VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 96622

Last change on this file since 96622 was 96407, checked in by vboxsync, 2 years ago

scm copyright and license note update

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 79.4 KB
Line 
1/* $Id: IEMMc.h 96407 2022-08-22 17:43:14Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42#define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
43#define IEM_MC_END() }
44#define IEM_MC_PAUSE() do {} while (0)
45#define IEM_MC_CONTINUE() do {} while (0)
46
47/** Internal macro. */
48#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
49 do \
50 { \
51 VBOXSTRICTRC rcStrict2 = a_Expr; \
52 if (rcStrict2 != VINF_SUCCESS) \
53 return rcStrict2; \
54 } while (0)
55
56
57#define IEM_MC_ADVANCE_RIP() iemRegUpdateRipAndClearRF(pVCpu)
58#define IEM_MC_REL_JMP_S8(a_i8) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS8(pVCpu, a_i8))
59#define IEM_MC_REL_JMP_S16(a_i16) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS16(pVCpu, a_i16))
60#define IEM_MC_REL_JMP_S32(a_i32) IEM_MC_RETURN_ON_FAILURE(iemRegRipRelativeJumpS32(pVCpu, a_i32))
61#define IEM_MC_SET_RIP_U16(a_u16NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u16NewIP)))
62#define IEM_MC_SET_RIP_U32(a_u32NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u32NewIP)))
63#define IEM_MC_SET_RIP_U64(a_u64NewIP) IEM_MC_RETURN_ON_FAILURE(iemRegRipJump((pVCpu), (a_u64NewIP)))
64#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
65#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
66 do { \
67 if (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
68 return iemRaiseDeviceNotAvailable(pVCpu); \
69 } while (0)
70#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
71 do { \
72 if ((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)) \
73 return iemRaiseDeviceNotAvailable(pVCpu); \
74 } while (0)
75#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
76 do { \
77 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
78 return iemRaiseMathFault(pVCpu); \
79 } while (0)
80#define IEM_MC_MAYBE_RAISE_AVX2_RELATED_XCPT() \
81 do { \
82 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
83 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
84 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx2) \
85 return iemRaiseUndefinedOpcode(pVCpu); \
86 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
87 return iemRaiseDeviceNotAvailable(pVCpu); \
88 } while (0)
89#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
90 do { \
91 if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
92 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
93 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx) \
94 return iemRaiseUndefinedOpcode(pVCpu); \
95 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
96 return iemRaiseDeviceNotAvailable(pVCpu); \
97 } while (0)
98#define IEM_MC_MAYBE_RAISE_SSE42_RELATED_XCPT() \
99 do { \
100 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
101 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
102 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse42) \
103 return iemRaiseUndefinedOpcode(pVCpu); \
104 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
105 return iemRaiseDeviceNotAvailable(pVCpu); \
106 } while (0)
107#define IEM_MC_MAYBE_RAISE_SSE41_RELATED_XCPT() \
108 do { \
109 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
110 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
111 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse41) \
112 return iemRaiseUndefinedOpcode(pVCpu); \
113 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
114 return iemRaiseDeviceNotAvailable(pVCpu); \
115 } while (0)
116#define IEM_MC_MAYBE_RAISE_SSSE3_RELATED_XCPT() \
117 do { \
118 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
119 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
120 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSsse3) \
121 return iemRaiseUndefinedOpcode(pVCpu); \
122 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
123 return iemRaiseDeviceNotAvailable(pVCpu); \
124 } while (0)
125#define IEM_MC_MAYBE_RAISE_SSE3_RELATED_XCPT() \
126 do { \
127 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
128 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
129 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse3) \
130 return iemRaiseUndefinedOpcode(pVCpu); \
131 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
132 return iemRaiseDeviceNotAvailable(pVCpu); \
133 } while (0)
134#define IEM_MC_MAYBE_RAISE_SSE2_RELATED_XCPT() \
135 do { \
136 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
137 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
138 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse2) \
139 return iemRaiseUndefinedOpcode(pVCpu); \
140 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
141 return iemRaiseDeviceNotAvailable(pVCpu); \
142 } while (0)
143#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
144 do { \
145 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
146 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR) \
147 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse) \
148 return iemRaiseUndefinedOpcode(pVCpu); \
149 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
150 return iemRaiseDeviceNotAvailable(pVCpu); \
151 } while (0)
152#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
153 do { \
154 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
155 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fMmx) \
156 return iemRaiseUndefinedOpcode(pVCpu); \
157 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
158 return iemRaiseDeviceNotAvailable(pVCpu); \
159 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
160 return iemRaiseMathFault(pVCpu); \
161 } while (0)
162#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_EX(a_fSupported) \
163 do { \
164 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
165 || !(a_fSupported)) \
166 return iemRaiseUndefinedOpcode(pVCpu); \
167 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
168 return iemRaiseDeviceNotAvailable(pVCpu); \
169 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
170 return iemRaiseMathFault(pVCpu); \
171 } while (0)
172#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT_CHECK_SSE_OR_MMXEXT() \
173 do { \
174 if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
175 || ( !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSse \
176 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAmdMmxExts) ) \
177 return iemRaiseUndefinedOpcode(pVCpu); \
178 if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
179 return iemRaiseDeviceNotAvailable(pVCpu); \
180 if (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES) \
181 return iemRaiseMathFault(pVCpu); \
182 } while (0)
183#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
184 do { \
185 if (pVCpu->iem.s.uCpl != 0) \
186 return iemRaiseGeneralProtectionFault0(pVCpu); \
187 } while (0)
188#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
189 do { \
190 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
191 else return iemRaiseGeneralProtectionFault0(pVCpu); \
192 } while (0)
193#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
194 do { \
195 if ( pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT \
196 || !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fFsGsBase \
197 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE)) \
198 return iemRaiseUndefinedOpcode(pVCpu); \
199 } while (0)
200#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
201 do { \
202 if (!IEM_IS_CANONICAL(a_u64Addr)) \
203 return iemRaiseGeneralProtectionFault0(pVCpu); \
204 } while (0)
205#define IEM_MC_MAYBE_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
206 do { \
207 if (( ((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
208 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) \
209 { \
210 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
211 return iemRaiseSimdFpException(pVCpu); \
212 else \
213 return iemRaiseUndefinedOpcode(pVCpu); \
214 } \
215 } while (0)
216
217
218#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
219#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
220#define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
221#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
222#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
223#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
224#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
225 uint32_t a_Name; \
226 uint32_t *a_pName = &a_Name
227#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
228 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
229
230#define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
231#define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
232
233#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
234#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
235#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
236#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
237#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
238#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
239#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
240#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
241#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
242#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
243#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
244#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
245#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
246#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
247#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
248#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
249#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
250#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
251 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
252 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
253 } while (0)
254#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
255 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
256 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
257 } while (0)
258#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
259 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
260 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
261 } while (0)
262/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
263#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
264 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
265 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
266 } while (0)
267#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
268 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
269 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
270 } while (0)
271/** @note Not for IOPL or IF testing or modification. */
272#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
273#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u
274#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
275#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
276
277#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
278#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
279#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
280#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
281#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
282#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
283#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
284#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
285#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
286#define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
287/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
288#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
289 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
290 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
291 } while (0)
292#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
293 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
294 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
295 } while (0)
296#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
297 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
298
299
300#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
301#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
302/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
303 * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
304#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
305#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
306/** @note Not for IOPL or IF testing or modification. */
307#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.u
308
309#define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) += (a_u8Value)
310#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
311#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
312 do { \
313 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
314 *pu32Reg += (a_u32Value); \
315 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
316 } while (0)
317#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
318
319#define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) -= (a_u8Value)
320#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u16Value)
321#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
322 do { \
323 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
324 *pu32Reg -= (a_u32Value); \
325 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
326 } while (0)
327#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u64Value)
328#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
329
330#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
331#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
332#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
333#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
334#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
335#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
336#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
337
338#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
339#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
340#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
341#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
342
343#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
344#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
345#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
346
347#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
348#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
349#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
350
351#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
352#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
353#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
354
355#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
356#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
357#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
358
359#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
360
361#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
362
363#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
364#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
365#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
366 do { \
367 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
368 *pu32Reg &= (a_u32Value); \
369 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
370 } while (0)
371#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
372
373#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
374#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
375#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
376 do { \
377 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
378 *pu32Reg |= (a_u32Value); \
379 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
380 } while (0)
381#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
382
383
384/** @note Not for IOPL or IF modification. */
385#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
386/** @note Not for IOPL or IF modification. */
387#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
388/** @note Not for IOPL or IF modification. */
389#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
390
391#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
392
393/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
394#define IEM_MC_FPU_TO_MMX_MODE() do { \
395 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
396 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
397 } while (0)
398
399/** Switches the FPU state from MMX mode (FTW=0xffff). */
400#define IEM_MC_FPU_FROM_MMX_MODE() do { \
401 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
402 } while (0)
403
404#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
405 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
406#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
407 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[0]; } while (0)
408#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) do { \
409 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
410 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
411 } while (0)
412#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) do { \
413 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
414 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
415 } while (0)
416#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
417 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
418#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
419 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
420#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
421 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
422#define IEM_MC_MODIFIED_MREG(a_iMReg) \
423 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
424#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
425 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
426
427#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
428 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
429 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
430 } while (0)
431#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg) \
432 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; } while (0)
433#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg) \
434 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0]; } while (0)
435#define IEM_MC_FETCH_XREG_HI_U64(a_u64Value, a_iXReg) \
436 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; } while (0)
437#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
438 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
439 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
440 } while (0)
441#define IEM_MC_STORE_XREG_U64(a_iXReg, a_u64Value) \
442 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); } while (0)
443#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
444 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
445 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
446 } while (0)
447#define IEM_MC_STORE_XREG_U32(a_iXReg, a_u32Value) \
448 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = (a_u32Value); } while (0)
449#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
450 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
451 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
452 } while (0)
453#define IEM_MC_STORE_XREG_HI_U64(a_iXReg, a_u64Value) \
454 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u64Value); } while (0)
455#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
456 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
457#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
458 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
459#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
460 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
461#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
462 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
463#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
464 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
465#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
466 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
467#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
468 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
469 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
470 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
471 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
472 } while (0)
473
474#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
475 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
476 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
477 } while (0)
478#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc) \
479 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
480 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
481 } while (0)
482#define IEM_MC_FETCH_YREG_2ND_U64(a_u64Dst, a_iYRegSrc) \
483 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
484 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
485 } while (0)
486#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc) \
487 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
488 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
489 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
490 } while (0)
491#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
492 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
493 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
494 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
495 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
496 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
497 } while (0)
498
499#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
500#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
501 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
502 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
503 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
504 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
505 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
506 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
507 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
508 } while (0)
509#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
510 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
511 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
512 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
513 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
514 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
515 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
516 } while (0)
517#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
518 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
519 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
520 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
521 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
522 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
523 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
524 } while (0)
525#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
526 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
527 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
528 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
529 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
530 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
531 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
532 } while (0)
533
534#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
535 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
536#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
537 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
538#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
539 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
540#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
541 do { uintptr_t const iYRegTmp = (a_iYReg); \
542 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
543 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
544 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
545 } while (0)
546
547#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
548 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
549 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
550 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
551 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
552 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
553 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
554 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
555 } while (0)
556#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
557 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
558 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
559 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
560 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
561 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
562 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
563 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
564 } while (0)
565#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
566 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
567 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
568 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
569 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
570 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
571 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
572 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
573 } while (0)
574
575#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
576 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
577 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
578 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
579 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
580 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
581 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
582 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
583 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
584 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
585 } while (0)
586#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
587 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
588 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
589 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
590 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
591 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
592 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
593 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
594 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
595 } while (0)
596#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
597 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
598 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
599 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
600 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
601 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
602 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
603 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
604 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
605 } while (0)
606#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
607 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
608 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
609 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
610 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
611 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
612 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
613 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
614 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
615 } while (0)
616#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
617 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
618 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
619 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
620 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
621 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
622 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
623 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
624 } while (0)
625#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
626 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
627 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
628 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
629 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
630 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
631 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
632 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
633 } while (0)
634
635#ifndef IEM_WITH_SETJMP
636# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
637 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
638# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
639 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
640# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
641 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
642#else
643# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
644 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
645# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
646 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
647# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
648 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
649#endif
650
651#ifndef IEM_WITH_SETJMP
652# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
653 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
654# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
655 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
656# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
657 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
658#else
659# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
660 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
661# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
662 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
663# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
664 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
665#endif
666
667#ifndef IEM_WITH_SETJMP
668# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
669 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
670# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
671 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
672# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
673 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
674#else
675# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
676 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
677# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
678 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
679# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
680 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
681#endif
682
683#ifdef SOME_UNUSED_FUNCTION
684# define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
685 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
686#endif
687
688#ifndef IEM_WITH_SETJMP
689# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
690 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
691# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
692 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
693# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
694 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
695# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
696 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
697#else
698# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
699 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
700# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
701 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
702# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
703 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
704# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
705 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
706#endif
707
708#ifndef IEM_WITH_SETJMP
709# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
710 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
711# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
712 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
713# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
714 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
715# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
716 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
717#else
718# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
719 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
720# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
721 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
722# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
723 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
724# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
725 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
726#endif
727
728#ifndef IEM_WITH_SETJMP
729# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
730 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
731# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
732 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
733# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
734 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
735
736# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
737 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
738# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
739 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
740# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
741 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
742#else
743# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
744 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
745# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
746 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
747# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
748 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
749
750# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
751 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
752# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
753 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
754# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
755 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
756#endif
757
758#ifndef IEM_WITH_SETJMP
759# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
760 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
761# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
762 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
763# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
764 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
765
766# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
767 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
768# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
769 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
770# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
771 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
772#else
773# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
774 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
775# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
776 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
777# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
778 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
779
780# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
781 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
782# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
783 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
784# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
785 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
786#endif
787
788
789
790#ifndef IEM_WITH_SETJMP
791# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
792 do { \
793 uint8_t u8Tmp; \
794 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
795 (a_u16Dst) = u8Tmp; \
796 } while (0)
797# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
798 do { \
799 uint8_t u8Tmp; \
800 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
801 (a_u32Dst) = u8Tmp; \
802 } while (0)
803# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
804 do { \
805 uint8_t u8Tmp; \
806 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
807 (a_u64Dst) = u8Tmp; \
808 } while (0)
809# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
810 do { \
811 uint16_t u16Tmp; \
812 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
813 (a_u32Dst) = u16Tmp; \
814 } while (0)
815# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
816 do { \
817 uint16_t u16Tmp; \
818 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
819 (a_u64Dst) = u16Tmp; \
820 } while (0)
821# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
822 do { \
823 uint32_t u32Tmp; \
824 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
825 (a_u64Dst) = u32Tmp; \
826 } while (0)
827#else /* IEM_WITH_SETJMP */
828# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
829 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
830# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
831 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
832# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
833 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
834# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
835 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
836# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
837 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
838# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
839 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
840#endif /* IEM_WITH_SETJMP */
841
842#ifndef IEM_WITH_SETJMP
843# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
844 do { \
845 uint8_t u8Tmp; \
846 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
847 (a_u16Dst) = (int8_t)u8Tmp; \
848 } while (0)
849# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
850 do { \
851 uint8_t u8Tmp; \
852 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
853 (a_u32Dst) = (int8_t)u8Tmp; \
854 } while (0)
855# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
856 do { \
857 uint8_t u8Tmp; \
858 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
859 (a_u64Dst) = (int8_t)u8Tmp; \
860 } while (0)
861# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
862 do { \
863 uint16_t u16Tmp; \
864 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
865 (a_u32Dst) = (int16_t)u16Tmp; \
866 } while (0)
867# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
868 do { \
869 uint16_t u16Tmp; \
870 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
871 (a_u64Dst) = (int16_t)u16Tmp; \
872 } while (0)
873# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
874 do { \
875 uint32_t u32Tmp; \
876 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
877 (a_u64Dst) = (int32_t)u32Tmp; \
878 } while (0)
879#else /* IEM_WITH_SETJMP */
880# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
881 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
882# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
883 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
884# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
885 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
886# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
887 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
888# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
889 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
890# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
891 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
892#endif /* IEM_WITH_SETJMP */
893
894#ifndef IEM_WITH_SETJMP
895# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
896 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
897# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
898 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
899# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
900 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
901# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
902 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
903#else
904# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
905 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
906# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
907 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
908# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
909 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
910# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
911 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
912#endif
913
914#ifndef IEM_WITH_SETJMP
915# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
916 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
917# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
918 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
919# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
920 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
921# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
922 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
923#else
924# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
925 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
926# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
927 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
928# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
929 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
930# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
931 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
932#endif
933
934#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
935#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
936#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
937#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
938#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
939#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
940#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
941 do { \
942 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
943 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
944 } while (0)
945#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
946 do { \
947 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
948 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
949 } while (0)
950
951#ifndef IEM_WITH_SETJMP
952# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
953 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
954# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
955 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
956#else
957# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
958 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
959# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
960 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
961#endif
962
963#ifndef IEM_WITH_SETJMP
964# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
965 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
966# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
967 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
968#else
969# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
970 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
971# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
972 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
973#endif
974
975
976#define IEM_MC_PUSH_U16(a_u16Value) \
977 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
978#define IEM_MC_PUSH_U32(a_u32Value) \
979 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
980#define IEM_MC_PUSH_U32_SREG(a_u32Value) \
981 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_u32Value)))
982#define IEM_MC_PUSH_U64(a_u64Value) \
983 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
984
985#define IEM_MC_POP_U16(a_pu16Value) \
986 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pVCpu, (a_pu16Value)))
987#define IEM_MC_POP_U32(a_pu32Value) \
988 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
989#define IEM_MC_POP_U64(a_pu64Value) \
990 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
991
992/** Maps guest memory for direct or bounce buffered access.
993 * The purpose is to pass it to an operand implementation, thus the a_iArg.
994 * @remarks May return.
995 */
996#define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
997 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), \
998 (a_GCPtrMem), (a_fAccess), sizeof(*(a_pMem)) - 1))
999
1000/** Maps guest memory for direct or bounce buffered access.
1001 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1002 * @remarks May return.
1003 */
1004#define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_cbAlign, a_iArg) \
1005 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), \
1006 (a_GCPtrMem), (a_fAccess), (a_cbAlign)))
1007
1008/** Commits the memory and unmaps the guest memory.
1009 * @remarks May return.
1010 */
1011#define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
1012 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess)))
1013
1014/** Commits the memory and unmaps the guest memory unless the FPU status word
1015 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
1016 * that would cause FLD not to store.
1017 *
1018 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
1019 * store, while \#P will not.
1020 *
1021 * @remarks May in theory return - for now.
1022 */
1023#define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
1024 do { \
1025 if ( !(a_u16FSW & X86_FSW_ES) \
1026 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
1027 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
1028 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess))); \
1029 } while (0)
1030
1031/** Calculate efficient address from R/M. */
1032#ifndef IEM_WITH_SETJMP
1033# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1034 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (bRm), (cbImm), &(a_GCPtrEff)))
1035#else
1036# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, bRm, cbImm) \
1037 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (bRm), (cbImm)))
1038#endif
1039
1040#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
1041#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
1042#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
1043#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
1044#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
1045#define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
1046#define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
1047
1048/**
1049 * Defers the rest of the instruction emulation to a C implementation routine
1050 * and returns, only taking the standard parameters.
1051 *
1052 * @param a_pfnCImpl The pointer to the C routine.
1053 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1054 */
1055#define IEM_MC_CALL_CIMPL_0(a_pfnCImpl) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1056
1057/**
1058 * Defers the rest of instruction emulation to a C implementation routine and
1059 * returns, taking one argument in addition to the standard ones.
1060 *
1061 * @param a_pfnCImpl The pointer to the C routine.
1062 * @param a0 The argument.
1063 */
1064#define IEM_MC_CALL_CIMPL_1(a_pfnCImpl, a0) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1065
1066/**
1067 * Defers the rest of the instruction emulation to a C implementation routine
1068 * and returns, taking two arguments in addition to the standard ones.
1069 *
1070 * @param a_pfnCImpl The pointer to the C routine.
1071 * @param a0 The first extra argument.
1072 * @param a1 The second extra argument.
1073 */
1074#define IEM_MC_CALL_CIMPL_2(a_pfnCImpl, a0, a1) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1075
1076/**
1077 * Defers the rest of the instruction emulation to a C implementation routine
1078 * and returns, taking three arguments in addition to the standard ones.
1079 *
1080 * @param a_pfnCImpl The pointer to the C routine.
1081 * @param a0 The first extra argument.
1082 * @param a1 The second extra argument.
1083 * @param a2 The third extra argument.
1084 */
1085#define IEM_MC_CALL_CIMPL_3(a_pfnCImpl, a0, a1, a2) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1086
1087/**
1088 * Defers the rest of the instruction emulation to a C implementation routine
1089 * and returns, taking four arguments in addition to the standard ones.
1090 *
1091 * @param a_pfnCImpl The pointer to the C routine.
1092 * @param a0 The first extra argument.
1093 * @param a1 The second extra argument.
1094 * @param a2 The third extra argument.
1095 * @param a3 The fourth extra argument.
1096 */
1097#define IEM_MC_CALL_CIMPL_4(a_pfnCImpl, a0, a1, a2, a3) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3)
1098
1099/**
1100 * Defers the rest of the instruction emulation to a C implementation routine
1101 * and returns, taking two arguments in addition to the standard ones.
1102 *
1103 * @param a_pfnCImpl The pointer to the C routine.
1104 * @param a0 The first extra argument.
1105 * @param a1 The second extra argument.
1106 * @param a2 The third extra argument.
1107 * @param a3 The fourth extra argument.
1108 * @param a4 The fifth extra argument.
1109 */
1110#define IEM_MC_CALL_CIMPL_5(a_pfnCImpl, a0, a1, a2, a3, a4) return (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4)
1111
1112/**
1113 * Defers the entire instruction emulation to a C implementation routine and
1114 * returns, only taking the standard parameters.
1115 *
1116 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1117 *
1118 * @param a_pfnCImpl The pointer to the C routine.
1119 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1120 */
1121#define IEM_MC_DEFER_TO_CIMPL_0(a_pfnCImpl) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
1122
1123/**
1124 * Defers the entire instruction emulation to a C implementation routine and
1125 * returns, taking one argument in addition to the standard ones.
1126 *
1127 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1128 *
1129 * @param a_pfnCImpl The pointer to the C routine.
1130 * @param a0 The argument.
1131 */
1132#define IEM_MC_DEFER_TO_CIMPL_1(a_pfnCImpl, a0) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0)
1133
1134/**
1135 * Defers the entire instruction emulation to a C implementation routine and
1136 * returns, taking two arguments in addition to the standard ones.
1137 *
1138 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1139 *
1140 * @param a_pfnCImpl The pointer to the C routine.
1141 * @param a0 The first extra argument.
1142 * @param a1 The second extra argument.
1143 */
1144#define IEM_MC_DEFER_TO_CIMPL_2(a_pfnCImpl, a0, a1) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1)
1145
1146/**
1147 * Defers the entire instruction emulation to a C implementation routine and
1148 * returns, taking three arguments in addition to the standard ones.
1149 *
1150 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1151 *
1152 * @param a_pfnCImpl The pointer to the C routine.
1153 * @param a0 The first extra argument.
1154 * @param a1 The second extra argument.
1155 * @param a2 The third extra argument.
1156 */
1157#define IEM_MC_DEFER_TO_CIMPL_3(a_pfnCImpl, a0, a1, a2) (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2)
1158
1159/**
1160 * Calls a FPU assembly implementation taking one visible argument.
1161 *
1162 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1163 * @param a0 The first extra argument.
1164 */
1165#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
1166 do { \
1167 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
1168 } while (0)
1169
1170/**
1171 * Calls a FPU assembly implementation taking two visible arguments.
1172 *
1173 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1174 * @param a0 The first extra argument.
1175 * @param a1 The second extra argument.
1176 */
1177#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
1178 do { \
1179 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1180 } while (0)
1181
1182/**
1183 * Calls a FPU assembly implementation taking three visible arguments.
1184 *
1185 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1186 * @param a0 The first extra argument.
1187 * @param a1 The second extra argument.
1188 * @param a2 The third extra argument.
1189 */
1190#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1191 do { \
1192 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1193 } while (0)
1194
1195#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
1196 do { \
1197 (a_FpuData).FSW = (a_FSW); \
1198 (a_FpuData).r80Result = *(a_pr80Value); \
1199 } while (0)
1200
1201/** Pushes FPU result onto the stack. */
1202#define IEM_MC_PUSH_FPU_RESULT(a_FpuData) \
1203 iemFpuPushResult(pVCpu, &a_FpuData)
1204/** Pushes FPU result onto the stack and sets the FPUDP. */
1205#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff) \
1206 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff)
1207
1208/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
1209#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo) \
1210 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo)
1211
1212/** Stores FPU result in a stack register. */
1213#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg) \
1214 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg)
1215/** Stores FPU result in a stack register and pops the stack. */
1216#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg) \
1217 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg)
1218/** Stores FPU result in a stack register and sets the FPUDP. */
1219#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1220 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1221/** Stores FPU result in a stack register, sets the FPUDP, and pops the
1222 * stack. */
1223#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff) \
1224 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff)
1225
1226/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
1227#define IEM_MC_UPDATE_FPU_OPCODE_IP() \
1228 iemFpuUpdateOpcodeAndIp(pVCpu)
1229/** Free a stack register (for FFREE and FFREEP). */
1230#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
1231 iemFpuStackFree(pVCpu, a_iStReg)
1232/** Increment the FPU stack pointer. */
1233#define IEM_MC_FPU_STACK_INC_TOP() \
1234 iemFpuStackIncTop(pVCpu)
1235/** Decrement the FPU stack pointer. */
1236#define IEM_MC_FPU_STACK_DEC_TOP() \
1237 iemFpuStackDecTop(pVCpu)
1238
1239/** Updates the FSW, FOP, FPUIP, and FPUCS. */
1240#define IEM_MC_UPDATE_FSW(a_u16FSW) \
1241 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1242/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
1243#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW) \
1244 iemFpuUpdateFSW(pVCpu, a_u16FSW)
1245/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
1246#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1247 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1248/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
1249#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW) \
1250 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW)
1251/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
1252 * stack. */
1253#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff) \
1254 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff)
1255/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
1256#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW) \
1257 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW)
1258
1259/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
1260#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst) \
1261 iemFpuStackUnderflow(pVCpu, a_iStDst)
1262/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1263 * stack. */
1264#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst) \
1265 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst)
1266/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1267 * FPUDS. */
1268#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1269 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1270/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1271 * FPUDS. Pops stack. */
1272#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff) \
1273 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff)
1274/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1275 * stack twice. */
1276#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP() \
1277 iemFpuStackUnderflowThenPopPop(pVCpu)
1278/** Raises a FPU stack underflow exception for an instruction pushing a result
1279 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
1280#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW() \
1281 iemFpuStackPushUnderflow(pVCpu)
1282/** Raises a FPU stack underflow exception for an instruction pushing a result
1283 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
1284#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO() \
1285 iemFpuStackPushUnderflowTwo(pVCpu)
1286
1287/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1288 * FPUIP, FPUCS and FOP. */
1289#define IEM_MC_FPU_STACK_PUSH_OVERFLOW() \
1290 iemFpuStackPushOverflow(pVCpu)
1291/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1292 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
1293#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff) \
1294 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff)
1295/** Prepares for using the FPU state.
1296 * Ensures that we can use the host FPU in the current context (RC+R0.
1297 * Ensures the guest FPU state in the CPUMCTX is up to date. */
1298#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
1299/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
1300#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
1301/** Actualizes the guest FPU state so it can be accessed and modified. */
1302#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
1303
1304/** Stores SSE SIMD result in a stack register. */
1305#define IEM_MC_STORE_SSE_RESULT(a_SseData, a_iXmmReg) \
1306 iemSseStoreResult(pVCpu, &a_SseData, a_iXmmReg)
1307/** Prepares for using the SSE state.
1308 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
1309 * Ensures the guest SSE state in the CPUMCTX is up to date. */
1310#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
1311/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1312#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
1313/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
1314#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
1315
1316/** Prepares for using the AVX state.
1317 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
1318 * Ensures the guest AVX state in the CPUMCTX is up to date.
1319 * @note This will include the AVX512 state too when support for it is added
1320 * due to the zero extending feature of VEX instruction. */
1321#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
1322/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1323#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
1324/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
1325#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
1326
1327/**
1328 * Calls a MMX assembly implementation taking two visible arguments.
1329 *
1330 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1331 * @param a0 The first extra argument.
1332 * @param a1 The second extra argument.
1333 */
1334#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
1335 do { \
1336 IEM_MC_PREPARE_FPU_USAGE(); \
1337 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1338 } while (0)
1339
1340/**
1341 * Calls a MMX assembly implementation taking three visible arguments.
1342 *
1343 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1344 * @param a0 The first extra argument.
1345 * @param a1 The second extra argument.
1346 * @param a2 The third extra argument.
1347 */
1348#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1349 do { \
1350 IEM_MC_PREPARE_FPU_USAGE(); \
1351 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1352 } while (0)
1353
1354
1355/**
1356 * Calls a SSE assembly implementation taking two visible arguments.
1357 *
1358 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1359 * @param a0 The first extra argument.
1360 * @param a1 The second extra argument.
1361 */
1362#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
1363 do { \
1364 IEM_MC_PREPARE_SSE_USAGE(); \
1365 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1366 } while (0)
1367
1368/**
1369 * Calls a SSE assembly implementation taking three visible arguments.
1370 *
1371 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1372 * @param a0 The first extra argument.
1373 * @param a1 The second extra argument.
1374 * @param a2 The third extra argument.
1375 */
1376#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1377 do { \
1378 IEM_MC_PREPARE_SSE_USAGE(); \
1379 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1380 } while (0)
1381
1382
1383/** Declares implicit arguments for IEM_MC_CALL_AVX_AIMPL_2,
1384 * IEM_MC_CALL_AVX_AIMPL_3, IEM_MC_CALL_AVX_AIMPL_4, ... */
1385#define IEM_MC_IMPLICIT_AVX_AIMPL_ARGS() \
1386 IEM_MC_ARG_CONST(PX86XSAVEAREA, pXState, &pVCpu->cpum.GstCtx.XState, 0)
1387
1388/**
1389 * Calls a AVX assembly implementation taking two visible arguments.
1390 *
1391 * There is one implicit zero'th argument, a pointer to the extended state.
1392 *
1393 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1394 * @param a1 The first extra argument.
1395 * @param a2 The second extra argument.
1396 */
1397#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a1, a2) \
1398 do { \
1399 IEM_MC_PREPARE_AVX_USAGE(); \
1400 a_pfnAImpl(pXState, (a1), (a2)); \
1401 } while (0)
1402
1403/**
1404 * Calls a AVX assembly implementation taking three visible arguments.
1405 *
1406 * There is one implicit zero'th argument, a pointer to the extended state.
1407 *
1408 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1409 * @param a1 The first extra argument.
1410 * @param a2 The second extra argument.
1411 * @param a3 The third extra argument.
1412 */
1413#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a1, a2, a3) \
1414 do { \
1415 IEM_MC_PREPARE_AVX_USAGE(); \
1416 a_pfnAImpl(pXState, (a1), (a2), (a3)); \
1417 } while (0)
1418
1419/** @note Not for IOPL or IF testing. */
1420#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
1421/** @note Not for IOPL or IF testing. */
1422#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
1423/** @note Not for IOPL or IF testing. */
1424#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
1425/** @note Not for IOPL or IF testing. */
1426#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
1427/** @note Not for IOPL or IF testing. */
1428#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
1429 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1430 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1431/** @note Not for IOPL or IF testing. */
1432#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
1433 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1434 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1435/** @note Not for IOPL or IF testing. */
1436#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
1437 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1438 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1439 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1440/** @note Not for IOPL or IF testing. */
1441#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
1442 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1443 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1444 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1445#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
1446#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
1447#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
1448/** @note Not for IOPL or IF testing. */
1449#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1450 if ( pVCpu->cpum.GstCtx.cx != 0 \
1451 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1452/** @note Not for IOPL or IF testing. */
1453#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1454 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1455 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1456/** @note Not for IOPL or IF testing. */
1457#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1458 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1459 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1460/** @note Not for IOPL or IF testing. */
1461#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1462 if ( pVCpu->cpum.GstCtx.cx != 0 \
1463 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1464/** @note Not for IOPL or IF testing. */
1465#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1466 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1467 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1468/** @note Not for IOPL or IF testing. */
1469#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1470 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1471 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1472#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
1473#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
1474
1475#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
1476 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[X86_FSW_TOP_GET_ST(pVCpu->cpum.GstCtx.XState.x87.FSW, a_iSt)].r80; } while (0)
1477#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1478 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1479#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
1480 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
1481#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1482 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1483#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
1484 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
1485#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
1486 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
1487#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
1488 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
1489#define IEM_MC_IF_FCW_IM() \
1490 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
1491
1492#define IEM_MC_ELSE() } else {
1493#define IEM_MC_ENDIF() } do {} while (0)
1494
1495/** @} */
1496
1497#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
1498
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette