/* $Id: IEMN8veRecompiler.h 106319 2024-10-15 08:50:24Z vboxsync $ */ /** @file * IEM - Interpreted Execution Manager - Native Recompiler Internals. */ /* * Copyright (C) 2011-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #ifndef VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h #define VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif /** @defgroup grp_iem_n8ve_re Native Recompiler Internals. * @ingroup grp_iem_int * @{ */ #include /* for RT_IN_ASSEMBLER mode */ /** @def IEMNATIVE_WITH_TB_DEBUG_INFO * Enables generating internal debug info for better TB disassembly dumping. */ #if defined(DEBUG) || defined(DOXYGEN_RUNNING) || 0 # define IEMNATIVE_WITH_TB_DEBUG_INFO #endif /** @def IEMNATIVE_WITH_LIVENESS_ANALYSIS * Enables liveness analysis. */ #if 1 || defined(DOXYGEN_RUNNING) # define IEMNATIVE_WITH_LIVENESS_ANALYSIS #endif /** @def IEMNATIVE_WITH_EFLAGS_SKIPPING * Enables skipping EFLAGS calculations/updating based on liveness info. */ #if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING) # define IEMNATIVE_WITH_EFLAGS_SKIPPING #endif /** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING * Enables strict consistency checks around EFLAGS skipping. * @note Only defined when IEMNATIVE_WITH_EFLAGS_SKIPPING is also defined. */ #ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING # ifdef VBOX_STRICT # define IEMNATIVE_STRICT_EFLAGS_SKIPPING # endif #elif defined(DOXYGEN_RUNNING) # define IEMNATIVE_STRICT_EFLAGS_SKIPPING #endif /** @def IEMNATIVE_WITH_EFLAGS_POSTPONING * Enables delaying EFLAGS calculations/updating to conditional code paths * that are (hopefully) not taken so frequently. * * This can only help with case where there is an conditional * call/exception/tbexit that needs the flag, but in the default code stream the * flag will be clobbered. Useful for TlbMiss scenarios and sequences of memory * based instructions clobbering status flags. */ #if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || defined(DOXYGEN_RUNNING) # if 1 || defined(DOXYGEN_RUNNING) # define IEMNATIVE_WITH_EFLAGS_POSTPONING # endif #endif #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING # ifndef IEMNATIVE_WITH_EFLAGS_SKIPPING # error "IEMNATIVE_WITH_EFLAGS_POSTPONING requires IEMNATIVE_WITH_EFLAGS_SKIPPING at present" # endif #endif /** @def IEMLIVENESS_EXTENDED_LAYOUT * Enables the extended liveness data layout. */ #if defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) || defined(DOXYGEN_RUNNING) || 0 # define IEMLIVENESS_EXTENDED_LAYOUT #endif #ifdef VBOX_WITH_STATISTICS /** Always count instructions for now. */ # define IEMNATIVE_WITH_INSTRUCTION_COUNTING #endif /** @name Stack Frame Layout * * @{ */ /** The size of the area for stack variables and spills and stuff. * @note This limit is duplicated in the python script(s). We add 0x40 for * alignment padding. */ #define IEMNATIVE_FRAME_VAR_SIZE (0xc0 + 0x40) /** Number of 64-bit variable slots (0x100 / 8 = 32. */ #define IEMNATIVE_FRAME_VAR_SLOTS (IEMNATIVE_FRAME_VAR_SIZE / 8) AssertCompile(IEMNATIVE_FRAME_VAR_SLOTS == 32); #ifdef RT_ARCH_AMD64 /** An stack alignment adjustment (between non-volatile register pushes and * the stack variable area, so the latter better aligned). */ # define IEMNATIVE_FRAME_ALIGN_SIZE 8 /** Number of stack arguments slots for calls made from the frame. */ # ifdef RT_OS_WINDOWS # define IEMNATIVE_FRAME_STACK_ARG_COUNT 4 # else # define IEMNATIVE_FRAME_STACK_ARG_COUNT 2 # endif /** Number of any shadow arguments (spill area) for calls we make. */ # ifdef RT_OS_WINDOWS # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 4 # else # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0 # endif /** Frame pointer (RBP) relative offset of the last push. */ # ifdef RT_OS_WINDOWS # define IEMNATIVE_FP_OFF_LAST_PUSH (7 * -8) # else # define IEMNATIVE_FP_OFF_LAST_PUSH (5 * -8) # endif /** Frame pointer (RBP) relative offset of the stack variable area (the lowest * address for it). */ # define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE) /** Frame pointer (RBP) relative offset of the first stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG0 (IEMNATIVE_FP_OFF_STACK_VARS - IEMNATIVE_FRAME_STACK_ARG_COUNT * 8) /** Frame pointer (RBP) relative offset of the second stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG1 (IEMNATIVE_FP_OFF_STACK_ARG0 + 8) # ifdef RT_OS_WINDOWS /** Frame pointer (RBP) relative offset of the third stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG2 (IEMNATIVE_FP_OFF_STACK_ARG0 + 16) /** Frame pointer (RBP) relative offset of the fourth stack argument for calls. */ # define IEMNATIVE_FP_OFF_STACK_ARG3 (IEMNATIVE_FP_OFF_STACK_ARG0 + 24) # endif # ifdef RT_OS_WINDOWS /** Frame pointer (RBP) relative offset of the first incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG0 (16) /** Frame pointer (RBP) relative offset of the second incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG1 (24) /** Frame pointer (RBP) relative offset of the third incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG2 (32) /** Frame pointer (RBP) relative offset of the fourth incoming shadow argument. */ # define IEMNATIVE_FP_OFF_IN_SHADOW_ARG3 (40) # endif #elif RT_ARCH_ARM64 /** No alignment padding needed for arm64. */ # define IEMNATIVE_FRAME_ALIGN_SIZE 0 /** No stack argument slots, got 8 registers for arguments will suffice. */ # define IEMNATIVE_FRAME_STACK_ARG_COUNT 0 /** There are no argument spill area. */ # define IEMNATIVE_FRAME_SHADOW_ARG_COUNT 0 /** Number of saved registers at the top of our stack frame. * This includes the return address and old frame pointer, so x19 thru x30. */ # define IEMNATIVE_FRAME_SAVE_REG_COUNT (12) /** The size of the save registered (IEMNATIVE_FRAME_SAVE_REG_COUNT). */ # define IEMNATIVE_FRAME_SAVE_REG_SIZE (IEMNATIVE_FRAME_SAVE_REG_COUNT * 8) /** Frame pointer (BP) relative offset of the last push. */ # define IEMNATIVE_FP_OFF_LAST_PUSH (10 * -8) /** Frame pointer (BP) relative offset of the stack variable area (the lowest * address for it). */ # define IEMNATIVE_FP_OFF_STACK_VARS (IEMNATIVE_FP_OFF_LAST_PUSH - IEMNATIVE_FRAME_ALIGN_SIZE - IEMNATIVE_FRAME_VAR_SIZE) #else # error "port me" #endif /** @} */ /** @name Fixed Register Allocation(s) * @{ */ /** @def IEMNATIVE_REG_FIXED_PVMCPU * The number of the register holding the pVCpu pointer. */ /** @def IEMNATIVE_REG_FIXED_PCPUMCTX * The number of the register holding the &pVCpu->cpum.GstCtx pointer. * @note This not available on AMD64, only ARM64. */ /** @def IEMNATIVE_REG_FIXED_TMP0 * Dedicated temporary register. * @note This has extremely short lifetime, must be used with great care to make * sure any calling code or code being called is making use of it. * It will definitely not survive a call or anything of that nature. * @todo replace this by a register allocator and content tracker. */ /** @def IEMNATIVE_REG_FIXED_MASK * Mask GPRs with fixes assignments, either by us or dictated by the CPU/OS * architecture. */ #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** @def IEMNATIVE_SIMD_REG_FIXED_TMP0 * Mask SIMD registers with fixes assignments, either by us or dictated by the CPU/OS * architecture. */ /** @def IEMNATIVE_SIMD_REG_FIXED_TMP0 * Dedicated temporary SIMD register. */ #endif #if defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) /* arm64 goes first because of doxygen */ # define IEMNATIVE_REG_FIXED_PVMCPU ARMV8_A64_REG_X28 # define IEMNATIVE_REG_FIXED_PVMCPU_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PVMCPU) # define IEMNATIVE_REG_FIXED_PCPUMCTX ARMV8_A64_REG_X27 # define IEMNATIVE_REG_FIXED_PCPUMCTX_ASM RT_CONCAT(x,IEMNATIVE_REG_FIXED_PCPUMCTX) # define IEMNATIVE_REG_FIXED_TMP0 ARMV8_A64_REG_X15 # if defined(IEMNATIVE_WITH_DELAYED_PC_UPDATING) && 0 /* debug the updating with a shadow RIP. */ # define IEMNATIVE_REG_FIXED_TMP1 ARMV8_A64_REG_X16 # define IEMNATIVE_REG_FIXED_PC_DBG ARMV8_A64_REG_X26 # define IEMNATIVE_REG_FIXED_MASK_ADD ( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_PC_DBG)) # else # define IEMNATIVE_REG_FIXED_MASK_ADD 0 # endif # define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(ARMV8_A64_REG_SP) \ | RT_BIT_32(ARMV8_A64_REG_LR) \ | RT_BIT_32(ARMV8_A64_REG_BP) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_PCPUMCTX) \ | RT_BIT_32(ARMV8_A64_REG_X18) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \ | IEMNATIVE_REG_FIXED_MASK_ADD) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR # define IEMNATIVE_SIMD_REG_FIXED_TMP0 ARMV8_A64_REG_Q30 # if defined(IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS) # define IEMNATIVE_SIMD_REG_FIXED_MASK RT_BIT_32(ARMV8_A64_REG_Q30) # else /** @note * ARM64 has 32 registers, but they are only 128-bit wide. So, in order to * support emulating 256-bit registers we pair two real registers statically to * one virtual for now, leaving us with only 16 256-bit registers. We always * pair v0 with v1, v2 with v3, etc. so we mark the higher register as fixed and * the register allocator assumes that it will be always free when the lower is * picked. * * Also ARM64 declares the low 64-bit of v8-v15 as callee saved, so we don't * touch them in order to avoid having to save and restore them in the * prologue/epilogue. */ # define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xff00) \ | RT_BIT_32(ARMV8_A64_REG_Q31) \ | RT_BIT_32(ARMV8_A64_REG_Q30) \ | RT_BIT_32(ARMV8_A64_REG_Q29) \ | RT_BIT_32(ARMV8_A64_REG_Q27) \ | RT_BIT_32(ARMV8_A64_REG_Q25) \ | RT_BIT_32(ARMV8_A64_REG_Q23) \ | RT_BIT_32(ARMV8_A64_REG_Q21) \ | RT_BIT_32(ARMV8_A64_REG_Q19) \ | RT_BIT_32(ARMV8_A64_REG_Q17) \ | RT_BIT_32(ARMV8_A64_REG_Q15) \ | RT_BIT_32(ARMV8_A64_REG_Q13) \ | RT_BIT_32(ARMV8_A64_REG_Q11) \ | RT_BIT_32(ARMV8_A64_REG_Q9) \ | RT_BIT_32(ARMV8_A64_REG_Q7) \ | RT_BIT_32(ARMV8_A64_REG_Q5) \ | RT_BIT_32(ARMV8_A64_REG_Q3) \ | RT_BIT_32(ARMV8_A64_REG_Q1)) # endif # endif #elif defined(RT_ARCH_AMD64) # define IEMNATIVE_REG_FIXED_PVMCPU X86_GREG_xBX # define IEMNATIVE_REG_FIXED_PVMCPU_ASM xBX # define IEMNATIVE_REG_FIXED_TMP0 X86_GREG_x11 # define IEMNATIVE_REG_FIXED_MASK ( RT_BIT_32(IEMNATIVE_REG_FIXED_PVMCPU) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \ | RT_BIT_32(X86_GREG_xSP) \ | RT_BIT_32(X86_GREG_xBP) ) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR # define IEMNATIVE_SIMD_REG_FIXED_TMP0 5 /* xmm5/ymm5 */ # ifndef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS # ifndef _MSC_VER # define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS # endif # endif # ifdef IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS # define IEMNATIVE_SIMD_REG_FIXED_MASK (RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0)) # else /** @note On Windows/AMD64 xmm6 through xmm15 are marked as callee saved. */ # define IEMNATIVE_SIMD_REG_FIXED_MASK ( UINT32_C(0xffc0) \ | RT_BIT_32(IEMNATIVE_SIMD_REG_FIXED_TMP0)) # endif # endif #else # error "port me" #endif /** @} */ /** @name Call related registers. * @{ */ /** @def IEMNATIVE_CALL_RET_GREG * The return value register. */ /** @def IEMNATIVE_CALL_ARG_GREG_COUNT * Number of arguments in registers. */ /** @def IEMNATIVE_CALL_ARG0_GREG * The general purpose register carrying argument \#0. */ /** @def IEMNATIVE_CALL_ARG1_GREG * The general purpose register carrying argument \#1. */ /** @def IEMNATIVE_CALL_ARG2_GREG * The general purpose register carrying argument \#2. */ /** @def IEMNATIVE_CALL_ARG3_GREG * The general purpose register carrying argument \#3. */ /** @def IEMNATIVE_CALL_VOLATILE_GREG_MASK * Mask of registers the callee will not save and may trash. */ #ifdef RT_ARCH_AMD64 # define IEMNATIVE_CALL_RET_GREG X86_GREG_xAX # ifdef RT_OS_WINDOWS # define IEMNATIVE_CALL_ARG_GREG_COUNT 4 # define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xCX # define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xDX # define IEMNATIVE_CALL_ARG2_GREG X86_GREG_x8 # define IEMNATIVE_CALL_ARG3_GREG X86_GREG_x9 # define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) ) # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \ | RT_BIT_32(X86_GREG_xCX) \ | RT_BIT_32(X86_GREG_xDX) \ | RT_BIT_32(X86_GREG_x8) \ | RT_BIT_32(X86_GREG_x9) \ | RT_BIT_32(X86_GREG_x10) \ | RT_BIT_32(X86_GREG_x11) ) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /* xmm0 - xmm5 are marked as volatile. */ # define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0x3f)) # endif # else /* !RT_OS_WINDOWS */ # define IEMNATIVE_CALL_ARG_GREG_COUNT 6 # define IEMNATIVE_CALL_ARG0_GREG X86_GREG_xDI # define IEMNATIVE_CALL_ARG1_GREG X86_GREG_xSI # define IEMNATIVE_CALL_ARG2_GREG X86_GREG_xDX # define IEMNATIVE_CALL_ARG3_GREG X86_GREG_xCX # define IEMNATIVE_CALL_ARG4_GREG X86_GREG_x8 # define IEMNATIVE_CALL_ARG5_GREG X86_GREG_x9 # define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(IEMNATIVE_CALL_ARG0_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG4_GREG) \ | RT_BIT_32(IEMNATIVE_CALL_ARG5_GREG) ) # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(X86_GREG_xAX) \ | RT_BIT_32(X86_GREG_xCX) \ | RT_BIT_32(X86_GREG_xDX) \ | RT_BIT_32(X86_GREG_xDI) \ | RT_BIT_32(X86_GREG_xSI) \ | RT_BIT_32(X86_GREG_x8) \ | RT_BIT_32(X86_GREG_x9) \ | RT_BIT_32(X86_GREG_x10) \ | RT_BIT_32(X86_GREG_x11) ) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /* xmm0 - xmm15 are marked as volatile. */ # define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffff)) # endif # endif /* !RT_OS_WINDOWS */ #elif defined(RT_ARCH_ARM64) # define IEMNATIVE_CALL_RET_GREG ARMV8_A64_REG_X0 # define IEMNATIVE_CALL_ARG_GREG_COUNT 8 # define IEMNATIVE_CALL_ARG0_GREG ARMV8_A64_REG_X0 # define IEMNATIVE_CALL_ARG1_GREG ARMV8_A64_REG_X1 # define IEMNATIVE_CALL_ARG2_GREG ARMV8_A64_REG_X2 # define IEMNATIVE_CALL_ARG3_GREG ARMV8_A64_REG_X3 # define IEMNATIVE_CALL_ARG4_GREG ARMV8_A64_REG_X4 # define IEMNATIVE_CALL_ARG5_GREG ARMV8_A64_REG_X5 # define IEMNATIVE_CALL_ARG6_GREG ARMV8_A64_REG_X6 # define IEMNATIVE_CALL_ARG7_GREG ARMV8_A64_REG_X7 # define IEMNATIVE_CALL_ARGS_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \ | RT_BIT_32(ARMV8_A64_REG_X1) \ | RT_BIT_32(ARMV8_A64_REG_X2) \ | RT_BIT_32(ARMV8_A64_REG_X3) \ | RT_BIT_32(ARMV8_A64_REG_X4) \ | RT_BIT_32(ARMV8_A64_REG_X5) \ | RT_BIT_32(ARMV8_A64_REG_X6) \ | RT_BIT_32(ARMV8_A64_REG_X7) ) # define IEMNATIVE_CALL_VOLATILE_GREG_MASK ( RT_BIT_32(ARMV8_A64_REG_X0) \ | RT_BIT_32(ARMV8_A64_REG_X1) \ | RT_BIT_32(ARMV8_A64_REG_X2) \ | RT_BIT_32(ARMV8_A64_REG_X3) \ | RT_BIT_32(ARMV8_A64_REG_X4) \ | RT_BIT_32(ARMV8_A64_REG_X5) \ | RT_BIT_32(ARMV8_A64_REG_X6) \ | RT_BIT_32(ARMV8_A64_REG_X7) \ | RT_BIT_32(ARMV8_A64_REG_X8) \ | RT_BIT_32(ARMV8_A64_REG_X9) \ | RT_BIT_32(ARMV8_A64_REG_X10) \ | RT_BIT_32(ARMV8_A64_REG_X11) \ | RT_BIT_32(ARMV8_A64_REG_X12) \ | RT_BIT_32(ARMV8_A64_REG_X13) \ | RT_BIT_32(ARMV8_A64_REG_X14) \ | RT_BIT_32(ARMV8_A64_REG_X15) \ | RT_BIT_32(ARMV8_A64_REG_X16) \ | RT_BIT_32(ARMV8_A64_REG_X17) ) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /* The low 64 bits of v8 - v15 marked as callee saved but the rest is volatile, * so to simplify our life a bit we just mark everything as volatile. */ # define IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK (UINT32_C(0xffffffff)) # endif #endif /** This is the maximum argument count we'll ever be needing. */ #define IEMNATIVE_CALL_MAX_ARG_COUNT 7 #ifdef RT_OS_WINDOWS # ifdef VBOXSTRICTRC_STRICT_ENABLED # undef IEMNATIVE_CALL_MAX_ARG_COUNT # define IEMNATIVE_CALL_MAX_ARG_COUNT 8 # endif #endif /** @def IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK * Variant of IEMNATIVE_CALL_VOLATILE_GREG_MASK that excludes * IEMNATIVE_REG_FIXED_TMP0 on hosts that uses it. */ #ifdef IEMNATIVE_REG_FIXED_TMP0 # ifdef IEMNATIVE_REG_FIXED_TMP1 # define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK ( IEMNATIVE_CALL_VOLATILE_GREG_MASK \ & ~( RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0) \ | RT_BIT_32(IEMNATIVE_REG_FIXED_TMP1))) # else # define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK (IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~RT_BIT_32(IEMNATIVE_REG_FIXED_TMP0)) # endif #else # define IEMNATIVE_CALL_VOLATILE_NOTMP_GREG_MASK IEMNATIVE_CALL_VOLATILE_GREG_MASK #endif /** @def IEMNATIVE_CALL_NONVOLATILE_GREG_MASK * The allocatable non-volatile general purpose register set. */ #define IEMNATIVE_CALL_NONVOLATILE_GREG_MASK \ (~IEMNATIVE_CALL_VOLATILE_GREG_MASK & ~IEMNATIVE_REG_FIXED_MASK & IEMNATIVE_HST_GREG_MASK) /** @} */ /** @def IEMNATIVE_HST_GREG_COUNT * Number of host general purpose registers we tracker. */ /** @def IEMNATIVE_HST_GREG_MASK * Mask corresponding to IEMNATIVE_HST_GREG_COUNT that can be applied to * inverted register masks and such to get down to a correct set of regs. */ #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** @def IEMNATIVE_HST_SIMD_REG_COUNT * Number of host SIMD registers we track. */ /** @def IEMNATIVE_HST_SIMD_REG_MASK * Mask corresponding to IEMNATIVE_HST_SIMD_REG_COUNT that can be applied to * inverted register masks and such to get down to a correct set of regs. */ #endif #ifdef RT_ARCH_AMD64 # define IEMNATIVE_HST_GREG_COUNT 16 # define IEMNATIVE_HST_GREG_MASK UINT32_C(0xffff) # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR # define IEMNATIVE_HST_SIMD_REG_COUNT 16 # define IEMNATIVE_HST_SIMD_REG_MASK UINT32_C(0xffff) # endif #elif defined(RT_ARCH_ARM64) # define IEMNATIVE_HST_GREG_COUNT 32 # define IEMNATIVE_HST_GREG_MASK UINT32_MAX # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR # define IEMNATIVE_HST_SIMD_REG_COUNT 32 # define IEMNATIVE_HST_SIMD_REG_MASK UINT32_MAX # endif #else # error "Port me!" #endif #ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */ /** Native code generator label types. */ typedef enum { kIemNativeLabelType_Invalid = 0, /** @name Exit reasons - Labels w/o data, only once instance per TB. * * The labels requiring register inputs are documented. * * @note Jumps to these requires instructions that are capable of spanning the * max TB length. * @{ */ /* Simple labels comes first for indexing reasons. RaiseXx is order by the exception's numerical value(s). */ kIemNativeLabelType_RaiseDe, /**< Raise (throw) X86_XCPT_DE (00h). */ kIemNativeLabelType_RaiseUd, /**< Raise (throw) X86_XCPT_UD (06h). */ kIemNativeLabelType_RaiseSseRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to cr0 & cr4. */ kIemNativeLabelType_RaiseAvxRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_NM according to xcr0, cr0 & cr4. */ kIemNativeLabelType_RaiseSseAvxFpRelated, /**< Raise (throw) X86_XCPT_UD or X86_XCPT_XF according to c4. */ kIemNativeLabelType_RaiseNm, /**< Raise (throw) X86_XCPT_NM (07h). */ kIemNativeLabelType_RaiseGp0, /**< Raise (throw) X86_XCPT_GP (0dh) w/ errcd=0. */ kIemNativeLabelType_RaiseMf, /**< Raise (throw) X86_XCPT_MF (10h). */ kIemNativeLabelType_RaiseXf, /**< Raise (throw) X86_XCPT_XF (13h). */ kIemNativeLabelType_ObsoleteTb, /**< Calls iemNativeHlpObsoleteTb (no inputs). */ kIemNativeLabelType_NeedCsLimChecking, /**< Calls iemNativeHlpNeedCsLimChecking (no inputs). */ kIemNativeLabelType_CheckBranchMiss, /**< Calls iemNativeHlpCheckBranchMiss (no inputs). */ kIemNativeLabelType_LastSimple = kIemNativeLabelType_CheckBranchMiss, /* Manually defined labels: */ /**< Returns with VINF_SUCCESS, no inputs. */ kIemNativeLabelType_ReturnSuccess, /** Returns with VINF_IEM_REEXEC_FINISH_WITH_FLAGS, no inputs. */ kIemNativeLabelType_ReturnWithFlags, /** Returns with VINF_IEM_REEXEC_BREAK, no inputs. */ kIemNativeLabelType_ReturnBreak, /** Returns with VINF_IEM_REEXEC_BREAK_FF, no inputs. */ kIemNativeLabelType_ReturnBreakFF, /** The last TB exit label that doesn't have any input registers. */ kIemNativeLabelType_LastTbExitWithoutInputs = kIemNativeLabelType_ReturnBreakFF, /** Argument registers 1, 2 & 3 are set up. */ kIemNativeLabelType_ReturnBreakViaLookup, /** Argument registers 1, 2 & 3 are set up. */ kIemNativeLabelType_ReturnBreakViaLookupWithIrq, /** Argument registers 1 & 2 are set up. */ kIemNativeLabelType_ReturnBreakViaLookupWithTlb, /** Argument registers 1 & 2 are set up. */ kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq, /** Return register holds the RC and the instruction number is in CL/RCX * on amd64 and the 2rd argument register elsewhere. */ kIemNativeLabelType_NonZeroRetOrPassUp, /** The last fixup for branches that can span almost the whole TB length. * @note Whether kIemNativeLabelType_Return needs to be one of these is * a bit questionable, since nobody jumps to it except other tail code. */ kIemNativeLabelType_LastWholeTbBranch = kIemNativeLabelType_NonZeroRetOrPassUp, /** The last fixup for branches that exits the TB. */ kIemNativeLabelType_LastTbExit = kIemNativeLabelType_NonZeroRetOrPassUp, /** @} */ /** Loop-jump target. */ kIemNativeLabelType_LoopJumpTarget, /* * Labels with data, potentially multiple instances per TB: * * These are localized labels, so no fixed jump type restrictions here. */ kIemNativeLabelType_FirstWithMultipleInstances, kIemNativeLabelType_If = kIemNativeLabelType_FirstWithMultipleInstances, kIemNativeLabelType_Else, kIemNativeLabelType_Endif, kIemNativeLabelType_CheckIrq, kIemNativeLabelType_TlbLookup, kIemNativeLabelType_TlbMiss, kIemNativeLabelType_TlbDone, kIemNativeLabelType_End } IEMNATIVELABELTYPE; #define IEMNATIVELABELTYPE_IS_EXIT_REASON(a_enmLabel) \ ((a_enmLabel) <= kIemNativeLabelType_LastTbExit && (a_enmLabel) > kIemNativeLabelType_Invalid) #define IEMNATIVELABELTYPE_IS_EXIT_WITHOUT_INPUTS(a_enmLabel) \ ((a_enmLabel) <= kIemNativeLabelType_LastTbExitWithoutInputs && (a_enmLabel) > kIemNativeLabelType_Invalid) /** * Get the mask of input registers for an TB exit label. * This will return zero for any non-exit lable. */ #ifdef RT_ARCH_AMD64 # define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \ ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \ || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \ ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \ : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \ || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \ ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \ : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \ ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(X86_GREG_xCX) /* <-- the difference */ \ : 0) # else # define IEMNATIVELABELTYPE_GET_INPUT_REG_MASK(a_enmLabel) \ ( (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookup \ || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithIrq \ ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG3_GREG) \ : (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlb \ || (a_enmLabel) == kIemNativeLabelType_ReturnBreakViaLookupWithTlbAndIrq \ ? RT_BIT_32(IEMNATIVE_CALL_ARG1_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \ : (a_enmLabel) == kIemNativeLabelType_NonZeroRetOrPassUp \ ? RT_BIT_32(IEMNATIVE_CALL_RET_GREG) | RT_BIT_32(IEMNATIVE_CALL_ARG2_GREG) \ : 0) #endif /** Native code generator label definition. */ typedef struct IEMNATIVELABEL { /** Code offset if defined, UINT32_MAX if it needs to be generated after/in * the epilog. */ uint32_t off; /** The type of label (IEMNATIVELABELTYPE). */ uint16_t enmType; /** Additional label data, type specific. */ uint16_t uData; } IEMNATIVELABEL; /** Pointer to a label. */ typedef IEMNATIVELABEL *PIEMNATIVELABEL; /** Native code generator fixup types. */ typedef enum { kIemNativeFixupType_Invalid = 0, #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /** AMD64 fixup: PC relative 32-bit with addend in bData. */ kIemNativeFixupType_Rel32, #elif defined(RT_ARCH_ARM64) /** ARM64 fixup: PC relative offset at bits 25:0 (B, BL). */ kIemNativeFixupType_RelImm26At0, /** ARM64 fixup: PC relative offset at bits 23:5 (CBZ, CBNZ, B.CC). */ kIemNativeFixupType_RelImm19At5, /** ARM64 fixup: PC relative offset at bits 18:5 (TBZ, TBNZ). */ kIemNativeFixupType_RelImm14At5, #endif kIemNativeFixupType_End } IEMNATIVEFIXUPTYPE; /** Native code generator fixup. */ typedef struct IEMNATIVEFIXUP { /** Code offset of the fixup location. */ uint32_t off; /** The IEMNATIVELABEL this is a fixup for. */ uint16_t idxLabel; /** The fixup type (IEMNATIVEFIXUPTYPE). */ uint8_t enmType; /** Addend or other data. */ int8_t offAddend; } IEMNATIVEFIXUP; /** Pointer to a native code generator fixup. */ typedef IEMNATIVEFIXUP *PIEMNATIVEFIXUP; /** Native code generator fixup to per chunk TB tail code. */ typedef struct IEMNATIVEEXITFIXUP { /** Code offset of the fixup location. */ uint32_t off; /** The exit reason. */ IEMNATIVELABELTYPE enmExitReason; } IEMNATIVEEXITFIXUP; /** Pointer to a native code generator TB exit fixup. */ typedef IEMNATIVEEXITFIXUP *PIEMNATIVEEXITFIXUP; /** * Per executable memory chunk context with addresses for common code. */ typedef struct IEMNATIVEPERCHUNKCTX { /** Pointers to the exit labels */ PIEMNATIVEINSTR apExitLabels[kIemNativeLabelType_LastTbExit + 1]; } IEMNATIVEPERCHUNKCTX; /** Pointer to per-chunk recompiler context. */ typedef IEMNATIVEPERCHUNKCTX *PIEMNATIVEPERCHUNKCTX; /** Pointer to const per-chunk recompiler context. */ typedef const IEMNATIVEPERCHUNKCTX *PCIEMNATIVEPERCHUNKCTX; /** * One bit of the state. * * Each register state takes up two bits. We keep the two bits in two separate * 64-bit words to simplify applying them to the guest shadow register mask in * the register allocator. */ typedef union IEMLIVENESSBIT { uint64_t bm64; RT_GCC_EXTENSION struct { /* bit no */ uint64_t bmGprs : 16; /**< 0x00 / 0: The 16 general purpose registers. */ uint64_t fCr0 : 1; /**< 0x10 / 16: */ uint64_t fCr4 : 1; /**< 0x11 / 17: */ uint64_t fFcw : 1; /**< 0x12 / 18: */ uint64_t fFsw : 1; /**< 0x13 / 19: */ uint64_t bmSegBase : 6; /**< 0x14 / 20: */ uint64_t bmSegAttrib : 6; /**< 0x1a / 26: */ uint64_t bmSegLimit : 6; /**< 0x20 / 32: */ uint64_t bmSegSel : 6; /**< 0x26 / 38: */ uint64_t fXcr0 : 1; /**< 0x2c / 44: */ uint64_t fMxCsr : 1; /**< 0x2d / 45: */ uint64_t fEflOther : 1; /**< 0x2e / 46: Other EFLAGS bits (~X86_EFL_STATUS_BITS & X86_EFL_LIVE_MASK). First! */ uint64_t fEflCf : 1; /**< 0x2f / 47: Carry flag (X86_EFL_CF / 0). */ uint64_t fEflPf : 1; /**< 0x30 / 48: Parity flag (X86_EFL_PF / 2). */ uint64_t fEflAf : 1; /**< 0x31 / 59: Auxilary carry flag (X86_EFL_AF / 4). */ uint64_t fEflZf : 1; /**< 0x32 / 50: Zero flag (X86_EFL_ZF / 6). */ uint64_t fEflSf : 1; /**< 0x33 / 51: Signed flag (X86_EFL_SF / 7). */ uint64_t fEflOf : 1; /**< 0x34 / 52: Overflow flag (X86_EFL_OF / 12). */ uint64_t fUnusedPc : 1; /**< 0x35 / 53: (PC in ) */ uint64_t uUnused : 10; /* 0x36 / 54 -> 0x40/64 */ }; } IEMLIVENESSBIT; AssertCompileSize(IEMLIVENESSBIT, 8); #define IEMLIVENESSBIT_IDX_EFL_OTHER ((unsigned)kIemNativeGstReg_EFlags + 0) #define IEMLIVENESSBIT_IDX_EFL_CF ((unsigned)kIemNativeGstReg_EFlags + 1) #define IEMLIVENESSBIT_IDX_EFL_PF ((unsigned)kIemNativeGstReg_EFlags + 2) #define IEMLIVENESSBIT_IDX_EFL_AF ((unsigned)kIemNativeGstReg_EFlags + 3) #define IEMLIVENESSBIT_IDX_EFL_ZF ((unsigned)kIemNativeGstReg_EFlags + 4) #define IEMLIVENESSBIT_IDX_EFL_SF ((unsigned)kIemNativeGstReg_EFlags + 5) #define IEMLIVENESSBIT_IDX_EFL_OF ((unsigned)kIemNativeGstReg_EFlags + 6) #define IEMLIVENESSBIT_IDX_EFL_COUNT 7 /** * A liveness state entry. * * The first 128 bits runs parallel to kIemNativeGstReg_xxx for the most part. * Once we add a SSE register shadowing, we'll add another 64-bit element for * that. */ typedef union IEMLIVENESSENTRY { #ifndef IEMLIVENESS_EXTENDED_LAYOUT uint64_t bm64[16 / 8]; uint16_t bm32[16 / 4]; uint16_t bm16[16 / 2]; uint8_t bm8[ 16 / 1]; IEMLIVENESSBIT aBits[2]; #else uint64_t bm64[32 / 8]; uint16_t bm32[32 / 4]; uint16_t bm16[32 / 2]; uint8_t bm8[ 32 / 1]; IEMLIVENESSBIT aBits[4]; #endif RT_GCC_EXTENSION struct { /** Bit \#0 of the register states. */ IEMLIVENESSBIT Bit0; /** Bit \#1 of the register states. */ IEMLIVENESSBIT Bit1; #ifdef IEMLIVENESS_EXTENDED_LAYOUT /** Bit \#2 of the register states. */ IEMLIVENESSBIT Bit2; /** Bit \#3 of the register states. */ IEMLIVENESSBIT Bit3; #endif }; } IEMLIVENESSENTRY; #ifndef IEMLIVENESS_EXTENDED_LAYOUT AssertCompileSize(IEMLIVENESSENTRY, 16); #else AssertCompileSize(IEMLIVENESSENTRY, 32); #endif /** Pointer to a liveness state entry. */ typedef IEMLIVENESSENTRY *PIEMLIVENESSENTRY; /** Pointer to a const liveness state entry. */ typedef IEMLIVENESSENTRY const *PCIEMLIVENESSENTRY; /** @name 64-bit value masks for IEMLIVENESSENTRY. * @{ */ /* 0xzzzzyyyyxxxxwwww */ #define IEMLIVENESSBIT_MASK UINT64_C(0x001fffffffffffff) #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEMLIVENESSBIT0_XCPT_OR_CALL UINT64_C(0x0000000000000000) # define IEMLIVENESSBIT1_XCPT_OR_CALL IEMLIVENESSBIT_MASK # define IEMLIVENESSBIT0_ALL_UNUSED IEMLIVENESSBIT_MASK # define IEMLIVENESSBIT1_ALL_UNUSED UINT64_C(0x0000000000000000) #endif #define IEMLIVENESSBIT_ALL_EFL_MASK UINT64_C(0x001fc00000000000) #define IEMLIVENESSBIT_STATUS_EFL_MASK UINT64_C(0x001f800000000000) #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEMLIVENESSBIT0_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK # define IEMLIVENESSBIT1_ALL_EFL_INPUT IEMLIVENESSBIT_ALL_EFL_MASK #endif /** @} */ /** @name The liveness state for a register. * * The state values have been picked to with state accumulation in mind (what * the iemNativeLivenessFunc_xxxx functions does), as that is the most * performance critical work done with the values. * * This is a compressed state that only requires 2 bits per register. * When accumulating state, we'll be using three IEMLIVENESSENTRY copies: * 1. the incoming state from the following call, * 2. the outgoing state for this call, * 3. mask of the entries set in the 2nd. * * The mask entry (3rd one above) will be used both when updating the outgoing * state and when merging in incoming state for registers not touched by the * current call. * * * Extended Layout: * * The extended layout variation differs from the above as it records the * different register accesses as individual bits, and it is currently used for * the delayed EFLAGS calculation experiments. The latter means that * calls/tb-exits and potential calls/exceptions/tb-exits are recorded * separately so the latter can be checked for in combination with clobbering. * * @{ */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT /** The register will be clobbered and the current value thrown away. * * When this is applied to the state (2) we'll simply be AND'ing it with the * (old) mask (3) and adding the register to the mask. This way we'll * preserve the high priority IEMLIVENESS_STATE_XCPT_OR_CALL and * IEMLIVENESS_STATE_INPUT states. */ # define IEMLIVENESS_STATE_CLOBBERED 0 /** The register is unused in the remainder of the TB. * * This is an initial state and can not be set by any of the * iemNativeLivenessFunc_xxxx callbacks. */ # define IEMLIVENESS_STATE_UNUSED 1 /** The register value is required in a potential call or exception. * * This means that the register value must be calculated and is best written to * the state, but that any shadowing registers can be flushed thereafter as it's * not used again. This state has lower priority than IEMLIVENESS_STATE_INPUT. * * It is typically applied across the board, but we preserve incoming * IEMLIVENESS_STATE_INPUT values. This latter means we have to do some extra * trickery to filter out IEMLIVENESS_STATE_UNUSED: * 1. r0 = old & ~mask; * 2. r0 = t1 & (t1 >> 1); * 3. state |= r0 | 0b10; * 4. mask = ~0; */ # define IEMLIVENESS_STATE_XCPT_OR_CALL 2 /** The register value is used as input. * * This means that the register value must be calculated and it is best to keep * it in a register. It does not need to be writtent out as such. This is the * highest priority state. * * Whether the call modifies the register or not isn't relevant to earlier * calls, so that's not recorded. * * When applying this state we just or in the value in the outgoing state and * mask. */ # define IEMLIVENESS_STATE_INPUT 3 /** Mask of the state bits. */ # define IEMLIVENESS_STATE_MASK 3 /** The number of bits per state. */ # define IEMLIVENESS_STATE_BIT_COUNT 2 /** Check if we're expecting read & write accesses to a register with the given (previous) liveness state. * @note only used in assertions. */ # define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) ((uint32_t)((a_uState) - 1U) >= (uint32_t)(IEMLIVENESS_STATE_INPUT - 1U)) /** Check if we're expecting read accesses to a register with the given (previous) liveness state. * @note only used in assertions. */ # define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) /** Check if a register clobbering is expected given the (previous) liveness state. * The state must be either CLOBBERED or XCPT_OR_CALL, but it may also * include INPUT if the register is used in more than one place. * @note only used in assertions. */ # define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) ((uint32_t)(a_uState) != IEMLIVENESS_STATE_UNUSED) /** Check if all status flags are going to be clobbered and doesn't need * calculating in the current step. * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ # define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \ ( (((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_STATUS_EFL_MASK) == 0 ) /*** * Construct a mask of what will be clobbered and never used. * * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid * unnecessary EFLAGS calculations. * * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ # define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \ ( ~((a_pCurEntry)->Bit0.bm64 | (a_pCurEntry)->Bit1.bm64) & IEMLIVENESSBIT_MASK ) /** Construct a mask of the guest registers in the UNUSED and XCPT_OR_CALL * states, as these are no longer needed. * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ AssertCompile(IEMLIVENESS_STATE_UNUSED == 1 && IEMLIVENESS_STATE_XCPT_OR_CALL == 2); # define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \ ( (a_pCurEntry)->Bit0.bm64 ^ (a_pCurEntry)->Bit1.bm64 ) #else /* IEMLIVENESS_EXTENDED_LAYOUT */ /** The register is not used any more. */ # define IEMLIVENESS_STATE_UNUSED 0 /** Flag: The register is required in a potential call or/and exception. */ # define IEMLIVENESS_STATE_POTENTIAL_CALL 1 # define IEMLIVENESS_BIT_POTENTIAL_CALL 0 /** Flag: The register is read. */ # define IEMLIVENESS_STATE_READ 2 # define IEMLIVENESS_BIT_READ 1 /** Flag: The register is written. */ # define IEMLIVENESS_STATE_WRITE 4 # define IEMLIVENESS_BIT_WRITE 2 /** Flag: Unconditional call. */ # define IEMLIVENESS_STATE_CALL 8 # define IEMLIVENESS_BIT_CALL 3 # define IEMLIVENESS_STATE_IS_MODIFY_EXPECTED(a_uState) \ ( ((a_uState) & (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ)) == (IEMLIVENESS_STATE_WRITE | IEMLIVENESS_STATE_READ) ) # define IEMLIVENESS_STATE_IS_INPUT_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_READ) # define IEMLIVENESS_STATE_IS_CLOBBER_EXPECTED(a_uState) RT_BOOL((a_uState) & IEMLIVENESS_STATE_WRITE) # define IEMLIVENESS_STATE_ARE_STATUS_EFL_TO_BE_CLOBBERED(a_pCurEntry) \ ( ((a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & IEMLIVENESSBIT_STATUS_EFL_MASK) == IEMLIVENESSBIT_STATUS_EFL_MASK \ && !( ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \ | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \ | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) \ & IEMLIVENESSBIT_STATUS_EFL_MASK) ) /** Construct a mask of the registers not in the read or write state. * @note We could skips writes, if they aren't from us, as this is just a hack * to prevent trashing registers that have just been written or will be * written when we retire the current instruction. * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ # define IEMLIVENESS_STATE_GET_CAN_BE_FREED_SET(a_pCurEntry) \ ( ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \ & ~(a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \ & IEMLIVENESSBIT_MASK ) /*** * Construct a mask of what will be clobbered and never used. * * This is mainly used with IEMLIVENESSBIT_STATUS_EFL_MASK to avoid * unnecessary EFLAGS calculations. * * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ # define IEMLIVENESS_STATE_GET_WILL_BE_CLOBBERED_SET(a_pCurEntry) \ ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \ & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \ | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \ | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) ) /** * Construct a mask of what (EFLAGS) which can be postponed. * * The postponement is for the avoiding EFLAGS status bits calculations in the * primary code stream whenever possible, and instead only do these in the TLB * load and TB exit code paths which shouldn't be traveled quite as often. * A requirement, though, is that the status bits will be clobbered later in the * TB. * * User need to apply IEMLIVENESSBIT_STATUS_EFL_MASK if appropriate/necessary. * * @param a_pCurEntry The current liveness entry. * @note Used by actual code. */ # define IEMLIVENESS_STATE_GET_CAN_BE_POSTPONED_SET(a_pCurEntry) \ ( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 \ & (a_pCurEntry)->aBits[IEMLIVENESS_BIT_WRITE].bm64 \ & ~( (a_pCurEntry)->aBits[IEMLIVENESS_BIT_READ].bm64 \ | (a_pCurEntry)->aBits[IEMLIVENESS_BIT_CALL].bm64) ) #endif /* IEMLIVENESS_EXTENDED_LAYOUT */ /** @} */ /** @name Liveness helpers for builtin functions and similar. * * These are not used by IEM_MC_BEGIN/END blocks, IEMAllN8veLiveness.cpp has its * own set of manipulator macros for those. * * @{ */ /** Initializing the state as all unused. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \ do { \ (a_pOutgoing)->Bit0.bm64 = IEMLIVENESSBIT0_ALL_UNUSED; \ (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_ALL_UNUSED; \ } while (0) #else # define IEM_LIVENESS_RAW_INIT_AS_UNUSED(a_pOutgoing) \ do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \ } while (0) #endif /** Initializing the outgoing state with a potential xcpt or call state. * This only works when all later changes will be IEMLIVENESS_STATE_INPUT. * * @note Must invoke IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL when done! */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \ (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \ } while (0) #else # define IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = 0; \ } while (0) #endif /** Completes IEM_LIVENESS_RAW_INIT_WITH_POTENTIAL_CALL after applying any * other state modifications. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) ((void)0) #else # define IEM_LIVENESS_RAW_FINISH_WITH_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \ do { \ uint64_t const fInhMask = ~( (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL].bm64 \ | (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE].bm64); \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 & fInhMask; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_READ].bm64 & fInhMask; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_WRITE].bm64 & fInhMask; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 |= (a_pIncoming)->aBits[IEMLIVENESS_BIT_CALL].bm64 & fInhMask; \ } while (0) #endif /** Initializing the outgoing state with an unconditional call state. * This should only really be used alone. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \ (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \ } while (0) #else # define IEM_LIVENESS_RAW_INIT_WITH_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \ RT_NOREF(a_pIncoming); \ } while (0) #endif #if 0 /* unused */ /** Initializing the outgoing state with an unconditional call state as well as * an potential call/exception preceeding it. * This should only really be used alone. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->Bit0.bm64 = (a_pIncoming)->Bit0.bm64 & (a_pIncoming)->Bit1.bm64; \ (a_pOutgoing)->Bit1.bm64 = IEMLIVENESSBIT1_XCPT_OR_CALL; \ } while (0) #else # define IEM_LIVENESS_RAW_INIT_WITH_CALL_AND_POTENTIAL_CALL(a_pOutgoing, a_pIncoming) \ do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_POTENTIAL_CALL].bm64 = IEMLIVENESSBIT_MASK; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_CALL ].bm64 = IEMLIVENESSBIT_MASK; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ ].bm64 = 0; \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_WRITE ].bm64 = 0; \ } while (0) #endif #endif /** Adds a segment base register as input to the outgoing state. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->Bit0.bmSegBase |= RT_BIT_64(a_iSReg); \ (a_pOutgoing)->Bit1.bmSegBase |= RT_BIT_64(a_iSReg); \ } while (0) #else # define IEM_LIVENESS_RAW_SEG_BASE_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegBase |= RT_BIT_64(a_iSReg); \ } while (0) #endif /** Adds a segment attribute register as input to the outgoing state. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->Bit0.bmSegAttrib |= RT_BIT_64(a_iSReg); \ (a_pOutgoing)->Bit1.bmSegAttrib |= RT_BIT_64(a_iSReg); \ } while (0) #else # define IEM_LIVENESS_RAW_SEG_ATTRIB_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegAttrib |= RT_BIT_64(a_iSReg); \ } while (0) #endif /** Adds a segment limit register as input to the outgoing state. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->Bit0.bmSegLimit |= RT_BIT_64(a_iSReg); \ (a_pOutgoing)->Bit1.bmSegLimit |= RT_BIT_64(a_iSReg); \ } while (0) #else # define IEM_LIVENESS_RAW_SEG_LIMIT_INPUT(a_pOutgoing, a_iSReg) do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].bmSegLimit |= RT_BIT_64(a_iSReg); \ } while (0) #endif /** Adds a segment limit register as input to the outgoing state. */ #ifndef IEMLIVENESS_EXTENDED_LAYOUT # define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \ (a_pOutgoing)->Bit0.a_fEflMember |= 1; \ (a_pOutgoing)->Bit1.a_fEflMember |= 1; \ } while (0) #else # define IEM_LIVENESS_RAW_EFLAGS_ONE_INPUT(a_pOutgoing, a_fEflMember) do { \ (a_pOutgoing)->aBits[IEMLIVENESS_BIT_READ].a_fEflMember |= 1; \ } while (0) #endif /** @} */ /** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY * Debug assertion that the required flags are available and not incorrectly skipped. */ #ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) \ AssertMsg(!((a_pReNative)->fSkippingEFlags & (a_fEflNeeded)), \ ("%#x & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, \ a_fEflNeeded, (a_pReNative)->fSkippingEFlags & (a_fEflNeeded) )) #else # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) ((void)0) #endif /** @def IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY * Debug assertion that the required flags are available and not incorrectly postponed. */ #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING # define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) \ AssertMsg(!((a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded)), \ ("%#x & %#x -> %#x\n", (a_pReNative)->PostponedEfl.fEFlags, \ a_fEflNeeded, (a_pReNative)->PostponedEfl.fEFlags & (a_fEflNeeded) )) #else # define IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) ((void)0) #endif /** @def IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING * Debug assertion that the required flags are available and not incorrectly * skipped or postponed. */ #if defined(IEMNATIVE_WITH_EFLAGS_SKIPPING) && defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \ AssertMsg(!(((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded)), \ ("(%#x | %#x) & %#x -> %#x\n", (a_pReNative)->fSkippingEFlags, (a_pReNative)->PostponedEfl.fEFlags, \ a_fEflNeeded, ((a_pReNative)->fSkippingEFlags | (a_pReNative)->PostponedEfl.fEFlags) & (a_fEflNeeded) )) #elif defined(IEMNATIVE_WITH_EFLAGS_SKIPPING) # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \ IEMNATIVE_ASSERT_EFLAGS_SKIPPING_ONLY(a_pReNative, a_fEflNeeded) #elif defined(IEMNATIVE_WITH_EFLAGS_POSTPONING) \ # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) \ IEMNATIVE_ASSERT_EFLAGS_POSTPONING_ONLY(a_pReNative, a_fEflNeeded) #else # define IEMNATIVE_ASSERT_EFLAGS_SKIPPING_AND_POSTPONING(a_pReNative, a_fEflNeeded) ((void)0) #endif /** @def IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK * Checks that the EFLAGS bits specified by @a a_fEflNeeded are actually * calculated and up to date. This is to double check that we haven't skipped * EFLAGS calculations when we actually need them. NOP in non-strict builds. * @note has to be placed in */ #ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING # define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { \ (a_off) = iemNativeEmitEFlagsSkippingCheck(a_pReNative, a_off, a_fEflNeeded); \ } while (0) #else # define IEMNATIVE_STRICT_EFLAGS_SKIPPING_EMIT_CHECK(a_pReNative, a_off, a_fEflNeeded) do { } while (0) #endif /** @def IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS * Number of extra instructions to allocate for each TB exit to account for * postponed EFLAGS calculations. */ #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING # ifdef RT_ARCH_AMD64 # ifdef VBOX_STRICT # define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 64 # else # define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32 # endif # elif defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING) # ifdef VBOX_STRICT # define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 48 # else # define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 32 # endif # else # error "port me" # endif #else # define IEMNATIVE_MAX_POSTPONED_EFLAGS_INSTRUCTIONS 0 #endif /** @def IEMNATIVE_CLEAR_POSTPONED_EFLAGS * Helper macro function for calling iemNativeClearPostponedEFlags() when * IEMNATIVE_WITH_EFLAGS_POSTPONING is enabled. */ #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING # define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) iemNativeClearPostponedEFlags(a_pReNative) #else # define IEMNATIVE_CLEAR_POSTPONED_EFLAGS(a_pReNative, a_fEflClobbered) ((void)0) #endif /** @def IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS * Macro for testing whether there are currently any postponed EFLAGS calcs w/o * needing to \#ifdef the check. */ #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING # define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) ((a_pReNative)->PostponedEfl.fEFlags != 0) #else # define IEMNATIVE_HAS_POSTPONED_EFLAGS_CALCS(a_pReNative) false #endif /** * Translation block debug info entry type. */ typedef enum IEMTBDBGENTRYTYPE { kIemTbDbgEntryType_Invalid = 0, /** The entry is for marking a native code position. * Entries following this all apply to this position. */ kIemTbDbgEntryType_NativeOffset, /** The entry is for a new guest instruction. */ kIemTbDbgEntryType_GuestInstruction, /** Marks the start of a threaded call. */ kIemTbDbgEntryType_ThreadedCall, /** Marks the location of a label. */ kIemTbDbgEntryType_Label, /** Info about a host register shadowing a guest register. */ kIemTbDbgEntryType_GuestRegShadowing, #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Info about a host SIMD register shadowing a guest SIMD register. */ kIemTbDbgEntryType_GuestSimdRegShadowing, #endif #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING /** Info about a delayed RIP update. */ kIemTbDbgEntryType_DelayedPcUpdate, #endif #if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR) /** Info about a shadowed guest register becoming dirty. */ kIemTbDbgEntryType_GuestRegDirty, /** Info about register writeback/flush oepration. */ kIemTbDbgEntryType_GuestRegWriteback, #endif #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING /** Info about a delayed EFLAGS calculation. */ kIemTbDbgEntryType_PostponedEFlagsCalc, #endif kIemTbDbgEntryType_End } IEMTBDBGENTRYTYPE; /** * Translation block debug info entry. */ typedef union IEMTBDBGENTRY { /** Plain 32-bit view. */ uint32_t u; /** Generic view for getting at the type field. */ struct { /** IEMTBDBGENTRYTYPE */ uint32_t uType : 4; uint32_t uTypeSpecific : 28; } Gen; struct { /** kIemTbDbgEntryType_ThreadedCall1. */ uint32_t uType : 4; /** Native code offset. */ uint32_t offNative : 28; } NativeOffset; struct { /** kIemTbDbgEntryType_GuestInstruction. */ uint32_t uType : 4; uint32_t uUnused : 4; /** The IEM_F_XXX flags. */ uint32_t fExec : 24; } GuestInstruction; struct { /* kIemTbDbgEntryType_ThreadedCall. */ uint32_t uType : 4; /** Set if the call was recompiled to native code, clear if just calling * threaded function. */ uint32_t fRecompiled : 1; uint32_t uUnused : 11; /** The threaded call number (IEMTHREADEDFUNCS). */ uint32_t enmCall : 16; } ThreadedCall; struct { /* kIemTbDbgEntryType_Label. */ uint32_t uType : 4; uint32_t uUnused : 4; /** The label type (IEMNATIVELABELTYPE). */ uint32_t enmLabel : 8; /** The label data. */ uint32_t uData : 16; } Label; struct { /* kIemTbDbgEntryType_GuestRegShadowing. */ uint32_t uType : 4; uint32_t uUnused : 4; /** The guest register being shadowed (IEMNATIVEGSTREG). */ uint32_t idxGstReg : 8; /** The host new register number, UINT8_MAX if dropped. */ uint32_t idxHstReg : 8; /** The previous host register number, UINT8_MAX if new. */ uint32_t idxHstRegPrev : 8; } GuestRegShadowing; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR struct { /* kIemTbDbgEntryType_GuestSimdRegShadowing. */ uint32_t uType : 4; uint32_t uUnused : 4; /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */ uint32_t idxGstSimdReg : 8; /** The host new register number, UINT8_MAX if dropped. */ uint32_t idxHstSimdReg : 8; /** The previous host register number, UINT8_MAX if new. */ uint32_t idxHstSimdRegPrev : 8; } GuestSimdRegShadowing; #endif #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING struct { /* kIemTbDbgEntryType_DelayedPcUpdate. */ uint32_t uType : 4; /** Number of instructions skipped. */ uint32_t cInstrSkipped : 8; /* The instruction offset added to the program counter. */ int32_t offPc : 20; } DelayedPcUpdate; #endif #if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR) struct { /* kIemTbDbgEntryType_GuestRegDirty. */ uint32_t uType : 4; uint32_t uUnused : 11; /** Flag whether this is about a SIMD (true) or general (false) register. */ uint32_t fSimdReg : 1; /** The guest register index being marked as dirty. */ uint32_t idxGstReg : 8; /** The host register number this register is shadowed in .*/ uint32_t idxHstReg : 8; } GuestRegDirty; struct { /* kIemTbDbgEntryType_GuestRegWriteback. */ uint32_t uType : 4; /** Flag whether this is about a SIMD (true) or general (false) register flush. */ uint32_t fSimdReg : 1; /** The mask shift. */ uint32_t cShift : 2; /** The guest register mask being written back. */ uint32_t fGstReg : 25; } GuestRegWriteback; #endif #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING struct { /* kIemTbDbgEntryType_PostponedEFlagsCalc. */ uint32_t uType : 4; /** The EFLAGS operation (IEMNATIVE_POSTPONED_EFL_OP_T). */ uint32_t enmOp : 4; /** The mask shift. */ uint32_t cOpBits : 8; /** The emit instance number (0-based). */ uint32_t idxEmit : 8; /** Unused. */ uint32_t uUnused : 8; } PostponedEflCalc; #endif } IEMTBDBGENTRY; AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t)); /** Pointer to a debug info entry. */ typedef IEMTBDBGENTRY *PIEMTBDBGENTRY; /** Pointer to a const debug info entry. */ typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY; /** * Translation block debug info. */ typedef struct IEMTBDBG { /** This is the flat PC corresponding to IEMTB::GCPhysPc. */ RTGCPTR FlatPc; /** Number of entries in aEntries. */ uint32_t cEntries; /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */ uint32_t offNativeLast; /** Debug info entries. */ RT_FLEXIBLE_ARRAY_EXTENSION IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY]; } IEMTBDBG; /** Pointer to TB debug info. */ typedef IEMTBDBG *PIEMTBDBG; /** Pointer to const TB debug info. */ typedef IEMTBDBG const *PCIEMTBDBG; /** * Guest registers that can be shadowed in GPRs. * * This runs parallel to the liveness state (IEMLIVENESSBIT, ++). The EFlags * must be placed last, as the liveness state tracks it as 7 subcomponents and * we don't want to waste space here. * * @note Make sure to update IEMLIVENESSBIT, IEMLIVENESSBIT_ALL_EFL_MASK and * friends as well as IEMAllN8veLiveness.cpp. */ typedef enum IEMNATIVEGSTREG : uint8_t { kIemNativeGstReg_GprFirst = 0, kIemNativeGstReg_GprLast = kIemNativeGstReg_GprFirst + 15, kIemNativeGstReg_Cr0, kIemNativeGstReg_Cr4, kIemNativeGstReg_FpuFcw, kIemNativeGstReg_FpuFsw, kIemNativeGstReg_SegBaseFirst, kIemNativeGstReg_SegBaseLast = kIemNativeGstReg_SegBaseFirst + 5, kIemNativeGstReg_SegAttribFirst, kIemNativeGstReg_SegAttribLast = kIemNativeGstReg_SegAttribFirst + 5, kIemNativeGstReg_SegLimitFirst, kIemNativeGstReg_SegLimitLast = kIemNativeGstReg_SegLimitFirst + 5, kIemNativeGstReg_SegSelFirst, kIemNativeGstReg_SegSelLast = kIemNativeGstReg_SegSelFirst + 5, kIemNativeGstReg_Xcr0, kIemNativeGstReg_MxCsr, kIemNativeGstReg_EFlags, /**< 32-bit, includes internal flags. */ /* 6 entry gap for liveness EFlags subdivisions. */ kIemNativeGstReg_Pc = kIemNativeGstReg_EFlags + 7, kIemNativeGstReg_End } IEMNATIVEGSTREG; AssertCompile((int)kIemNativeGstReg_SegLimitFirst == 32); AssertCompile((UINT64_C(0x7f) << kIemNativeGstReg_EFlags) == IEMLIVENESSBIT_ALL_EFL_MASK); AssertCompile(RT_BIT_64(kIemNativeGstReg_Pc) - UINT64_C(1) == IEMLIVENESSBIT_MASK); /** @name Helpers for converting register numbers to IEMNATIVEGSTREG values. * @{ */ #define IEMNATIVEGSTREG_GPR(a_iGpr) ((IEMNATIVEGSTREG)(kIemNativeGstReg_GprFirst + (a_iGpr) )) #define IEMNATIVEGSTREG_SEG_SEL(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegSelFirst + (a_iSegReg) )) #define IEMNATIVEGSTREG_SEG_BASE(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegBaseFirst + (a_iSegReg) )) #define IEMNATIVEGSTREG_SEG_LIMIT(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegLimitFirst + (a_iSegReg) )) #define IEMNATIVEGSTREG_SEG_ATTRIB(a_iSegReg) ((IEMNATIVEGSTREG)(kIemNativeGstReg_SegAttribFirst + (a_iSegReg) )) /** @} */ #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** * Guest registers that can be shadowed in host SIMD registers. * * @todo r=aeichner Liveness tracking * @todo r=aeichner Given that we can only track xmm/ymm here does this actually make sense? */ typedef enum IEMNATIVEGSTSIMDREG : uint8_t { kIemNativeGstSimdReg_SimdRegFirst = 0, kIemNativeGstSimdReg_SimdRegLast = kIemNativeGstSimdReg_SimdRegFirst + 15, kIemNativeGstSimdReg_End } IEMNATIVEGSTSIMDREG; /** @name Helpers for converting register numbers to IEMNATIVEGSTSIMDREG values. * @{ */ #define IEMNATIVEGSTSIMDREG_SIMD(a_iSimdReg) ((IEMNATIVEGSTSIMDREG)(kIemNativeGstSimdReg_SimdRegFirst + (a_iSimdReg))) /** @} */ /** * The Load/store size for a SIMD guest register. */ typedef enum IEMNATIVEGSTSIMDREGLDSTSZ : uint8_t { /** Invalid size. */ kIemNativeGstSimdRegLdStSz_Invalid = 0, /** Loads the low 128-bit of a guest SIMD register. */ kIemNativeGstSimdRegLdStSz_Low128, /** Loads the high 128-bit of a guest SIMD register. */ kIemNativeGstSimdRegLdStSz_High128, /** Loads the whole 256-bits of a guest SIMD register. */ kIemNativeGstSimdRegLdStSz_256, /** End value. */ kIemNativeGstSimdRegLdStSz_End } IEMNATIVEGSTSIMDREGLDSTSZ; #endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */ /** * Intended use statement for iemNativeRegAllocTmpForGuestReg(). */ typedef enum IEMNATIVEGSTREGUSE { /** The usage is read-only, the register holding the guest register * shadow copy will not be modified by the caller. */ kIemNativeGstRegUse_ReadOnly = 0, /** The caller will update the guest register (think: PC += cbInstr). * The guest shadow copy will follow the returned register. */ kIemNativeGstRegUse_ForUpdate, /** The call will put an entirely new value in the guest register, so * if new register is allocate it will be returned uninitialized. */ kIemNativeGstRegUse_ForFullWrite, /** The caller will use the guest register value as input in a calculation * and the host register will be modified. * This means that the returned host register will not be marked as a shadow * copy of the guest register. */ kIemNativeGstRegUse_Calculation } IEMNATIVEGSTREGUSE; /** * Guest registers (classes) that can be referenced. */ typedef enum IEMNATIVEGSTREGREF : uint8_t { kIemNativeGstRegRef_Invalid = 0, kIemNativeGstRegRef_Gpr, kIemNativeGstRegRef_GprHighByte, /**< AH, CH, DH, BH*/ kIemNativeGstRegRef_EFlags, kIemNativeGstRegRef_MxCsr, kIemNativeGstRegRef_FpuReg, kIemNativeGstRegRef_MReg, kIemNativeGstRegRef_XReg, kIemNativeGstRegRef_X87, kIemNativeGstRegRef_XState, //kIemNativeGstRegRef_YReg, - doesn't work. kIemNativeGstRegRef_End } IEMNATIVEGSTREGREF; /** Variable kinds. */ typedef enum IEMNATIVEVARKIND : uint8_t { /** Customary invalid zero value. */ kIemNativeVarKind_Invalid = 0, /** This is either in a register or on the stack. */ kIemNativeVarKind_Stack, /** Immediate value - loaded into register when needed, or can live on the * stack if referenced (in theory). */ kIemNativeVarKind_Immediate, /** Variable reference - loaded into register when needed, never stack. */ kIemNativeVarKind_VarRef, /** Guest register reference - loaded into register when needed, never stack. */ kIemNativeVarKind_GstRegRef, /** End of valid values. */ kIemNativeVarKind_End } IEMNATIVEVARKIND; /** Variable or argument. */ typedef struct IEMNATIVEVAR { /** The kind of variable. */ IEMNATIVEVARKIND enmKind; /** The variable size in bytes. */ uint8_t cbVar; /** The first stack slot (uint64_t), except for immediate and references * where it usually is UINT8_MAX. This is allocated lazily, so if a variable * has a stack slot it has been initialized and has a value. Unused variables * has neither a stack slot nor a host register assignment. */ uint8_t idxStackSlot; /** The host register allocated for the variable, UINT8_MAX if not. */ uint8_t idxReg; /** The argument number if argument, UINT8_MAX if regular variable. */ uint8_t uArgNo; /** If referenced, the index (unpacked) of the variable referencing this one, * otherwise UINT8_MAX. A referenced variable must only be placed on the stack * and must be either kIemNativeVarKind_Stack or kIemNativeVarKind_Immediate. */ uint8_t idxReferrerVar; /** Guest register being shadowed here, kIemNativeGstReg_End(/UINT8_MAX) if not. * @todo not sure what this really is for... */ IEMNATIVEGSTREG enmGstReg; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Flag whether this variable is held in a SIMD register (only supported for 128-bit and 256-bit variables), * only valid when idxReg is not UINT8_MAX. */ bool fSimdReg : 1; /** Set if the registered is currently used exclusively, false if the * variable is idle and the register can be grabbed. */ bool fRegAcquired : 1; #else /** Set if the registered is currently used exclusively, false if the * variable is idle and the register can be grabbed. */ bool fRegAcquired; #endif union { /** kIemNativeVarKind_Immediate: The immediate value. */ uint64_t uValue; /** kIemNativeVarKind_VarRef: The index (unpacked) of the variable being referenced. */ uint8_t idxRefVar; /** kIemNativeVarKind_GstRegRef: The guest register being referrenced. */ struct { /** The class of register. */ IEMNATIVEGSTREGREF enmClass; /** Index within the class. */ uint8_t idx; } GstRegRef; } u; } IEMNATIVEVAR; /** Pointer to a variable or argument. */ typedef IEMNATIVEVAR *PIEMNATIVEVAR; /** Pointer to a const variable or argument. */ typedef IEMNATIVEVAR const *PCIEMNATIVEVAR; /** What is being kept in a host register. */ typedef enum IEMNATIVEWHAT : uint8_t { /** The traditional invalid zero value. */ kIemNativeWhat_Invalid = 0, /** Mapping a variable (IEMNATIVEHSTREG::idxVar). */ kIemNativeWhat_Var, /** Temporary register, this is typically freed when a MC completes. */ kIemNativeWhat_Tmp, /** Call argument w/o a variable mapping. This is free (via * IEMNATIVE_CALL_VOLATILE_GREG_MASK) after the call is emitted. */ kIemNativeWhat_Arg, /** Return status code. * @todo not sure if we need this... */ kIemNativeWhat_rc, /** The fixed pVCpu (PVMCPUCC) register. * @todo consider offsetting this on amd64 to use negative offsets to access * more members using 8-byte disp. */ kIemNativeWhat_pVCpuFixed, /** The fixed pCtx (PCPUMCTX) register. * @todo consider offsetting this on amd64 to use negative offsets to access * more members using 8-byte disp. */ kIemNativeWhat_pCtxFixed, /** Fixed temporary register. */ kIemNativeWhat_FixedTmp, #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING /** Shadow RIP for the delayed RIP updating debugging. */ kIemNativeWhat_PcShadow, #endif /** Register reserved by the CPU or OS architecture. */ kIemNativeWhat_FixedReserved, /** End of valid values. */ kIemNativeWhat_End } IEMNATIVEWHAT; /** * Host general register entry. * * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstRegs. * * @todo Track immediate values in host registers similarlly to how we track the * guest register shadow copies. For it to be real helpful, though, * we probably need to know which will be reused and put them into * non-volatile registers, otherwise it's going to be more or less * restricted to an instruction or two. */ typedef struct IEMNATIVEHSTREG { /** Set of guest registers this one shadows. * * Using a bitmap here so we can designate the same host register as a copy * for more than one guest register. This is expected to be useful in * situations where one value is copied to several registers in a sequence. * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST' * sequence we'd want to let this register follow to be a copy of and there * will always be places where we'd be picking the wrong one. */ uint64_t fGstRegShadows; /** What is being kept in this register. */ IEMNATIVEWHAT enmWhat; /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */ uint8_t idxVar; /** Stack slot assigned by iemNativeVarSaveVolatileRegsPreHlpCall and freed * by iemNativeVarRestoreVolatileRegsPostHlpCall. This is not valid outside * that scope. */ uint8_t idxStackSlot; /** Alignment padding. */ uint8_t abAlign[5]; } IEMNATIVEHSTREG; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** * Host SIMD register entry - this tracks a virtual 256-bit register split into two 128-bit * halves, on architectures where there is no 256-bit register available this entry will track * two adjacent 128-bit host registers. * * The actual allocation status is kept in IEMRECOMPILERSTATE::bmHstSimdRegs. */ typedef struct IEMNATIVEHSTSIMDREG { /** Set of guest registers this one shadows. * * Using a bitmap here so we can designate the same host register as a copy * for more than one guest register. This is expected to be useful in * situations where one value is copied to several registers in a sequence. * If the mapping is 1:1, then we'd have to pick which side of a 'MOV SRC,DST' * sequence we'd want to let this register follow to be a copy of and there * will always be places where we'd be picking the wrong one. */ uint64_t fGstRegShadows; /** What is being kept in this register. */ IEMNATIVEWHAT enmWhat; /** Variable index (packed) if holding a variable, otherwise UINT8_MAX. */ uint8_t idxVar; /** Flag what is currently loaded, low 128-bits, high 128-bits or complete 256-bits. */ IEMNATIVEGSTSIMDREGLDSTSZ enmLoaded; /** Alignment padding. */ uint8_t abAlign[5]; } IEMNATIVEHSTSIMDREG; #endif /** * Core state for the native recompiler, that is, things that needs careful * handling when dealing with branches. */ typedef struct IEMNATIVECORESTATE { /** Allocation bitmap for aHstRegs. */ uint32_t bmHstRegs; /** Bitmap marking which host register contains guest register shadow copies. * This is used during register allocation to try preserve copies. */ uint32_t bmHstRegsWithGstShadow; /** Bitmap marking valid entries in aidxGstRegShadows. */ uint64_t bmGstRegShadows; #ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK /** Bitmap marking the shadowed guest register as dirty and needing writeback when flushing. */ uint64_t bmGstRegShadowDirty; #endif #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING /** The current instruction offset in bytes from when the guest program counter * was updated last. Used for delaying the write to the guest context program counter * as long as possible. */ int64_t offPc; # ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG /** Set after we've loaded PC into uPcUpdatingDebug at the first update. */ bool fDebugPcInitialized; # endif #endif #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Allocation bitmap for aHstSimdRegs. */ uint32_t bmHstSimdRegs; /** Bitmap marking which host SIMD register contains guest SIMD register shadow copies. * This is used during register allocation to try preserve copies. */ uint32_t bmHstSimdRegsWithGstShadow; /** Bitmap marking valid entries in aidxSimdGstRegShadows. */ uint64_t bmGstSimdRegShadows; /** Bitmap marking whether the low 128-bit of the shadowed guest register are dirty and need writeback. */ uint64_t bmGstSimdRegShadowDirtyLo128; /** Bitmap marking whether the high 128-bit of the shadowed guest register are dirty and need writeback. */ uint64_t bmGstSimdRegShadowDirtyHi128; #endif union { /** Index of variable (unpacked) arguments, UINT8_MAX if not valid. */ uint8_t aidxArgVars[8]; /** For more efficient resetting. */ uint64_t u64ArgVars; }; /** Allocation bitmap for the stack. */ uint32_t bmStack; /** Allocation bitmap for aVars. */ uint32_t bmVars; /** Maps a guest register to a host GPR (index by IEMNATIVEGSTREG). * Entries are only valid if the corresponding bit in bmGstRegShadows is set. * (A shadow copy of a guest register can only be held in a one host register, * there are no duplicate copies or ambiguities like that). */ uint8_t aidxGstRegShadows[kIemNativeGstReg_End]; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Maps a guest SIMD register to a host SIMD register (index by IEMNATIVEGSTSIMDREG). * Entries are only valid if the corresponding bit in bmGstSimdRegShadows is set. * (A shadow copy of a guest register can only be held in a one host register, * there are no duplicate copies or ambiguities like that). */ uint8_t aidxGstSimdRegShadows[kIemNativeGstSimdReg_End]; #endif /** Host register allocation tracking. */ IEMNATIVEHSTREG aHstRegs[IEMNATIVE_HST_GREG_COUNT]; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Host SIMD register allocation tracking. */ IEMNATIVEHSTSIMDREG aHstSimdRegs[IEMNATIVE_HST_SIMD_REG_COUNT]; #endif /** Variables and arguments. */ IEMNATIVEVAR aVars[9]; } IEMNATIVECORESTATE; /** Pointer to core state. */ typedef IEMNATIVECORESTATE *PIEMNATIVECORESTATE; /** Pointer to const core state. */ typedef IEMNATIVECORESTATE const *PCIEMNATIVECORESTATE; /** @def IEMNATIVE_VAR_IDX_UNPACK * @returns Index into IEMNATIVECORESTATE::aVars. * @param a_idxVar Variable index w/ magic (in strict builds). */ /** @def IEMNATIVE_VAR_IDX_PACK * @returns Variable index w/ magic (in strict builds). * @param a_idxVar Index into IEMNATIVECORESTATE::aVars. */ #ifdef VBOX_STRICT # define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) ((a_idxVar) & IEMNATIVE_VAR_IDX_MASK) # define IEMNATIVE_VAR_IDX_PACK(a_idxVar) ((a_idxVar) | IEMNATIVE_VAR_IDX_MAGIC) # define IEMNATIVE_VAR_IDX_MAGIC UINT8_C(0xd0) # define IEMNATIVE_VAR_IDX_MAGIC_MASK UINT8_C(0xf0) # define IEMNATIVE_VAR_IDX_MASK UINT8_C(0x0f) #else # define IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) (a_idxVar) # define IEMNATIVE_VAR_IDX_PACK(a_idxVar) (a_idxVar) #endif #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Clear the dirty state of the given guest SIMD register. */ # define IEMNATIVE_SIMD_REG_STATE_CLR_DIRTY(a_pReNative, a_iSimdReg) \ do { \ (a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 &= ~RT_BIT_64(a_iSimdReg); \ (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 &= ~RT_BIT_64(a_iSimdReg); \ } while (0) /** Returns whether the low 128-bits of the given guest SIMD register are dirty. */ # define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \ RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 & RT_BIT_64(a_iSimdReg)) /** Returns whether the high 128-bits of the given guest SIMD register are dirty. */ # define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \ RT_BOOL((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 & RT_BIT_64(a_iSimdReg)) /** Returns whether the given guest SIMD register is dirty. */ # define IEMNATIVE_SIMD_REG_STATE_IS_DIRTY_U256(a_pReNative, a_iSimdReg) \ RT_BOOL(((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 | (a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128) & RT_BIT_64(a_iSimdReg)) /** Set the low 128-bits of the given guest SIMD register to the dirty state. */ # define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_LO_U128(a_pReNative, a_iSimdReg) \ ((a_pReNative)->Core.bmGstSimdRegShadowDirtyLo128 |= RT_BIT_64(a_iSimdReg)) /** Set the high 128-bits of the given guest SIMD register to the dirty state. */ # define IEMNATIVE_SIMD_REG_STATE_SET_DIRTY_HI_U128(a_pReNative, a_iSimdReg) \ ((a_pReNative)->Core.bmGstSimdRegShadowDirtyHi128 |= RT_BIT_64(a_iSimdReg)) /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */ # define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_DEVICE_NOT_AVAILABLE RT_BIT_32(0) /** Flag for indicating that IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() has emitted code in the current TB. */ # define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_WAIT_DEVICE_NOT_AVAILABLE RT_BIT_32(1) /** Flag for indicating that IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() has emitted code in the current TB. */ # define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_SSE RT_BIT_32(2) /** Flag for indicating that IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() has emitted code in the current TB. */ # define IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_MAYBE_AVX RT_BIT_32(3) # ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS /** Flag indicating that the guest MXCSR was synced to the host floating point control register. */ # define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SYNCED RT_BIT_32(4) /** Flag indicating whether the host floating point control register was saved before overwriting it. */ # define IEMNATIVE_SIMD_HOST_FP_CTRL_REG_SAVED RT_BIT_32(5) # endif #endif #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING typedef enum IEMNATIVE_POSTPONED_EFL_OP_T : uint8_t { kIemNativePostponedEflOp_Invalid = 0, /** Logical operation. * Operands: result register. * @note This clears OF, CF and (undefined) AF, thus no need for inputs. */ kIemNativePostponedEflOp_Logical, kIemNativePostponedEflOp_End } IEMNATIVE_POSTPONED_EFL_OP_T; #endif /* IEMNATIVE_WITH_EFLAGS_POSTPONING */ /** * Conditional stack entry. */ typedef struct IEMNATIVECOND { /** Set if we're in the "else" part, clear if we're in the "if" before it. */ bool fInElse; union { RT_GCC_EXTENSION struct { /** Set if the if-block unconditionally exited the TB. */ bool fIfExitTb; /** Set if the else-block unconditionally exited the TB. */ bool fElseExitTb; }; /** Indexed by fInElse. */ bool afExitTb[2]; }; bool afPadding[5]; /** The label for the IEM_MC_ELSE. */ uint32_t idxLabelElse; /** The label for the IEM_MC_ENDIF. */ uint32_t idxLabelEndIf; /** The initial state snapshot as the if-block starts executing. */ IEMNATIVECORESTATE InitialState; /** The state snapshot at the end of the if-block. */ IEMNATIVECORESTATE IfFinalState; } IEMNATIVECOND; /** Pointer to a condition stack entry. */ typedef IEMNATIVECOND *PIEMNATIVECOND; /** * Native recompiler state. */ typedef struct IEMRECOMPILERSTATE { /** Size of the buffer that pbNativeRecompileBufR3 points to in * IEMNATIVEINSTR units. */ uint32_t cInstrBufAlloc; #ifdef VBOX_STRICT /** Strict: How far the last iemNativeInstrBufEnsure() checked. */ uint32_t offInstrBufChecked; #else uint32_t uPadding1; /* We don't keep track of the size here... */ #endif /** Fixed temporary code buffer for native recompilation. */ PIEMNATIVEINSTR pInstrBuf; /** Bitmaps with the label types used. */ uint64_t bmLabelTypes; /** Actual number of labels in paLabels. */ uint32_t cLabels; /** Max number of entries allowed in paLabels before reallocating it. */ uint32_t cLabelsAlloc; /** Labels defined while recompiling (referenced by fixups). */ PIEMNATIVELABEL paLabels; /** Array with indexes of unique labels (uData always 0). */ uint32_t aidxUniqueLabels[kIemNativeLabelType_FirstWithMultipleInstances]; /** Actual number of fixups paFixups. */ uint32_t cFixups; /** Max number of entries allowed in paFixups before reallocating it. */ uint32_t cFixupsAlloc; /** Buffer used by the recompiler for recording fixups when generating code. */ PIEMNATIVEFIXUP paFixups; /** Actual number of fixups in paTbExitFixups. */ uint32_t cTbExitFixups; /** Max number of entries allowed in paTbExitFixups before reallocating it. */ uint32_t cTbExitFixupsAlloc; /** Buffer used by the recompiler for recording fixups when generating code. */ PIEMNATIVEEXITFIXUP paTbExitFixups; #if defined(IEMNATIVE_WITH_TB_DEBUG_INFO) || defined(VBOX_WITH_STATISTICS) /** Statistics: The idxInstr+1 value at the last PC update. */ uint8_t idxInstrPlusOneOfLastPcUpdate; #endif #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO /** Number of debug info entries allocated for pDbgInfo. */ uint32_t cDbgInfoAlloc; /** Debug info. */ PIEMTBDBG pDbgInfo; #endif #ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS /** The current call index (liveness array and threaded calls in TB). */ uint32_t idxCurCall; /** Number of liveness entries allocated. */ uint32_t cLivenessEntriesAlloc; /** Liveness entries for all the calls in the TB begin recompiled. * The entry for idxCurCall contains the info for what the next call will * require wrt registers. (Which means the last entry is the initial liveness * state.) */ PIEMLIVENESSENTRY paLivenessEntries; #endif /** The translation block being recompiled. */ PCIEMTB pTbOrg; /** The VMCPU structure of the EMT. */ PVMCPUCC pVCpu; /** Condition sequence number (for generating unique labels). */ uint16_t uCondSeqNo; /** Check IRQ sequence number (for generating unique labels). */ uint16_t uCheckIrqSeqNo; /** TLB load sequence number (for generating unique labels). */ uint16_t uTlbSeqNo; /** The current condition stack depth (aCondStack). */ uint8_t cCondDepth; /** The argument count + hidden regs from the IEM_MC_BEGIN_EX statement. */ uint8_t cArgsX; /** The IEM_CIMPL_F_XXX flags from the IEM_MC_BEGIN statement. */ uint32_t fCImpl; /** The IEM_MC_F_XXX flags from the IEM_MC_BEGIN statement. */ uint32_t fMc; /** The expected IEMCPU::fExec value for the current call/instruction. */ uint32_t fExec; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** IEMNATIVE_SIMD_RAISE_XCPT_CHECKS_EMITTED_XXX flags for exception flags * we only emit once per TB (or when the cr0/cr4/xcr0 register changes). * * This is an optimization because these control registers can only be changed from * by calling a C helper we can catch. Should reduce the number of instructions in a TB * consisting of multiple SIMD instructions. */ uint32_t fSimdRaiseXcptChecksEmitted; #endif /** The call number of the last CheckIrq, UINT32_MAX if not seen. */ uint32_t idxLastCheckIrqCallNo; #ifdef IEMNATIVE_WITH_EFLAGS_SKIPPING uint32_t fSkippingEFlags; #endif #ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING struct { /** EFLAGS status bits that we're currently postponing the calculcation of. */ uint32_t fEFlags; /** The postponed EFLAGS status bits calculation operation. */ IEMNATIVE_POSTPONED_EFL_OP_T enmOp; /** The bit-width of the postponed EFLAGS calculation. */ uint8_t cOpBits; /** Host register holding result or first source for the delayed operation, * UINT8_MAX if not in use. */ uint8_t idxReg1; /** Host register holding second source for the delayed operation, * UINT8_MAX if not in use. */ uint8_t idxReg2; # if defined(VBOX_WITH_STATISTICS) || defined(IEMNATIVE_WITH_TB_DEBUG_INFO) /** Number of times the delayed calculation was emitted. */ uint8_t cEmits; # endif } PostponedEfl; #endif /** Core state requiring care with branches. */ IEMNATIVECORESTATE Core; /** The condition nesting stack. */ IEMNATIVECOND aCondStack[2]; #ifndef IEM_WITH_THROW_CATCH /** Pointer to the setjmp/longjmp buffer if we're not using C++ exceptions * for recompilation error handling. */ jmp_buf JmpBuf; #endif } IEMRECOMPILERSTATE; /** Pointer to a native recompiler state. */ typedef IEMRECOMPILERSTATE *PIEMRECOMPILERSTATE; /** @def IEMNATIVE_TRY_SETJMP * Wrapper around setjmp / try, hiding all the ugly differences. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. * @param a_rcTarget The variable that should receive the status code in case * of a longjmp/throw. */ /** @def IEMNATIVE_CATCH_LONGJMP_BEGIN * Start wrapper for catch / setjmp-else. * * This will set up a scope. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. * @param a_rcTarget The variable that should receive the status code in case * of a longjmp/throw. */ /** @def IEMNATIVE_CATCH_LONGJMP_END * End wrapper for catch / setjmp-else. * * This will close the scope set up by IEMNATIVE_CATCH_LONGJMP_BEGIN and clean * up the state. * * @note Use with extreme care as this is a fragile macro. * @param a_pReNative The native recompile state. */ /** @def IEMNATIVE_DO_LONGJMP * * Wrapper around longjmp / throw. * * @param a_pReNative The native recompile state. * @param a_rc The status code jump back with / throw. */ #ifdef IEM_WITH_THROW_CATCH # define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \ a_rcTarget = VINF_SUCCESS; \ try # define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \ catch (int rcThrown) \ { \ a_rcTarget = rcThrown # define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \ } \ ((void)0) # define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) throw int(a_rc) #else /* !IEM_WITH_THROW_CATCH */ # define IEMNATIVE_TRY_SETJMP(a_pReNative, a_rcTarget) \ if ((a_rcTarget = setjmp((a_pReNative)->JmpBuf)) == 0) # define IEMNATIVE_CATCH_LONGJMP_BEGIN(a_pReNative, a_rcTarget) \ else \ { \ ((void)0) # define IEMNATIVE_CATCH_LONGJMP_END(a_pReNative) \ } # define IEMNATIVE_DO_LONGJMP(a_pReNative, a_rc) longjmp((a_pReNative)->JmpBuf, (a_rc)) #endif /* !IEM_WITH_THROW_CATCH */ /** * Native recompiler worker for a threaded function. * * @returns New code buffer offset; throws VBox status code in case of a failure. * @param pReNative The native recompiler state. * @param off The current code buffer offset. * @param pCallEntry The threaded call entry. * * @note This may throw/longjmp VBox status codes (int) to abort compilation, so no RT_NOEXCEPT! */ typedef uint32_t (VBOXCALL FNIEMNATIVERECOMPFUNC)(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry); /** Pointer to a native recompiler worker for a threaded function. */ typedef FNIEMNATIVERECOMPFUNC *PFNIEMNATIVERECOMPFUNC; /** Defines a native recompiler worker for a threaded function. * @see FNIEMNATIVERECOMPFUNC */ #define IEM_DECL_IEMNATIVERECOMPFUNC_DEF(a_Name) \ uint32_t VBOXCALL a_Name(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry) /** Prototypes a native recompiler function for a threaded function. * @see FNIEMNATIVERECOMPFUNC */ #define IEM_DECL_IEMNATIVERECOMPFUNC_PROTO(a_Name) FNIEMNATIVERECOMPFUNC a_Name /** * Native recompiler liveness analysis worker for a threaded function. * * @param pCallEntry The threaded call entry. * @param pIncoming The incoming liveness state entry. * @param pOutgoing The outgoing liveness state entry. */ typedef DECLCALLBACKTYPE(void, FNIEMNATIVELIVENESSFUNC, (PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing)); /** Pointer to a native recompiler liveness analysis worker for a threaded function. */ typedef FNIEMNATIVELIVENESSFUNC *PFNIEMNATIVELIVENESSFUNC; /** Defines a native recompiler liveness analysis worker for a threaded function. * @see FNIEMNATIVELIVENESSFUNC */ #define IEM_DECL_IEMNATIVELIVENESSFUNC_DEF(a_Name) \ DECLCALLBACK(void) a_Name(PCIEMTHRDEDCALLENTRY pCallEntry, PCIEMLIVENESSENTRY pIncoming, PIEMLIVENESSENTRY pOutgoing) /** Prototypes a native recompiler liveness analysis function for a threaded function. * @see FNIEMNATIVELIVENESSFUNC */ #define IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(a_Name) FNIEMNATIVELIVENESSFUNC a_Name /** Define a native recompiler helper function, safe to call from the TB code. */ #define IEM_DECL_NATIVE_HLP_DEF(a_RetType, a_Name, a_ArgList) \ DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList /** Prototype a native recompiler helper function, safe to call from the TB code. */ #define IEM_DECL_NATIVE_HLP_PROTO(a_RetType, a_Name, a_ArgList) \ DECL_HIDDEN_THROW(a_RetType) VBOXCALL a_Name a_ArgList /** Pointer typedef a native recompiler helper function, safe to call from the TB code. */ #define IEM_DECL_NATIVE_HLP_PTR(a_RetType, a_Name, a_ArgList) \ a_RetType (VBOXCALL *a_Name) a_ArgList #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddNativeOffset(PIEMRECOMPILERSTATE pReNative, uint32_t off); DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint8_t idxHstReg = UINT8_MAX, uint8_t idxHstRegPrev = UINT8_MAX); # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTSIMDREG enmGstSimdReg, uint8_t idxHstSimdReg = UINT8_MAX, uint8_t idxHstSimdRegPrev = UINT8_MAX); # endif # if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR) DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegDirty(PIEMRECOMPILERSTATE pReNative, bool fSimdReg, uint8_t idxGstReg, uint8_t idxHstReg); DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddGuestRegWriteback(PIEMRECOMPILERSTATE pReNative, bool fSimdReg, uint64_t fGstReg); # endif DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddDelayedPcUpdate(PIEMRECOMPILERSTATE pReNative, uint64_t offPc, uint32_t cInstrSkipped); # ifdef IEMNATIVE_WITH_EFLAGS_POSTPONING DECL_HIDDEN_THROW(void) iemNativeDbgInfoAddPostponedEFlagsCalc(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVE_POSTPONED_EFL_OP_T enmOp, uint8_t cOpBits, uint8_t idxInstance); # endif #endif /* IEMNATIVE_WITH_TB_DEBUG_INFO */ DECL_HIDDEN_THROW(uint32_t) iemNativeLabelCreate(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint32_t offWhere = UINT32_MAX, uint16_t uData = 0); DECL_HIDDEN_THROW(void) iemNativeLabelDefine(PIEMRECOMPILERSTATE pReNative, uint32_t idxLabel, uint32_t offWhere); DECLHIDDEN(uint32_t) iemNativeLabelFind(PIEMRECOMPILERSTATE pReNative, IEMNATIVELABELTYPE enmType, uint32_t offWhere = UINT32_MAX, uint16_t uData = 0) RT_NOEXCEPT; DECL_HIDDEN_THROW(void) iemNativeAddFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, uint32_t idxLabel, IEMNATIVEFIXUPTYPE enmType, int8_t offAddend = 0); DECL_HIDDEN_THROW(void) iemNativeAddTbExitFixup(PIEMRECOMPILERSTATE pReNative, uint32_t offWhere, IEMNATIVELABELTYPE enmExitReason); DECL_HIDDEN_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsureSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpExPreferNonVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpImm(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t uImm); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWrite(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculation(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); #if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT) DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0); #endif DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg); #if defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) && defined(VBOX_STRICT) DECL_HIDDEN_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0); #else DECL_FORCE_INLINE_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsIfAlreadyPresent(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0) { RT_NOREF(fRead, fWrite); return iemNativeRegAllocTmpForGuestRegIfAlreadyPresent(pReNative, poff, kIemNativeGstReg_EFlags); } #endif DECL_HIDDEN_THROW(uint32_t) iemNativeRegAllocArgs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs); DECL_HIDDEN_THROW(uint8_t) iemNativeRegAssignRc(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg); #if (defined(IPRT_INCLUDED_x86_h) && defined(RT_ARCH_AMD64)) || (defined(IPRT_INCLUDED_armv8_h) && defined(RT_ARCH_ARM64)) DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar, uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_GREG_MASK); # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegMoveOrSpillStackVar(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxVar, uint32_t fForbiddenRegs = IEMNATIVE_CALL_VOLATILE_SIMD_REG_MASK); # endif #endif DECLHIDDEN(void) iemNativeRegFree(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeTmpImm(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, bool fFlushShadows) RT_NOEXCEPT; #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECLHIDDEN(void) iemNativeSimdRegFreeVar(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, bool fFlushShadows) RT_NOEXCEPT; # ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushDirtyGuestByHostSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg); # endif #endif DECLHIDDEN(void) iemNativeRegFreeAndFlushMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegMask) RT_NOEXCEPT; DECL_HIDDEN_THROW(uint32_t) iemNativeRegMoveAndFreeAndFlushAtCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint32_t fKeepVars = 0); DECLHIDDEN(void) iemNativeRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstRegs) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeRegFlushGuestShadowsByHostMask(PIEMRECOMPILERSTATE pReNative, uint32_t fHstRegs) RT_NOEXCEPT; DECL_HIDDEN_THROW(uint32_t) iemNativeRegRestoreGuestShadowsInVolatileRegs(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsActiveShadows); #ifdef VBOX_STRICT DECLHIDDEN(void) iemNativeRegAssertSanity(PIEMRECOMPILERSTATE pReNative); #endif DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWritesSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept, uint64_t fGstSimdShwExcept); #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING # ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcDebugCheckWithReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxPcReg); # endif DECL_HIDDEN_THROW(uint32_t) iemNativeEmitPcWritebackSlow(PIEMRECOMPILERSTATE pReNative, uint32_t off); #endif #ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushPendingWriteEx(PIEMRECOMPILERSTATE pReNative, uint32_t off, PIEMNATIVECORESTATE pCore, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuest(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fFlushGstReg = UINT64_MAX); DECL_HIDDEN_THROW(uint32_t) iemNativeRegFlushDirtyGuestByHostRegShadow(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg); #endif #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmp(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, bool fPreferVolatile = true); DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpEx(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint32_t fRegMask, bool fPreferVolatile = true); DECL_HIDDEN_THROW(uint8_t) iemNativeSimdRegAllocTmpForGuestSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTSIMDREG enmGstSimdReg, IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz, IEMNATIVEGSTREGUSE enmIntendedUse = kIemNativeGstRegUse_ReadOnly, bool fNoVolatileRegs = false); DECLHIDDEN(void) iemNativeSimdRegFreeTmp(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg) RT_NOEXCEPT; DECLHIDDEN(void) iemNativeSimdRegFlushGuestShadows(PIEMRECOMPILERSTATE pReNative, uint64_t fGstSimdRegs) RT_NOEXCEPT; DECL_HIDDEN_THROW(uint32_t) iemNativeSimdRegFlushPendingWrite(PIEMRECOMPILERSTATE pReNative, uint32_t off, IEMNATIVEGSTSIMDREG enmGstSimdReg); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadSimdRegWithGstShadowSimdReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg, IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz); #endif DECL_HIDDEN_THROW(uint8_t) iemNativeArgAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType); DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t cbType, uint64_t uValue); DECL_HIDDEN_THROW(uint8_t) iemNativeArgAllocLocalRef(PIEMRECOMPILERSTATE pReNative, uint8_t iArgNo, uint8_t idxOtherVar); DECL_HIDDEN_THROW(uint8_t) iemNativeVarAlloc(PIEMRECOMPILERSTATE pReNative, uint8_t cbType); DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocConst(PIEMRECOMPILERSTATE pReNative, uint8_t cbType, uint64_t uValue); DECL_HIDDEN_THROW(uint8_t) iemNativeVarAllocAssign(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint8_t cbType, uint8_t idxVarOther); DECL_HIDDEN_THROW(void) iemNativeVarSetKindToStack(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar); DECL_HIDDEN_THROW(void) iemNativeVarSetKindToConst(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint64_t uValue); DECL_HIDDEN_THROW(void) iemNativeVarSetKindToGstRegRef(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, IEMNATIVEGSTREGREF enmRegClass, uint8_t idxReg); DECL_HIDDEN_THROW(uint8_t) iemNativeVarGetStackSlot(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar); DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX); #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_HIDDEN_THROW(uint8_t) iemNativeVarSimdRegisterAcquire(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, uint32_t *poff, bool fInitialized = false, uint8_t idxRegPref = UINT8_MAX); #endif DECL_HIDDEN_THROW(uint8_t) iemNativeVarRegisterAcquireForGuestReg(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar, IEMNATIVEGSTREG enmGstReg, uint32_t *poff); DECL_HIDDEN_THROW(uint32_t) iemNativeVarSaveVolatileRegsPreHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsNotToSave); DECL_HIDDEN_THROW(uint32_t) iemNativeVarRestoreVolatileRegsPostHlpCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fHstRegsNotToSave); DECLHIDDEN(void) iemNativeVarFreeOneWorker(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar); DECLHIDDEN(void) iemNativeVarFreeAllSlow(PIEMRECOMPILERSTATE pReNative, uint32_t bmVars); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowReg(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLoadGprWithGstShadowRegEx(PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg); #ifdef VBOX_STRICT DECL_HIDDEN_THROW(uint32_t) iemNativeEmitTop32BitsClearCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestRegValueCheckEx(PIEMRECOMPILERSTATE pReNative, PIEMNATIVEINSTR pCodeBuf, uint32_t off, uint8_t idxReg, IEMNATIVEGSTREG enmGstReg); # ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_HIDDEN_THROW(uint32_t) iemNativeEmitGuestSimdRegValueCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg, IEMNATIVEGSTSIMDREGLDSTSZ enmLoadSz); # endif DECL_HIDDEN_THROW(uint32_t) iemNativeEmitExecFlagsCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fExec); #endif #ifdef IEMNATIVE_STRICT_EFLAGS_SKIPPING DECL_HIDDEN_THROW(uint32_t) iemNativeEmitEFlagsSkippingCheck(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t fEflNeeded); #endif DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCheckCallRetAndPassUp(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCallCommon(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t cArgs, uint8_t cHiddenArgs, bool fFlushPendingWrites = true); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitCImplCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxInstr, uint64_t fGstShwFlush, uintptr_t pfnCImpl, uint8_t cbInstr, uint8_t cAddParams, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitThreadedCall(PIEMRECOMPILERSTATE pReNative, uint32_t off, PCIEMTHRDEDCALLENTRY pCallEntry); IEM_DECL_IEMNATIVELIVENESSFUNC_PROTO(iemNativeLivenessFunc_ThreadedCall); DECL_HIDDEN_THROW(uint32_t) iemNativeEmitLeaGprByGstRegRef(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint8_t idxGprDst, IEMNATIVEGSTREGREF enmClass, uint8_t idxRegInClass); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecStatusCodeFiddling,(PVMCPUCC pVCpu, int rc, uint8_t idxInstr)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseGp0,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseNm,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseUd,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseMf,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseXf,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseDe,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpObsoleteTb,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpNeedCsLimChecking,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpCheckBranchMiss,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseAvxRelated,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseRelated,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(int, iemNativeHlpExecRaiseSseAvxFpRelated,(PVMCPUCC pVCpu)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg)); #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PRTUINT256U pu256Dst)); #endif IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint8_t u8Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint16_t u16Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, uint64_t u64Value)); #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT128U pu128Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t iSegReg, PCRTUINT256U pu256Src)); #endif IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU8_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU16_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU32_Sx_U64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpMemFlatFetchDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT128U pu128Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatFetchDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PRTUINT256U pu256Dst)); #endif IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU8,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint8_t u8Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value)); #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128AlignedSse,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU128NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT128U pu128Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256NoAc,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemFlatStoreDataU256AlignedAvx,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, PCRTUINT256U pu256Src)); #endif IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t u16Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU32SReg,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t u32Value)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpStackFlatStoreU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t u64Value)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t, iemNativeHlpStackFlatFetchU16,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t, iemNativeHlpStackFlatFetchU32,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t, iemNativeHlpStackFlatFetchU64,(PVMCPUCC pVCpu, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem, uint8_t iSegReg)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t *, iemNativeHlpMemFlatMapDataU8Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint8_t const *, iemNativeHlpMemFlatMapDataU8Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t *, iemNativeHlpMemFlatMapDataU16Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint16_t const *, iemNativeHlpMemFlatMapDataU16Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t *, iemNativeHlpMemFlatMapDataU32Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint32_t const *, iemNativeHlpMemFlatMapDataU32Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t *, iemNativeHlpMemFlatMapDataU64Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(uint64_t const *, iemNativeHlpMemFlatMapDataU64Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTFLOAT80U *, iemNativeHlpMemFlatMapDataR80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTPBCD80U *, iemNativeHlpMemFlatMapDataD80Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Atomic,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Rw,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U *, iemNativeHlpMemFlatMapDataU128Wo,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(RTUINT128U const *, iemNativeHlpMemFlatMapDataU128Ro,(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, RTGCPTR GCPtrMem)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapAtomic,(PVMCPUCC pVCpu, uint8_t bUnmapInfo)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRw,(PVMCPUCC pVCpu, uint8_t bUnmapInfo)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapWo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo)); IEM_DECL_NATIVE_HLP_PROTO(void, iemNativeHlpMemCommitAndUnmapRo,(PVMCPUCC pVCpu, uint8_t bUnmapInfo)); /** * Info about shadowed guest register values. * @see IEMNATIVEGSTREG */ typedef struct IEMANTIVEGSTREGINFO { /** Offset in VMCPU. */ uint32_t off; /** The field size. */ uint8_t cb; /** Name (for logging). */ const char *pszName; } IEMANTIVEGSTREGINFO; extern DECL_HIDDEN_DATA(IEMANTIVEGSTREGINFO const) g_aGstShadowInfo[]; extern DECL_HIDDEN_DATA(const char * const) g_apszIemNativeHstRegNames[]; extern DECL_HIDDEN_DATA(int32_t const) g_aoffIemNativeCallStackArgBpDisp[]; extern DECL_HIDDEN_DATA(uint32_t const) g_afIemNativeCallRegs[]; extern DECL_HIDDEN_DATA(uint8_t const) g_aidxIemNativeCallRegs[]; /** * Ensures that there is sufficient space in the instruction output buffer. * * This will reallocate the buffer if needed and allowed. * * @note Always use IEMNATIVE_ASSERT_INSTR_BUF_ENSURE when done to check the * allocation size. * * @returns Pointer to the instruction output buffer on success; throws VBox * status code on failure, so no need to check it. * @param pReNative The native recompile state. * @param off Current instruction offset. Works safely for UINT32_MAX * as well. * @param cInstrReq Number of instruction about to be added. It's okay to * overestimate this a bit. */ DECL_FORCE_INLINE_THROW(PIEMNATIVEINSTR) iemNativeInstrBufEnsure(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint32_t cInstrReq) { uint64_t const offChecked = off + (uint64_t)cInstrReq; /** @todo may reconsider the need for UINT32_MAX safety... */ if (RT_LIKELY(offChecked <= pReNative->cInstrBufAlloc)) { #ifdef VBOX_STRICT pReNative->offInstrBufChecked = offChecked; #endif return pReNative->pInstrBuf; } return iemNativeInstrBufEnsureSlow(pReNative, off, cInstrReq); } /** * Checks that we didn't exceed the space requested in the last * iemNativeInstrBufEnsure() call. */ #define IEMNATIVE_ASSERT_INSTR_BUF_ENSURE(a_pReNative, a_off) \ AssertMsg((a_off) <= (a_pReNative)->offInstrBufChecked, \ ("off=%#x offInstrBufChecked=%#x\n", (a_off), (a_pReNative)->offInstrBufChecked)) /** * Checks that a variable index is valid. */ #ifdef IEMNATIVE_VAR_IDX_MAGIC # define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \ AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \ && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \ && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))), \ ("%s=%#x\n", #a_idxVar, a_idxVar)) #else # define IEMNATIVE_ASSERT_VAR_IDX(a_pReNative, a_idxVar) \ AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \ && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar)), ("%s=%d\n", #a_idxVar, a_idxVar)) #endif /** * Checks that a variable index is valid and that the variable is assigned the * correct argument number. * This also adds a RT_NOREF of a_idxVar. */ #ifdef IEMNATIVE_VAR_IDX_MAGIC # define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \ RT_NOREF_PV(a_idxVar); \ AssertMsg( ((a_idxVar) & IEMNATIVE_VAR_IDX_MAGIC_MASK) == IEMNATIVE_VAR_IDX_MAGIC \ && (unsigned)IEMNATIVE_VAR_IDX_UNPACK(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \ && ((a_pReNative)->Core.bmVars & RT_BIT_32(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar))) \ && (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].uArgNo == (a_uArgNo), \ ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \ (a_pReNative)->Core.aVars[RT_MIN(IEMNATIVE_VAR_IDX_UNPACK(a_idxVar), \ RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, \ a_uArgNo)); \ } while (0) #else # define IEMNATIVE_ASSERT_ARG_VAR_IDX(a_pReNative, a_idxVar, a_uArgNo) do { \ RT_NOREF_PV(a_idxVar); \ AssertMsg( (unsigned)(a_idxVar) < RT_ELEMENTS((a_pReNative)->Core.aVars) \ && ((a_pReNative)->Core.bmVars & RT_BIT_32(a_idxVar))\ && (a_pReNative)->Core.aVars[a_idxVar].uArgNo == (a_uArgNo) \ , ("%s=%d; uArgNo=%d, expected %u\n", #a_idxVar, a_idxVar, \ (a_pReNative)->Core.aVars[RT_MIN(a_idxVar, RT_ELEMENTS((a_pReNative)->Core.aVars)) - 1].uArgNo, a_uArgNo)); \ } while (0) #endif /** * Checks that a variable has the expected size. */ #define IEMNATIVE_ASSERT_VAR_SIZE(a_pReNative, a_idxVar, a_cbVar) \ AssertMsg((a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar == (a_cbVar), \ ("%s=%#x: cbVar=%#x, expected %#x!\n", #a_idxVar, a_idxVar, \ (a_pReNative)->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(a_idxVar)].cbVar, (a_cbVar))) /** * Calculates the stack address of a variable as a [r]BP displacement value. */ DECL_FORCE_INLINE(int32_t) iemNativeStackCalcBpDisp(uint8_t idxStackSlot) { Assert(idxStackSlot < IEMNATIVE_FRAME_VAR_SLOTS); return idxStackSlot * sizeof(uint64_t) + IEMNATIVE_FP_OFF_STACK_VARS; } /** * Releases the variable's register. * * The register must have been previously acquired calling * iemNativeVarRegisterAcquire(), iemNativeVarRegisterAcquireForGuestReg() or * iemNativeVarRegisterSetAndAcquire(). */ DECL_INLINE_THROW(void) iemNativeVarRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar) { IEMNATIVE_ASSERT_VAR_IDX(pReNative, idxVar); Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired); pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fRegAcquired = false; } #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_INLINE_THROW(void) iemNativeVarSimdRegisterRelease(PIEMRECOMPILERSTATE pReNative, uint8_t idxVar) { Assert(pReNative->Core.aVars[IEMNATIVE_VAR_IDX_UNPACK(idxVar)].fSimdReg); iemNativeVarRegisterRelease(pReNative, idxVar); } #endif /** * Converts IEM_CIMPL_F_XXX flags into a guest register shadow copy flush mask. * * @returns The flush mask. * @param fCImpl The IEM_CIMPL_F_XXX flags. * @param fGstShwFlush The starting flush mask. */ DECL_FORCE_INLINE(uint64_t) iemNativeCImplFlagsToGuestShadowFlushMask(uint32_t fCImpl, uint64_t fGstShwFlush) { if (fCImpl & IEM_CIMPL_F_BRANCH_FAR) fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_CS) | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_CS) | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_CS); if (fCImpl & IEM_CIMPL_F_BRANCH_STACK_FAR) fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP) | RT_BIT_64(kIemNativeGstReg_SegSelFirst + X86_SREG_SS) | RT_BIT_64(kIemNativeGstReg_SegBaseFirst + X86_SREG_SS) | RT_BIT_64(kIemNativeGstReg_SegLimitFirst + X86_SREG_SS); else if (fCImpl & IEM_CIMPL_F_BRANCH_STACK) fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_GprFirst + X86_GREG_xSP); if (fCImpl & (IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_STATUS_FLAGS | IEM_CIMPL_F_INHIBIT_SHADOW)) fGstShwFlush |= RT_BIT_64(kIemNativeGstReg_EFlags); return fGstShwFlush; } /** Number of hidden arguments for CIMPL calls. * @note We're sufferning from the usual VBOXSTRICTRC fun on Windows. */ #if defined(VBOXSTRICTRC_STRICT_ENABLED) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64) # define IEM_CIMPL_HIDDEN_ARGS 3 #else # define IEM_CIMPL_HIDDEN_ARGS 2 #endif #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR /** Number of hidden arguments for SSE_AIMPL calls. */ # define IEM_SSE_AIMPL_HIDDEN_ARGS 1 /** Number of hidden arguments for AVX_AIMPL calls. */ # define IEM_AVX_AIMPL_HIDDEN_ARGS 1 #endif #ifdef IEMNATIVE_WITH_LIVENESS_ANALYSIS # ifndef IEMLIVENESS_EXTENDED_LAYOUT /** * Helper for iemNativeLivenessGetStateByGstReg. * * @returns IEMLIVENESS_STATE_XXX * @param fMergedStateExp2 This is the RT_BIT_32() of each sub-state * ORed together. */ DECL_FORCE_INLINE(uint32_t) iemNativeLivenessMergeExpandedEFlagsState(uint32_t fMergedStateExp2) { /* INPUT trumps anything else. */ if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_INPUT)) return IEMLIVENESS_STATE_INPUT; /* CLOBBERED trumps XCPT_OR_CALL and UNUSED. */ if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_CLOBBERED)) { /* If not all sub-fields are clobbered they must be considered INPUT. */ if (fMergedStateExp2 & (RT_BIT_32(IEMLIVENESS_STATE_UNUSED) | RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL))) return IEMLIVENESS_STATE_INPUT; return IEMLIVENESS_STATE_CLOBBERED; } /* XCPT_OR_CALL trumps UNUSED. */ if (fMergedStateExp2 & RT_BIT_32(IEMLIVENESS_STATE_XCPT_OR_CALL)) return IEMLIVENESS_STATE_XCPT_OR_CALL; return IEMLIVENESS_STATE_UNUSED; } # endif /* !IEMLIVENESS_EXTENDED_LAYOUT */ DECL_FORCE_INLINE(uint32_t) iemNativeLivenessGetStateByGstRegEx(PCIEMLIVENESSENTRY pLivenessEntry, unsigned enmGstRegEx) { # ifndef IEMLIVENESS_EXTENDED_LAYOUT return ((pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1) | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2); # else return ( (pLivenessEntry->Bit0.bm64 >> enmGstRegEx) & 1) | (((pLivenessEntry->Bit1.bm64 >> enmGstRegEx) << 1) & 2) | (((pLivenessEntry->Bit2.bm64 >> enmGstRegEx) << 2) & 4) | (((pLivenessEntry->Bit3.bm64 >> enmGstRegEx) << 3) & 8); # endif } DECL_FORCE_INLINE(uint32_t) iemNativeLivenessGetStateByGstReg(PCIEMLIVENESSENTRY pLivenessEntry, IEMNATIVEGSTREG enmGstReg) { uint32_t uRet = iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, (unsigned)enmGstReg); if (enmGstReg == kIemNativeGstReg_EFlags) { /* Merge the eflags states to one. */ # ifndef IEMLIVENESS_EXTENDED_LAYOUT uRet = RT_BIT_32(uRet); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflCf | (pLivenessEntry->Bit1.fEflCf << 1)); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflPf | (pLivenessEntry->Bit1.fEflPf << 1)); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflAf | (pLivenessEntry->Bit1.fEflAf << 1)); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflZf | (pLivenessEntry->Bit1.fEflZf << 1)); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflSf | (pLivenessEntry->Bit1.fEflSf << 1)); uRet |= RT_BIT_32(pLivenessEntry->Bit0.fEflOf | (pLivenessEntry->Bit1.fEflOf << 1)); uRet = iemNativeLivenessMergeExpandedEFlagsState(uRet); # else AssertCompile(IEMLIVENESSBIT_IDX_EFL_OTHER == (unsigned)kIemNativeGstReg_EFlags); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_CF); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_PF); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_AF); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_ZF); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_SF); uRet |= iemNativeLivenessGetStateByGstRegEx(pLivenessEntry, IEMLIVENESSBIT_IDX_EFL_OF); # endif } return uRet; } # ifdef VBOX_STRICT /** For assertions only - caller checks that idxCurCall isn't zero. */ DECL_FORCE_INLINE(uint32_t) iemNativeLivenessGetPrevStateByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg) { return iemNativeLivenessGetStateByGstReg(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg); } /** For assertions only - caller checks that idxCurCall isn't zero. */ DECL_FORCE_INLINE(uint32_t) iemNativeLivenessGetPrevStateByGstRegEx(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg) { return iemNativeLivenessGetStateByGstRegEx(&pReNative->paLivenessEntries[pReNative->idxCurCall - 1], enmGstReg); } # endif /* VBOX_STRICT */ #endif /* IEMNATIVE_WITH_LIVENESS_ANALYSIS */ /** * Gets the number of hidden arguments for an expected IEM_MC_CALL statement. */ DECL_FORCE_INLINE(uint8_t) iemNativeArgGetHiddenArgCount(PIEMRECOMPILERSTATE pReNative) { if (pReNative->fCImpl & IEM_CIMPL_F_CALLS_CIMPL) return IEM_CIMPL_HIDDEN_ARGS; if (pReNative->fCImpl & (IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE | IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE)) return 1; return 0; } DECL_FORCE_INLINE(uint8_t) iemNativeRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, unsigned idxReg, IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT { pReNative->Core.bmHstRegs |= RT_BIT_32(idxReg); pReNative->Core.aHstRegs[idxReg].enmWhat = enmWhat; pReNative->Core.aHstRegs[idxReg].fGstRegShadows = 0; pReNative->Core.aHstRegs[idxReg].idxVar = idxVar; return (uint8_t)idxReg; } /********************************************************************************************************************************* * Register Allocator (GPR) * *********************************************************************************************************************************/ #ifdef RT_ARCH_ARM64 # include #endif /** * Marks host register @a idxHstReg as containing a shadow copy of guest * register @a enmGstReg. * * ASSUMES that caller has made sure @a enmGstReg is not associated with any * host register before calling. */ DECL_FORCE_INLINE(void) iemNativeRegMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off) { Assert(!(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg))); Assert(!pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows); Assert((unsigned)enmGstReg < (unsigned)kIemNativeGstReg_End); pReNative->Core.aidxGstRegShadows[enmGstReg] = idxHstReg; pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = RT_BIT_64(enmGstReg); /** @todo why? not OR? */ pReNative->Core.bmGstRegShadows |= RT_BIT_64(enmGstReg); pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxHstReg); #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO iemNativeDbgInfoAddNativeOffset(pReNative, off); iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxHstReg); #else RT_NOREF(off); #endif } /** * Clear any guest register shadow claims from @a idxHstReg. * * The register does not need to be shadowing any guest registers. */ DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, uint32_t off) { Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows) == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg)) == RT_BOOL(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows)); #ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK Assert(!(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & pReNative->Core.bmGstRegShadowDirty)); #endif #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO uint64_t fGstRegs = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows; if (fGstRegs) { Assert(fGstRegs < RT_BIT_64(kIemNativeGstReg_End)); iemNativeDbgInfoAddNativeOffset(pReNative, off); while (fGstRegs) { unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1; fGstRegs &= ~RT_BIT_64(iGstReg); iemNativeDbgInfoAddGuestRegShadowing(pReNative, (IEMNATIVEGSTREG)iGstReg, UINT8_MAX, idxHstReg); } } #else RT_NOREF(off); #endif pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg); pReNative->Core.bmGstRegShadows &= ~pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows; pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = 0; } /** * Clear guest register shadow claim regarding @a enmGstReg from @a idxHstReg * and global overview flags. */ DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowingOne(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstReg, IEMNATIVEGSTREG enmGstReg, uint32_t off) { Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows) == pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); Assert(pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)); Assert(pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & RT_BIT_64(enmGstReg)); Assert(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxHstReg)); #ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK Assert(!(pReNative->Core.bmGstRegShadowDirty & RT_BIT_64(enmGstReg))); #endif #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO iemNativeDbgInfoAddNativeOffset(pReNative, off); iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, UINT8_MAX, idxHstReg); #else RT_NOREF(off); #endif uint64_t const fGstRegShadowsNew = pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows & ~RT_BIT_64(enmGstReg); pReNative->Core.aHstRegs[idxHstReg].fGstRegShadows = fGstRegShadowsNew; if (!fGstRegShadowsNew) pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxHstReg); pReNative->Core.bmGstRegShadows &= ~RT_BIT_64(enmGstReg); } #if 0 /* unused */ /** * Clear any guest register shadow claim for @a enmGstReg. */ DECL_FORCE_INLINE(void) iemNativeRegClearGstRegShadowingByGstReg(PIEMRECOMPILERSTATE pReNative, IEMNATIVEGSTREG enmGstReg, uint32_t off) { Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)) { Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] < RT_ELEMENTS(pReNative->Core.aHstRegs)); iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off); } } #endif /** * Clear any guest register shadow claim for @a enmGstReg and mark @a idxHstRegNew * as the new shadow of it. * * Unlike the other guest reg shadow helpers, this does the logging for you. * However, it is the liveness state is not asserted here, the caller must do * that. */ DECL_FORCE_INLINE(void) iemNativeRegClearAndMarkAsGstRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstRegNew, IEMNATIVEGSTREG enmGstReg, uint32_t off) { Assert(pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); if (pReNative->Core.bmGstRegShadows & RT_BIT_64(enmGstReg)) { uint8_t const idxHstRegOld = pReNative->Core.aidxGstRegShadows[enmGstReg]; Assert(idxHstRegOld < RT_ELEMENTS(pReNative->Core.aHstRegs)); if (idxHstRegOld == idxHstRegNew) return; Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s (from %s)\n", g_apszIemNativeHstRegNames[idxHstRegNew], g_aGstShadowInfo[enmGstReg].pszName, g_apszIemNativeHstRegNames[idxHstRegOld])); iemNativeRegClearGstRegShadowingOne(pReNative, pReNative->Core.aidxGstRegShadows[enmGstReg], enmGstReg, off); } else Log12(("iemNativeRegClearAndMarkAsGstRegShadow: %s for guest %s\n", g_apszIemNativeHstRegNames[idxHstRegNew], g_aGstShadowInfo[enmGstReg].pszName)); iemNativeRegMarkAsGstRegShadow(pReNative, idxHstRegNew, enmGstReg, off); } /** * Transfers the guest register shadow claims of @a enmGstReg from @a idxRegFrom * to @a idxRegTo. */ DECL_FORCE_INLINE(void) iemNativeRegTransferGstRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxRegFrom, uint8_t idxRegTo, IEMNATIVEGSTREG enmGstReg, uint32_t off) { Assert(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & RT_BIT_64(enmGstReg)); Assert(pReNative->Core.aidxGstRegShadows[enmGstReg] == idxRegFrom); Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows) == pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows && pReNative->Core.bmGstRegShadows < RT_BIT_64(kIemNativeGstReg_End)); Assert( (pReNative->Core.bmGstRegShadows & pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows) == pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows); Assert( RT_BOOL(pReNative->Core.bmHstRegsWithGstShadow & RT_BIT_32(idxRegFrom)) == RT_BOOL(pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows)); uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstReg); pReNative->Core.aHstRegs[idxRegFrom].fGstRegShadows = fGstRegShadowsFrom; if (!fGstRegShadowsFrom) pReNative->Core.bmHstRegsWithGstShadow &= ~RT_BIT_32(idxRegFrom); pReNative->Core.bmHstRegsWithGstShadow |= RT_BIT_32(idxRegTo); pReNative->Core.aHstRegs[idxRegTo].fGstRegShadows |= RT_BIT_64(enmGstReg); pReNative->Core.aidxGstRegShadows[enmGstReg] = idxRegTo; #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO iemNativeDbgInfoAddNativeOffset(pReNative, off); iemNativeDbgInfoAddGuestRegShadowing(pReNative, enmGstReg, idxRegTo, idxRegFrom); #else RT_NOREF(off); #endif } /** * Flushes any delayed guest register writes. * * This must be called prior to calling CImpl functions and any helpers that use * the guest state (like raising exceptions) and such. * * This optimization has not yet been implemented. The first target would be * RIP updates, since these are the most common ones. * * @note This function does not flush any shadowing information for guest * registers. This needs to be done by the caller if it wishes to do so. */ DECL_INLINE_THROW(uint32_t) iemNativeRegFlushPendingWrites(PIEMRECOMPILERSTATE pReNative, uint32_t off, uint64_t fGstShwExcept = 0, uint64_t fGstSimdShwExcept = 0) { #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING uint64_t const fWritebackPc = ~fGstShwExcept & RT_BIT_64(kIemNativeGstReg_Pc); #else uint64_t const fWritebackPc = 0; #endif #ifdef IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK uint64_t const bmGstRegShadowDirty = pReNative->Core.bmGstRegShadowDirty & ~fGstShwExcept; #else uint64_t const bmGstRegShadowDirty = 0; #endif #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR uint64_t const bmGstSimdRegShadowDirty = ( pReNative->Core.bmGstSimdRegShadowDirtyLo128 | pReNative->Core.bmGstSimdRegShadowDirtyHi128) & ~fGstSimdShwExcept; #else uint64_t const bmGstSimdRegShadowDirty = 0; #endif if (bmGstRegShadowDirty | bmGstSimdRegShadowDirty | fWritebackPc) return iemNativeRegFlushPendingWritesSlow(pReNative, off, fGstShwExcept, fGstSimdShwExcept); return off; } /** * Allocates a temporary host general purpose register for keeping a guest * register value. * * Since we may already have a register holding the guest register value, * code will be emitted to do the loading if that's not the case. Code may also * be emitted if we have to free up a register to satify the request. * * @returns The host register number; throws VBox status code on failure, so no * need to check the return value. * @param pReNative The native recompile state. * @param poff Pointer to the variable with the code buffer * position. This will be update if we need to move a * variable from register to stack in order to satisfy * the request. * @param enmGstReg The guest register that will is to be updated. * @param enmIntendedUse How the caller will be using the host register. * @param fNoVolatileRegs Set if no volatile register allowed, clear if any * register is okay (default). The ASSUMPTION here is * that the caller has already flushed all volatile * registers, so this is only applied if we allocate a * new register. * @sa iemNativeRegAllocTmpForGuestEFlags * iemNativeRegAllocTmpForGuestRegIfAlreadyPresent * iemNativeRegAllocTmpForGuestRegInt */ DECL_FORCE_INLINE_THROW(uint8_t) iemNativeRegAllocTmpForGuestReg(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, IEMNATIVEGSTREG enmGstReg, IEMNATIVEGSTREGUSE const enmIntendedUse = kIemNativeGstRegUse_ReadOnly, bool const fNoVolatileRegs = false) { if (enmIntendedUse == kIemNativeGstRegUse_ReadOnly) return !fNoVolatileRegs ? iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, enmGstReg) : iemNativeRegAllocTmpForGuestRegReadOnlyNoVolatile(pReNative, poff, enmGstReg); if (enmIntendedUse == kIemNativeGstRegUse_ForUpdate) return !fNoVolatileRegs ? iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, enmGstReg) : iemNativeRegAllocTmpForGuestRegUpdateNoVolatile(pReNative, poff, enmGstReg); if (enmIntendedUse == kIemNativeGstRegUse_ForFullWrite) return !fNoVolatileRegs ? iemNativeRegAllocTmpForGuestRegFullWrite(pReNative, poff, enmGstReg) : iemNativeRegAllocTmpForGuestRegFullWriteNoVolatile(pReNative, poff, enmGstReg); Assert(enmIntendedUse == kIemNativeGstRegUse_Calculation); return !fNoVolatileRegs ? iemNativeRegAllocTmpForGuestRegCalculation(pReNative, poff, enmGstReg) : iemNativeRegAllocTmpForGuestRegCalculationNoVolatile(pReNative, poff, enmGstReg); } #if !defined(IEMNATIVE_WITH_LIVENESS_ANALYSIS) || !defined(VBOX_STRICT) DECL_FORCE_INLINE_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsReadOnly(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0) { RT_NOREF(fRead, fWrite, fPotentialCall); return iemNativeRegAllocTmpForGuestRegReadOnly(pReNative, poff, kIemNativeGstReg_EFlags); } DECL_FORCE_INLINE_THROW(uint8_t) iemNativeRegAllocTmpForGuestEFlagsForUpdate(PIEMRECOMPILERSTATE pReNative, uint32_t *poff, uint64_t fRead, uint64_t fWrite = 0, uint64_t fPotentialCall = 0) { RT_NOREF(fRead, fWrite, fPotentialCall); return iemNativeRegAllocTmpForGuestRegUpdate(pReNative, poff, kIemNativeGstReg_EFlags); } #endif /********************************************************************************************************************************* * SIMD register allocator (largely code duplication of the GPR allocator for now but might diverge) * *********************************************************************************************************************************/ #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR DECL_FORCE_INLINE(uint8_t) iemNativeSimdRegMarkAllocated(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdReg, IEMNATIVEWHAT enmWhat, uint8_t idxVar = UINT8_MAX) RT_NOEXCEPT { pReNative->Core.bmHstSimdRegs |= RT_BIT_32(idxSimdReg); pReNative->Core.aHstSimdRegs[idxSimdReg].enmWhat = enmWhat; pReNative->Core.aHstSimdRegs[idxSimdReg].idxVar = idxVar; pReNative->Core.aHstSimdRegs[idxSimdReg].fGstRegShadows = 0; return idxSimdReg; } /** * Marks host SIMD register @a idxHstSimdReg as containing a shadow copy of guest * SIMD register @a enmGstSimdReg. * * ASSUMES that caller has made sure @a enmGstSimdReg is not associated with any * host register before calling. */ DECL_FORCE_INLINE(void) iemNativeSimdRegMarkAsGstSimdRegShadow(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off) { Assert(!(pReNative->Core.bmGstSimdRegShadows & RT_BIT_64(enmGstSimdReg))); Assert(!pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows); Assert((unsigned)enmGstSimdReg < (unsigned)kIemNativeGstSimdReg_End); pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxHstSimdReg; pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows |= RT_BIT_64(enmGstSimdReg); pReNative->Core.bmGstSimdRegShadows |= RT_BIT_64(enmGstSimdReg); pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxHstSimdReg); #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO iemNativeDbgInfoAddNativeOffset(pReNative, off); iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxHstSimdReg); #else RT_NOREF(off); #endif } /** * Transfers the guest SIMD register shadow claims of @a enmGstSimdReg from @a idxSimdRegFrom * to @a idxSimdRegTo. */ DECL_FORCE_INLINE(void) iemNativeSimdRegTransferGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxSimdRegFrom, uint8_t idxSimdRegTo, IEMNATIVEGSTSIMDREG enmGstSimdReg, uint32_t off) { Assert(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & RT_BIT_64(enmGstSimdReg)); Assert(pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] == idxSimdRegFrom); Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows) == pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstReg_End)); Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows) == pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows); Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxSimdRegFrom)) == RT_BOOL(pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows)); Assert( pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded == pReNative->Core.aHstSimdRegs[idxSimdRegTo].enmLoaded); uint64_t const fGstRegShadowsFrom = pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows & ~RT_BIT_64(enmGstSimdReg); pReNative->Core.aHstSimdRegs[idxSimdRegFrom].fGstRegShadows = fGstRegShadowsFrom; if (!fGstRegShadowsFrom) { pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxSimdRegFrom); pReNative->Core.aHstSimdRegs[idxSimdRegFrom].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid; } pReNative->Core.bmHstSimdRegsWithGstShadow |= RT_BIT_32(idxSimdRegTo); pReNative->Core.aHstSimdRegs[idxSimdRegTo].fGstRegShadows |= RT_BIT_64(enmGstSimdReg); pReNative->Core.aidxGstSimdRegShadows[enmGstSimdReg] = idxSimdRegTo; #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO iemNativeDbgInfoAddNativeOffset(pReNative, off); iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, enmGstSimdReg, idxSimdRegTo, idxSimdRegFrom); #else RT_NOREF(off); #endif } /** * Clear any guest register shadow claims from @a idxHstSimdReg. * * The register does not need to be shadowing any guest registers. */ DECL_FORCE_INLINE(void) iemNativeSimdRegClearGstSimdRegShadowing(PIEMRECOMPILERSTATE pReNative, uint8_t idxHstSimdReg, uint32_t off) { Assert( (pReNative->Core.bmGstSimdRegShadows & pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows) == pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows && pReNative->Core.bmGstSimdRegShadows < RT_BIT_64(kIemNativeGstSimdReg_End)); Assert( RT_BOOL(pReNative->Core.bmHstSimdRegsWithGstShadow & RT_BIT_32(idxHstSimdReg)) == RT_BOOL(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows)); Assert( !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyLo128) && !(pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows & pReNative->Core.bmGstSimdRegShadowDirtyHi128)); #ifdef IEMNATIVE_WITH_TB_DEBUG_INFO uint64_t fGstRegs = pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows; if (fGstRegs) { Assert(fGstRegs < RT_BIT_64(kIemNativeGstSimdReg_End)); iemNativeDbgInfoAddNativeOffset(pReNative, off); while (fGstRegs) { unsigned const iGstReg = ASMBitFirstSetU64(fGstRegs) - 1; fGstRegs &= ~RT_BIT_64(iGstReg); iemNativeDbgInfoAddGuestSimdRegShadowing(pReNative, (IEMNATIVEGSTSIMDREG)iGstReg, UINT8_MAX, idxHstSimdReg); } } #else RT_NOREF(off); #endif pReNative->Core.bmHstSimdRegsWithGstShadow &= ~RT_BIT_32(idxHstSimdReg); pReNative->Core.bmGstSimdRegShadows &= ~pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows; pReNative->Core.aHstSimdRegs[idxHstSimdReg].fGstRegShadows = 0; pReNative->Core.aHstSimdRegs[idxHstSimdReg].enmLoaded = kIemNativeGstSimdRegLdStSz_Invalid; } #endif /* IEMNATIVE_WITH_SIMD_REG_ALLOCATOR */ #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING /** * Emits code to update the guest RIP value by adding the current offset since the start of the last RIP update. */ DECL_INLINE_THROW(uint32_t) iemNativeEmitPcWriteback(PIEMRECOMPILERSTATE pReNative, uint32_t off) { if (pReNative->Core.offPc) return iemNativeEmitPcWritebackSlow(pReNative, off); return off; } #endif /* IEMNATIVE_WITH_DELAYED_PC_UPDATING */ /** @note iemNativeTbEntry returns VBOXSTRICTRC, but we don't declare it as * it saves us the trouble of a hidden parameter on MSC/amd64. */ #ifdef RT_ARCH_AMD64 extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, uintptr_t pfnTbBody)); #elif defined(RT_ARCH_ARM64) extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeTbEntry, (PVMCPUCC pVCpu, PCPUMCTX pCpumCtx, uintptr_t pfnTbBody)); #endif #ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS extern "C" IEM_DECL_NATIVE_HLP_DEF(int, iemNativeFpCtrlRegRestore, (uint64_t u64RegFpCtrl)); #endif #endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */ /** @} */ #endif /* !VMM_INCLUDED_SRC_include_IEMN8veRecompiler_h */