VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 98523

Last change on this file since 98523 was 98103, checked in by vboxsync, 22 months ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 85.9 KB
Line 
1/* $Id: IEMMc.h 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42#define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
43#define IEM_MC_END() }
44
45/** Internal macro. */
46#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
47 do \
48 { \
49 VBOXSTRICTRC rcStrict2 = a_Expr; \
50 if (rcStrict2 != VINF_SUCCESS) \
51 return rcStrict2; \
52 } while (0)
53
54
55/** Advances RIP, finishes the instruction and returns.
56 * This may include raising debug exceptions and such. */
57#define IEM_MC_ADVANCE_RIP_AND_FINISH() return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
58/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
59#define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) \
60 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize)
61/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
62 * @note only usable in 16-bit op size mode. */
63#define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) \
64 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
65/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
66#define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) \
67 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize)
68/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
69#define IEM_MC_SET_RIP_U16_AND_FINISH(a_u16NewIP) return iemRegRipJumpU16AndFinishClearningRF((pVCpu), (a_u16NewIP))
70/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
71#define IEM_MC_SET_RIP_U32_AND_FINISH(a_u32NewIP) return iemRegRipJumpU32AndFinishClearningRF((pVCpu), (a_u32NewIP))
72/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
73#define IEM_MC_SET_RIP_U64_AND_FINISH(a_u64NewIP) return iemRegRipJumpU64AndFinishClearningRF((pVCpu), (a_u64NewIP))
74
75#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
76#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
77 do { \
78 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
79 return iemRaiseDeviceNotAvailable(pVCpu); \
80 } while (0)
81#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
82 do { \
83 if ((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)) \
84 return iemRaiseDeviceNotAvailable(pVCpu); \
85 } while (0)
86#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
87 do { \
88 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
89 return iemRaiseMathFault(pVCpu); \
90 } while (0)
91#define IEM_MC_MAYBE_RAISE_AVX2_RELATED_XCPT() \
92 do { \
93 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
94 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
95 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx2) \
96 return iemRaiseUndefinedOpcode(pVCpu); \
97 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
98 return iemRaiseDeviceNotAvailable(pVCpu); \
99 } while (0)
100#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
101 do { \
102 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
103 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
104 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx) \
105 return iemRaiseUndefinedOpcode(pVCpu); \
106 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
107 return iemRaiseDeviceNotAvailable(pVCpu); \
108 } while (0)
109#define IEM_MC_MAYBE_RAISE_AESNI_RELATED_XCPT() \
110 do { \
111 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
112 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
113 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAesNi) \
114 return iemRaiseUndefinedOpcode(pVCpu); \
115 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
116 return iemRaiseDeviceNotAvailable(pVCpu); \
117 } while (0)
118#define IEM_MC_MAYBE_RAISE_SSE42_RELATED_XCPT() \
119 do { \
120 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
121 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
122 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse42) \
123 return iemRaiseUndefinedOpcode(pVCpu); \
124 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
125 return iemRaiseDeviceNotAvailable(pVCpu); \
126 } while (0)
127#define IEM_MC_MAYBE_RAISE_SSE41_RELATED_XCPT() \
128 do { \
129 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
130 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
131 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse41) \
132 return iemRaiseUndefinedOpcode(pVCpu); \
133 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
134 return iemRaiseDeviceNotAvailable(pVCpu); \
135 } while (0)
136#define IEM_MC_MAYBE_RAISE_SSSE3_RELATED_XCPT() \
137 do { \
138 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
139 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
140 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSsse3) \
141 return iemRaiseUndefinedOpcode(pVCpu); \
142 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
143 return iemRaiseDeviceNotAvailable(pVCpu); \
144 } while (0)
145#define IEM_MC_MAYBE_RAISE_SSE3_RELATED_XCPT() \
146 do { \
147 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
148 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
149 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse3) \
150 return iemRaiseUndefinedOpcode(pVCpu); \
151 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
152 return iemRaiseDeviceNotAvailable(pVCpu); \
153 } while (0)
154#define IEM_MC_MAYBE_RAISE_SSE2_RELATED_XCPT() \
155 do { \
156 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
157 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
158 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse2) \
159 return iemRaiseUndefinedOpcode(pVCpu); \
160 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
161 return iemRaiseDeviceNotAvailable(pVCpu); \
162 } while (0)
163#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
164 do { \
165 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
166 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
167 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse) \
168 return iemRaiseUndefinedOpcode(pVCpu); \
169 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
170 return iemRaiseDeviceNotAvailable(pVCpu); \
171 } while (0)
172#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
173 do { \
174 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
175 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMmx) \
176 return iemRaiseUndefinedOpcode(pVCpu); \
177 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
178 return iemRaiseDeviceNotAvailable(pVCpu); \
179 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
180 return iemRaiseMathFault(pVCpu); \
181 } while (0)
182#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_EX(a_fSupported) \
183 do { \
184 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
185 || !(a_fSupported)) \
186 return iemRaiseUndefinedOpcode(pVCpu); \
187 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
188 return iemRaiseDeviceNotAvailable(pVCpu); \
189 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
190 return iemRaiseMathFault(pVCpu); \
191 } while (0)
192#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_CHECK_SSE_OR_MMXEXT() \
193 do { \
194 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
195 || ( !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse \
196 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAmdMmxExts) ) \
197 return iemRaiseUndefinedOpcode(pVCpu); \
198 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
199 return iemRaiseDeviceNotAvailable(pVCpu); \
200 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
201 return iemRaiseMathFault(pVCpu); \
202 } while (0)
203#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
204 do { \
205 if (pVCpu->iem.s.uCpl != 0) \
206 return iemRaiseGeneralProtectionFault0(pVCpu); \
207 } while (0)
208#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
209 do { \
210 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
211 else return iemRaiseGeneralProtectionFault0(pVCpu); \
212 } while (0)
213#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
214 do { \
215 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT \
216 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase \
217 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE)) \
218 return iemRaiseUndefinedOpcode(pVCpu); \
219 } while (0)
220#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
221 do { \
222 if (!IEM_IS_CANONICAL(a_u64Addr)) \
223 return iemRaiseGeneralProtectionFault0(pVCpu); \
224 } while (0)
225#define IEM_MC_MAYBE_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
226 do { \
227 if (( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
228 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) \
229 { \
230 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
231 return iemRaiseSimdFpException(pVCpu); \
232 else \
233 return iemRaiseUndefinedOpcode(pVCpu); \
234 } \
235 } while (0)
236#define IEM_MC_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
237 do { \
238 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
239 return iemRaiseSimdFpException(pVCpu); \
240 else \
241 return iemRaiseUndefinedOpcode(pVCpu); \
242 } while (0)
243#define IEM_MC_MAYBE_RAISE_PCLMUL_RELATED_XCPT() \
244 do { \
245 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
246 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
247 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fPclMul) \
248 return iemRaiseUndefinedOpcode(pVCpu); \
249 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
250 return iemRaiseDeviceNotAvailable(pVCpu); \
251 } while (0)
252
253
254#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
255#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
256#define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
257#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
258#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
259#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
260#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
261 uint32_t a_Name; \
262 uint32_t *a_pName = &a_Name
263#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
264 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
265
266#define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
267#define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
268
269#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
270#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
271#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
272#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
273#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
274#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
275#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
276#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
277#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
278#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
279#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
280#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
281#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
282#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
283#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
284#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
285#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
286#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
287 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
288 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
289 } while (0)
290#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
291 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
292 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
293 } while (0)
294#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
295 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
296 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
297 } while (0)
298/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
299#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
300 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
301 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
302 } while (0)
303#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
304 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
305 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
306 } while (0)
307/** @note Not for IOPL or IF testing or modification. */
308#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
309#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u
310#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
311#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
312
313#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
314#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
315#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
316#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
317#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
318#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
319#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
320#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
321#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
322#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
323#define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
324/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
325#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
326 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
327 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
328 } while (0)
329#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
330 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
331 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
332 } while (0)
333#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
334 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
335
336
337#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
338#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
339/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
340 * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
341#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
342#define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t *)iemGRegRefU32(pVCpu, (a_iGReg))
343#define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
344#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
345#define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t *)iemGRegRefU64(pVCpu, (a_iGReg))
346#define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
347/** @note Not for IOPL or IF testing or modification.
348 * @note Must preserve any undefined bits, see CPUMX86EFLAGS! */
349#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.uBoth
350#define IEM_MC_REF_MXCSR(a_pfMxcsr) (a_pfMxcsr) = &pVCpu->cpum.GstCtx.XState.x87.MXCSR
351
352#define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) += (a_u8Value)
353#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
354#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
355 do { \
356 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
357 *pu32Reg += (a_u32Value); \
358 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
359 } while (0)
360#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
361
362#define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) -= (a_u8Value)
363#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u16Value)
364#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
365 do { \
366 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
367 *pu32Reg -= (a_u32Value); \
368 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
369 } while (0)
370#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u64Value)
371#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
372
373#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
374#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
375#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
376#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
377#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
378#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
379#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
380
381#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
382#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
383#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
384#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
385
386#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
387#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
388#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
389
390#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
391#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
392#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
393
394#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
395#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
396#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
397
398#define IEM_MC_SHR_LOCAL_U8(a_u8Local, a_cShift) do { (a_u8Local) >>= (a_cShift); } while (0)
399
400#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
401#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
402#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
403
404#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
405
406#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
407
408#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
409#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
410#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
411 do { \
412 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
413 *pu32Reg &= (a_u32Value); \
414 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
415 } while (0)
416#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
417
418#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
419#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
420#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
421 do { \
422 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
423 *pu32Reg |= (a_u32Value); \
424 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
425 } while (0)
426#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
427
428#define IEM_MC_BSWAP_LOCAL_U16(a_u16Local) (a_u16Local) = RT_BSWAP_U16((a_u16Local));
429#define IEM_MC_BSWAP_LOCAL_U32(a_u32Local) (a_u32Local) = RT_BSWAP_U32((a_u32Local));
430#define IEM_MC_BSWAP_LOCAL_U64(a_u64Local) (a_u64Local) = RT_BSWAP_U64((a_u64Local));
431
432/** @note Not for IOPL or IF modification. */
433#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
434/** @note Not for IOPL or IF modification. */
435#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
436/** @note Not for IOPL or IF modification. */
437#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
438
439#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
440
441/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
442#define IEM_MC_FPU_TO_MMX_MODE() do { \
443 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
444 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
445 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
446 } while (0)
447
448/** Switches the FPU state from MMX mode (FSW.TOS=0, FTW=0xffff). */
449#define IEM_MC_FPU_FROM_MMX_MODE() do { \
450 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
451 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
452 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
453 } while (0)
454
455#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
456 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
457#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
458 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[0]; } while (0)
459#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) do { \
460 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
461 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
462 } while (0)
463#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) do { \
464 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
465 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
466 } while (0)
467#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
468 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
469#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
470 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
471#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
472 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
473#define IEM_MC_MODIFIED_MREG(a_iMReg) \
474 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
475#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
476 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
477
478#define IEM_MC_CLEAR_XREG_U32_MASK(a_iXReg, a_bMask) \
479 do { if ((a_bMask) & (1 << 0)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = 0; \
480 if ((a_bMask) & (1 << 1)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[1] = 0; \
481 if ((a_bMask) & (1 << 2)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[2] = 0; \
482 if ((a_bMask) & (1 << 3)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[3] = 0; \
483 } while (0)
484#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
485 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
486 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
487 } while (0)
488#define IEM_MC_FETCH_XREG_XMM(a_XmmValue, a_iXReg) \
489 do { (a_XmmValue).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
490 (a_XmmValue).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
491 } while (0)
492#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg, a_iQWord) \
493 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQWord)]; } while (0)
494#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg, a_iDWord) \
495 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDWord)]; } while (0)
496#define IEM_MC_FETCH_XREG_U16(a_u16Value, a_iXReg, a_iWord) \
497 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)]; } while (0)
498#define IEM_MC_FETCH_XREG_U8( a_u8Value, a_iXReg, a_iByte) \
499 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iByte)]; } while (0)
500#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
501 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
502 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
503 } while (0)
504#define IEM_MC_STORE_XREG_XMM(a_iXReg, a_XmmValue) \
505 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_XmmValue).au64[0]; \
506 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_XmmValue).au64[1]; \
507 } while (0)
508#define IEM_MC_STORE_XREG_XMM_U32(a_iXReg, a_iDword, a_XmmValue) \
509 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_XmmValue).au32[(a_iDword)]; } while (0)
510#define IEM_MC_STORE_XREG_XMM_U64(a_iXReg, a_iQword, a_XmmValue) \
511 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_XmmValue).au64[(a_iQword)]; } while (0)
512#define IEM_MC_STORE_XREG_U64(a_iXReg, a_iQword, a_u64Value) \
513 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_u64Value); } while (0)
514#define IEM_MC_STORE_XREG_U32(a_iXReg, a_iDword, a_u32Value) \
515 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_u32Value); } while (0)
516#define IEM_MC_STORE_XREG_U16(a_iXReg, a_iWord, a_u16Value) \
517 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iWord)] = (a_u16Value); } while (0)
518#define IEM_MC_STORE_XREG_U8(a_iXReg, a_iByte, a_u8Value) \
519 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iByte)] = (a_u8Value); } while (0)
520
521#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
522 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
523 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
524 } while (0)
525
526#define IEM_MC_STORE_XREG_U32_U128(a_iXReg, a_iDwDst, a_u128Value, a_iDwSrc) \
527 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDwDst)] = (a_u128Value).au32[(a_iDwSrc)]; } while (0)
528#define IEM_MC_STORE_XREG_R32(a_iXReg, a_r32Value) \
529 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0] = (a_r32Value); } while (0)
530#define IEM_MC_STORE_XREG_R64(a_iXReg, a_r64Value) \
531 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0] = (a_r64Value); } while (0)
532#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
533 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
534 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
535 } while (0)
536#define IEM_MC_STORE_XREG_HI_U64(a_iXReg, a_u64Value) \
537 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u64Value); } while (0)
538#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
539 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
540#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
541 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
542#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
543 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
544#define IEM_MC_REF_XREG_U32_CONST(a_pu32Dst, a_iXReg) \
545 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0])
546#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
547 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
548#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
549 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
550#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
551 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
552#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
553 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
554 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
555 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
556 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
557 } while (0)
558
559#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
560 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
561 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
562 } while (0)
563#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc) \
564 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
565 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
566 } while (0)
567#define IEM_MC_FETCH_YREG_2ND_U64(a_u64Dst, a_iYRegSrc) \
568 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
569 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
570 } while (0)
571#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc) \
572 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
573 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
574 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
575 } while (0)
576#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
577 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
578 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
579 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
580 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
581 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
582 } while (0)
583
584#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
585#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
586 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
587 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
588 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
589 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
590 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
591 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
592 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
593 } while (0)
594#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
595 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
596 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
597 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
598 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
599 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
600 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
601 } while (0)
602#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
603 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
604 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
605 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
606 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
607 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
608 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
609 } while (0)
610#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
611 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
612 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
613 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
614 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
615 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
616 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
617 } while (0)
618
619#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
620 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
621#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
622 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
623#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
624 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
625#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
626 do { uintptr_t const iYRegTmp = (a_iYReg); \
627 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
628 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
629 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
630 } while (0)
631
632#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
633 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
634 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
635 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
636 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
637 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
638 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
639 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
640 } while (0)
641#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
642 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
643 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
644 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
645 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
646 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
647 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
648 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
649 } while (0)
650#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
651 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
652 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
653 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
654 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
655 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
656 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
657 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
658 } while (0)
659
660#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
661 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
662 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
663 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
664 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
665 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
666 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
667 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
668 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
669 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
670 } while (0)
671#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
672 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
673 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
674 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
675 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
676 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
677 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
678 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
679 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
680 } while (0)
681#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
682 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
683 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
684 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
685 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
686 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
687 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
688 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
689 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
690 } while (0)
691#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
692 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
693 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
694 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
695 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
696 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
697 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
698 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
699 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
700 } while (0)
701#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
702 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
703 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
704 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
705 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
706 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
707 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
708 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
709 } while (0)
710#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
711 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
712 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
713 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
714 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
715 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
716 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
717 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
718 } while (0)
719
720#ifndef IEM_WITH_SETJMP
721# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
722 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
723# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
724 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
725# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
726 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
727#else
728# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
729 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
730# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
731 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
732# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
733 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
734#endif
735
736#ifndef IEM_WITH_SETJMP
737# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
738 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
739# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
740 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
741# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
742 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
743#else
744# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
745 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
746# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
747 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
748# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
749 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
750#endif
751
752#ifndef IEM_WITH_SETJMP
753# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
754 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
755# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
756 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
757# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
758 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
759#else
760# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
761 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
762# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
763 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
764# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
765 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
766#endif
767
768#ifdef SOME_UNUSED_FUNCTION
769# define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
770 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
771#endif
772
773#ifndef IEM_WITH_SETJMP
774# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
775 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
776# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
777 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
778# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
779 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
780# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
781 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
782#else
783# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
784 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
785# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
786 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
787# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
788 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
789# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
790 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
791#endif
792
793#ifndef IEM_WITH_SETJMP
794# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
795 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
796# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
797 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
798# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
799 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
800# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
801 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
802#else
803# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
804 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
805# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
806 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
807# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
808 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
809# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
810 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
811#endif
812
813#ifndef IEM_WITH_SETJMP
814# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
815 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
816# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
817 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
818# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
819 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
820
821# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
822 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
823# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
824 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
825# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
826 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
827# define IEM_MC_FETCH_MEM_XMM_U32(a_XmmDst, a_iDWord, a_iSeg, a_GCPtrMem) \
828 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_XmmDst).au32[(a_iDWord)], (a_iSeg), (a_GCPtrMem)))
829# define IEM_MC_FETCH_MEM_XMM_U64(a_XmmDst, a_iQWord, a_iSeg, a_GCPtrMem) \
830 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_XmmDst).au64[(a_iQWord)], (a_iSeg), (a_GCPtrMem)))
831#else
832# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
833 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
834# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
835 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
836# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
837 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
838
839# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
840 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
841# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
842 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
843# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
844 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
845# define IEM_MC_FETCH_MEM_XMM_U32(a_XmmDst, a_iDWord, a_iSeg, a_GCPtrMem) \
846 (a_XmmDst).au32[(a_iDWord)] = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem))
847# define IEM_MC_FETCH_MEM_XMM_U64(a_XmmDst, a_iQWord, a_iSeg, a_GCPtrMem) \
848 (a_XmmDst).au64[(a_iQWord)] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem))
849#endif
850
851#ifndef IEM_WITH_SETJMP
852# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
853 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
854# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
855 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
856# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
857 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
858
859# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
860 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
861# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
862 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
863# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
864 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
865#else
866# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
867 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
868# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
869 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
870# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
871 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
872
873# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
874 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
875# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
876 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
877# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
878 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
879#endif
880
881
882
883#ifndef IEM_WITH_SETJMP
884# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
885 do { \
886 uint8_t u8Tmp; \
887 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
888 (a_u16Dst) = u8Tmp; \
889 } while (0)
890# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
891 do { \
892 uint8_t u8Tmp; \
893 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
894 (a_u32Dst) = u8Tmp; \
895 } while (0)
896# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
897 do { \
898 uint8_t u8Tmp; \
899 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
900 (a_u64Dst) = u8Tmp; \
901 } while (0)
902# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
903 do { \
904 uint16_t u16Tmp; \
905 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
906 (a_u32Dst) = u16Tmp; \
907 } while (0)
908# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
909 do { \
910 uint16_t u16Tmp; \
911 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
912 (a_u64Dst) = u16Tmp; \
913 } while (0)
914# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
915 do { \
916 uint32_t u32Tmp; \
917 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
918 (a_u64Dst) = u32Tmp; \
919 } while (0)
920#else /* IEM_WITH_SETJMP */
921# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
922 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
923# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
924 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
925# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
926 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
927# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
928 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
929# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
930 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
931# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
932 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
933#endif /* IEM_WITH_SETJMP */
934
935#ifndef IEM_WITH_SETJMP
936# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
937 do { \
938 uint8_t u8Tmp; \
939 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
940 (a_u16Dst) = (int8_t)u8Tmp; \
941 } while (0)
942# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
943 do { \
944 uint8_t u8Tmp; \
945 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
946 (a_u32Dst) = (int8_t)u8Tmp; \
947 } while (0)
948# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
949 do { \
950 uint8_t u8Tmp; \
951 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
952 (a_u64Dst) = (int8_t)u8Tmp; \
953 } while (0)
954# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
955 do { \
956 uint16_t u16Tmp; \
957 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
958 (a_u32Dst) = (int16_t)u16Tmp; \
959 } while (0)
960# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
961 do { \
962 uint16_t u16Tmp; \
963 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
964 (a_u64Dst) = (int16_t)u16Tmp; \
965 } while (0)
966# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
967 do { \
968 uint32_t u32Tmp; \
969 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
970 (a_u64Dst) = (int32_t)u32Tmp; \
971 } while (0)
972#else /* IEM_WITH_SETJMP */
973# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
974 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
975# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
976 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
977# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
978 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
979# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
980 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
981# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
982 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
983# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
984 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
985#endif /* IEM_WITH_SETJMP */
986
987#ifndef IEM_WITH_SETJMP
988# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
989 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
990# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
991 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
992# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
993 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
994# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
995 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
996#else
997# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
998 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
999# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1000 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
1001# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1002 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
1003# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1004 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
1005#endif
1006
1007#ifndef IEM_WITH_SETJMP
1008# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1009 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
1010# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1011 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
1012# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1013 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
1014# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1015 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
1016#else
1017# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1018 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
1019# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1020 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
1021# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1022 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
1023# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1024 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
1025#endif
1026
1027#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
1028#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
1029#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
1030#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
1031#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
1032#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
1033#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
1034 do { \
1035 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1036 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
1037 } while (0)
1038#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
1039 do { \
1040 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1041 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
1042 } while (0)
1043
1044#ifndef IEM_WITH_SETJMP
1045# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1046 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1047# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1048 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1049#else
1050# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1051 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1052# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1053 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1054#endif
1055
1056#ifndef IEM_WITH_SETJMP
1057# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1058 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1059# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1060 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1061#else
1062# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1063 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1064# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1065 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1066#endif
1067
1068
1069#define IEM_MC_PUSH_U16(a_u16Value) \
1070 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1071#define IEM_MC_PUSH_U32(a_u32Value) \
1072 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1073#define IEM_MC_PUSH_U32_SREG(a_u32Value) \
1074 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_u32Value)))
1075#define IEM_MC_PUSH_U64(a_u64Value) \
1076 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1077
1078#define IEM_MC_POP_U16(a_pu16Value) \
1079 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pVCpu, (a_pu16Value)))
1080#define IEM_MC_POP_U32(a_pu32Value) \
1081 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
1082#define IEM_MC_POP_U64(a_pu64Value) \
1083 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
1084
1085/** Maps guest memory for direct or bounce buffered access.
1086 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1087 * @remarks May return.
1088 */
1089#define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
1090 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), \
1091 (a_GCPtrMem), (a_fAccess), sizeof(*(a_pMem)) - 1))
1092
1093/** Maps guest memory for direct or bounce buffered access.
1094 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1095 * @remarks May return.
1096 */
1097#define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_cbAlign, a_iArg) \
1098 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), \
1099 (a_GCPtrMem), (a_fAccess), (a_cbAlign)))
1100
1101/** Commits the memory and unmaps the guest memory.
1102 * @remarks May return.
1103 */
1104#define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
1105 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess)))
1106
1107/** Commits the memory and unmaps the guest memory unless the FPU status word
1108 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
1109 * that would cause FLD not to store.
1110 *
1111 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
1112 * store, while \#P will not.
1113 *
1114 * @remarks May in theory return - for now.
1115 */
1116#define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
1117 do { \
1118 if ( !(a_u16FSW & X86_FSW_ES) \
1119 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
1120 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
1121 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess))); \
1122 } while (0)
1123
1124/** Calculate efficient address from R/M. */
1125#ifndef IEM_WITH_SETJMP
1126# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1127 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (bRm), (cbImm), &(a_GCPtrEff)))
1128#else
1129# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1130 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (bRm), (cbImm)))
1131#endif
1132
1133#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
1134#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
1135#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
1136#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
1137#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
1138#define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
1139#define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
1140
1141/**
1142 * Defers the rest of the instruction emulation to a C implementation routine
1143 * and returns, only taking the standard parameters.
1144 *
1145 * @param a_pfnCImpl The pointer to the C routine.
1146 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1147 */
1148#define IEM_MC_CALL_CIMPL_0(a_pfnCImpl) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1149
1150/**
1151 * Defers the rest of instruction emulation to a C implementation routine and
1152 * returns, taking one argument in addition to the standard ones.
1153 *
1154 * @param a_pfnCImpl The pointer to the C routine.
1155 * @param a0 The argument.
1156 */
1157#define IEM_MC_CALL_CIMPL_1(a_pfnCImpl, a0) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1158
1159/**
1160 * Defers the rest of the instruction emulation to a C implementation routine
1161 * and returns, taking two arguments in addition to the standard ones.
1162 *
1163 * @param a_pfnCImpl The pointer to the C routine.
1164 * @param a0 The first extra argument.
1165 * @param a1 The second extra argument.
1166 */
1167#define IEM_MC_CALL_CIMPL_2(a_pfnCImpl, a0, a1) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1168
1169/**
1170 * Defers the rest of the instruction emulation to a C implementation routine
1171 * and returns, taking three arguments in addition to the standard ones.
1172 *
1173 * @param a_pfnCImpl The pointer to the C routine.
1174 * @param a0 The first extra argument.
1175 * @param a1 The second extra argument.
1176 * @param a2 The third extra argument.
1177 */
1178#define IEM_MC_CALL_CIMPL_3(a_pfnCImpl, a0, a1, a2) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1179
1180/**
1181 * Defers the rest of the instruction emulation to a C implementation routine
1182 * and returns, taking four arguments in addition to the standard ones.
1183 *
1184 * @param a_pfnCImpl The pointer to the C routine.
1185 * @param a0 The first extra argument.
1186 * @param a1 The second extra argument.
1187 * @param a2 The third extra argument.
1188 * @param a3 The fourth extra argument.
1189 */
1190#define IEM_MC_CALL_CIMPL_4(a_pfnCImpl, a0, a1, a2, a3) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3)
1191
1192/**
1193 * Defers the rest of the instruction emulation to a C implementation routine
1194 * and returns, taking two arguments in addition to the standard ones.
1195 *
1196 * @param a_pfnCImpl The pointer to the C routine.
1197 * @param a0 The first extra argument.
1198 * @param a1 The second extra argument.
1199 * @param a2 The third extra argument.
1200 * @param a3 The fourth extra argument.
1201 * @param a4 The fifth extra argument.
1202 */
1203#define IEM_MC_CALL_CIMPL_5(a_pfnCImpl, a0, a1, a2, a3, a4) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4)
1204
1205/**
1206 * Defers the entire instruction emulation to a C implementation routine and
1207 * returns, only taking the standard parameters.
1208 *
1209 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1210 *
1211 * @param a_pfnCImpl The pointer to the C routine.
1212 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1213 */
1214#define IEM_MC_DEFER_TO_CIMPL_0(a_pfnCImpl) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1215
1216/**
1217 * Defers the entire instruction emulation to a C implementation routine and
1218 * returns, taking one argument in addition to the standard ones.
1219 *
1220 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1221 *
1222 * @param a_pfnCImpl The pointer to the C routine.
1223 * @param a0 The argument.
1224 */
1225#define IEM_MC_DEFER_TO_CIMPL_1(a_pfnCImpl, a0) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1226
1227/**
1228 * Defers the entire instruction emulation to a C implementation routine and
1229 * returns, taking two arguments in addition to the standard ones.
1230 *
1231 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1232 *
1233 * @param a_pfnCImpl The pointer to the C routine.
1234 * @param a0 The first extra argument.
1235 * @param a1 The second extra argument.
1236 */
1237#define IEM_MC_DEFER_TO_CIMPL_2(a_pfnCImpl, a0, a1) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1238
1239/**
1240 * Defers the entire instruction emulation to a C implementation routine and
1241 * returns, taking three arguments in addition to the standard ones.
1242 *
1243 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1244 *
1245 * @param a_pfnCImpl The pointer to the C routine.
1246 * @param a0 The first extra argument.
1247 * @param a1 The second extra argument.
1248 * @param a2 The third extra argument.
1249 */
1250#define IEM_MC_DEFER_TO_CIMPL_3(a_pfnCImpl, a0, a1, a2) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1251
1252/**
1253 * Calls a FPU assembly implementation taking one visible argument.
1254 *
1255 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1256 * @param a0 The first extra argument.
1257 */
1258#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
1259 do { \
1260 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
1261 } while (0)
1262
1263/**
1264 * Calls a FPU assembly implementation taking two visible arguments.
1265 *
1266 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1267 * @param a0 The first extra argument.
1268 * @param a1 The second extra argument.
1269 */
1270#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
1271 do { \
1272 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1273 } while (0)
1274
1275/**
1276 * Calls a FPU assembly implementation taking three visible arguments.
1277 *
1278 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1279 * @param a0 The first extra argument.
1280 * @param a1 The second extra argument.
1281 * @param a2 The third extra argument.
1282 */
1283#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1284 do { \
1285 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1286 } while (0)
1287
1288#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
1289 do { \
1290 (a_FpuData).FSW = (a_FSW); \
1291 (a_FpuData).r80Result = *(a_pr80Value); \
1292 } while (0)
1293
1294/** Pushes FPU result onto the stack. */
1295#define IEM_MC_PUSH_FPU_RESULT(a_FpuData) \
1296 iemFpuPushResult(pVCpu, &a_FpuData)
1297/** Pushes FPU result onto the stack and sets the FPUDP. */
1298#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff) \
1299 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff)
1300
1301/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
1302#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo) \
1303 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo)
1304
1305/** Stores FPU result in a stack register. */
1306#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg) \
1307 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg)
1308/** Stores FPU result in a stack register and pops the stack. */
1309#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg) \
1310 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg)
1311/** Stores FPU result in a stack register and sets the FPUDP. */
1312#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1313 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1314/** Stores FPU result in a stack register, sets the FPUDP, and pops the
1315 * stack. */
1316#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1317 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1318
1319/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
1320#define IEM_MC_UPDATE_FPU_OPCODE_IP() \
1321 iemFpuUpdateOpcodeAndIp(pVCpu)
1322/** Free a stack register (for FFREE and FFREEP). */
1323#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
1324 iemFpuStackFree(pVCpu, a_iStReg)
1325/** Increment the FPU stack pointer. */
1326#define IEM_MC_FPU_STACK_INC_TOP() \
1327 iemFpuStackIncTop(pVCpu)
1328/** Decrement the FPU stack pointer. */
1329#define IEM_MC_FPU_STACK_DEC_TOP() \
1330 iemFpuStackDecTop(pVCpu)
1331
1332/** Updates the FSW, FOP, FPUIP, and FPUCS. */
1333#define IEM_MC_UPDATE_FSW(a_u16FSW) \
1334 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1335/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
1336#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW) \
1337 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1338/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
1339#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1340 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1341/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
1342#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW) \
1343 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW)
1344/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
1345 * stack. */
1346#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1347 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1348/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
1349#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW) \
1350 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW)
1351
1352/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
1353#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst) \
1354 iemFpuStackUnderflow(pVCpu, a_iStDst)
1355/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1356 * stack. */
1357#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst) \
1358 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst)
1359/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1360 * FPUDS. */
1361#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1362 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1363/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1364 * FPUDS. Pops stack. */
1365#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1366 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1367/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1368 * stack twice. */
1369#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP() \
1370 iemFpuStackUnderflowThenPopPop(pVCpu)
1371/** Raises a FPU stack underflow exception for an instruction pushing a result
1372 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
1373#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW() \
1374 iemFpuStackPushUnderflow(pVCpu)
1375/** Raises a FPU stack underflow exception for an instruction pushing a result
1376 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
1377#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO() \
1378 iemFpuStackPushUnderflowTwo(pVCpu)
1379
1380/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1381 * FPUIP, FPUCS and FOP. */
1382#define IEM_MC_FPU_STACK_PUSH_OVERFLOW() \
1383 iemFpuStackPushOverflow(pVCpu)
1384/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1385 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
1386#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff) \
1387 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff)
1388/** Prepares for using the FPU state.
1389 * Ensures that we can use the host FPU in the current context (RC+R0.
1390 * Ensures the guest FPU state in the CPUMCTX is up to date. */
1391#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
1392/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
1393#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
1394/** Actualizes the guest FPU state so it can be accessed and modified. */
1395#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
1396
1397/** Stores SSE SIMD result updating MXCSR. */
1398#define IEM_MC_STORE_SSE_RESULT(a_SseData, a_iXmmReg) \
1399 iemSseStoreResult(pVCpu, &a_SseData, a_iXmmReg)
1400/** Updates MXCSR. */
1401#define IEM_MC_SSE_UPDATE_MXCSR(a_fMxcsr) \
1402 iemSseUpdateMxcsr(pVCpu, a_fMxcsr)
1403
1404/** Prepares for using the SSE state.
1405 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
1406 * Ensures the guest SSE state in the CPUMCTX is up to date. */
1407#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
1408/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1409#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
1410/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
1411#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
1412
1413/** Prepares for using the AVX state.
1414 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
1415 * Ensures the guest AVX state in the CPUMCTX is up to date.
1416 * @note This will include the AVX512 state too when support for it is added
1417 * due to the zero extending feature of VEX instruction. */
1418#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
1419/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1420#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
1421/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
1422#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
1423
1424/**
1425 * Calls a MMX assembly implementation taking two visible arguments.
1426 *
1427 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1428 * @param a0 The first extra argument.
1429 * @param a1 The second extra argument.
1430 */
1431#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
1432 do { \
1433 IEM_MC_PREPARE_FPU_USAGE(); \
1434 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1435 } while (0)
1436
1437/**
1438 * Calls a MMX assembly implementation taking three visible arguments.
1439 *
1440 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1441 * @param a0 The first extra argument.
1442 * @param a1 The second extra argument.
1443 * @param a2 The third extra argument.
1444 */
1445#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1446 do { \
1447 IEM_MC_PREPARE_FPU_USAGE(); \
1448 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1449 } while (0)
1450
1451
1452/**
1453 * Calls a SSE assembly implementation taking two visible arguments.
1454 *
1455 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1456 * @param a0 The first extra argument.
1457 * @param a1 The second extra argument.
1458 */
1459#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
1460 do { \
1461 IEM_MC_PREPARE_SSE_USAGE(); \
1462 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1463 } while (0)
1464
1465/**
1466 * Calls a SSE assembly implementation taking three visible arguments.
1467 *
1468 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1469 * @param a0 The first extra argument.
1470 * @param a1 The second extra argument.
1471 * @param a2 The third extra argument.
1472 */
1473#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1474 do { \
1475 IEM_MC_PREPARE_SSE_USAGE(); \
1476 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1477 } while (0)
1478
1479
1480/** Declares implicit arguments for IEM_MC_CALL_AVX_AIMPL_2,
1481 * IEM_MC_CALL_AVX_AIMPL_3, IEM_MC_CALL_AVX_AIMPL_4, ... */
1482#define IEM_MC_IMPLICIT_AVX_AIMPL_ARGS() \
1483 IEM_MC_ARG_CONST(PX86XSAVEAREA, pXState, &pVCpu->cpum.GstCtx.XState, 0)
1484
1485/**
1486 * Calls a AVX assembly implementation taking two visible arguments.
1487 *
1488 * There is one implicit zero'th argument, a pointer to the extended state.
1489 *
1490 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1491 * @param a1 The first extra argument.
1492 * @param a2 The second extra argument.
1493 */
1494#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a1, a2) \
1495 do { \
1496 IEM_MC_PREPARE_AVX_USAGE(); \
1497 a_pfnAImpl(pXState, (a1), (a2)); \
1498 } while (0)
1499
1500/**
1501 * Calls a AVX assembly implementation taking three visible arguments.
1502 *
1503 * There is one implicit zero'th argument, a pointer to the extended state.
1504 *
1505 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1506 * @param a1 The first extra argument.
1507 * @param a2 The second extra argument.
1508 * @param a3 The third extra argument.
1509 */
1510#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a1, a2, a3) \
1511 do { \
1512 IEM_MC_PREPARE_AVX_USAGE(); \
1513 a_pfnAImpl(pXState, (a1), (a2), (a3)); \
1514 } while (0)
1515
1516/** @note Not for IOPL or IF testing. */
1517#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
1518/** @note Not for IOPL or IF testing. */
1519#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
1520/** @note Not for IOPL or IF testing. */
1521#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
1522/** @note Not for IOPL or IF testing. */
1523#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
1524/** @note Not for IOPL or IF testing. */
1525#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
1526 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1527 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1528/** @note Not for IOPL or IF testing. */
1529#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
1530 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1531 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1532/** @note Not for IOPL or IF testing. */
1533#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
1534 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1535 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1536 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1537/** @note Not for IOPL or IF testing. */
1538#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
1539 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1540 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1541 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1542#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
1543#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
1544#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
1545/** @note Not for IOPL or IF testing. */
1546#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1547 if ( pVCpu->cpum.GstCtx.cx != 0 \
1548 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1549/** @note Not for IOPL or IF testing. */
1550#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1551 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1552 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1553/** @note Not for IOPL or IF testing. */
1554#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1555 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1556 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1557/** @note Not for IOPL or IF testing. */
1558#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1559 if ( pVCpu->cpum.GstCtx.cx != 0 \
1560 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1561/** @note Not for IOPL or IF testing. */
1562#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1563 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1564 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1565/** @note Not for IOPL or IF testing. */
1566#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1567 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1568 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1569#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
1570#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
1571
1572#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
1573 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[X86_FSW_TOP_GET_ST(pVCpu->cpum.GstCtx.XState.x87.FSW, a_iSt)].r80; } while (0)
1574#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1575 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1576#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
1577 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
1578#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1579 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1580#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
1581 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
1582#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
1583 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
1584#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
1585 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
1586#define IEM_MC_IF_FCW_IM() \
1587 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
1588#define IEM_MC_IF_MXCSR_XCPT_PENDING() \
1589 if (( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
1590 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) {
1591
1592#define IEM_MC_ELSE() } else {
1593#define IEM_MC_ENDIF() } do {} while (0)
1594
1595/** @} */
1596
1597#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
1598
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette