) relative offset of the stack variable area (the lowest
139 * address for it). */
140# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
141/** Frame pointer (RBP) relative offset of the first stack argument for calls. */
142# define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8)
143/** Frame pointer (RBP) relative offset of the second stack argument for calls. */
144# define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8)
145# ifdef RT_OS_WINDOWS
146/** Frame pointer (RBP) relative offset of the third stack argument for calls. */
147# define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16)
148/** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */
149# define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24)
150# endif
151
152# ifdef RT_OS_WINDOWS
153/** Frame pointer (RBP) relative offset of the first incoming shadow argument. */
154# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16)
155/** Frame pointer (RBP) relative offset of the second incoming shadow argument. */
156# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24)
157/** Frame pointer (RBP) relative offset of the third incoming shadow argument. */
158# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32)
159/** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */
160# define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40)
161# endif
162
163#elif RT_ARCH_ARM64
164/** No alignment padding needed for arm64. */
165# define IEMNATIVE_FRAME_ALIGN_SIZE 0
166/** No stack argument slots, got 8 registers for arguments will suffice. */
167# define IEMNATIVE_FRAME_STACK_ARG_COUNT 0
168/** There are no argument spill area. */
169# define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0
170
171/** Number of saved registers at the top of our stack frame.
172 * This includes the return address and old frame pointer, so x19 thru x30. */
173# define IEMNATIVE_FRAME_SAVE_REG_COUNT (12)
174/** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */
175# define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8)
176
177/** Frame pointer (BP) relative offset of the last push. */
178# define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8)
179
180/** Frame pointer (BP) relative offset of the stack variable area (the lowest
181 * address for it). */
182# define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE)
183
184#else
185# error "port me"
186#endif
187/** @} */
188
189
190/** @name Fixed Register Allocation(s)
191 * @{ */
192/** @def IEMNATIVE_REG_FIXED_PVMCPU
193 * The number of the register holding the pVCpu pointer. */
194/** @def IEMNATIVE_REG_FIXED_PCPUMCTX
195 * The number of the register holding the &pVCpu->cpum.GstCtx pointer.
196 * @note This not available on AMD64, only ARM64. */
197/** @def IEMNATIVE_REG_FIXED_TMP0
198 * Dedicated temporary register.
199 * @note This has extremely short lifetime, must be used with great care to make
200 * sure any calling code or code being called is making use of it.
201 * It will definitely not survive a call or anything of that nature.
202 * @todo replace this by a register allocator and content tracker. */
203/** @def IEMNATIVE_REG_FIXED_MASK
204 * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS
205 * architecture. */
206/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
207 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS
208 * architecture. */
209/** @def IEMNATIVE_SIMD_REG_FIXED_TMP0
210 * Dedicated temporary SIMD register. */
211#if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */
212# define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28
213# define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU)
214# define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27
215# define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX)
216# define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15
217# if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */
218# define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16
219# define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26
220# define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \
221 | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG))
222# else
223# define IEMNATIVE_REG_FIXED_MASK_ADD 0
224# endif
225# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \
226 | RT_BIT_32(ARMV8_A64_REG_LR) \
227 | RT_BIT_32(ARMV8_A64_REG_BP) \
228 | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
229 | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \
230 | RT_BIT_32(ARMV8_A64_REG_X18) \
231 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
232 | IEMNATIVE_REG_FIXED_MASK_ADD)
233
234# define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30
235# if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS)
236# define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30)
237# else
238/** @note
239 * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to
240 * support emulating 256-bit registers we pair two real registers statically to
241 * one virtual for now, leaving us with only 16 256-bit registers. We always
242 * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and
243 * the register allocator assumes that it will be always free when the lower is
244 * picked.
245 *
246 * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't
247 * touch them in order to avoid having to save and restore them in the
248 * prologue/epilogue.
249 */
250# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \
251 | RT_BIT_32(ARMV8_A64_REG_Q31) \
252 | RT_BIT_32(ARMV8_A64_REG_Q30) \
253 | RT_BIT_32(ARMV8_A64_REG_Q29) \
254 | RT_BIT_32(ARMV8_A64_REG_Q27) \
255 | RT_BIT_32(ARMV8_A64_REG_Q25) \
256 | RT_BIT_32(ARMV8_A64_REG_Q23) \
257 | RT_BIT_32(ARMV8_A64_REG_Q21) \
258 | RT_BIT_32(ARMV8_A64_REG_Q19) \
259 | RT_BIT_32(ARMV8_A64_REG_Q17) \
260 | RT_BIT_32(ARMV8_A64_REG_Q15) \
261 | RT_BIT_32(ARMV8_A64_REG_Q13) \
262 | RT_BIT_32(ARMV8_A64_REG_Q11) \
263 | RT_BIT_32(ARMV8_A64_REG_Q9) \
264 | RT_BIT_32(ARMV8_A64_REG_Q7) \
265 | RT_BIT_32(ARMV8_A64_REG_Q5) \
266 | RT_BIT_32(ARMV8_A64_REG_Q3) \
267 | RT_BIT_32(ARMV8_A64_REG_Q1))
268# endif
269
270#elif defined(RT_ARCH_AMD64)
271# define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX
272# define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX
273# define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11
274# define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \
275 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
276 | RT_BIT_32(X86_GREG_xSP) \
277 | RT_BIT_32(X86_GREG_xBP) )
278
279# define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */
280# ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
281# ifndef _MSC_VER
282# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
283# endif
284# endif
285# ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
286# define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
287# else
288/** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */
289# define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \
290 | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0))
291# endif
292
293#else
294# error "port me"
295#endif
296/** @} */
297
298/** @name Call related registers.
299 * @{ */
300/** @def IEMNATIVE_CALL_RET_GREG
301 * The return value register. */
302/** @def IEMNATIVE_CALL_ARG_GREG_COUNT
303 * Number of arguments in registers. */
304/** @def IEMNATIVE_CALL_ARG0_GREG
305 * The general purpose register carrying argument \#0. */
306/** @def IEMNATIVE_CALL_ARG1_GREG
307 * The general purpose register carrying argument \#1. */
308/** @def IEMNATIVE_CALL_ARG2_GREG
309 * The general purpose register carrying argument \#2. */
310/** @def IEMNATIVE_CALL_ARG3_GREG
311 * The general purpose register carrying argument \#3. */
312/** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK
313 * Mask of registers the callee will not save and may trash. */
314#ifdef RT_ARCH_AMD64
315# define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX
316
317# ifdef RT_OS_WINDOWS
318# define IEMNATIVE_CALL_ARG_GREG_COUNT 4
319# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX
320# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX
321# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8
322# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9
323# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
324 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
325 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
326 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) )
327# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
328 | RT_BIT_32(X86_GREG_xCX) \
329 | RT_BIT_32(X86_GREG_xDX) \
330 | RT_BIT_32(X86_GREG_x8) \
331 | RT_BIT_32(X86_GREG_x9) \
332 | RT_BIT_32(X86_GREG_x10) \
333 | RT_BIT_32(X86_GREG_x11) )
334/* xmm0 - xmm5 are marked as volatile. */
335# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f))
336
337# else /* !RT_OS_WINDOWS */
338# define IEMNATIVE_CALL_ARG_GREG_COUNT 6
339# define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI
340# define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI
341# define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX
342# define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX
343# define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8
344# define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9
345# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \
346 | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \
347 | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
348 | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
349 | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \
350 | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) )
351# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \
352 | RT_BIT_32(X86_GREG_xCX) \
353 | RT_BIT_32(X86_GREG_xDX) \
354 | RT_BIT_32(X86_GREG_xDI) \
355 | RT_BIT_32(X86_GREG_xSI) \
356 | RT_BIT_32(X86_GREG_x8) \
357 | RT_BIT_32(X86_GREG_x9) \
358 | RT_BIT_32(X86_GREG_x10) \
359 | RT_BIT_32(X86_GREG_x11) )
360/* xmm0 - xmm15 are marked as volatile. */
361# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff))
362# endif /* !RT_OS_WINDOWS */
363
364#elif defined(RT_ARCH_ARM64)
365# define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0
366# define IEMNATIVE_CALL_ARG_GREG_COUNT 8
367# define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0
368# define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1
369# define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2
370# define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3
371# define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4
372# define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5
373# define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6
374# define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7
375# define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
376 | RT_BIT_32(ARMV8_A64_REG_X1) \
377 | RT_BIT_32(ARMV8_A64_REG_X2) \
378 | RT_BIT_32(ARMV8_A64_REG_X3) \
379 | RT_BIT_32(ARMV8_A64_REG_X4) \
380 | RT_BIT_32(ARMV8_A64_REG_X5) \
381 | RT_BIT_32(ARMV8_A64_REG_X6) \
382 | RT_BIT_32(ARMV8_A64_REG_X7) )
383# define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \
384 | RT_BIT_32(ARMV8_A64_REG_X1) \
385 | RT_BIT_32(ARMV8_A64_REG_X2) \
386 | RT_BIT_32(ARMV8_A64_REG_X3) \
387 | RT_BIT_32(ARMV8_A64_REG_X4) \
388 | RT_BIT_32(ARMV8_A64_REG_X5) \
389 | RT_BIT_32(ARMV8_A64_REG_X6) \
390 | RT_BIT_32(ARMV8_A64_REG_X7) \
391 | RT_BIT_32(ARMV8_A64_REG_X8) \
392 | RT_BIT_32(ARMV8_A64_REG_X9) \
393 | RT_BIT_32(ARMV8_A64_REG_X10) \
394 | RT_BIT_32(ARMV8_A64_REG_X11) \
395 | RT_BIT_32(ARMV8_A64_REG_X12) \
396 | RT_BIT_32(ARMV8_A64_REG_X13) \
397 | RT_BIT_32(ARMV8_A64_REG_X14) \
398 | RT_BIT_32(ARMV8_A64_REG_X15) \
399 | RT_BIT_32(ARMV8_A64_REG_X16) \
400 | RT_BIT_32(ARMV8_A64_REG_X17) )
401/* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile,
402 * so to simplify our life a bit we just mark everything as volatile. */
403# define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK UINT32_C(0xffffffff)
404
405#endif
406
407/** This is the maximum argument count we'll ever be needing. */
408#define IEMNATIVE_CALL_MAX_ARG_COUNT 7
409#ifdef RT_OS_WINDOWS
410# ifdef VBOXSTRICTRC_STRICT_ENABLED
411# undef IEMNATIVE_CALL_MAX_ARG_COUNT
412# define IEMNATIVE_CALL_MAX_ARG_COUNT 8
413# endif
414#endif
415
416/** @def IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK
417 * Variant of IEMNATIVE_CALL_VOLATILE_GREG_MASK that excludes
418 * IEMNATIVE_REG_FIXED_TMP0 on hosts that uses it. */
419#ifdef IEMNATIVE_REG_FIXED_TMP0
420# ifdef IEMNATIVE_REG_FIXED_TMP1
421# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK ( IEMNATIVE_CALL_VOLATILE_GREG_MASK \
422 & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \
423 | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1)))
424# else
425# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK (IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0))
426# endif
427#else
428# define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK IEMNATIVE_CALL_VOLATILE_GREG_MASK
429#endif
430
431/** @def IEMNATIVE_CALL_NONVOLATILE_GREG_MASK
432 * The allocatable non-volatile general purpose register set. */
433#define IEMNATIVE_CALL_NONVOLATILE_GREG_MASK \
434 (~IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK)
435/** @} */
436
437
438/** @def IEMNATIVE_HST_GREG_COUNT
439 * Number of host general purpose registers we tracker. */
440/** @def IEMNATIVE_HST_GREG_MASK
441 * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to
442 * inverted register masks and such to get down to a correct set of regs. */
443/** @def IEMNATIVE_HST_SIMD_REG_COUNT
444 * Number of host SIMD registers we track. */
445/** @def IEMNATIVE_HST_SIMD_REG_MASK
446 * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to
447 * inverted register masks and such to get down to a correct set of regs. */
448#ifdef RT_ARCH_AMD64
449# define IEMNATIVE_HST_GREG_COUNT 16
450# define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff)
451
452# define IEMNATIVE_HST_SIMD_REG_COUNT 16
453# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff)
454
455#elif defined(RT_ARCH_ARM64)
456# define IEMNATIVE_HST_GREG_COUNT 32
457# define IEMNATIVE_HST_GREG_MASK UINT32_MAX
458
459# define IEMNATIVE_HST_SIMD_REG_COUNT 32
460# define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX
461
462#else
463# error "Port me!"
464#endif
465
466
467#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
468
469
470/** Native code generator label types. */
471typedef enum
472{
473 kIemNativeLabelType_Invalid = 0,
474 /** @name Exit reasons - Labels w/o data, only once instance per TB.
475 *
476 * The labels requiring register inputs are documented.
477 *
478 * @note Jumps to these requires instructions that are capable of spanning the
479 * max TB length.
480 * @{
481 */
482 /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */
483 kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */
484 kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */
485 kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */
486 kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */
487 kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */
488 kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */
489 kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */
490 kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */
491 kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */
492 kIemNativeLabelType_ObsoleteTb, /**< Calls iemNativeHlpObsoleteTb (no inputs). */
493 kIemNativeLabelType_NeedCsLimChecking, /**< Calls iemNativeHlpNeedCsLimChecking (no inputs). */
494 kIemNativeLabelType_CheckBranchMiss, /**< Calls iemNativeHlpCheckBranchMiss (no inputs). */
495 kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss,
496
497 /* Manually defined labels: */
498 /**< Returns with VINF_SUCCESS, no inputs. */
499 kIemNativeLabelType_ReturnSuccess,
500 /** Returns with VINF_IEM_REEXEC_FINISH_WITH_FLAGS, no inputs. */
501 kIemNativeLabelType_ReturnWithFlags,
502 /** Returns with VINF_IEM_REEXEC_BREAK, no inputs. */
503 kIemNativeLabelType_ReturnBreak,
504 /** Returns with VINF_IEM_REEXEC_BREAK_FF, no inputs. */
505 kIemNativeLabelType_ReturnBreakFF,
506 /** The last TB exit label that doesn't have any input registers. */
507 kIemNativeLabelType_LastTbExitWithoutInputs = kIemNativeLabelType_ReturnBreakFF,
508
509 /** Argument registers 1, 2 & 3 are set up. */
510 kIemNativeLabelType_ReturnBreakViaLookup,
511 /** Argument registers 1, 2 & 3 are set up. */
512 kIemNativeLabelType_ReturnBreakViaLookupWithIrq,
513 /** Argument registers 1 & 2 are set up. */
514 kIemNativeLabelType_ReturnBreakViaLookupWithTlb,
515 /** Argument registers 1 & 2 are set up. */
516 kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq,
517 /** Return register holds the RC and the instruction number is in CL/RCX
518 * on amd64 and the 2rd argument register elsewhere. */
519 kIemNativeLabelType_NonZeroRetOrPassUp,
520
521 /** The last fixup for branches that can span almost the whole TB length.
522 * @note Whether kIemNativeLabelType_Return needs to be one of these is
523 * a bit questionable, since nobody jumps to it except other tail code. */
524 kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_NonZeroRetOrPassUp,
525 /** The last fixup for branches that exits the TB. */
526 kIemNativeLabelType_LastTbExit = kIemNativeLabelType_NonZeroRetOrPassUp,
527 /** @} */
528
529 /** Loop-jump target. */
530 kIemNativeLabelType_LoopJumpTarget,
531
532 /*
533 * Labels with data, potentially multiple instances per TB:
534 *
535 * These are localized labels, so no fixed jump type restrictions here.
536 */
537 kIemNativeLabelType_FirstWithMultipleInstances,
538 kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances,
539 kIemNativeLabelType_Else,
540 kIemNativeLabelType_Endif,
541 kIemNativeLabelType_CheckIrq,
542 kIemNativeLabelType_TlbLookup,
543 kIemNativeLabelType_TlbMiss,
544 kIemNativeLabelType_TlbDone,
545 kIemNativeLabelType_End
546} IEMNATIVELABELTYPE;
547
548#define IEMNATIVELABELTYPE_IS_EXIT_REASON(a_enmLabel) \
549 ((a_enmLabel) <= kIemNativeLabelType_LastTbExit && (a_enmLabel) > kIemNativeLabelType_Invalid)
550
551#define IEMNATIVELABELTYPE_IS_EXIT_WITHOUT_INPUTS(a_enmLabel) \
552 ((a_enmLabel) <= kIemNativeLabelType_LastTbExitWithoutInputs && (a_enmLabel) > kIemNativeLabelType_Invalid)
553
554/**
555 * Get the mask of input registers for an TB exit label.
556 * This will return zero for any non-exit lable.
557 */
558#ifdef RT_ARCH_AMD64
559# define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \
560 ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \
561 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \
562 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
563 : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \
564 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \
565 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
566 : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \
567 ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(X86_GREG_xCX) /* <-- the difference */ \
568 : 0)
569# else
570# define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \
571 ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \
572 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \
573 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \
574 : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \
575 || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \
576 ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
577 : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \
578 ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \
579 : 0)
580#endif
581
582
583/** Native code generator label definition. */
584typedef struct IEMNATIVELABEL
585{
586 /** Code offset if defined, UINT32_MAX if it needs to be generated after/in
587 * the epilog. */
588 uint32_t off;
589 /** The type of label (IEMNATIVELABELTYPE). */
590 uint16_t enmType;
591 /** Additional label data, type specific. */
592 uint16_t uData;
593} IEMNATIVELABEL;
594/** Pointer to a label. */
595typedef IEMNATIVELABEL *PIEMNATIVELABEL;
596
597
598
599/** Native code generator fixup types. */
600typedef enum
601{
602 kIemNativeFixupType_Invalid = 0,
603#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
604 /** AMD64 fixup: PC relative 32-bit with addend in bData. */
605 kIemNativeFixupType_Rel32,
606#elif defined(RT_ARCH_ARM64)
607 /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */
608 kIemNativeFixupType_RelImm26At0,
609 /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */
610 kIemNativeFixupType_RelImm19At5,
611 /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */
612 kIemNativeFixupType_RelImm14At5,
613#endif
614 kIemNativeFixupType_End
615} IEMNATIVEFIXUPTYPE;
616
617/** Native code generator fixup. */
618typedef struct IEMNATIVEFIXUP
619{
620 /** Code offset of the fixup location. */
621 uint32_t off;
622 /** The IEMNATIVELABEL this is a fixup for. */
623 uint16_t idxLabel;
624 /** The fixup type (IEMNATIVEFIXUPTYPE). */
625 uint8_t enmType;
626 /** Addend or other data. */
627 int8_t offAddend;
628} IEMNATIVEFIXUP;
629/** Pointer to a native code generator fixup. */
630typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP;
631
632
633
634/** Native code generator fixup to per chunk TB tail code. */
635typedef struct IEMNATIVEEXITFIXUP
636{
637 /** Code offset of the fixup location. */
638 uint32_t off;
639 /** The exit reason. */
640 IEMNATIVELABELTYPE enmExitReason;
641} IEMNATIVEEXITFIXUP;
642/** Pointer to a native code generator TB exit fixup. */
643typedef IEMNATIVEEXITFIXUP *PIEMNATIVEEXITFIXUP;
644
645/**
646 * Per executable memory chunk context with addresses for common code.
647 */
648typedef struct IEMNATIVEPERCHUNKCTX
649{
650 /** Pointers to the exit labels */
651 PIEMNATIVEINSTR apExitLabels[kIemNativeLabelType_LastTbExit + 1];
652} IEMNATIVEPERCHUNKCTX;
653/** Pointer to per-chunk recompiler context. */
654typedef IEMNATIVEPERCHUNKCTX *PIEMNATIVEPERCHUNKCTX;
655/** Pointer to const per-chunk recompiler context. */
656typedef const IEMNATIVEPERCHUNKCTX *PCIEMNATIVEPERCHUNKCTX;
657
658
659
660/**
661 * One bit of the state.
662 *
663 * Each register state takes up two bits. We keep the two bits in two separate
664 * 64-bit words to simplify applying them to the guest shadow register mask in
665 * the register allocator.
666 */
667typedef union IEMLIVENESSBIT
668{
669 uint64_t bm64;
670 RT_GCC_EXTENSION struct
671 { /* bit no */
672 uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */
673 uint64_t fCr0 : 1; /**< 0x10 / 16: */
674 uint64_t fCr4 : 1; /**< 0x11 / 17: */
675 uint64_t fFcw : 1; /**< 0x12 / 18: */
676 uint64_t fFsw : 1; /**< 0x13 / 19: */
677 uint64_t bmSegBase : 6; /**< 0x14 / 20: */
678 uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */
679 uint64_t bmSegLimit : 6; /**< 0x20 / 32: */
680 uint64_t bmSegSel : 6; /**< 0x26 / 38: */
681 uint64_t fXcr0 : 1; /**< 0x2c / 44: */
682 uint64_t fMxCsr : 1; /**< 0x2d / 45: */
683 uint64_t fEflOther : 1; /**< 0x2e / 46: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */
684 uint64_t fEflCf : 1; /**< 0x2f / 47: Carry flag (X86_EFL_CF / 0). */
685 uint64_t fEflPf : 1; /**< 0x30 / 48: Parity flag (X86_EFL_PF / 2). */
686 uint64_t fEflAf : 1; /**< 0x31 / 59: Auxilary carry flag (X86_EFL_AF / 4). */
687 uint64_t fEflZf : 1; /**< 0x32 / 50: Zero flag (X86_EFL_ZF / 6). */
688 uint64_t fEflSf : 1; /**< 0x33 / 51: Signed flag (X86_EFL_SF / 7). */
689 uint64_t fEflOf : 1; /**< 0x34 / 52: Overflow flag (X86_EFL_OF / 12). */
690 uint64_t fUnusedPc : 1; /**< 0x35 / 53: (PC in ) */
691 uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */
692 };
693} IEMLIVENESSBIT;
694AssertCompileSize(IEMLIVENESSBIT, 8);
695
696#define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0)
697#define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1)
698#define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2)
699#define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3)
700#define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4)
701#define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5)
702#define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6)
703#define IEMLIVENESSBIT_IDX_EFL_COUNT 7
704
705
706/**
707 * A liveness state entry.
708 *
709 * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part.
710 * Once we add a SSE register shadowing, we'll add another 64-bit element for
711 * that.
712 */
713typedef union IEMLIVENESSENTRY
714{
715#ifndef IEMLIVENESS_EXTENDED_LAYOUT
716 uint64_t bm64[16 / 8];
717 uint16_t bm32[16 / 4];
718 uint16_t bm16[16 / 2];
719 uint8_t bm8[ 16 / 1];
720 IEMLIVENESSBIT aBits[2];
721#else
722 uint64_t bm64[32 / 8];
723 uint16_t bm32[32 / 4];
724 uint16_t bm16[32 / 2];
725 uint8_t bm8[ 32 / 1];
726 IEMLIVENESSBIT aBits[4];
727#endif
728 RT_GCC_EXTENSION struct
729 {
730 /** Bit \#0 of the register states. */
731 IEMLIVENESSBIT Bit0;
732 /** Bit \#1 of the register states. */
733 IEMLIVENESSBIT Bit1;
734#ifdef IEMLIVENESS_EXTENDED_LAYOUT
735 /** Bit \#2 of the register states. */
736 IEMLIVENESSBIT Bit2;
737 /** Bit \#3 of the register states. */
738 IEMLIVENESSBIT Bit3;
739#endif
740 };
741} IEMLIVENESSENTRY;
742#ifndef IEMLIVENESS_EXTENDED_LAYOUT
743AssertCompileSize(IEMLIVENESSENTRY, 16);
744#else
745AssertCompileSize(IEMLIVENESSENTRY, 32);
746#endif
747/** Pointer to a liveness state entry. */
748typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY;
749/** Pointer to a const liveness state entry. */
750typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY;
751
752/** @name 64-bit value masks for IEMLIVENESSENTRY.
753 * @{ */ /* 0xzzzzyyyyxxxxwwww */
754#define IEMLIVENESSBIT_MASK UINT64_C(0x001fffffffffffff)
755
756#ifndef IEMLIVENESS_EXTENDED_LAYOUT
757# define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000)
758# define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK
759
760# define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK
761# define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000)
762#endif
763
764#define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x001fc00000000000)
765#define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x001f800000000000)
766
767#ifndef IEMLIVENESS_EXTENDED_LAYOUT
768# define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
769# define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK
770#endif
771/** @} */
772
773
774/** @name The liveness state for a register.
775 *
776 * The state values have been picked to with state accumulation in mind (what
777 * the iemNativeLivenessFunc_xxxx functions does), as that is the most
778 * performance critical work done with the values.
779 *
780 * This is a compressed state that only requires 2 bits per register.
781 * When accumulating state, we'll be using three IEMLIVENESSENTRY copies:
782 * 1. the incoming state from the following call,
783 * 2. the outgoing state for this call,
784 * 3. mask of the entries set in the 2nd.
785 *
786 * The mask entry (3rd one above) will be used both when updating the outgoing
787 * state and when merging in incoming state for registers not touched by the
788 * current call.
789 *
790 *
791 * Extended Layout:
792 *
793 * The extended layout variation differs from the above as it records the
794 * different register accesses as individual bits, and it is currently used for
795 * the delayed EFLAGS calculation experiments. The latter means that
796 * calls/tb-exits and potential calls/exceptions/tb-exits are recorded
797 * separately so the latter can be checked for in combination with clobbering.
798 *
799 * @{ */
800#ifndef IEMLIVENESS_EXTENDED_LAYOUT
801/** The register will be clobbered and the current value thrown away.
802 *
803 * When this is applied to the state (2) we'll simply be AND'ing it with the
804 * (old) mask (3) and adding the register to the mask. This way we'll
805 * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and
806 * IEMLIVENESS_STATE_INPUT states. */
807# define IEMLIVENESS_STATE_CLOBBERED 0
808/** The register is unused in the remainder of the TB.
809 *
810 * This is an initial state and can not be set by any of the
811 * iemNativeLivenessFunc_xxxx callbacks. */
812# define IEMLIVENESS_STATE_UNUSED 1
813/** The register value is required in a potential call or exception.
814 *
815 * This means that the register value must be calculated and is best written to
816 * the state, but that any shadowing registers can be flushed thereafter as it's
817 * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT.
818 *
819 * It is typically applied across the board, but we preserve incoming
820 * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra
821 * trickery to filter out IEMLIVENESS_STATE_UNUSED:
822 * 1. r0 = old & ~mask;
823 * 2. r0 = t1 & (t1 >> 1);
824 * 3. state |= r0 | 0b10;
825 * 4. mask = ~0;
826 */
827# define IEMLIVENESS_STATE_XCPT_OR_CALL 2
828/** The register value is used as input.
829 *
830 * This means that the register value must be calculated and it is best to keep
831 * it in a register. It does not need to be writtent out as such. This is the
832 * highest priority state.
833 *
834 * Whether the call modifies the register or not isn't relevant to earlier
835 * calls, so that's not recorded.
836 *
837 * When applying this state we just or in the value in the outgoing state and
838 * mask. */
839# define IEMLIVENESS_STATE_INPUT 3
840/** Mask of the state bits. */
841# define IEMLIVENESS_STATE_MASK 3
842/** The number of bits per state. */
843# define IEMLIVENESS_STATE_BIT_COUNT 2
844
845/** Check if we're expecting read & write accesses to a register with the given (previous) liveness state.
846 * @note only used in assertions. */
847# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U))
848/** Check if we're expecting read accesses to a register with the given (previous) liveness state.
849 * @note only used in assertions. */
850# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState)
851/** Check if a register clobbering is expected given the (previous) liveness state.
852 * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also
853 * include INPUT if the register is used in more than one place.
854 * @note only used in assertions. */
855# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED)
856
857/** Check if all status flags are going to be clobbered and doesn't need
858 * calculating in the current step.
859 * @param a_pCurEntry The current liveness entry.
860 * @note Used by actual code. */
861# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
862 ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 )
863
864/***
865 * Construct a mask of what will be clobbered and never used.
866 *
867 * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid
868 * unnecessary EFLAGS calculations.
869 *
870 * @param a_pCurEntry The current liveness entry.
871 * @note Used by actual code.
872 */
873# define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \
874 ( ~((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_MASK )
875
876/** Construct a mask of the guest registers in the UNUSED and XCPT_OR_CALL
877 * states, as these are no longer needed.
878 * @param a_pCurEntry The current liveness entry.
879 * @note Used by actual code. */
880AssertCompile(IEMLIVENESS_STATE_UNUSED == 1 && IEMLIVENESS_STATE_XCPT_OR_CALL == 2);
881# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
882 ( (a_pCurEntry)->Bit0.bm64 ^ (a_pCurEntry)->Bit1.bm64 )
883
884
885#else /* IEMLIVENESS_EXTENDED_LAYOUT */
886/** The register is not used any more. */
887# define IEMLIVENESS_STATE_UNUSED 0
888/** Flag: The register is required in a potential call or/and exception. */
889# define IEMLIVENESS_STATE_POTENTIAL_CALL 1
890# define IEMLIVENESS_BIT_POTENTIAL_CALL 0
891/** Flag: The register is read. */
892# define IEMLIVENESS_STATE_READ 2
893# define IEMLIVENESS_BIT_READ 1
894/** Flag: The register is written. */
895# define IEMLIVENESS_STATE_WRITE 4
896# define IEMLIVENESS_BIT_WRITE 2
897/** Flag: Unconditional call. */
898# define IEMLIVENESS_STATE_CALL 8
899# define IEMLIVENESS_BIT_CALL 3
900
901# define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \
902 ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) )
903# define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ)
904# define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE)
905
906# define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \
907 ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \
908 && !( ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
909 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
910 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) \
911 & IEMLIVENESSBIT_STATUS_EFL_MASK) )
912
913/** Construct a mask of the registers not in the read or write state.
914 * @note We could skips writes, if they aren't from us, as this is just a hack
915 * to prevent trashing registers that have just been written or will be
916 * written when we retire the current instruction.
917 * @param a_pCurEntry The current liveness entry.
918 * @note Used by actual code. */
919# define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \
920 ( ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
921 & ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
922 & IEMLIVENESSBIT_MASK )
923
924/***
925 * Construct a mask of what will be clobbered and never used.
926 *
927 * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid
928 * unnecessary EFLAGS calculations.
929 *
930 * @param a_pCurEntry The current liveness entry.
931 * @note Used by actual code.
932 */
933# define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \
934 ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
935 & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
936 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
937 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) )
938
939/**
940 * Construct a mask of what (EFLAGS) which can be postponed.
941 *
942 * The postponement is for the avoiding EFLAGS status bits calculations in the
943 * primary code stream whenever possible, and instead only do these in the TLB
944 * load and TB exit code paths which shouldn't be traveled quite as often.
945 * A requirement, though, is that the status bits will be clobbered later in the
946 * TB.
947 *
948 * User need to apply IEMLIVENESSBIT_STATUS_EFL_MASK if appropriate/necessary.
949 *
950 * @param a_pCurEntry The current liveness entry.
951 * @note Used by actual code.
952 */
953# define IEMLIVENESS_STATE_GET_CAN_BE_POSTPONED_SET(a_pCurEntry) \
954 ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \
955 & (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \
956 & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \
957 | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) )
958
959#endif /* IEMLIVENESS_EXTENDED_LAYOUT */
960/** @} */
961
962/** @name Liveness helpers for builtin functions and similar.
963 *
964 * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its
965 * own set of manipulator macros for those.
966 *
967 * @{ */
968/** Initializing the state as all unused. */
969#ifndef IEMLIVENESS_EXTENDED_LAYOUT
970# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
971 do { \
972 (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \
973 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \
974 } while (0)
975#else
976# define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \
977 do { \
978 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
979 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
980 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
981 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
982 } while (0)
983#endif
984
985/** Initializing the outgoing state with a potential xcpt or call state.
986 * This only works when all later changes will be IEMLIVENESS_STATE_INPUT.
987 *
988 * @note Must invoke IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL when done!
989 */
990#ifndef IEMLIVENESS_EXTENDED_LAYOUT
991# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
992 do { \
993 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
994 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
995 } while (0)
996#else
997# define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
998 do { \
999 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
1000 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1001 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1002 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \
1003 } while (0)
1004#endif
1005
1006/** Completes IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL after applying any
1007 * other state modifications.
1008 */
1009#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1010# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) ((void)0)
1011#else
1012# define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1013 do { \
1014 uint64_t const fInhMask = ~( (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL].bm64 \
1015 | (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE].bm64); \
1016 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 & fInhMask; \
1017 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64 & fInhMask; \
1018 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & fInhMask; \
1019 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_CALL].bm64 & fInhMask; \
1020 } while (0)
1021#endif
1022
1023/** Initializing the outgoing state with an unconditional call state.
1024 * This should only really be used alone. */
1025#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1026# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
1027 do { \
1028 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
1029 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
1030 } while (0)
1031#else
1032# define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \
1033 do { \
1034 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
1035 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \
1036 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1037 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1038 RT_NOREF(a_pIncoming); \
1039 } while (0)
1040#endif
1041
1042#if 0 /* unused */
1043/** Initializing the outgoing state with an unconditional call state as well as
1044 * an potential call/exception preceeding it.
1045 * This should only really be used alone. */
1046#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1047# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1048 do { \
1049 (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \
1050 (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \
1051 } while (0)
1052#else
1053# define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \
1054 do { \
1055 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \
1056 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \
1057 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \
1058 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \
1059 } while (0)
1060#endif
1061#endif
1062
1063/** Adds a segment base register as input to the outgoing state. */
1064#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1065# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
1066 (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \
1067 (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \
1068 } while (0)
1069#else
1070# define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \
1071 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \
1072 } while (0)
1073#endif
1074
1075/** Adds a segment attribute register as input to the outgoing state. */
1076#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1077# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
1078 (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \
1079 (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \
1080 } while (0)
1081#else
1082# define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \
1083 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \
1084 } while (0)
1085#endif
1086
1087/** Adds a segment limit register as input to the outgoing state. */
1088#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1089# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1090 (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \
1091 (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \
1092 } while (0)
1093#else
1094# define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \
1095 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \
1096 } while (0)
1097#endif
1098
1099/** Adds a segment limit register as input to the outgoing state. */
1100#ifndef IEMLIVENESS_EXTENDED_LAYOUT
1101# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1102 (a_pOutgoing)->Bit0.a_fEflMember |= 1; \
1103 (a_pOutgoing)->Bit1.a_fEflMember |= 1; \
1104 } while (0)
1105#else
1106# define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \
1107 (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \
1108 } while (0)
1109#endif
1110/** @} */
1111
1112/** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY
1113 * Debug assertion that the required flags are available and not incorrectly skipped.
1114 */
1115#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
1116# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) \
1117 AssertMsg(!((a_pReNative)->fSkippingEFlags & (a_fEflNeeded)), \
1118 ("%#x & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, \
1119 a_fEflNeeded, (a_pReNative)->fSkippingEFlags & (a_fEflNeeded) ))
1120#else
1121# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) ((void)0)
1122#endif
1123
1124/** @def IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY
1125 * Debug assertion that the required flags are available and not incorrectly postponed.
1126 */
1127#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1128# define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) \
1129 AssertMsg(!((a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded)), \
1130 ("%#x & %#x -> %#x\n", (a_pReNative)->PostponedEfl.fEFlags, \
1131 a_fEflNeeded, (a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded) ))
1132#else
1133# define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) ((void)0)
1134#endif
1135
1136/** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING
1137 * Debug assertion that the required flags are available and not incorrectly
1138 * skipped or postponed.
1139 */
1140#if defined(IEMNATIVE_WITH_EFLAGS_SKIPPING) && defined(IEMNATIVE_WITH_EFLAGS_POSTPONING)
1141# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1142 AssertMsg(!(((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded)), \
1143 ("(%#x | %#x) & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, (a_pReNative)->PostponedEfl.fEFlags, \
1144 a_fEflNeeded, ((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded) ))
1145#elif defined(IEMNATIVE_WITH_EFLAGS_SKIPPING)
1146# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1147 IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded)
1148#elif defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) \
1149# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \
1150 IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded)
1151#else
1152# define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) ((void)0)
1153#endif
1154
1155/** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK
1156 * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually
1157 * calculated and up to date. This is to double check that we haven't skipped
1158 * EFLAGS calculations when we actually need them. NOP in non-strict builds.
1159 * @note has to be placed in
1160 */
1161#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
1162# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { \
1163 (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); \
1164 } while (0)
1165#else
1166# define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0)
1167#endif
1168
1169
1170/** @def IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS
1171 * Number of extra instructions to allocate for each TB exit to account for
1172 * postponed EFLAGS calculations.
1173 */
1174#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1175# ifdef RT_ARCH_AMD64
1176# ifdef VBOX_STRICT
1177# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 64
1178# else
1179# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32
1180# endif
1181# elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
1182# ifdef VBOX_STRICT
1183# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 48
1184# else
1185# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32
1186# endif
1187# else
1188# error "port me"
1189# endif
1190#else
1191# define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 0
1192#endif
1193
1194/** @def IEMNATIVE_CLEAR_POSTPONED_EFLAGS
1195 * Helper macro function for calling iemNativeClearPostponedEFlags() when
1196 * IEMNATIVE_WITH_EFLAGS_POSTPONING is enabled.
1197 */
1198#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1199# define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) iemNativeClearPostponedEFlags<a_fEflClobbered>(a_pReNative)
1200#else
1201# define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) ((void)0)
1202#endif
1203
1204/** @def IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS
1205 * Macro for testing whether there are currently any postponed EFLAGS calcs w/o
1206 * needing to \#ifdef the check.
1207 */
1208#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1209# define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) ((a_pReNative)->PostponedEfl.fEFlags != 0)
1210#else
1211# define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) false
1212#endif
1213
1214
1215/**
1216 * Translation block debug info entry type.
1217 */
1218typedef enum IEMTBDBGENTRYTYPE
1219{
1220 kIemTbDbgEntryType_Invalid = 0,
1221 /** The entry is for marking a native code position.
1222 * Entries following this all apply to this position. */
1223 kIemTbDbgEntryType_NativeOffset,
1224 /** The entry is for a new guest instruction. */
1225 kIemTbDbgEntryType_GuestInstruction,
1226 /** Marks the start of a threaded call. */
1227 kIemTbDbgEntryType_ThreadedCall,
1228 /** Marks the location of a label. */
1229 kIemTbDbgEntryType_Label,
1230 /** Info about a host register shadowing a guest register. */
1231 kIemTbDbgEntryType_GuestRegShadowing,
1232 /** Info about a host SIMD register shadowing a guest SIMD register. */
1233 kIemTbDbgEntryType_GuestSimdRegShadowing,
1234#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1235 /** Info about a delayed RIP update. */
1236 kIemTbDbgEntryType_DelayedPcUpdate,
1237#endif
1238 /** Info about a shadowed guest register becoming dirty. */
1239 kIemTbDbgEntryType_GuestRegDirty,
1240 /** Info about register writeback/flush oepration. */
1241 kIemTbDbgEntryType_GuestRegWriteback,
1242#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1243 /** Info about a delayed EFLAGS calculation. */
1244 kIemTbDbgEntryType_PostponedEFlagsCalc,
1245#endif
1246 kIemTbDbgEntryType_End
1247} IEMTBDBGENTRYTYPE;
1248
1249/**
1250 * Translation block debug info entry.
1251 */
1252typedef union IEMTBDBGENTRY
1253{
1254 /** Plain 32-bit view. */
1255 uint32_t u;
1256
1257 /** Generic view for getting at the type field. */
1258 struct
1259 {
1260 /** IEMTBDBGENTRYTYPE */
1261 uint32_t uType : 4;
1262 uint32_t uTypeSpecific : 28;
1263 } Gen;
1264
1265 struct
1266 {
1267 /** kIemTbDbgEntryType_ThreadedCall1. */
1268 uint32_t uType : 4;
1269 /** Native code offset. */
1270 uint32_t offNative : 28;
1271 } NativeOffset;
1272
1273 struct
1274 {
1275 /** kIemTbDbgEntryType_GuestInstruction. */
1276 uint32_t uType : 4;
1277 uint32_t uUnused : 4;
1278 /** The IEM_F_XXX flags. */
1279 uint32_t fExec : 24;
1280 } GuestInstruction;
1281
1282 struct
1283 {
1284 /* kIemTbDbgEntryType_ThreadedCall. */
1285 uint32_t uType : 4;
1286 /** Set if the call was recompiled to native code, clear if just calling
1287 * threaded function. */
1288 uint32_t fRecompiled : 1;
1289 uint32_t uUnused : 11;
1290 /** The threaded call number (IEMTHREADEDFUNCS). */
1291 uint32_t enmCall : 16;
1292 } ThreadedCall;
1293
1294 struct
1295 {
1296 /* kIemTbDbgEntryType_Label. */
1297 uint32_t uType : 4;
1298 uint32_t uUnused : 4;
1299 /** The label type (IEMNATIVELABELTYPE). */
1300 uint32_t enmLabel : 8;
1301 /** The label data. */
1302 uint32_t uData : 16;
1303 } Label;
1304
1305 struct
1306 {
1307 /* kIemTbDbgEntryType_GuestRegShadowing. */
1308 uint32_t uType : 4;
1309 uint32_t uUnused : 4;
1310 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1311 uint32_t idxGstReg : 8;
1312 /** The host new register number, UINT8_MAX if dropped. */
1313 uint32_t idxHstReg : 8;
1314 /** The previous host register number, UINT8_MAX if new. */
1315 uint32_t idxHstRegPrev : 8;
1316 } GuestRegShadowing;
1317
1318 struct
1319 {
1320 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1321 uint32_t uType : 4;
1322 uint32_t uUnused : 4;
1323 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1324 uint32_t idxGstSimdReg : 8;
1325 /** The host new register number, UINT8_MAX if dropped. */
1326 uint32_t idxHstSimdReg : 8;
1327 /** The previous host register number, UINT8_MAX if new. */
1328 uint32_t idxHstSimdRegPrev : 8;
1329 } GuestSimdRegShadowing;
1330
1331#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1332 struct
1333 {
1334 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1335 uint32_t uType : 4;
1336 /** Number of instructions skipped. */
1337 uint32_t cInstrSkipped : 8;
1338 /* The instruction offset added to the program counter. */
1339 int32_t offPc : 20;
1340 } DelayedPcUpdate;
1341#endif
1342
1343 struct
1344 {
1345 /* kIemTbDbgEntryType_GuestRegDirty. */
1346 uint32_t uType : 4;
1347 uint32_t uUnused : 11;
1348 /** Flag whether this is about a SIMD (true) or general (false) register. */
1349 uint32_t fSimdReg : 1;
1350 /** The guest register index being marked as dirty. */
1351 uint32_t idxGstReg : 8;
1352 /** The host register number this register is shadowed in .*/
1353 uint32_t idxHstReg : 8;
1354 } GuestRegDirty;
1355
1356 struct
1357 {
1358 /* kIemTbDbgEntryType_GuestRegWriteback. */
1359 uint32_t uType : 4;
1360 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1361 uint32_t fSimdReg : 1;
1362 /** The mask shift. */
1363 uint32_t cShift : 2;
1364 /** The guest register mask being written back. */
1365 uint32_t fGstReg : 25;
1366 } GuestRegWriteback;
1367
1368#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1369 struct
1370 {
1371 /* kIemTbDbgEntryType_PostponedEFlagsCalc. */
1372 uint32_t uType : 4;
1373 /** The EFLAGS operation (IEMNATIVE_POSTPONED_EFL_OP_T). */
1374 uint32_t enmOp : 4;
1375 /** The mask shift. */
1376 uint32_t cOpBits : 8;
1377 /** The emit instance number (0-based). */
1378 uint32_t idxEmit : 8;
1379 /** Unused. */
1380 uint32_t uUnused : 8;
1381 } PostponedEflCalc;
1382#endif
1383} IEMTBDBGENTRY;
1384AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1385/** Pointer to a debug info entry. */
1386typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1387/** Pointer to a const debug info entry. */
1388typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1389
1390/**
1391 * Translation block debug info.
1392 */
1393typedef struct IEMTBDBG
1394{
1395 /** This is the flat PC corresponding to IEMTB::GCPhysPc. */
1396 RTGCPTR FlatPc;
1397 /** Number of entries in aEntries. */
1398 uint32_t cEntries;
1399 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1400 uint32_t offNativeLast;
1401 /** Debug info entries. */
1402 RT_FLEXIBLE_ARRAY_EXTENSION
1403 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1404} IEMTBDBG;
1405/** Pointer to TB debug info. */
1406typedef IEMTBDBG *PIEMTBDBG;
1407/** Pointer to const TB debug info. */
1408typedef IEMTBDBG const *PCIEMTBDBG;
1409
1410/**
1411 * Guest registers that can be shadowed in GPRs.
1412 *
1413 * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags
1414 * must be placed last, as the liveness state tracks it as 7 subcomponents and
1415 * we don't want to waste space here.
1416 *
1417 * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and
1418 * friends as well as IEMAllN8veLiveness.cpp.
1419 */
1420typedef enum IEMNATIVEGSTREG : uint8_t
1421{
1422 kIemNativeGstReg_GprFirst = 0,
1423 kIemNativeGstReg_Rax = kIemNativeGstReg_GprFirst + 0,
1424 kIemNativeGstReg_Rcx = kIemNativeGstReg_GprFirst + 1,
1425 kIemNativeGstReg_Rdx = kIemNativeGstReg_GprFirst + 2,
1426 kIemNativeGstReg_Rbx = kIemNativeGstReg_GprFirst + 3,
1427 kIemNativeGstReg_Rsp = kIemNativeGstReg_GprFirst + 4,
1428 kIemNativeGstReg_Rbp = kIemNativeGstReg_GprFirst + 5,
1429 kIemNativeGstReg_Rsi = kIemNativeGstReg_GprFirst + 6,
1430 kIemNativeGstReg_Rdi = kIemNativeGstReg_GprFirst + 7,
1431 kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15,
1432 kIemNativeGstReg_Cr0,
1433 kIemNativeGstReg_Cr4,
1434 kIemNativeGstReg_FpuFcw,
1435 kIemNativeGstReg_FpuFsw,
1436 kIemNativeGstReg_SegBaseFirst,
1437 kIemNativeGstReg_CsBase = kIemNativeGstReg_SegBaseFirst + X86_SREG_CS,
1438 kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5,
1439 kIemNativeGstReg_SegAttribFirst,
1440 kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5,
1441 kIemNativeGstReg_SegLimitFirst,
1442 kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5,
1443 kIemNativeGstReg_SegSelFirst,
1444 kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5,
1445 kIemNativeGstReg_Xcr0,
1446 kIemNativeGstReg_MxCsr,
1447 kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags. */
1448 /* 6 entry gap for liveness EFlags subdivisions. */
1449 kIemNativeGstReg_Pc = kIemNativeGstReg_EFlags + 7,
1450 kIemNativeGstReg_End
1451} IEMNATIVEGSTREG;
1452AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32);
1453AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK);
1454AssertCompile(RT_BIT_64(kIemNativeGstReg_Pc) - UINT64_C(1) == IEMLIVENESSBIT_MASK);
1455
1456/** @name Helpers for converting register numbers to IEMNATIVEGSTREG values.
1457 * @{ */
1458#define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) ))
1459#define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) ))
1460#define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) ))
1461#define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) ))
1462#define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) ))
1463/** @} */
1464
1465
1466/**
1467 * Guest registers that can be shadowed in host SIMD registers.
1468 *
1469 * @todo r=aeichner Liveness tracking
1470 * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense?
1471 */
1472typedef enum IEMNATIVEGSTSIMDREG : uint8_t
1473{
1474 kIemNativeGstSimdReg_SimdRegFirst = 0,
1475 kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15,
1476 kIemNativeGstSimdReg_End
1477} IEMNATIVEGSTSIMDREG;
1478
1479/** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values.
1480 * @{ */
1481#define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg)))
1482/** @} */
1483
1484/**
1485 * The Load/store size for a SIMD guest register.
1486 */
1487typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t
1488{
1489 /** Invalid size. */
1490 kIemNativeGstSimdRegLdStSz_Invalid = 0,
1491 /** Loads the low 128-bit of a guest SIMD register. */
1492 kIemNativeGstSimdRegLdStSz_Low128,
1493 /** Loads the high 128-bit of a guest SIMD register. */
1494 kIemNativeGstSimdRegLdStSz_High128,
1495 /** Loads the whole 256-bits of a guest SIMD register. */
1496 kIemNativeGstSimdRegLdStSz_256,
1497 /** End value. */
1498 kIemNativeGstSimdRegLdStSz_End
1499} IEMNATIVEGSTSIMDREGLDSTSZ;
1500
1501
1502/**
1503 * Intended use statement for iemNativeRegAllocTmpForGuestReg().
1504 */
1505typedef enum IEMNATIVEGSTREGUSE
1506{
1507 /** The usage is read-only, the register holding the guest register
1508 * shadow copy will not be modified by the caller. */
1509 kIemNativeGstRegUse_ReadOnly = 0,
1510 /** The caller will update the guest register (think: PC += cbInstr).
1511 * The guest shadow copy will follow the returned register. */
1512 kIemNativeGstRegUse_ForUpdate,
1513 /** The call will put an entirely new value in the guest register, so
1514 * if new register is allocate it will be returned uninitialized. */
1515 kIemNativeGstRegUse_ForFullWrite,
1516 /** The caller will use the guest register value as input in a calculation
1517 * and the host register will be modified.
1518 * This means that the returned host register will not be marked as a shadow
1519 * copy of the guest register. */
1520 kIemNativeGstRegUse_Calculation
1521} IEMNATIVEGSTREGUSE;
1522
1523/**
1524 * Guest registers (classes) that can be referenced.
1525 */
1526typedef enum IEMNATIVEGSTREGREF : uint8_t
1527{
1528 kIemNativeGstRegRef_Invalid = 0,
1529 kIemNativeGstRegRef_Gpr,
1530 kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/
1531 kIemNativeGstRegRef_EFlags,
1532 kIemNativeGstRegRef_MxCsr,
1533 kIemNativeGstRegRef_FpuReg,
1534 kIemNativeGstRegRef_MReg,
1535 kIemNativeGstRegRef_XReg,
1536 kIemNativeGstRegRef_X87,
1537 kIemNativeGstRegRef_XState,
1538 //kIemNativeGstRegRef_YReg, - doesn't work.
1539 kIemNativeGstRegRef_End
1540} IEMNATIVEGSTREGREF;
1541
1542
1543/** Variable kinds. */
1544typedef enum IEMNATIVEVARKIND : uint8_t
1545{
1546 /** Customary invalid zero value. */
1547 kIemNativeVarKind_Invalid = 0,
1548 /** This is either in a register or on the stack. */
1549 kIemNativeVarKind_Stack,
1550 /** Immediate value - loaded into register when needed, or can live on the
1551 * stack if referenced (in theory). */
1552 kIemNativeVarKind_Immediate,
1553 /** Variable reference - loaded into register when needed, never stack. */
1554 kIemNativeVarKind_VarRef,
1555 /** Guest register reference - loaded into register when needed, never stack. */
1556 kIemNativeVarKind_GstRegRef,
1557 /** End of valid values. */
1558 kIemNativeVarKind_End
1559} IEMNATIVEVARKIND;
1560
1561
1562/** Variable or argument. */
1563typedef struct IEMNATIVEVAR
1564{
1565 RT_GCC_EXTENSION
1566 union
1567 {
1568 struct
1569 {
1570 /** The kind of variable. */
1571 IEMNATIVEVARKIND enmKind;
1572 /** The variable size in bytes. */
1573 uint8_t cbVar;
1574 /** Set if the registered is currently used exclusively, false if the
1575 * variable is idle and the register can be grabbed. */
1576 bool fRegAcquired;
1577 /** Flag whether this variable is held in a SIMD register (only supported for
1578 * 128-bit and 256-bit variables), only valid when idxReg is not UINT8_MAX. */
1579 bool fSimdReg;
1580 };
1581 uint32_t u32Init0; /**< Init optimzation - cbVar is set, the other are initialized with zeros. */
1582 };
1583
1584 RT_GCC_EXTENSION
1585 union
1586 {
1587 struct
1588 {
1589 /** The host register allocated for the variable, UINT8_MAX if not. */
1590 uint8_t idxReg;
1591 /** The argument number if argument, UINT8_MAX if regular variable. */
1592 uint8_t uArgNo;
1593 /** The first stack slot (uint64_t), except for immediate and references
1594 * where it usually is UINT8_MAX. This is allocated lazily, so if a variable
1595 * has a stack slot it has been initialized and has a value. Unused variables
1596 * has neither a stack slot nor a host register assignment. */
1597 uint8_t idxStackSlot;
1598 /** If referenced, the index (unpacked) of the variable referencing this one,
1599 * otherwise UINT8_MAX. A referenced variable must only be placed on the stack
1600 * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */
1601 uint8_t idxReferrerVar;
1602 };
1603 uint32_t u32Init1; /**< Init optimization; all these are initialized to 0xff. */
1604 };
1605
1606 union
1607 {
1608 /** kIemNativeVarKind_Immediate: The immediate value. */
1609 uint64_t uValue;
1610 /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */
1611 uint8_t idxRefVar;
1612 /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */
1613 struct
1614 {
1615 /** The class of register. */
1616 IEMNATIVEGSTREGREF enmClass;
1617 /** Index within the class. */
1618 uint8_t idx;
1619 } GstRegRef;
1620 } u;
1621} IEMNATIVEVAR;
1622AssertCompileSize(IEMNATIVEVAR, 16);
1623/** Pointer to a variable or argument. */
1624typedef IEMNATIVEVAR *PIEMNATIVEVAR;
1625/** Pointer to a const variable or argument. */
1626typedef IEMNATIVEVAR const *PCIEMNATIVEVAR;
1627
1628/** What is being kept in a host register. */
1629typedef enum IEMNATIVEWHAT : uint8_t
1630{
1631 /** The traditional invalid zero value. */
1632 kIemNativeWhat_Invalid = 0,
1633 /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */
1634 kIemNativeWhat_Var,
1635 /** Temporary register, this is typically freed when a MC completes. */
1636 kIemNativeWhat_Tmp,
1637 /** Call argument w/o a variable mapping. This is free (via
1638 * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */
1639 kIemNativeWhat_Arg,
1640 /** Return status code.
1641 * @todo not sure if we need this... */
1642 kIemNativeWhat_rc,
1643 /** The fixed pVCpu (PVMCPUCC) register.
1644 * @todo consider offsetting this on amd64 to use negative offsets to access
1645 * more members using 8-byte disp. */
1646 kIemNativeWhat_pVCpuFixed,
1647 /** The fixed pCtx (PCPUMCTX) register.
1648 * @todo consider offsetting this on amd64 to use negative offsets to access
1649 * more members using 8-byte disp. */
1650 kIemNativeWhat_pCtxFixed,
1651 /** Fixed temporary register. */
1652 kIemNativeWhat_FixedTmp,
1653#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1654 /** Shadow RIP for the delayed RIP updating debugging. */
1655 kIemNativeWhat_PcShadow,
1656#endif
1657 /** Register reserved by the CPU or OS architecture. */
1658 kIemNativeWhat_FixedReserved,
1659 /** End of valid values. */
1660 kIemNativeWhat_End
1661} IEMNATIVEWHAT;
1662
1663/**
1664 * Host general register entry.
1665 *
1666 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs.
1667 *
1668 * @todo Track immediate values in host registers similarlly to how we track the
1669 * guest register shadow copies. For it to be real helpful, though,
1670 * we probably need to know which will be reused and put them into
1671 * non-volatile registers, otherwise it's going to be more or less
1672 * restricted to an instruction or two.
1673 */
1674typedef struct IEMNATIVEHSTREG
1675{
1676 /** Set of guest registers this one shadows.
1677 *
1678 * Using a bitmap here so we can designate the same host register as a copy
1679 * for more than one guest register. This is expected to be useful in
1680 * situations where one value is copied to several registers in a sequence.
1681 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1682 * sequence we'd want to let this register follow to be a copy of and there
1683 * will always be places where we'd be picking the wrong one.
1684 */
1685 uint64_t fGstRegShadows;
1686 /** What is being kept in this register. */
1687 IEMNATIVEWHAT enmWhat;
1688 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1689 uint8_t idxVar;
1690 /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed
1691 * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside
1692 * that scope. */
1693 uint8_t idxStackSlot;
1694 /** Alignment padding. */
1695 uint8_t abAlign[5];
1696} IEMNATIVEHSTREG;
1697
1698
1699/**
1700 * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit
1701 * halves, on architectures where there is no 256-bit register available this entry will track
1702 * two adjacent 128-bit host registers.
1703 *
1704 * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs.
1705 */
1706typedef struct IEMNATIVEHSTSIMDREG
1707{
1708 /** Set of guest registers this one shadows.
1709 *
1710 * Using a bitmap here so we can designate the same host register as a copy
1711 * for more than one guest register. This is expected to be useful in
1712 * situations where one value is copied to several registers in a sequence.
1713 * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST'
1714 * sequence we'd want to let this register follow to be a copy of and there
1715 * will always be places where we'd be picking the wrong one.
1716 */
1717 uint64_t fGstRegShadows;
1718 /** What is being kept in this register. */
1719 IEMNATIVEWHAT enmWhat;
1720 /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */
1721 uint8_t idxVar;
1722 /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */
1723 IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded;
1724 /** Alignment padding. */
1725 uint8_t abAlign[5];
1726} IEMNATIVEHSTSIMDREG;
1727
1728
1729/**
1730 * Core state for the native recompiler, that is, things that needs careful
1731 * handling when dealing with branches.
1732 */
1733typedef struct IEMNATIVECORESTATE
1734{
1735 /** Allocation bitmap for aHstRegs. */
1736 uint32_t bmHstRegs;
1737
1738 /** Bitmap marking which host register contains guest register shadow copies.
1739 * This is used during register allocation to try preserve copies. */
1740 uint32_t bmHstRegsWithGstShadow;
1741 /** Bitmap marking valid entries in aidxGstRegShadows. */
1742 uint64_t bmGstRegShadows;
1743#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
1744 /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */
1745 uint64_t bmGstRegShadowDirty;
1746#endif
1747
1748#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1749 /** The current instruction offset in bytes from when the guest program counter
1750 * was updated last. Used for delaying the write to the guest context program counter
1751 * as long as possible. */
1752 int64_t offPc;
1753# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
1754 /** Set after we've loaded PC into uPcUpdatingDebug at the first update. */
1755 bool fDebugPcInitialized;
1756# endif
1757#endif
1758
1759 /** Allocation bitmap for aHstSimdRegs. */
1760 uint32_t bmHstSimdRegs;
1761
1762 /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies.
1763 * This is used during register allocation to try preserve copies. */
1764 uint32_t bmHstSimdRegsWithGstShadow;
1765 /** Bitmap marking valid entries in aidxSimdGstRegShadows. */
1766 uint64_t bmGstSimdRegShadows;
1767 /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */
1768 uint64_t bmGstSimdRegShadowDirtyLo128;
1769 /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */
1770 uint64_t bmGstSimdRegShadowDirtyHi128;
1771
1772 union
1773 {
1774 /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */
1775 uint8_t aidxArgVars[8];
1776 /** For more efficient resetting. */
1777 uint64_t u64ArgVars;
1778 };
1779
1780 /** Allocation bitmap for the stack. */
1781 uint32_t bmStack;
1782 /** Allocation bitmap for aVars. */
1783 uint32_t bmVars;
1784
1785 /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG).
1786 * Entries are only valid if the corresponding bit in bmGstRegShadows is set.
1787 * (A shadow copy of a guest register can only be held in a one host register,
1788 * there are no duplicate copies or ambiguities like that). */
1789 uint8_t aidxGstRegShadows[kIemNativeGstReg_End];
1790 /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG).
1791 * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set.
1792 * (A shadow copy of a guest register can only be held in a one host register,
1793 * there are no duplicate copies or ambiguities like that). */
1794 uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End];
1795
1796 /** Host register allocation tracking. */
1797 IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT];
1798 /** Host SIMD register allocation tracking. */
1799 IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT];
1800
1801 /** Variables and arguments. */
1802 IEMNATIVEVAR aVars[9];
1803} IEMNATIVECORESTATE;
1804/** Pointer to core state. */
1805typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE;
1806/** Pointer to const core state. */
1807typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE;
1808
1809/** @def IEMNATIVE_VAR_IDX_UNPACK
1810 * @returns Index into IEMNATIVECORESTATE::aVars.
1811 * @param a_idxVar Variable index w/ magic (in strict builds).
1812 */
1813/** @def IEMNATIVE_VAR_IDX_PACK
1814 * @returns Variable index w/ magic (in strict builds).
1815 * @param a_idxVar Index into IEMNATIVECORESTATE::aVars.
1816 */
1817#ifdef VBOX_STRICT
1818# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK)
1819# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC)
1820# define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0)
1821# define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0)
1822# define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f)
1823#else
1824# define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar)
1825# define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar)
1826#endif
1827
1828
1829/** Clear the dirty state of the given guest SIMD register. */
1830#define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \
1831 do { \
1832 (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \
1833 (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \
1834 } while (0)
1835
1836/** Returns whether the low 128-bits of the given guest SIMD register are dirty. */
1837#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1838 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg))
1839/** Returns whether the high 128-bits of the given guest SIMD register are dirty. */
1840#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1841 RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg))
1842/** Returns whether the given guest SIMD register is dirty. */
1843#define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \
1844 RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg))
1845
1846/** Set the low 128-bits of the given guest SIMD register to the dirty state. */
1847#define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \
1848 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg))
1849/** Set the high 128-bits of the given guest SIMD register to the dirty state. */
1850#define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \
1851 ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg))
1852
1853/** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1854#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0)
1855 /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */
1856#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1)
1857/** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */
1858#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2)
1859/** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */
1860#define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3)
1861# ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
1862/** Flag indicating that the guest MXCSR was synced to the host floating point control register. */
1863# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SYNCED RT_BIT_32(4)
1864/** Flag indicating whether the host floating point control register was saved before overwriting it. */
1865# define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SAVED RT_BIT_32(5)
1866#endif
1867
1868
1869#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
1870typedef enum IEMNATIVE_POSTPONED_EFL_OP_T : uint8_t
1871{
1872 kIemNativePostponedEflOp_Invalid = 0,
1873 /** Logical operation.
1874 * Operands: result register.
1875 * @note This clears OF, CF and (undefined) AF, thus no need for inputs. */
1876 kIemNativePostponedEflOp_Logical,
1877 kIemNativePostponedEflOp_End
1878} IEMNATIVE_POSTPONED_EFL_OP_T;
1879#endif /* IEMNATIVE_WITH_EFLAGS_POSTPONING */
1880
1881/**
1882 * Conditional stack entry.
1883 */
1884typedef struct IEMNATIVECOND
1885{
1886 /** Set if we're in the "else" part, clear if we're in the "if" before it. */
1887 bool fInElse;
1888 union
1889 {
1890 RT_GCC_EXTENSION struct
1891 {
1892 /** Set if the if-block unconditionally exited the TB. */
1893 bool fIfExitTb;
1894 /** Set if the else-block unconditionally exited the TB. */
1895 bool fElseExitTb;
1896 };
1897 /** Indexed by fInElse. */
1898 bool afExitTb[2];
1899 };
1900 bool afPadding[5];
1901 /** The label for the IEM_MC_ELSE. */
1902 uint32_t idxLabelElse;
1903 /** The label for the IEM_MC_ENDIF. */
1904 uint32_t idxLabelEndIf;
1905 /** The initial state snapshot as the if-block starts executing. */
1906 IEMNATIVECORESTATE InitialState;
1907 /** The state snapshot at the end of the if-block. */
1908 IEMNATIVECORESTATE IfFinalState;
1909} IEMNATIVECOND;
1910/** Pointer to a condition stack entry. */
1911typedef IEMNATIVECOND *PIEMNATIVECOND;
1912
1913
1914/**
1915 * Native recompiler state.
1916 */
1917typedef struct IEMRECOMPILERSTATE
1918{
1919 /** Size of the buffer that pbNativeRecompileBufR3 points to in
1920 * IEMNATIVEINSTR units. */
1921 uint32_t cInstrBufAlloc;
1922#ifdef VBOX_STRICT
1923 /** Strict: How far the last iemNativeInstrBufEnsure() checked. */
1924 uint32_t offInstrBufChecked;
1925#else
1926 uint32_t uPadding1; /* We don't keep track of the size here... */
1927#endif
1928 /** Fixed temporary code buffer for native recompilation. */
1929 PIEMNATIVEINSTR pInstrBuf;
1930
1931 /** Bitmaps with the label types used. */
1932 uint64_t bmLabelTypes;
1933 /** Actual number of labels in paLabels. */
1934 uint32_t cLabels;
1935 /** Max number of entries allowed in paLabels before reallocating it. */
1936 uint32_t cLabelsAlloc;
1937 /** Labels defined while recompiling (referenced by fixups). */
1938 PIEMNATIVELABEL paLabels;
1939 /** Array with indexes of unique labels (uData always 0). */
1940 uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances];
1941
1942 /** Actual number of fixups paFixups. */
1943 uint32_t cFixups;
1944 /** Max number of entries allowed in paFixups before reallocating it. */
1945 uint32_t cFixupsAlloc;
1946 /** Buffer used by the recompiler for recording fixups when generating code. */
1947 PIEMNATIVEFIXUP paFixups;
1948
1949 /** Actual number of fixups in paTbExitFixups. */
1950 uint32_t cTbExitFixups;
1951 /** Max number of entries allowed in paTbExitFixups before reallocating it. */
1952 uint32_t cTbExitFixupsAlloc;
1953 /** Buffer used by the recompiler for recording fixups when generating code. */
1954 PIEMNATIVEEXITFIXUP paTbExitFixups;
1955
1956#if defined(IEMNATIVE_WITH_TB_DEBUG_INFO) || defined(VBOX_WITH_STATISTICS)
1957 /** Statistics: The idxInstr+1 value at the last PC update. */
1958 uint8_t idxInstrPlusOneOfLastPcUpdate;
1959#endif
1960
1961#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
1962 /** Number of debug info entries allocated for pDbgInfo. */
1963 uint32_t cDbgInfoAlloc;
1964 /** Debug info. */
1965 PIEMTBDBG pDbgInfo;
1966#endif
1967
1968#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
1969 /** The current call index (liveness array and threaded calls in TB). */
1970 uint32_t idxCurCall;
1971 /** Number of liveness entries allocated. */
1972 uint32_t cLivenessEntriesAlloc;
1973 /** Liveness entries for all the calls in the TB begin recompiled.
1974 * The entry for idxCurCall contains the info for what the next call will
1975 * require wrt registers. (Which means the last entry is the initial liveness
1976 * state.) */
1977 PIEMLIVENESSENTRY paLivenessEntries;
1978#endif
1979
1980 /** The translation block being recompiled. */
1981 PCIEMTB pTbOrg;
1982 /** The VMCPU structure of the EMT. */
1983 PVMCPUCC pVCpu;
1984
1985 /** Condition sequence number (for generating unique labels). */
1986 uint16_t uCondSeqNo;
1987 /** Check IRQ sequence number (for generating unique labels). */
1988 uint16_t uCheckIrqSeqNo;
1989 /** TLB load sequence number (for generating unique labels). */
1990 uint16_t uTlbSeqNo;
1991 /** The current condition stack depth (aCondStack). */
1992 uint8_t cCondDepth;
1993
1994 /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */
1995 uint8_t cArgsX;
1996 /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */
1997 uint32_t fCImpl;
1998 /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */
1999 uint32_t fMc;
2000 /** The expected IEMCPU::fExec value for the current call/instruction. */
2001 uint32_t fExec;
2002 /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags
2003 * we only emit once per TB (or when the cr0/cr4/xcr0 register changes).
2004 *
2005 * This is an optimization because these control registers can only be changed from
2006 * by calling a C helper we can catch. Should reduce the number of instructions in a TB
2007 * consisting of multiple SIMD instructions.
2008 */
2009 uint32_t fSimdRaiseXcptChecksEmitted;
2010 /** The call number of the last CheckIrq, UINT32_MAX if not seen. */
2011 uint32_t idxLastCheckIrqCallNo;
2012#ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING
2013 uint32_t fSkippingEFlags;
2014#endif
2015#ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
2016 struct
2017 {
2018 /** EFLAGS status bits that we're currently postponing the calculcation of. */
2019 uint32_t fEFlags;
2020 /** The postponed EFLAGS status bits calculation operation. */
2021 IEMNATIVE_POSTPONED_EFL_OP_T enmOp;
2022 /** The bit-width of the postponed EFLAGS calculation. */
2023 uint8_t cOpBits;
2024 /** Host register holding result or first source for the delayed operation,
2025 * UINT8_MAX if not in use. */
2026 uint8_t idxReg1;
2027 /** Host register holding second source for the delayed operation,
2028 * UINT8_MAX if not in use. */
2029 uint8_t idxReg2;
2030# if defined(VBOX_WITH_STATISTICS) || defined(IEMNATIVE_WITH_TB_DEBUG_INFO)
2031 /** Number of times the delayed calculation was emitted. */
2032 uint8_t cEmits;
2033# endif
2034 } PostponedEfl;
2035#endif
2036
2037 /** Core state requiring care with branches. */
2038 IEMNATIVECORESTATE Core;
2039
2040 /** The condition nesting stack. */
2041 IEMNATIVECOND aCondStack[2];
2042
2043#ifndef IEM_WITH_THROW_CATCH
2044 /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions
2045 * for recompilation error handling. */
2046 jmp_buf JmpBuf;
2047#endif
2048} IEMRECOMPILERSTATE;
2049/** Pointer to a native recompiler state. */
2050typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE;
2051
2052
2053/** @def IEMNATIVE_TRY_SETJMP
2054 * Wrapper around setjmp / try, hiding all the ugly differences.
2055 *
2056 * @note Use with extreme care as this is a fragile macro.
2057 * @param a_pReNative The native recompile state.
2058 * @param a_rcTarget The variable that should receive the status code in case
2059 * of a longjmp/throw.
2060 */
2061/** @def IEMNATIVE_CATCH_LONGJMP_BEGIN
2062 * Start wrapper for catch / setjmp-else.
2063 *
2064 * This will set up a scope.
2065 *
2066 * @note Use with extreme care as this is a fragile macro.
2067 * @param a_pReNative The native recompile state.
2068 * @param a_rcTarget The variable that should receive the status code in case
2069 * of a longjmp/throw.
2070 */
2071/** @def IEMNATIVE_CATCH_LONGJMP_END
2072 * End wrapper for catch / setjmp-else.
2073 *
2074 * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean
2075 * up the state.
2076 *
2077 * @note Use with extreme care as this is a fragile macro.
2078 * @param a_pReNative The native recompile state.
2079 */
2080/** @def IEMNATIVE_DO_LONGJMP
2081 *
2082 * Wrapper around longjmp / throw.
2083 *
2084 * @param a_pReNative The native recompile state.
2085 * @param a_rc The status code jump back with / throw.
2086 */
2087#ifdef IEM_WITH_THROW_CATCH
2088# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
2089 a_rcTarget = VINF_SUCCESS; \
2090 try
2091# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
2092 catch (int rcThrown) \
2093 { \
2094 a_rcTarget = rcThrown
2095# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
2096 } \
2097 ((void)0)
2098# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc)
2099#else /* !IEM_WITH_THROW_CATCH */
2100# define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \
2101 if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0)
2102# define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \
2103 else \
2104 { \
2105 ((void)0)
2106# define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \
2107 }
2108# define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc))
2109#endif /* !IEM_WITH_THROW_CATCH */
2110
2111
2112/**
2113 * Native recompiler worker for a threaded function.
2114 *
2115 * @returns New code buffer offset; throws VBox status code in case of a failure.
2116 * @param pReNative The native recompiler state.
2117 * @param off The current code buffer offset.
2118 * @param pCallEntry The threaded call entry.
2119 *
2120 * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT!
2121 */
2122typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry);
2123/** Pointer to a native recompiler worker for a threaded function. */
2124typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC;
2125
2126/** Defines a native recompiler worker for a threaded function.
2127 * @see FNIEMNATIVERECOMPFUNC */
2128#define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \
2129 IEM_DECL_MSC_GUARD_IGNORE uint32_t VBOXCALL \
2130 a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry)
2131
2132/** Prototypes a native recompiler function for a threaded function.
2133 * @see FNIEMNATIVERECOMPFUNC */
2134#define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name
2135
2136
2137/**
2138 * Native recompiler liveness analysis worker for a threaded function.
2139 *
2140 * @param pCallEntry The threaded call entry.
2141 * @param pIncoming The incoming liveness state entry.
2142 * @param pOutgoing The outgoing liveness state entry.
2143 */
2144typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry,
2145 PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing));
2146/** Pointer to a native recompiler liveness analysis worker for a threaded function. */
2147typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC;
2148
2149/** Defines a native recompiler liveness analysis worker for a threaded function.
2150 * @see FNIEMNATIVELIVENESSFUNC */
2151#define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \
2152 IEM_DECL_MSC_GUARD_IGNORE DECLCALLBACK(void) \
2153 a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)
2154
2155/** Prototypes a native recompiler liveness analysis function for a threaded function.
2156 * @see FNIEMNATIVELIVENESSFUNC */
2157#define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name
2158
2159
2160/** Define a native recompiler helper function, safe to call from the TB code. */
2161#define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \
2162 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
2163/** Prototype a native recompiler helper function, safe to call from the TB code. */
2164#define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \
2165 DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList
2166/** Pointer typedef a native recompiler helper function, safe to call from the TB code. */
2167#define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \
2168 a_RetType (VBOXCALL *a_Name) a_ArgList
2169
2170
2171#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2172DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2173DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg,
2174 uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX);
2175DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative,
2176 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2177 uint8_t idxHstSimdReg = UINT8_MAX,
2178 uint8_t idxHstSimdRegPrev = UINT8_MAX);
2179DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
2180 uint8_t idxGstReg, uint8_t idxHstReg);
2181DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg,
2182 uint64_t fGstReg);
2183DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative,
2184 uint64_t offPc, uint32_t cInstrSkipped);
2185# ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING
2186DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddPostponedEFlagsCalc(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2187 IEMNATIVE_POSTPONED_EFL_OP_T enmOp, uint8_t cOpBits,
2188 uint8_t idxInstance);
2189# endif
2190#endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */
2191
2192DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
2193 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0);
2194DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere);
2195DECLHIDDEN(uint32_t) iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType,
2196 uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT;
2197DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel,
2198 IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0);
2199DECL_HIDDEN_THROW(void) iemNativeAddTbExitFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere,
2200 IEMNATIVELABELTYPE enmExitReason);
2201DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq);
2202
2203DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff);
2204DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff);
2205DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask);
2206DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpExPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask);
2207DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm);
2208
2209DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2210DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2211DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWrite(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2212DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculation(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2213DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2214DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2215DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2216DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg);
2217
2218#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT)
2219DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2220 uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0);
2221DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2222 uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0);
2223#endif
2224
2225DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2226 IEMNATIVEGSTREG enmGstReg);
2227#if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT)
2228DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2229 uint64_t fRead, uint64_t fWrite = 0);
2230#else
2231DECL_FORCE_INLINE_THROW(uint8_t)
2232iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2233 uint64_t fRead, uint64_t fWrite = 0)
2234{
2235 RT_NOREF(fRead, fWrite);
2236 return iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(pReNative, poff, kIemNativeGstReg_EFlags);
2237}
2238#endif
2239
2240DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs);
2241DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg);
2242#if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64))
2243DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
2244 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK);
2245DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar,
2246 uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK);
2247#endif
2248DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2249DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2250DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT;
2251DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT;
2252DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT;
2253#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2254DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg);
2255#endif
2256DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT;
2257DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs,
2258 uint32_t fKeepVars = 0);
2259DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT;
2260DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT;
2261DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2262 uint32_t fHstRegsActiveShadows);
2263#ifdef VBOX_STRICT
2264DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative);
2265#endif
2266DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept,
2267 uint64_t fGstSimdShwExcept);
2268#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
2269# ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
2270DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2271DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheckWithReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxPcReg);
2272# endif
2273DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off);
2274#endif
2275#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2276DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg);
2277DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWriteEx(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2278 PIEMNATIVECORESTATE pCore, IEMNATIVEGSTREG enmGstReg);
2279DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2280 uint64_t fFlushGstReg = UINT64_MAX);
2281DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative,
2282 uint32_t off, uint8_t idxHstReg);
2283#endif
2284
2285
2286DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true);
2287DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask,
2288 bool fPreferVolatile = true);
2289DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff,
2290 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2291 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz,
2292 IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
2293 bool fNoVolatileRegs = false);
2294DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT;
2295DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT;
2296DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2297 IEMNATIVEGSTSIMDREG enmGstSimdReg);
2298DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2299 uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg,
2300 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
2301
2302DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType);
2303DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue);
2304DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar);
2305DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType);
2306DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue);
2307DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther);
2308DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2309DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue);
2310DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2311 IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg);
2312DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2313DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff);
2314DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireWithPrefSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2315 uint32_t *poff, uint8_t idxRegPref);
2316DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireInitedSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff);
2317DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireInitedWithPrefSlow(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2318 uint32_t *poff, uint8_t idxRegPref);
2319DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff,
2320 bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX);
2321DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar,
2322 IEMNATIVEGSTREG enmGstReg, uint32_t *poff);
2323DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2324 uint32_t fHstGprNotToSave);
2325DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2326 uint32_t fHstGprNotToSave);
2327DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar);
2328DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars);
2329
2330DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2331 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
2332DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowRegEx(PIEMNATIVEINSTR pCodeBuf, uint32_t off,
2333 uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg);
2334#ifdef VBOX_STRICT
2335DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg);
2336DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg,
2337 IEMNATIVEGSTREG enmGstReg);
2338DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheckEx(PIEMRECOMPILERSTATE pReNative, PIEMNATIVEINSTR pCodeBuf,
2339 uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg);
2340DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg,
2341 IEMNATIVEGSTSIMDREG enmGstSimdReg,
2342 IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz);
2343DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec);
2344#endif
2345#ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING
2346DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded);
2347#endif
2348DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr);
2349DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true);
2350DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr,
2351 uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams,
2352 uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
2353DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off,
2354 PCIEMTHRDEDCALLENTRY pCallEntry);
2355IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(iemNativeLivenessFunc_ThreadedCall);
2356DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst,
2357 IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass);
2358
2359
2360IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr));
2361IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu));
2362IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu));
2363IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu));
2364IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu));
2365IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu));
2366IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu));
2367IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu));
2368IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu));
2369IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu));
2370IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseAvxRelated,(PVMCPUCC pVCpu));
2371IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseRelated,(PVMCPUCC pVCpu));
2372IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseAvxFpRelated,(PVMCPUCC pVCpu));
2373
2374IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2375IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2376IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2377IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2378IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2379IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2380IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2381IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2382IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2383IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg));
2384IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2385IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2386IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst));
2387IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
2388IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst));
2389IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value));
2390IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value));
2391IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value));
2392IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value));
2393IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
2394IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src));
2395IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
2396IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src));
2397IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2398IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2399IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2400IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2401IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2402IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2403IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2404
2405IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2406IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2407IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2408IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2409IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2410IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2411IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2412IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2413IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2414IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2415IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2416IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2417IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst));
2418IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
2419IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst));
2420IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value));
2421IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2422IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2423IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2424IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2425IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src));
2426IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2427IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src));
2428IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value));
2429IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2430IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value));
2431IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value));
2432IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2433IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2434IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem));
2435
2436IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2437IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2438IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2439IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2440IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2441IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2442IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2443IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2444IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2445IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2446IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2447IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2448IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2449IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2450IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2451IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2452IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2453IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2454IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2455IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2456IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2457IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg));
2458
2459IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2460IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2461IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2462IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2463IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2464IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2465IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2466IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2467IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2468IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2469IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2470IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2471IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2472IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2473IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2474IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2475IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2476IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2477IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2478IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2479IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2480IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem));
2481
2482IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2483IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2484IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2485IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo));
2486
2487
2488/**
2489 * Info about shadowed guest register values.
2490 * @see IEMNATIVEGSTREG
2491 */
2492typedef struct IEMANTIVEGSTREGINFO
2493{
2494 /** Offset in VMCPU. */
2495 uint32_t off;
2496 /** The field size. */
2497 uint8_t cb;
2498 /** Name (for logging). */
2499 const char *pszName;
2500} IEMANTIVEGSTREGINFO;
2501extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[];
2502extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[];
2503extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[];
2504extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[];
2505extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[];
2506
2507
2508
2509/**
2510 * Ensures that there is sufficient space in the instruction output buffer.
2511 *
2512 * This will reallocate the buffer if needed and allowed.
2513 *
2514 * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the
2515 * allocation size.
2516 *
2517 * @returns Pointer to the instruction output buffer on success; throws VBox
2518 * status code on failure, so no need to check it.
2519 * @param pReNative The native recompile state.
2520 * @param off Current instruction offset. Works safely for UINT32_MAX
2521 * as well.
2522 * @param cInstrReq Number of instruction about to be added. It's okay to
2523 * overestimate this a bit.
2524 */
2525DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR)
2526iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq)
2527{
2528 uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */
2529 if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc))
2530 {
2531#ifdef VBOX_STRICT
2532 pReNative->offInstrBufChecked = offChecked;
2533#endif
2534 return pReNative->pInstrBuf;
2535 }
2536 return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq);
2537}
2538
2539/**
2540 * Checks that we didn't exceed the space requested in the last
2541 * iemNativeInstrBufEnsure() call.
2542 */
2543#define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \
2544 AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \
2545 ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked))
2546
2547/**
2548 * Checks that a variable index is valid.
2549 */
2550#ifdef IEMNATIVE_VAR_IDX_MAGIC
2551# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2552 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2553 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2554 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \
2555 ("%s=%#x\n", #a_idxVar, a_idxVar))
2556#else
2557# define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \
2558 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2559 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar))
2560#endif
2561
2562/**
2563 * Checks that a variable index is valid and that the variable is assigned the
2564 * correct argument number.
2565 * This also adds a RT_NOREF of a_idxVar.
2566 */
2567#ifdef IEMNATIVE_VAR_IDX_MAGIC
2568# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2569 RT_NOREF_PV(a_idxVar); \
2570 AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \
2571 && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2572 && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \
2573 && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \
2574 ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2575 (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \
2576 RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \
2577 a_uArgNo)); \
2578 } while (0)
2579#else
2580# define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \
2581 RT_NOREF_PV(a_idxVar); \
2582 AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \
2583 && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\
2584 && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \
2585 , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \
2586 (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \
2587 } while (0)
2588#endif
2589
2590
2591/**
2592 * Checks that a variable has the expected size.
2593 */
2594#define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \
2595 AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \
2596 ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \
2597 (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar, (a_cbVar)))
2598
2599
2600/**
2601 * Calculates the stack address of a variable as a [r]BP displacement value.
2602 */
2603DECL_FORCE_INLINE(int32_t)
2604iemNativeStackCalcBpDisp(uint8_t idxStackSlot)
2605{
2606 Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS);
2607 return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS;
2608}
2609
2610
2611/**
2612 * Releases the variable's register.
2613 *
2614 * The register must have been previously acquired calling
2615 * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or
2616 * iemNativeVarRegisterSetAndAcquire().
2617 */
2618DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2619{
2620 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2621 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired);
2622 pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false;
2623}
2624
2625
2626DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar)
2627{
2628 Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg);
2629 iemNativeVarRegisterRelease(pReNative, idxVar);
2630}
2631
2632
2633/**
2634 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2635 * fixed till we call iemNativeVarRegisterRelease.
2636 *
2637 * @returns The host register number.
2638 * @param pReNative The recompiler state.
2639 * @param idxVar The variable.
2640 * @param poff Pointer to the instruction buffer offset.
2641 * In case a register needs to be freed up or the value
2642 * loaded off the stack.
2643 * @note Must not modify the host status flags!
2644 */
2645DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff)
2646{
2647 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2648 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2649 Assert(pVar->cbVar <= 8);
2650 Assert(!pVar->fRegAcquired);
2651 uint8_t const idxReg = pVar->idxReg;
2652 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2653 {
2654 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2655 && pVar->enmKind < kIemNativeVarKind_End);
2656 pVar->fRegAcquired = true;
2657 return idxReg;
2658 }
2659 return iemNativeVarRegisterAcquireSlow(pReNative, idxVar, poff);
2660}
2661
2662
2663/**
2664 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2665 * fixed till we call iemNativeVarRegisterRelease.
2666 *
2667 * @returns The host register number.
2668 * @param pReNative The recompiler state.
2669 * @param idxVar The variable.
2670 * @param poff Pointer to the instruction buffer offset.
2671 * In case a register needs to be freed up or the value
2672 * loaded off the stack.
2673 * @param idxRegPref Preferred register number.
2674 * @note Must not modify the host status flags!
2675 */
2676DECL_INLINE_THROW(uint8_t)
2677iemNativeVarRegisterAcquireWithPref(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, uint8_t idxRegPref)
2678{
2679 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2680 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2681 Assert(pVar->cbVar <= 8);
2682 Assert(!pVar->fRegAcquired);
2683 Assert(idxRegPref < RT_ELEMENTS(pReNative->Core.aHstRegs));
2684 uint8_t const idxReg = pVar->idxReg;
2685 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2686 {
2687 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2688 && pVar->enmKind < kIemNativeVarKind_End);
2689 pVar->fRegAcquired = true;
2690 return idxReg;
2691 }
2692 return iemNativeVarRegisterAcquireWithPrefSlow(pReNative, idxVar, poff, idxRegPref);
2693}
2694
2695
2696/**
2697 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2698 * fixed till we call iemNativeVarRegisterRelease.
2699 *
2700 * The variable must be initialized or VERR_IEM_VAR_NOT_INITIALIZED will be
2701 * thrown.
2702 *
2703 * @returns The host register number.
2704 * @param pReNative The recompiler state.
2705 * @param idxVar The variable.
2706 * @param poff Pointer to the instruction buffer offset.
2707 * In case a register needs to be freed up or the value
2708 * loaded off the stack.
2709 * @note Must not modify the host status flags!
2710 */
2711DECL_INLINE_THROW(uint8_t) iemNativeVarRegisterAcquireInited(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff)
2712{
2713 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2714 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2715 Assert(pVar->cbVar <= 8);
2716 Assert(!pVar->fRegAcquired);
2717 uint8_t const idxReg = pVar->idxReg;
2718 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2719 {
2720 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2721 && pVar->enmKind < kIemNativeVarKind_End);
2722 pVar->fRegAcquired = true;
2723 return idxReg;
2724 }
2725 return iemNativeVarRegisterAcquireInitedSlow(pReNative, idxVar, poff);
2726}
2727
2728
2729/**
2730 * Makes sure variable @a idxVar has a register assigned to it and that it stays
2731 * fixed till we call iemNativeVarRegisterRelease.
2732 *
2733 * The variable must be initialized or VERR_IEM_VAR_NOT_INITIALIZED will be
2734 * thrown.
2735 *
2736 * @returns The host register number.
2737 * @param pReNative The recompiler state.
2738 * @param idxVar The variable.
2739 * @param poff Pointer to the instruction buffer offset.
2740 * In case a register needs to be freed up or the value
2741 * loaded off the stack.
2742 * @param idxRegPref Preferred register number.
2743 * @note Must not modify the host status flags!
2744 */
2745DECL_INLINE_THROW(uint8_t)
2746iemNativeVarRegisterAcquireInitedWithPref(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, uint8_t idxRegPref)
2747{
2748 IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar);
2749 PIEMNATIVEVAR const pVar = &pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)];
2750 Assert(pVar->cbVar <= 8);
2751 Assert(!pVar->fRegAcquired);
2752 Assert(idxRegPref < RT_ELEMENTS(pReNative->Core.aHstRegs));
2753 uint8_t const idxReg = pVar->idxReg;
2754 if (idxReg < RT_ELEMENTS(pReNative->Core.aHstRegs))
2755 {
2756 Assert( pVar->enmKind > kIemNativeVarKind_Invalid
2757 && pVar->enmKind < kIemNativeVarKind_End);
2758 pVar->fRegAcquired = true;
2759 return idxReg;
2760 }
2761 return iemNativeVarRegisterAcquireInitedWithPrefSlow(pReNative, idxVar, poff, idxRegPref);
2762}
2763
2764
2765/**
2766 * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask.
2767 *
2768 * @returns The flush mask.
2769 * @param fCImpl The IEM_CIMPL_F_XXX flags.
2770 * @param fGstShwFlush The starting flush mask.
2771 */
2772DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush)
2773{
2774 if (fCImpl & IEM_CIMPL_F_BRANCH_FAR)
2775 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS)
2776 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS)
2777 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS);
2778 if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR)
2779 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP)
2780 | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS)
2781 | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS)
2782 | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS);
2783 else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK)
2784 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP);
2785 if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW))
2786 fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags);
2787 return fGstShwFlush;
2788}
2789
2790
2791/** Number of hidden arguments for CIMPL calls.
2792 * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */
2793#if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64)
2794# define IEM_CIMPL_HIDDEN_ARGS 3
2795#else
2796# define IEM_CIMPL_HIDDEN_ARGS 2
2797#endif
2798
2799
2800/** Number of hidden arguments for SSE_AIMPL calls. */
2801#define IEM_SSE_AIMPL_HIDDEN_ARGS 1
2802/** Number of hidden arguments for AVX_AIMPL calls. */
2803#define IEM_AVX_AIMPL_HIDDEN_ARGS 1
2804
2805
2806#ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS
2807
2808# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2809/**
2810 * Helper for iemNativeLivenessGetStateByGstReg.
2811 *
2812 * @returns IEMLIVENESS_STATE_XXX
2813 * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state
2814 * ORed together.
2815 */
2816DECL_FORCE_INLINE(uint32_t)
2817iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2)
2818{
2819 /* INPUT trumps anything else. */
2820 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT))
2821 return IEMLIVENESS_STATE_INPUT;
2822
2823 /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */
2824 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED))
2825 {
2826 /* If not all sub-fields are clobbered they must be considered INPUT. */
2827 if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)))
2828 return IEMLIVENESS_STATE_INPUT;
2829 return IEMLIVENESS_STATE_CLOBBERED;
2830 }
2831
2832 /* XCPT_OR_CALL trumps UNUSED. */
2833 if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))
2834 return IEMLIVENESS_STATE_XCPT_OR_CALL;
2835
2836 return IEMLIVENESS_STATE_UNUSED;
2837}
2838# endif /* !IEMLIVENESS_EXTENDED_LAYOUT */
2839
2840
2841DECL_FORCE_INLINE(uint32_t)
2842iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx)
2843{
2844# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2845 return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2846 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2);
2847# else
2848 return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1)
2849 | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2)
2850 | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4)
2851 | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 3) & 8);
2852# endif
2853}
2854
2855
2856DECL_FORCE_INLINE(uint32_t)
2857iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg)
2858{
2859 uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg);
2860 if (enmGstReg == kIemNativeGstReg_EFlags)
2861 {
2862 /* Merge the eflags states to one. */
2863# ifndef IEMLIVENESS_EXTENDED_LAYOUT
2864 uRet = RT_BIT_32(uRet);
2865 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1));
2866 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1));
2867 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1));
2868 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1));
2869 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1));
2870 uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1));
2871 uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet);
2872# else
2873 AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags);
2874 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF);
2875 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF);
2876 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF);
2877 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF);
2878 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF);
2879 uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF);
2880# endif
2881 }
2882 return uRet;
2883}
2884
2885# ifdef VBOX_STRICT
2886
2887/** For assertions only - caller checks that idxCurCall isn't zero. */
2888DECL_FORCE_INLINE(uint32_t)
2889iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2890{
2891 return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2892}
2893
2894
2895/** For assertions only - caller checks that idxCurCall isn't zero. */
2896DECL_FORCE_INLINE(uint32_t)
2897iemNativeLivenessGetPrevStateByGstRegEx(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg)
2898{
2899 return iemNativeLivenessGetStateByGstRegEx(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg);
2900}
2901
2902# endif /* VBOX_STRICT */
2903#endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */
2904
2905
2906/**
2907 * Gets the number of hidden arguments for an expected IEM_MC_CALL statement.
2908 */
2909DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative)
2910{
2911 if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL)
2912 return IEM_CIMPL_HIDDEN_ARGS;
2913 if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE))
2914 return 1;
2915 return 0;
2916}
2917
2918
2919DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg,
2920 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
2921{
2922 pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg);
2923
2924 pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat;
2925 pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0;
2926 pReNative->Core.aHstRegs[idxReg].idxVar = idxVar;
2927 return (uint8_t)idxReg;
2928}
2929
2930
2931
2932/*********************************************************************************************************************************
2933* Register Allocator (GPR) *
2934*********************************************************************************************************************************/
2935
2936#ifdef RT_ARCH_ARM64
2937# include <iprt/armv8.h>
2938#endif
2939
2940
2941/**
2942 * Marks host register @a idxHstReg as containing a shadow copy of guest
2943 * register @a enmGstReg.
2944 *
2945 * ASSUMES that caller has made sure @a enmGstReg is not associated with any
2946 * host register before calling.
2947 */
2948DECL_FORCE_INLINE(void)
2949iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
2950{
2951 Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)));
2952 Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows);
2953 Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End);
2954
2955 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg;
2956 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */
2957 pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg);
2958 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg);
2959#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2960 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2961 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg);
2962#else
2963 RT_NOREF(off);
2964#endif
2965}
2966
2967
2968/**
2969 * Clear any guest register shadow claims from @a idxHstReg.
2970 *
2971 * The register does not need to be shadowing any guest registers.
2972 */
2973DECL_FORCE_INLINE(void)
2974iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off)
2975{
2976 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
2977 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
2978 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
2979 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg))
2980 == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows));
2981#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
2982 Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty));
2983#endif
2984
2985#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
2986 uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
2987 if (fGstRegs)
2988 {
2989 Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End));
2990 iemNativeDbgInfoAddNativeOffset(pReNative, off);
2991 while (fGstRegs)
2992 {
2993 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
2994 fGstRegs &= ~RT_BIT_64(iGstReg);
2995 iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg);
2996 }
2997 }
2998#else
2999 RT_NOREF(off);
3000#endif
3001
3002 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
3003 pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows;
3004 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0;
3005}
3006
3007
3008/**
3009 * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg
3010 * and global overview flags.
3011 */
3012DECL_FORCE_INLINE(void)
3013iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off)
3014{
3015 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3016 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)
3017 == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows
3018 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3019 Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg));
3020 Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg));
3021 Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg));
3022#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
3023 Assert(!(pReNative->Core.bmGstRegShadowDirty & RT_BIT_64(enmGstReg)));
3024#endif
3025
3026#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3027 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3028 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg);
3029#else
3030 RT_NOREF(off);
3031#endif
3032
3033 uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg);
3034 pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew;
3035 if (!fGstRegShadowsNew)
3036 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg);
3037 pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg);
3038}
3039
3040
3041#if 0 /* unused */
3042/**
3043 * Clear any guest register shadow claim for @a enmGstReg.
3044 */
3045DECL_FORCE_INLINE(void)
3046iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off)
3047{
3048 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3049 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
3050 {
3051 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs));
3052 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
3053 }
3054}
3055#endif
3056
3057
3058/**
3059 * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew
3060 * as the new shadow of it.
3061 *
3062 * Unlike the other guest reg shadow helpers, this does the logging for you.
3063 * However, it is the liveness state is not asserted here, the caller must do
3064 * that.
3065 */
3066DECL_FORCE_INLINE(void)
3067iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew,
3068 IEMNATIVEGSTREG enmGstReg, uint32_t off)
3069{
3070 Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3071 if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))
3072 {
3073 uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg];
3074 Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs));
3075 if (idxHstRegOld == idxHstRegNew)
3076 return;
3077 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew],
3078 g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld]));
3079 iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off);
3080 }
3081 else
3082 Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew],
3083 g_aGstShadowInfo[enmGstReg].pszName));
3084 iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off);
3085}
3086
3087
3088/**
3089 * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom
3090 * to @a idxRegTo.
3091 */
3092DECL_FORCE_INLINE(void)
3093iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo,
3094 IEMNATIVEGSTREG enmGstReg, uint32_t off)
3095{
3096 Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg));
3097 Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom);
3098 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)
3099 == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows
3100 && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3101 Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows)
3102 == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows);
3103 Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom))
3104 == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows));
3105
3106 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg);
3107 pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom;
3108 if (!fGstRegShadowsFrom)
3109 pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom);
3110 pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo);
3111 pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg);
3112 pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo;
3113#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3114 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3115 iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom);
3116#else
3117 RT_NOREF(off);
3118#endif
3119}
3120
3121
3122/**
3123 * Flushes any delayed guest register writes.
3124 *
3125 * This must be called prior to calling CImpl functions and any helpers that use
3126 * the guest state (like raising exceptions) and such.
3127 *
3128 * This optimization has not yet been implemented. The first target would be
3129 * RIP updates, since these are the most common ones.
3130 *
3131 * @note This function does not flush any shadowing information for guest
3132 * registers. This needs to be done by the caller if it wishes to do so.
3133 */
3134DECL_INLINE_THROW(uint32_t)
3135iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0,
3136 uint64_t fGstSimdShwExcept = 0)
3137{
3138#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
3139 uint64_t const fWritebackPc = ~fGstShwExcept & RT_BIT_64(kIemNativeGstReg_Pc);
3140#else
3141 uint64_t const fWritebackPc = 0;
3142#endif
3143#ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
3144 uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept;
3145#else
3146 uint64_t const bmGstRegShadowDirty = 0;
3147#endif
3148 uint64_t const bmGstSimdRegShadowDirty = ( pReNative->Core.bmGstSimdRegShadowDirtyLo128
3149 | pReNative->Core.bmGstSimdRegShadowDirtyHi128)
3150 & ~fGstSimdShwExcept;
3151 if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc)
3152 return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept);
3153
3154 return off;
3155}
3156
3157
3158/**
3159 * Allocates a temporary host general purpose register for keeping a guest
3160 * register value.
3161 *
3162 * Since we may already have a register holding the guest register value,
3163 * code will be emitted to do the loading if that's not the case. Code may also
3164 * be emitted if we have to free up a register to satify the request.
3165 *
3166 * @returns The host register number; throws VBox status code on failure, so no
3167 * need to check the return value.
3168 * @param pReNative The native recompile state.
3169 * @param poff Pointer to the variable with the code buffer
3170 * position. This will be update if we need to move a
3171 * variable from register to stack in order to satisfy
3172 * the request.
3173 * @param enmGstReg The guest register that will is to be updated.
3174 * @param enmIntendedUse How the caller will be using the host register.
3175 * @param fNoVolatileRegs Set if no volatile register allowed, clear if any
3176 * register is okay (default). The ASSUMPTION here is
3177 * that the caller has already flushed all volatile
3178 * registers, so this is only applied if we allocate a
3179 * new register.
3180 * @sa iemNativeRegAllocTmpForGuestEFlags
3181 * iemNativeRegAllocTmpForGuestRegIfAlreadyPresent
3182 * iemNativeRegAllocTmpForGuestRegInt
3183 */
3184DECL_FORCE_INLINE_THROW(uint8_t)
3185iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg,
3186 IEMNATIVEGSTREGUSE const enmIntendedUse = kIemNativeGstRegUse_ReadOnly,
3187 bool const fNoVolatileRegs = false)
3188{
3189 if (enmIntendedUse == kIemNativeGstRegUse_ReadOnly)
3190 return !fNoVolatileRegs
3191 ? iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, enmGstReg)
3192 : iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(pReNative, poff, enmGstReg);
3193 if (enmIntendedUse == kIemNativeGstRegUse_ForUpdate)
3194 return !fNoVolatileRegs
3195 ? iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, enmGstReg)
3196 : iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(pReNative, poff, enmGstReg);
3197 if (enmIntendedUse == kIemNativeGstRegUse_ForFullWrite)
3198 return !fNoVolatileRegs
3199 ? iemNativeRegAllocTmpForGuestRegFullWrite(pReNative, poff, enmGstReg)
3200 : iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(pReNative, poff, enmGstReg);
3201 Assert(enmIntendedUse == kIemNativeGstRegUse_Calculation);
3202 return !fNoVolatileRegs
3203 ? iemNativeRegAllocTmpForGuestRegCalculation(pReNative, poff, enmGstReg)
3204 : iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(pReNative, poff, enmGstReg);
3205}
3206
3207#if !defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || !defined(VBOX_STRICT)
3208
3209DECL_FORCE_INLINE_THROW(uint8_t)
3210iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead,
3211 uint64_t fWrite = 0, uint64_t fPotentialCall = 0)
3212{
3213 RT_NOREF(fRead, fWrite, fPotentialCall);
3214 return iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, kIemNativeGstReg_EFlags);
3215}
3216
3217DECL_FORCE_INLINE_THROW(uint8_t)
3218iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead,
3219 uint64_t fWrite = 0, uint64_t fPotentialCall = 0)
3220{
3221 RT_NOREF(fRead, fWrite, fPotentialCall);
3222 return iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, kIemNativeGstReg_EFlags);
3223}
3224
3225#endif
3226
3227
3228
3229/*********************************************************************************************************************************
3230* SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) *
3231*********************************************************************************************************************************/
3232
3233DECL_FORCE_INLINE(uint8_t)
3234iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg,
3235 IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT
3236{
3237 pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg);
3238
3239 pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat;
3240 pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar;
3241 pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0;
3242 return idxSimdReg;
3243}
3244
3245
3246/**
3247 * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest
3248 * SIMD register @a enmGstSimdReg.
3249 *
3250 * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any
3251 * host register before calling.
3252 */
3253DECL_FORCE_INLINE(void)
3254iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg,
3255 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
3256{
3257 Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg)));
3258 Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows);
3259 Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End);
3260
3261 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg;
3262 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
3263 pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg);
3264 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg);
3265#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3266 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3267 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg);
3268#else
3269 RT_NOREF(off);
3270#endif
3271}
3272
3273
3274/**
3275 * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom
3276 * to @a idxSimdRegTo.
3277 */
3278DECL_FORCE_INLINE(void)
3279iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo,
3280 IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off)
3281{
3282 Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg));
3283 Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom);
3284 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)
3285 == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows
3286 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End));
3287 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows)
3288 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows);
3289 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom))
3290 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows));
3291 Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded
3292 == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded);
3293
3294 uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg);
3295 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom;
3296 if (!fGstRegShadowsFrom)
3297 {
3298 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom);
3299 pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
3300 }
3301 pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo);
3302 pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg);
3303 pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo;
3304#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3305 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3306 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom);
3307#else
3308 RT_NOREF(off);
3309#endif
3310}
3311
3312
3313/**
3314 * Clear any guest register shadow claims from @a idxHstSimdReg.
3315 *
3316 * The register does not need to be shadowing any guest registers.
3317 */
3318DECL_FORCE_INLINE(void)
3319iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off)
3320{
3321 Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)
3322 == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows
3323 && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End));
3324 Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg))
3325 == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows));
3326 Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128)
3327 && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128));
3328
3329#ifdef IEMNATIVE_WITH_TB_DEBUG_INFO
3330 uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
3331 if (fGstRegs)
3332 {
3333 Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End));
3334 iemNativeDbgInfoAddNativeOffset(pReNative, off);
3335 while (fGstRegs)
3336 {
3337 unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1;
3338 fGstRegs &= ~RT_BIT_64(iGstReg);
3339 iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg);
3340 }
3341 }
3342#else
3343 RT_NOREF(off);
3344#endif
3345
3346 pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg);
3347 pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows;
3348 pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0;
3349 pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid;
3350}
3351
3352
3353
3354#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
3355/**
3356 * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update.
3357 */
3358DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off)
3359{
3360 if (pReNative->Core.offPc)
3361 return iemNativeEmitPcWritebackSlow(pReNative, off);
3362 return off;
3363}
3364#endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */
3365
3366
3367/** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as
3368 * it saves us the trouble of a hidden parameter on MSC/amd64. */
3369#ifdef RT_ARCH_AMD64
3370extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody));
3371#elif defined(RT_ARCH_ARM64)
3372extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody));
3373#endif
3374
3375#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
3376extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeFpCtrlRegRestore, (uint64_t u64RegFpCtrl));
3377#endif
3378
3379#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
3380
3381/** @} */
3382
3383#endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */
3384
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette