VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 106037

Last change on this file since 106037 was 106037, checked in by vboxsync, 2 months ago

VMM/IEM: Quick liveness fix for iemOp_pmovmskb_Gd_Ux. bugref:10652 bugref:10270

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 181.9 KB
Line 
1/* $Id: IEMMc.h 106037 2024-09-12 15:17:06Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42
43#define IEM_MC_BEGIN(a_fMcFlags, a_fCImplFlags) {
44#define IEM_MC_END() }
45
46/** Internal macro. */
47#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
48 do \
49 { \
50 VBOXSTRICTRC rcStrict2 = a_Expr; \
51 if (rcStrict2 == VINF_SUCCESS) \
52 { /* likely */ } \
53 else \
54 return rcStrict2; \
55 } while (0)
56
57
58/** Dummy MC that prevents native recompilation. */
59#define IEM_MC_NO_NATIVE_RECOMPILE() ((void)0)
60
61/** Advances RIP, finishes the instruction and returns.
62 * This may include raising debug exceptions and such. */
63#define IEM_MC_ADVANCE_RIP_AND_FINISH() return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
64/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
65#define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) \
66 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize)
67/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
68 * @note only usable in 16-bit op size mode. */
69#define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) \
70 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
71/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
72#define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) \
73 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize)
74/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
75#define IEM_MC_SET_RIP_U16_AND_FINISH(a_u16NewIP) \
76 return iemRegRipJumpU16AndFinishClearingRF((pVCpu), (a_u16NewIP), IEM_GET_INSTR_LEN(pVCpu))
77/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
78#define IEM_MC_SET_RIP_U32_AND_FINISH(a_u32NewIP) \
79 return iemRegRipJumpU32AndFinishClearingRF((pVCpu), (a_u32NewIP), IEM_GET_INSTR_LEN(pVCpu))
80/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
81#define IEM_MC_SET_RIP_U64_AND_FINISH(a_u64NewIP) \
82 return iemRegRipJumpU64AndFinishClearingRF((pVCpu), (a_u64NewIP), IEM_GET_INSTR_LEN(pVCpu))
83
84/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
85 * @note only usable in 16-bit op size mode. */
86#define IEM_MC_REL_CALL_S16_AND_FINISH(a_i16) \
87 return iemRegRipRelativeCallS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
88/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
89#define IEM_MC_REL_CALL_S32_AND_FINISH(a_i32) \
90 return iemRegEip32RelativeCallS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32))
91/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
92#define IEM_MC_REL_CALL_S64_AND_FINISH(a_i64) \
93 return iemRegRip64RelativeCallS64AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i64))
94/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
95#define IEM_MC_IND_CALL_U16_AND_FINISH(a_u16NewIP) \
96 return iemRegIp16IndirectCallU16AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u16NewIP))
97/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
98#define IEM_MC_IND_CALL_U32_AND_FINISH(a_u32NewIP) \
99 return iemRegEip32IndirectCallU32AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u32NewIP))
100/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
101#define IEM_MC_IND_CALL_U64_AND_FINISH(a_u64NewIP) \
102 return iemRegRip64IndirectCallU64AndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u64NewIP))
103
104
105/** Fetches the near return address from the stack, sets RIP and RSP (may trigger
106 * \#GP or \#SS), finishes the instruction and returns. */
107#define IEM_MC_RETN_AND_FINISH(a_u16Pop) \
108 return iemRegRipNearReturnAndFinishClearingRF((pVCpu), IEM_GET_INSTR_LEN(pVCpu), (a_u16Pop), pVCpu->iem.s.enmEffOpSize)
109
110
111#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
112#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
113 do { \
114 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)))) \
115 { /* probable */ } \
116 else return iemRaiseDeviceNotAvailable(pVCpu); \
117 } while (0)
118#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
119 do { \
120 if (RT_LIKELY(!((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)))) \
121 { /* probable */ } \
122 else return iemRaiseDeviceNotAvailable(pVCpu); \
123 } while (0)
124#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
125 do { \
126 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))) \
127 { /* probable */ } \
128 else return iemRaiseMathFault(pVCpu); \
129 } while (0)
130#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
131 do { \
132 /* Since none of the bits we compare from XCR0, CR4 and CR0 overlap, it can \
133 be reduced to a single compare branch in the more probably code path. */ \
134 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) \
135 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
136 | (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) \
137 == (XSAVE_C_YMM | XSAVE_C_SSE | X86_CR4_OSXSAVE))) \
138 { /* probable */ } \
139 else if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
140 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) \
141 return iemRaiseUndefinedOpcode(pVCpu); \
142 else \
143 return iemRaiseDeviceNotAvailable(pVCpu); \
144 } while (0)
145AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR4_OSXSAVE));
146AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR0_TS));
147AssertCompile(!(X86_CR4_OSXSAVE & X86_CR0_TS));
148#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
149 do { \
150 /* Since the CR4 and CR0 bits doesn't overlap, it can be reduced to a
151 single compare branch in the more probable code path. */ \
152 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
153 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
154 == X86_CR4_OSFXSR)) \
155 { /* likely */ } \
156 else if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
157 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
158 return iemRaiseUndefinedOpcode(pVCpu); \
159 else \
160 return iemRaiseDeviceNotAvailable(pVCpu); \
161 } while (0)
162AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_CR4_OSFXSR));
163#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
164 do { \
165 /* Since the two CR0 bits doesn't overlap with FSW.ES, this can be reduced to a
166 single compare branch in the more probable code path. */ \
167 if (RT_LIKELY(!( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
168 | (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES)))) \
169 { /* probable */ } \
170 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
171 return iemRaiseUndefinedOpcode(pVCpu); \
172 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
173 return iemRaiseDeviceNotAvailable(pVCpu); \
174 else \
175 return iemRaiseMathFault(pVCpu); \
176 } while (0)
177AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_FSW_ES));
178/** @todo recomp: this one is slightly problematic as the recompiler doesn't
179 * count the CPL into the TB key. However it is safe enough for now, as
180 * it calls iemRaiseGeneralProtectionFault0 directly so no calls will be
181 * emitted for it. */
182#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
183 do { \
184 if (RT_LIKELY(IEM_GET_CPL(pVCpu) == 0)) { /* probable */ } \
185 else return iemRaiseGeneralProtectionFault0(pVCpu); \
186 } while (0)
187#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
188 do { \
189 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
190 else return iemRaiseGeneralProtectionFault0(pVCpu); \
191 } while (0)
192#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
193 do { \
194 if (RT_LIKELY( ((pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE) | IEM_GET_CPU_MODE(pVCpu)) \
195 == (X86_CR4_FSGSBASE | IEMMODE_64BIT))) \
196 { /* probable */ } \
197 else return iemRaiseUndefinedOpcode(pVCpu); \
198 } while (0)
199AssertCompile(X86_CR4_FSGSBASE > UINT8_MAX);
200#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
201 do { \
202 if (RT_LIKELY(IEM_IS_CANONICAL(a_u64Addr))) { /* likely */ } \
203 else return iemRaiseGeneralProtectionFault0(pVCpu); \
204 } while (0)
205
206
207#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
208#define IEM_MC_LOCAL_ASSIGN(a_Type, a_Name, a_Value) a_Type a_Name = (a_Value)
209#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
210#define IEM_MC_NOREF(a_Name) RT_NOREF_PV(a_Name) /* NOP/liveness hack */
211#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
212#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
213#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
214/** @note IEMAllInstPython.py duplicates the expansion. */
215#define IEM_MC_ARG_EFLAGS(a_Name, a_iArg) uint32_t const a_Name = pVCpu->cpum.GstCtx.eflags.u
216/** @note IEMAllInstPython.py duplicates the expansion. */
217#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
218 uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u; \
219 uint32_t *a_pName = &a_Name
220/** @note IEMAllInstPython.py duplicates the expansion. */
221#define IEM_MC_LOCAL_EFLAGS(a_Name) uint32_t a_Name = pVCpu->cpum.GstCtx.eflags.u
222#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
223 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
224#define IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) do { \
225 AssertMsg((pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) == ((a_EFlags) & ~(a_fEflOutput)), \
226 ("eflags.u=%#x (%#x) vs %s=%#x (%#x) - diff %#x (a_fEflOutput=%#x)\n", \
227 pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput), pVCpu->cpum.GstCtx.eflags.u, #a_EFlags, \
228 (a_EFlags) & ~(a_fEflOutput), (a_EFlags), \
229 (pVCpu->cpum.GstCtx.eflags.u & ~(a_fEflOutput)) ^ ((a_EFlags) & ~(a_fEflOutput)), a_fEflOutput)); \
230 pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); \
231 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); \
232 } while (0)
233#define IEM_MC_COMMIT_EFLAGS_OPT(a_EFlags) IEM_MC_COMMIT_EFLAGS(a_EFlags)
234#define IEM_MC_COMMIT_EFLAGS_OPT_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_COMMIT_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput)
235
236/** ASSUMES the source variable not used after this statement. */
237#define IEM_MC_ASSIGN_TO_SMALLER(a_VarDst, a_VarSrcEol) (a_VarDst) = (a_VarSrcEol)
238
239#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
240#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
241#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
242#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
243#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
244#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
245#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
246#define IEM_MC_FETCH_GREG_I16(a_i16Dst, a_iGReg) (a_i16Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
247#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
248#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
249#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
250#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
251#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
252#define IEM_MC_FETCH_GREG_I32(a_i32Dst, a_iGReg) (a_i32Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
253#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
254#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
255#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
256#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
257#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
258#define IEM_MC_FETCH_GREG_PAIR_U32(a_u64Dst, a_iGRegLo, a_iGRegHi) do { \
259 (a_u64Dst).s.Lo = iemGRegFetchU32(pVCpu, (a_iGRegLo)); \
260 (a_u64Dst).s.Hi = iemGRegFetchU32(pVCpu, (a_iGRegHi)); \
261 } while(0)
262#define IEM_MC_FETCH_GREG_PAIR_U64(a_u128Dst, a_iGRegLo, a_iGRegHi) do { \
263 (a_u128Dst).s.Lo = iemGRegFetchU64(pVCpu, (a_iGRegLo)); \
264 (a_u128Dst).s.Hi = iemGRegFetchU64(pVCpu, (a_iGRegHi)); \
265 } while(0)
266#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
267 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
268 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
269 } while (0)
270#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
271 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
272 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
273 } while (0)
274#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
275 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
276 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
277 } while (0)
278/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
279#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
280 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
281 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
282 } while (0)
283#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
284 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
285 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
286 } while (0)
287/** @note Not for IOPL or IF testing or modification. */
288#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
289#define IEM_MC_FETCH_EFLAGS_EX(a_EFlags, a_fEflInput, a_fEflOutput) IEM_MC_FETCH_EFLAGS(a_EFlags)
290#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u /* (only LAHF) */
291#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
292#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
293
294#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
295#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
296#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
297#define IEM_MC_STORE_GREG_I32(a_iGReg, a_i32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_i32Value) /* clear high bits. */
298#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
299#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
300#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
301#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
302#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
303#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
304#define IEM_MC_STORE_GREG_PAIR_U32(a_iGRegLo, a_iGRegHi, a_u64Value) do { \
305 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint32_t)(a_u64Value).s.Lo; \
306 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint32_t)(a_u64Value).s.Hi; \
307 } while(0)
308#define IEM_MC_STORE_GREG_PAIR_U64(a_iGRegLo, a_iGRegHi, a_u128Value) do { \
309 *iemGRegRefU64(pVCpu, (a_iGRegLo)) = (uint64_t)(a_u128Value).s.Lo; \
310 *iemGRegRefU64(pVCpu, (a_iGRegHi)) = (uint64_t)(a_u128Value).s.Hi; \
311 } while(0)
312#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
313
314/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
315#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
316 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
317 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
318 } while (0)
319#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
320 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
321 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
322 } while (0)
323#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
324 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
325
326
327#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
328#define IEM_MC_REF_GREG_U8_CONST(a_pu8Dst, a_iGReg) (a_pu8Dst) = (uint8_t const *)iemGRegRefU8( pVCpu, (a_iGReg))
329#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
330#define IEM_MC_REF_GREG_U16_CONST(a_pu16Dst, a_iGReg) (a_pu16Dst) = (uint16_t const *)iemGRegRefU16(pVCpu, (a_iGReg))
331/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
332 * Use IEM_MC_CLEAR_HIGH_GREG_U64! */
333#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
334#define IEM_MC_REF_GREG_U32_CONST(a_pu32Dst, a_iGReg) (a_pu32Dst) = (uint32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
335#define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t *)iemGRegRefU32(pVCpu, (a_iGReg))
336#define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
337#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
338#define IEM_MC_REF_GREG_U64_CONST(a_pu64Dst, a_iGReg) (a_pu64Dst) = (uint64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
339#define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t *)iemGRegRefU64(pVCpu, (a_iGReg))
340#define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
341/** @note Not for IOPL or IF testing or modification.
342 * @note Must preserve any undefined bits, see CPUMX86EFLAGS! */
343#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.uBoth
344#define IEM_MC_REF_EFLAGS_EX(a_pEFlags, a_fEflInput, a_fEflOutput) IEM_MC_REF_EFLAGS(a_pEFlags)
345
346#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
347#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
348 do { \
349 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
350 *pu32Reg += (a_u32Value); \
351 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
352 } while (0)
353#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
354
355#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u8Const) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u8Const)
356#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u8Const) \
357 do { \
358 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
359 *pu32Reg -= (a_u8Const); \
360 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
361 } while (0)
362#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u8Const) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u8Const)
363#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
364
365#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
366#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
367#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
368#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
369#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
370#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
371#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
372
373#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
374#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
375#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
376#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
377
378#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
379#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
380#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
381
382#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
383#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
384#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
385
386#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
387#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
388#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
389
390#define IEM_MC_SHR_LOCAL_U8(a_u8Local, a_cShift) do { (a_u8Local) >>= (a_cShift); } while (0)
391
392#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
393#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
394#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
395
396#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
397
398#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
399
400#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
401#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
402#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
403 do { \
404 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
405 *pu32Reg &= (a_u32Value); \
406 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
407 } while (0)
408#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
409
410#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
411#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
412#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
413 do { \
414 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
415 *pu32Reg |= (a_u32Value); \
416 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
417 } while (0)
418#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
419
420#define IEM_MC_BSWAP_LOCAL_U16(a_u16Local) (a_u16Local) = RT_BSWAP_U16((a_u16Local));
421#define IEM_MC_BSWAP_LOCAL_U32(a_u32Local) (a_u32Local) = RT_BSWAP_U32((a_u32Local));
422#define IEM_MC_BSWAP_LOCAL_U64(a_u64Local) (a_u64Local) = RT_BSWAP_U64((a_u64Local));
423
424/** @note Not for IOPL or IF modification. */
425#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
426/** @note Not for IOPL or IF modification. */
427#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
428/** @note Not for IOPL or IF modification. */
429#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
430
431#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
432
433/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
434#define IEM_MC_FPU_TO_MMX_MODE() do { \
435 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
436 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
437 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
438 } while (0)
439
440/** Switches the FPU state from MMX mode (FSW.TOS=0, FTW=0xffff). */
441#define IEM_MC_FPU_FROM_MMX_MODE() do { \
442 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
443 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
444 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
445 } while (0)
446
447#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
448 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
449#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg, a_iDWord) \
450 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[a_iDWord]; } while (0)
451#define IEM_MC_FETCH_MREG_U16(a_u16Value, a_iMReg, a_iWord) \
452 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[a_iWord]; } while (0)
453#define IEM_MC_FETCH_MREG_U8(a_u8Value, a_iMReg, a_iByte) \
454 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[a_iByte]; } while (0)
455#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) \
456 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
457 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
458 } while (0)
459#define IEM_MC_STORE_MREG_U32(a_iMReg, a_iDword, a_u32Value) \
460 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[(a_iDword)] = (a_u32Value); \
461 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
462 } while (0)
463#define IEM_MC_STORE_MREG_U16(a_iMReg, a_iWord, a_u16Value) \
464 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au16[(a_iWord)] = (a_u16Value); \
465 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
466 } while (0)
467#define IEM_MC_STORE_MREG_U8(a_iMReg, a_iByte, a_u8Value) \
468 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au8[(a_iByte)] = (a_u8Value); \
469 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
470 } while (0)
471#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) \
472 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
473 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
474 } while (0)
475#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
476 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
477#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
478 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
479#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
480 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
481#define IEM_MC_MODIFIED_MREG(a_iMReg) \
482 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
483#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
484 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
485
486#define IEM_MC_CLEAR_XREG_U32_MASK(a_iXReg, a_bMask) \
487 do { if ((a_bMask) & (1 << 0)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = 0; \
488 if ((a_bMask) & (1 << 1)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[1] = 0; \
489 if ((a_bMask) & (1 << 2)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[2] = 0; \
490 if ((a_bMask) & (1 << 3)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[3] = 0; \
491 } while (0)
492#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
493 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
494 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
495 } while (0)
496#define IEM_MC_FETCH_XREG_XMM(a_XmmValue, a_iXReg) \
497 do { (a_XmmValue).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
498 (a_XmmValue).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
499 } while (0)
500#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg, a_iQWord) \
501 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQWord)]; } while (0)
502#define IEM_MC_FETCH_XREG_R64(a_r64Value, a_iXReg, a_iQWord) \
503 do { (a_r64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[(a_iQWord)]; } while (0)
504#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg, a_iDWord) \
505 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDWord)]; } while (0)
506#define IEM_MC_FETCH_XREG_R32(a_r32Value, a_iXReg, a_iDWord) \
507 do { (a_r32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[(a_iDWord)]; } while (0)
508#define IEM_MC_FETCH_XREG_U16(a_u16Value, a_iXReg, a_iWord) \
509 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)]; } while (0)
510#define IEM_MC_FETCH_XREG_U8( a_u8Value, a_iXReg, a_iByte) \
511 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)]; } while (0)
512#define IEM_MC_FETCH_XREG_PAIR_U128(a_Dst, a_iXReg1, a_iXReg2) \
513 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
514 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
515 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
516 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
517 } while (0)
518#define IEM_MC_FETCH_XREG_PAIR_XMM(a_Dst, a_iXReg1, a_iXReg2) \
519 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
520 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
521 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
522 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
523 } while (0)
524#define IEM_MC_FETCH_XREG_PAIR_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iXReg2) \
525 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
526 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
527 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
528 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
529 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
530 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
531 } while (0)
532#define IEM_MC_FETCH_XREG_PAIR_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iXReg2) \
533 do { (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
534 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
535 (a_Dst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[0]; \
536 (a_Dst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg2)].au64[1]; \
537 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
538 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
539 } while (0)
540#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
541 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
542 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
543 } while (0)
544#define IEM_MC_STORE_XREG_XMM(a_iXReg, a_XmmValue) \
545 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_XmmValue).au64[0]; \
546 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_XmmValue).au64[1]; \
547 } while (0)
548#define IEM_MC_STORE_XREG_XMM_U32(a_iXReg, a_iDword, a_XmmValue) \
549 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_XmmValue).au32[(a_iDword)]; } while (0)
550#define IEM_MC_STORE_XREG_XMM_U64(a_iXReg, a_iQword, a_XmmValue) \
551 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_XmmValue).au64[(a_iQword)]; } while (0)
552#define IEM_MC_STORE_XREG_U64(a_iXReg, a_iQword, a_u64Value) \
553 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_u64Value); } while (0)
554#define IEM_MC_STORE_XREG_U32(a_iXReg, a_iDword, a_u32Value) \
555 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_u32Value); } while (0)
556#define IEM_MC_STORE_XREG_U16(a_iXReg, a_iWord, a_u16Value) \
557 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)] = (a_u16Value); } while (0)
558#define IEM_MC_STORE_XREG_U8(a_iXReg, a_iByte, a_u8Value) \
559 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au8[(a_iByte)] = (a_u8Value); } while (0)
560
561#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
562 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
563 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
564 } while (0)
565
566#define IEM_MC_STORE_XREG_U32_U128(a_iXReg, a_iDwDst, a_u128Value, a_iDwSrc) \
567 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDwDst)] = (a_u128Value).au32[(a_iDwSrc)]; } while (0)
568#define IEM_MC_STORE_XREG_R32(a_iXReg, a_r32Value) \
569 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0] = (a_r32Value); } while (0)
570#define IEM_MC_STORE_XREG_R64(a_iXReg, a_r64Value) \
571 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0] = (a_r64Value); } while (0)
572#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
573 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
574 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
575 } while (0)
576
577#define IEM_MC_BROADCAST_XREG_U8_ZX_VLMAX(a_iXRegDst, a_u8Src) \
578 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
579 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[0] = (a_u8Src); \
580 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[1] = (a_u8Src); \
581 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[2] = (a_u8Src); \
582 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[3] = (a_u8Src); \
583 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[4] = (a_u8Src); \
584 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[5] = (a_u8Src); \
585 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[6] = (a_u8Src); \
586 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[7] = (a_u8Src); \
587 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[8] = (a_u8Src); \
588 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[9] = (a_u8Src); \
589 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[10] = (a_u8Src); \
590 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[11] = (a_u8Src); \
591 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[12] = (a_u8Src); \
592 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[13] = (a_u8Src); \
593 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[14] = (a_u8Src); \
594 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[15] = (a_u8Src); \
595 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
596 } while (0)
597#define IEM_MC_BROADCAST_XREG_U16_ZX_VLMAX(a_iXRegDst, a_u16Src) \
598 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
599 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[0] = (a_u16Src); \
600 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[1] = (a_u16Src); \
601 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[2] = (a_u16Src); \
602 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[3] = (a_u16Src); \
603 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[4] = (a_u16Src); \
604 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[5] = (a_u16Src); \
605 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[6] = (a_u16Src); \
606 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[7] = (a_u16Src); \
607 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
608 } while (0)
609#define IEM_MC_BROADCAST_XREG_U32_ZX_VLMAX(a_iXRegDst, a_u32Src) \
610 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
611 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[0] = (a_u32Src); \
612 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[1] = (a_u32Src); \
613 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[2] = (a_u32Src); \
614 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[3] = (a_u32Src); \
615 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
616 } while (0)
617#define IEM_MC_BROADCAST_XREG_U64_ZX_VLMAX(a_iXRegDst, a_u64Src) \
618 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
619 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[0] = (a_u64Src); \
620 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[1] = (a_u64Src); \
621 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
622 } while (0)
623
624#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
625 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
626#define IEM_MC_REF_XREG_XMM(a_pXmmDst, a_iXReg) \
627 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
628#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
629 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
630#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
631 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
632#define IEM_MC_REF_XREG_U32_CONST(a_pu32Dst, a_iXReg) \
633 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0])
634#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
635 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
636#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
637 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
638#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
639 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
640#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
641 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
642 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
643 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
644 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
645 } while (0)
646
647#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
648 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
649 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
650 } while (0)
651#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc, a_iQWord) \
652 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
653 if ((a_iQWord) < 2) \
654 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[(a_iQWord)]; \
655 else \
656 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[(a_iQWord) - 2]; \
657 } while (0)
658#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc, a_iDQword) \
659 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
660 if ((a_iDQword) == 0) \
661 { \
662 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[0]; \
663 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegSrcTmp)].au64[1]; \
664 } \
665 else \
666 { \
667 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[0]; \
668 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegSrcTmp)].au64[1]; \
669 } \
670 } while (0)
671#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
672 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
673 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
674 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
675 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
676 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
677 } while (0)
678#define IEM_MC_FETCH_YREG_YMM(a_uYmmDst, a_iYRegSrc) \
679 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
680 (a_uYmmDst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
681 (a_uYmmDst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
682 (a_uYmmDst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
683 (a_uYmmDst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
684 } while (0)
685#define IEM_MC_FETCH_YREG_PAIR_YMM(a_uYmmDst, a_iYRegSrc1, a_iYRegSrc2) \
686 do { uintptr_t const iYRegSrc1Tmp = (a_iYRegSrc1); \
687 uintptr_t const iYRegSrc2Tmp = (a_iYRegSrc2); \
688 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc1Tmp].au64[0]; \
689 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc1Tmp].au64[1]; \
690 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc1Tmp].au64[0]; \
691 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc1Tmp].au64[1]; \
692 (a_uYmmDst).uSrc2.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc2Tmp].au64[0]; \
693 (a_uYmmDst).uSrc2.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc2Tmp].au64[1]; \
694 (a_uYmmDst).uSrc2.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc2Tmp].au64[0]; \
695 (a_uYmmDst).uSrc2.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrc2Tmp].au64[1]; \
696 } while (0)
697
698#define IEM_MC_STORE_YREG_U128(a_iYRegDst, a_iDQword, a_u128Value) \
699 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
700 if ((a_iDQword) == 0) \
701 { \
702 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
703 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
704 } \
705 else \
706 { \
707 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
708 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
709 } \
710 } while (0)
711
712#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
713#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
714 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
715 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
716 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
717 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
718 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
719 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
720 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
721 } while (0)
722#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
723 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
724 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
725 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
726 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
727 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
728 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
729 } while (0)
730#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
731 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
732 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
733 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
734 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
735 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
736 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
737 } while (0)
738#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
739 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
740 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
741 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
742 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
743 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
744 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
745 } while (0)
746#define IEM_MC_STORE_YREG_YMM_ZX_VLMAX(a_iYRegDst, a_uYmmSrc) \
747 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
748 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[0]; \
749 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[1]; \
750 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_uYmmSrc).au64[2]; \
751 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_uYmmSrc).au64[3]; \
752 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
753 } while (0)
754#define IEM_MC_STORE_YREG_U32_U256(a_iYRegDst, a_iDwDst, a_u256Value, a_iDwSrc) \
755 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
756 if ((a_iDwDst) < 4) \
757 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au32[(a_iDwDst)] = (a_u256Value).au32[(a_iDwSrc)]; \
758 else \
759 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au32[(a_iDwDst) - 4] = (a_u256Value).au32[(a_iDwSrc)]; \
760 } while (0)
761#define IEM_MC_STORE_YREG_U64_U256(a_iYRegDst, a_iQwDst, a_u256Value, a_iQwSrc) \
762 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
763 if ((a_iQwDst) < 2) \
764 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQwDst)] = (a_u256Value).au64[(a_iQwSrc)]; \
765 else \
766 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQwDst) - 2] = (a_u256Value).au64[(a_iQwSrc)]; \
767 } while (0)
768#define IEM_MC_STORE_YREG_U64(a_iYRegDst, a_iQword, a_u64Value) \
769 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
770 if ((a_iQword) < 2) \
771 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[(a_iQword)] = (a_u64Value); \
772 else \
773 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[(a_iQword) - 2] = (a_u64Value); \
774 } while (0)
775
776#define IEM_MC_BROADCAST_YREG_U8_ZX_VLMAX(a_iYRegDst, a_u8Src) \
777 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
778 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[0] = (a_u8Src); \
779 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[1] = (a_u8Src); \
780 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[2] = (a_u8Src); \
781 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[3] = (a_u8Src); \
782 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[4] = (a_u8Src); \
783 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[5] = (a_u8Src); \
784 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[6] = (a_u8Src); \
785 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[7] = (a_u8Src); \
786 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[8] = (a_u8Src); \
787 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[9] = (a_u8Src); \
788 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[10] = (a_u8Src); \
789 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[11] = (a_u8Src); \
790 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[12] = (a_u8Src); \
791 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[13] = (a_u8Src); \
792 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[14] = (a_u8Src); \
793 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[15] = (a_u8Src); \
794 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[0] = (a_u8Src); \
795 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[1] = (a_u8Src); \
796 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[2] = (a_u8Src); \
797 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[3] = (a_u8Src); \
798 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[4] = (a_u8Src); \
799 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[5] = (a_u8Src); \
800 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[6] = (a_u8Src); \
801 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[7] = (a_u8Src); \
802 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[8] = (a_u8Src); \
803 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[9] = (a_u8Src); \
804 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[10] = (a_u8Src); \
805 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[11] = (a_u8Src); \
806 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[12] = (a_u8Src); \
807 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[13] = (a_u8Src); \
808 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[14] = (a_u8Src); \
809 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[15] = (a_u8Src); \
810 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
811 } while (0)
812#define IEM_MC_BROADCAST_YREG_U16_ZX_VLMAX(a_iYRegDst, a_u16Src) \
813 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
814 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[0] = (a_u16Src); \
815 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[1] = (a_u16Src); \
816 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[2] = (a_u16Src); \
817 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[3] = (a_u16Src); \
818 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[4] = (a_u16Src); \
819 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[5] = (a_u16Src); \
820 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[6] = (a_u16Src); \
821 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[7] = (a_u16Src); \
822 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[0] = (a_u16Src); \
823 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[1] = (a_u16Src); \
824 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[2] = (a_u16Src); \
825 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[3] = (a_u16Src); \
826 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[4] = (a_u16Src); \
827 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[5] = (a_u16Src); \
828 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[6] = (a_u16Src); \
829 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[7] = (a_u16Src); \
830 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
831 } while (0)
832#define IEM_MC_BROADCAST_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
833 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
834 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
835 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = (a_u32Src); \
836 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[2] = (a_u32Src); \
837 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[3] = (a_u32Src); \
838 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[0] = (a_u32Src); \
839 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[1] = (a_u32Src); \
840 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[2] = (a_u32Src); \
841 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[3] = (a_u32Src); \
842 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
843 } while (0)
844#define IEM_MC_BROADCAST_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
845 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
846 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
847 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Src); \
848 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u64Src); \
849 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u64Src); \
850 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
851 } while (0)
852#define IEM_MC_BROADCAST_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
853 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
854 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
855 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
856 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
857 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
858 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
859 } while (0)
860
861#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
862 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
863#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
864 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
865#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
866 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
867#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
868 do { uintptr_t const iYRegTmp = (a_iYReg); \
869 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
870 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
871 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
872 } while (0)
873
874#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
875 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
876 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
877 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
878 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
879 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
880 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
881 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
882 } while (0)
883#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
884 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
885 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
886 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
887 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
888 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
889 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
890 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
891 } while (0)
892#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
893 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
894 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
895 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
896 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
897 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
898 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
899 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
900 } while (0)
901
902#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
903 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
904 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
905 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
906 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
907 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
908 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
909 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
910 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
911 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
912 } while (0)
913#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
914 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
915 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
916 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
917 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
918 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
919 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
920 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
921 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
922 } while (0)
923#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
924 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
925 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
926 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
927 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
928 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
929 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
930 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
931 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
932 } while (0)
933#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
934 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
935 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
936 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
937 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
938 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
939 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
940 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
941 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
942 } while (0)
943#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
944 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
945 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
946 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
947 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
948 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
949 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
950 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
951 } while (0)
952#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
953 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
954 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
955 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
956 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
957 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
958 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
959 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
960 } while (0)
961
962#define IEM_MC_CLEAR_ZREG_256_UP(a_iYReg) \
963 do { IEM_MC_INT_CLEAR_ZMM_256_UP(a_iYReg); } while (0)
964
965#ifndef IEM_WITH_SETJMP
966# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
967 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
968# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
969 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
970# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
971 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
972#else
973# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
974 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
975# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
976 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
977# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
978 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
979
980# define IEM_MC_FETCH_MEM_FLAT_U8(a_u8Dst, a_GCPtrMem) \
981 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
982# define IEM_MC_FETCH_MEM16_FLAT_U8(a_u8Dst, a_GCPtrMem16) \
983 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem16)))
984# define IEM_MC_FETCH_MEM32_FLAT_U8(a_u8Dst, a_GCPtrMem32) \
985 ((a_u8Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem32)))
986#endif
987
988#ifndef IEM_WITH_SETJMP
989# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
990 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
991# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
992 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
993# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
994 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
995# define IEM_MC_FETCH_MEM_I16_DISP(a_i16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
996 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
997#else
998# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
999 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1000# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1001 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1002# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
1003 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1004# define IEM_MC_FETCH_MEM_I16_DISP(a_i16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1005 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1006
1007# define IEM_MC_FETCH_MEM_FLAT_U16(a_u16Dst, a_GCPtrMem) \
1008 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1009# define IEM_MC_FETCH_MEM_FLAT_U16_DISP(a_u16Dst, a_GCPtrMem, a_offDisp) \
1010 ((a_u16Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1011# define IEM_MC_FETCH_MEM_FLAT_I16(a_i16Dst, a_GCPtrMem) \
1012 ((a_i16Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1013# define IEM_MC_FETCH_MEM_FLAT_I16_DISP(a_i16Dst, a_GCPtrMem, a_offDisp) \
1014 ((a_i16Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1015#endif
1016
1017#ifndef IEM_WITH_SETJMP
1018# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1019 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
1020# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1021 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1022# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1023 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
1024# define IEM_MC_FETCH_MEM_I32_DISP(a_i32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1025 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1026#else
1027# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1028 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1029# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1030 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1031# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
1032 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1033# define IEM_MC_FETCH_MEM_I32_DISP(a_i32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1034 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1035
1036# define IEM_MC_FETCH_MEM_FLAT_U32(a_u32Dst, a_GCPtrMem) \
1037 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1038# define IEM_MC_FETCH_MEM_FLAT_U32_DISP(a_u32Dst, a_GCPtrMem, a_offDisp) \
1039 ((a_u32Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1040# define IEM_MC_FETCH_MEM_FLAT_I32(a_i32Dst, a_GCPtrMem) \
1041 ((a_i32Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1042# define IEM_MC_FETCH_MEM_FLAT_I32_DISP(a_i32Dst, a_GCPtrMem, a_offDisp) \
1043 ((a_i32Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1044#endif
1045
1046#ifndef IEM_WITH_SETJMP
1047# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1048 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1049# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1050 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1051# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1052 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
1053# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1054 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
1055#else
1056# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1057 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1058# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
1059 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
1060# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
1061 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1062# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
1063 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1064
1065# define IEM_MC_FETCH_MEM_FLAT_U64(a_u64Dst, a_GCPtrMem) \
1066 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1067# define IEM_MC_FETCH_MEM_FLAT_U64_DISP(a_u64Dst, a_GCPtrMem, a_offDisp) \
1068 ((a_u64Dst) = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem) + (a_offDisp)))
1069# define IEM_MC_FETCH_MEM_FLAT_U64_ALIGN_U128(a_u64Dst, a_GCPtrMem) \
1070 ((a_u64Dst) = iemMemFlatFetchDataU64AlignedU128Jmp(pVCpu, (a_GCPtrMem)))
1071# define IEM_MC_FETCH_MEM_FLAT_I64(a_i64Dst, a_GCPtrMem) \
1072 ((a_i64Dst) = (int64_t)iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1073#endif
1074
1075#ifndef IEM_WITH_SETJMP
1076# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1077 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
1078# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1079 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
1080# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1081 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
1082# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1083 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
1084#else
1085# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
1086 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1087# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
1088 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1089# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
1090 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
1091# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
1092 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
1093
1094# define IEM_MC_FETCH_MEM_FLAT_R32(a_r32Dst, a_GCPtrMem) \
1095 ((a_r32Dst).u = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1096# define IEM_MC_FETCH_MEM_FLAT_R64(a_r64Dst, a_GCPtrMem) \
1097 ((a_r64Dst).u = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem)))
1098# define IEM_MC_FETCH_MEM_FLAT_R80(a_r80Dst, a_GCPtrMem) \
1099 iemMemFlatFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_GCPtrMem))
1100# define IEM_MC_FETCH_MEM_FLAT_D80(a_d80Dst, a_GCPtrMem) \
1101 iemMemFlatFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_GCPtrMem))
1102#endif
1103
1104#ifndef IEM_WITH_SETJMP
1105# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1106 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1107# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1108 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1109# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1110 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
1111
1112# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1113 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1114# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1115 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
1116
1117# define IEM_MC_FETCH_MEM_U128_NO_AC_AND_XREG_U128(a_u128Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1118 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128NoAc(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1119 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1120 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1121 } while (0)
1122
1123# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1124 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2))); \
1125 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1126 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1127 } while (0)
1128
1129# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1130 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1131 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1132 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_Dst).uSrc2.uXmm.au32[(a_iDWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1133 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1134 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1135 } while (0)
1136
1137# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1138 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1139 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_Dst).uSrc2.uXmm.au64[(a_iQWord2)], (a_iSeg2), (a_GCPtrMem2))); \
1140 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1141 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1142 } while (0)
1143
1144# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1145 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1146 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1147 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1148 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1149 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1150 } while (0)
1151# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1152 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2))); \
1153 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1154 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1155 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1156 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1157 } while (0)
1158
1159#else
1160# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
1161 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1162# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
1163 iemMemFetchDataU128NoAcJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1164# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
1165 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
1166
1167# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
1168 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1169# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
1170 iemMemFetchDataU128NoAcJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1171# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
1172 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
1173
1174# define IEM_MC_FETCH_MEM_FLAT_U128(a_u128Dst, a_GCPtrMem) \
1175 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1176# define IEM_MC_FETCH_MEM_FLAT_U128_NO_AC(a_u128Dst, a_GCPtrMem) \
1177 iemMemFlatFetchDataU128NoAcJmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1178# define IEM_MC_FETCH_MEM_FLAT_U128_ALIGN_SSE(a_u128Dst, a_GCPtrMem) \
1179 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_GCPtrMem))
1180
1181# define IEM_MC_FETCH_MEM_FLAT_XMM(a_XmmDst, a_GCPtrMem) \
1182 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1183# define IEM_MC_FETCH_MEM_FLAT_XMM_NO_AC(a_XmmDst, a_GCPtrMem) \
1184 iemMemFlatFetchDataU128NoAcJmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1185# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE(a_XmmDst, a_GCPtrMem) \
1186 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_GCPtrMem))
1187
1188# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1189 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1190 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1191 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1192 } while (0)
1193# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1194 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1195 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1196 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1197 } while (0)
1198
1199# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1200 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_iSeg2), (a_GCPtrMem2)); \
1201 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1202 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1203 } while (0)
1204# define IEM_MC_FETCH_MEM_FLAT_XMM_ALIGN_SSE_AND_XREG_XMM(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1205 iemMemFlatFetchDataU128AlignedSseJmp(pVCpu, &(a_Dst).uSrc2.uXmm, (a_GCPtrMem2)); \
1206 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1207 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1208 } while (0)
1209
1210# define IEM_MC_FETCH_MEM_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_iSeg2, a_GCPtrMem2) do { \
1211 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1212 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1213 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1214 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1215 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1216 } while (0)
1217# define IEM_MC_FETCH_MEM_FLAT_XMM_U32_AND_XREG_XMM(a_Dst, a_iXReg1, a_iDWord2, a_GCPtrMem2) do { \
1218 (a_Dst).uSrc2.uXmm.au64[0] = 0; \
1219 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1220 (a_Dst).uSrc2.uXmm.au32[(a_iDWord2)] = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem2)); \
1221 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1222 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1223 } while (0)
1224
1225# define IEM_MC_FETCH_MEM_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_iSeg2, a_GCPtrMem2) do { \
1226 (a_Dst).uSrc2.uXmm.au64[!(a_iQWord2)] = 0; \
1227 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg2), (a_GCPtrMem2)); \
1228 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1229 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1230 } while (0)
1231# define IEM_MC_FETCH_MEM_FLAT_XMM_U64_AND_XREG_XMM(a_Dst, a_iXReg1, a_iQWord2, a_GCPtrMem2) do { \
1232 (a_Dst).uSrc2.uXmm.au64[1] = 0; \
1233 (a_Dst).uSrc2.uXmm.au64[(a_iQWord2)] = iemMemFlatFetchDataU64Jmp(pVCpu, (a_GCPtrMem2)); \
1234 (a_Dst).uSrc1.uXmm.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1235 (a_Dst).uSrc1.uXmm.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1236 } while (0)
1237
1238
1239# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1240 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1241 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1242 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1243 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1244 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1245 } while (0)
1246# define IEM_MC_FETCH_MEM_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_iSeg2, a_GCPtrMem2) do { \
1247 iemMemFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_iSeg2), (a_GCPtrMem2)); \
1248 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1249 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1250 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1251 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1252 } while (0)
1253
1254# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_RAX_RDX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1255 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1256 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1257 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1258 (a_Dst).u64Rax = pVCpu->cpum.GstCtx.rax; \
1259 (a_Dst).u64Rdx = pVCpu->cpum.GstCtx.rdx; \
1260 } while (0)
1261# define IEM_MC_FETCH_MEM_FLAT_U128_AND_XREG_U128_AND_EAX_EDX_U32_SX_U64(a_Dst, a_iXReg1, a_GCPtrMem2) do { \
1262 iemMemFlatFetchDataU128Jmp(pVCpu, &(a_Dst).uSrc2, (a_GCPtrMem2)); \
1263 (a_Dst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[0]; \
1264 (a_Dst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg1)].au64[1]; \
1265 (a_Dst).u64Rax = (int64_t)(int32_t)pVCpu->cpum.GstCtx.eax; \
1266 (a_Dst).u64Rdx = (int64_t)(int32_t)pVCpu->cpum.GstCtx.edx; \
1267 } while (0)
1268
1269#endif
1270
1271#ifndef IEM_WITH_SETJMP
1272# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1273 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1274# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1275 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1276# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1277 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
1278
1279# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1280 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1281# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1282 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256NoAc(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1283# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1284 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
1285
1286# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_iSeg2, a_GCPtrMem2) do { \
1287 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1288 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedAvx(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_iSeg2), (a_GCPtrMem2))); \
1289 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1290 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1291 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1292 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1293 } while (0)
1294
1295#else
1296# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
1297 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1298# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
1299 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1300# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
1301 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
1302
1303# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
1304 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1305# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
1306 iemMemFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1307# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
1308 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
1309
1310# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_iSeg2, a_GCPtrMem2) do { \
1311 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1312 iemMemFetchDataU256AlignedAvxJmp(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_iSeg2), (a_GCPtrMem2)); \
1313 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1314 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1315 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1316 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1317 } while (0)
1318
1319# define IEM_MC_FETCH_MEM_FLAT_U256(a_u256Dst, a_GCPtrMem) \
1320 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1321# define IEM_MC_FETCH_MEM_FLAT_U256_NO_AC(a_u256Dst, a_GCPtrMem) \
1322 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1323# define IEM_MC_FETCH_MEM_FLAT_U256_ALIGN_AVX(a_u256Dst, a_GCPtrMem) \
1324 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_u256Dst), (a_GCPtrMem))
1325
1326# define IEM_MC_FETCH_MEM_FLAT_YMM(a_YmmDst, a_GCPtrMem) \
1327 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1328# define IEM_MC_FETCH_MEM_FLAT_YMM_NO_AC(a_YmmDst, a_GCPtrMem) \
1329 iemMemFlatFetchDataU256NoAcJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1330# define IEM_MC_FETCH_MEM_FLAT_YMM_ALIGN_AVX(a_YmmDst, a_GCPtrMem) \
1331 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_YmmDst).ymm, (a_GCPtrMem))
1332
1333# define IEM_MC_FETCH_MEM_FLAT_YMM_ALIGN_AVX_AND_YREG_YMM(a_uYmmDst, a_iYRegSrc1, a_GCPtrMem2) do { \
1334 uintptr_t const a_iYRegSrc1Tmp = (a_iYRegSrc1); \
1335 iemMemFlatFetchDataU256AlignedAvxJmp(pVCpu, &(a_uYmmDst).uSrc2.ymm, (a_GCPtrMem2)); \
1336 (a_uYmmDst).uSrc1.au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[0]; \
1337 (a_uYmmDst).uSrc1.au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[a_iYRegSrc1Tmp].au64[1]; \
1338 (a_uYmmDst).uSrc1.au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[0]; \
1339 (a_uYmmDst).uSrc1.au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[a_iYRegSrc1Tmp].au64[1]; \
1340 } while (0)
1341
1342#endif
1343
1344
1345
1346#ifndef IEM_WITH_SETJMP
1347# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1348 do { \
1349 uint8_t u8Tmp; \
1350 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1351 (a_u16Dst) = u8Tmp; \
1352 } while (0)
1353# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1354 do { \
1355 uint8_t u8Tmp; \
1356 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1357 (a_u32Dst) = u8Tmp; \
1358 } while (0)
1359# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1360 do { \
1361 uint8_t u8Tmp; \
1362 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1363 (a_u64Dst) = u8Tmp; \
1364 } while (0)
1365# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1366 do { \
1367 uint16_t u16Tmp; \
1368 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1369 (a_u32Dst) = u16Tmp; \
1370 } while (0)
1371# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1372 do { \
1373 uint16_t u16Tmp; \
1374 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1375 (a_u64Dst) = u16Tmp; \
1376 } while (0)
1377# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1378 do { \
1379 uint32_t u32Tmp; \
1380 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1381 (a_u64Dst) = u32Tmp; \
1382 } while (0)
1383#else /* IEM_WITH_SETJMP */
1384# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1385 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1386# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1387 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1388# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1389 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1390# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1391 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1392# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1393 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1394# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1395 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1396
1397# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U16(a_u16Dst, a_GCPtrMem) \
1398 ((a_u16Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1399# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U32(a_u32Dst, a_GCPtrMem) \
1400 ((a_u32Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1401# define IEM_MC_FETCH_MEM_FLAT_U8_ZX_U64(a_u64Dst, a_GCPtrMem) \
1402 ((a_u64Dst) = iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1403# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U32(a_u32Dst, a_GCPtrMem) \
1404 ((a_u32Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1405# define IEM_MC_FETCH_MEM_FLAT_U16_ZX_U64(a_u64Dst, a_GCPtrMem) \
1406 ((a_u64Dst) = iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1407# define IEM_MC_FETCH_MEM_FLAT_U32_ZX_U64(a_u64Dst, a_GCPtrMem) \
1408 ((a_u64Dst) = iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1409#endif /* IEM_WITH_SETJMP */
1410
1411#ifndef IEM_WITH_SETJMP
1412# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1413 do { \
1414 uint8_t u8Tmp; \
1415 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1416 (a_u16Dst) = (int8_t)u8Tmp; \
1417 } while (0)
1418# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1419 do { \
1420 uint8_t u8Tmp; \
1421 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1422 (a_u32Dst) = (int8_t)u8Tmp; \
1423 } while (0)
1424# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1425 do { \
1426 uint8_t u8Tmp; \
1427 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1428 (a_u64Dst) = (int8_t)u8Tmp; \
1429 } while (0)
1430# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1431 do { \
1432 uint16_t u16Tmp; \
1433 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1434 (a_u32Dst) = (int16_t)u16Tmp; \
1435 } while (0)
1436# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1437 do { \
1438 uint16_t u16Tmp; \
1439 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1440 (a_u64Dst) = (int16_t)u16Tmp; \
1441 } while (0)
1442# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1443 do { \
1444 uint32_t u32Tmp; \
1445 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1446 (a_u64Dst) = (int32_t)u32Tmp; \
1447 } while (0)
1448#else /* IEM_WITH_SETJMP */
1449# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1450 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1451# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1452 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1453# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1454 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1455# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1456 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1457# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1458 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1459# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1460 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1461
1462# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U16(a_u16Dst, a_GCPtrMem) \
1463 ((a_u16Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1464# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U32(a_u32Dst, a_GCPtrMem) \
1465 ((a_u32Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1466# define IEM_MC_FETCH_MEM_FLAT_U8_SX_U64(a_u64Dst, a_GCPtrMem) \
1467 ((a_u64Dst) = (int8_t)iemMemFlatFetchDataU8Jmp(pVCpu, (a_GCPtrMem)))
1468# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U32(a_u32Dst, a_GCPtrMem) \
1469 ((a_u32Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1470# define IEM_MC_FETCH_MEM_FLAT_U16_SX_U64(a_u64Dst, a_GCPtrMem) \
1471 ((a_u64Dst) = (int16_t)iemMemFlatFetchDataU16Jmp(pVCpu, (a_GCPtrMem)))
1472# define IEM_MC_FETCH_MEM_FLAT_U32_SX_U64(a_u64Dst, a_GCPtrMem) \
1473 ((a_u64Dst) = (int32_t)iemMemFlatFetchDataU32Jmp(pVCpu, (a_GCPtrMem)))
1474#endif /* IEM_WITH_SETJMP */
1475
1476#ifndef IEM_WITH_SETJMP
1477# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1478 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
1479# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1480 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
1481# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1482 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
1483# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1484 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
1485#else
1486# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1487 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
1488# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1489 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
1490# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1491 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
1492# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1493 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
1494
1495# define IEM_MC_STORE_MEM_FLAT_U8(a_GCPtrMem, a_u8Value) \
1496 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8Value))
1497# define IEM_MC_STORE_MEM_FLAT_U16(a_GCPtrMem, a_u16Value) \
1498 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16Value))
1499# define IEM_MC_STORE_MEM_FLAT_U32(a_GCPtrMem, a_u32Value) \
1500 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32Value))
1501# define IEM_MC_STORE_MEM_FLAT_U64(a_GCPtrMem, a_u64Value) \
1502 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64Value))
1503#endif
1504
1505#ifndef IEM_WITH_SETJMP
1506# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1507 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
1508# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1509 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
1510# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1511 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
1512# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1513 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
1514#else
1515# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1516 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
1517# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1518 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
1519# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1520 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
1521# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1522 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
1523
1524# define IEM_MC_STORE_MEM_FLAT_U8_CONST(a_GCPtrMem, a_u8C) \
1525 iemMemFlatStoreDataU8Jmp(pVCpu, (a_GCPtrMem), (a_u8C))
1526# define IEM_MC_STORE_MEM_FLAT_U16_CONST(a_GCPtrMem, a_u16C) \
1527 iemMemFlatStoreDataU16Jmp(pVCpu, (a_GCPtrMem), (a_u16C))
1528# define IEM_MC_STORE_MEM_FLAT_U32_CONST(a_GCPtrMem, a_u32C) \
1529 iemMemFlatStoreDataU32Jmp(pVCpu, (a_GCPtrMem), (a_u32C))
1530# define IEM_MC_STORE_MEM_FLAT_U64_CONST(a_GCPtrMem, a_u64C) \
1531 iemMemFlatStoreDataU64Jmp(pVCpu, (a_GCPtrMem), (a_u64C))
1532#endif
1533
1534#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
1535#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
1536#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
1537#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
1538#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
1539#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
1540#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
1541 do { \
1542 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1543 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
1544 } while (0)
1545#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
1546 do { \
1547 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1548 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
1549 } while (0)
1550
1551#ifndef IEM_WITH_SETJMP
1552# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1553 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1554# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1555 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value)))
1556# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1557 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1558#else
1559# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1560 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1561# define IEM_MC_STORE_MEM_U128_NO_AC(a_iSeg, a_GCPtrMem, a_u128Value) \
1562 iemMemStoreDataU128NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u128Value))
1563# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1564 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1565
1566# define IEM_MC_STORE_MEM_FLAT_U128(a_GCPtrMem, a_u128Value) \
1567 iemMemFlatStoreDataU128Jmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1568# define IEM_MC_STORE_MEM_FLAT_U128_NO_AC(a_GCPtrMem, a_u128Value) \
1569 iemMemFlatStoreDataU128NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u128Value))
1570# define IEM_MC_STORE_MEM_FLAT_U128_ALIGN_SSE(a_GCPtrMem, a_u128Value) \
1571 iemMemStoreDataU128AlignedSseJmp(pVCpu, UINT8_MAX, (a_GCPtrMem), (a_u128Value))
1572#endif
1573
1574#ifndef IEM_WITH_SETJMP
1575# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1576 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1577# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1578 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256NoAc(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1579# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1580 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1581#else
1582# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1583 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1584# define IEM_MC_STORE_MEM_U256_NO_AC(a_iSeg, a_GCPtrMem, a_u256Value) \
1585 iemMemStoreDataU256NoAcJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1586# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1587 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1588
1589# define IEM_MC_STORE_MEM_FLAT_U256(a_GCPtrMem, a_u256Value) \
1590 iemMemFlatStoreDataU256Jmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1591# define IEM_MC_STORE_MEM_FLAT_U256_NO_AC(a_GCPtrMem, a_u256Value) \
1592 iemMemFlatStoreDataU256NoAcJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1593# define IEM_MC_STORE_MEM_FLAT_U256_ALIGN_AVX(a_GCPtrMem, a_u256Value) \
1594 iemMemFlatStoreDataU256AlignedAvxJmp(pVCpu, (a_GCPtrMem), &(a_u256Value))
1595#endif
1596
1597/* Regular stack push and pop: */
1598#ifndef IEM_WITH_SETJMP
1599# define IEM_MC_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1600# define IEM_MC_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1601# define IEM_MC_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1602# define IEM_MC_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1603
1604# define IEM_MC_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1605# define IEM_MC_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1606# define IEM_MC_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1607#else
1608# define IEM_MC_PUSH_U16(a_u16Value) iemMemStackPushU16Jmp(pVCpu, (a_u16Value))
1609# define IEM_MC_PUSH_U32(a_u32Value) iemMemStackPushU32Jmp(pVCpu, (a_u32Value))
1610# define IEM_MC_PUSH_U32_SREG(a_uSegVal) iemMemStackPushU32SRegJmp(pVCpu, (a_uSegVal))
1611# define IEM_MC_PUSH_U64(a_u64Value) iemMemStackPushU64Jmp(pVCpu, (a_u64Value))
1612
1613# define IEM_MC_POP_GREG_U16(a_iGReg) iemMemStackPopGRegU16Jmp(pVCpu, (a_iGReg))
1614# define IEM_MC_POP_GREG_U32(a_iGReg) iemMemStackPopGRegU32Jmp(pVCpu, (a_iGReg))
1615# define IEM_MC_POP_GREG_U64(a_iGReg) iemMemStackPopGRegU64Jmp(pVCpu, (a_iGReg))
1616#endif
1617
1618/* 32-bit flat stack push and pop: */
1619#ifndef IEM_WITH_SETJMP
1620# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1621# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1622# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_uSegVal)))
1623
1624# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1625# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU32(pVCpu, (a_iGReg)))
1626#else
1627# define IEM_MC_FLAT32_PUSH_U16(a_u16Value) iemMemFlat32StackPushU16Jmp(pVCpu, (a_u16Value))
1628# define IEM_MC_FLAT32_PUSH_U32(a_u32Value) iemMemFlat32StackPushU32Jmp(pVCpu, (a_u32Value))
1629# define IEM_MC_FLAT32_PUSH_U32_SREG(a_uSegVal) iemMemFlat32StackPushU32SRegJmp(pVCpu, (a_uSegVal))
1630
1631# define IEM_MC_FLAT32_POP_GREG_U16(a_iGReg) iemMemFlat32StackPopGRegU16Jmp(pVCpu, a_iGReg))
1632# define IEM_MC_FLAT32_POP_GREG_U32(a_iGReg) iemMemFlat32StackPopGRegU32Jmp(pVCpu, a_iGReg))
1633#endif
1634
1635/* 64-bit flat stack push and pop: */
1636#ifndef IEM_WITH_SETJMP
1637# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1638# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1639
1640# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU16(pVCpu, (a_iGReg)))
1641# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) IEM_MC_RETURN_ON_FAILURE(iemMemStackPopGRegU64(pVCpu, (a_iGReg)))
1642#else
1643# define IEM_MC_FLAT64_PUSH_U16(a_u16Value) iemMemFlat64StackPushU16Jmp(pVCpu, (a_u16Value))
1644# define IEM_MC_FLAT64_PUSH_U64(a_u64Value) iemMemFlat64StackPushU64Jmp(pVCpu, (a_u64Value))
1645
1646# define IEM_MC_FLAT64_POP_GREG_U16(a_iGReg) iemMemFlat64StackPopGRegU16Jmp(pVCpu, (a_iGReg))
1647# define IEM_MC_FLAT64_POP_GREG_U64(a_iGReg) iemMemFlat64StackPopGRegU64Jmp(pVCpu, (a_iGReg))
1648#endif
1649
1650
1651/* 8-bit */
1652
1653/**
1654 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1655 * acccess, for atomic operations.
1656 *
1657 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1658 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1659 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1660 * @param[in] a_GCPtrMem The memory address.
1661 * @remarks Will return/long jump on errors.
1662 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1663 */
1664#ifndef IEM_WITH_SETJMP
1665# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1666 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1667 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1668#else
1669# define IEM_MC_MEM_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1670 (a_pu8Mem) = iemMemMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1671#endif
1672
1673/**
1674 * Maps guest memory for byte read+write direct (or bounce) buffer acccess.
1675 *
1676 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1677 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1678 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1679 * @param[in] a_GCPtrMem The memory address.
1680 * @remarks Will return/long jump on errors.
1681 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1682 */
1683#ifndef IEM_WITH_SETJMP
1684# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1685 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1686 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1687#else
1688# define IEM_MC_MEM_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1689 (a_pu8Mem) = iemMemMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1690#endif
1691
1692/**
1693 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess.
1694 *
1695 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1696 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1697 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1698 * @param[in] a_GCPtrMem The memory address.
1699 * @remarks Will return/long jump on errors.
1700 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1701 */
1702#ifndef IEM_WITH_SETJMP
1703# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1704 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1705 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1706#else
1707# define IEM_MC_MEM_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1708 (a_pu8Mem) = iemMemMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1709#endif
1710
1711/**
1712 * Maps guest memory for byte readonly direct (or bounce) buffer acccess.
1713 *
1714 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1715 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1716 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1717 * @param[in] a_GCPtrMem The memory address.
1718 * @remarks Will return/long jump on errors.
1719 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1720 */
1721#ifndef IEM_WITH_SETJMP
1722# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1723 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), (a_iSeg), \
1724 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1725#else
1726# define IEM_MC_MEM_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1727 (a_pu8Mem) = iemMemMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1728#endif
1729
1730/**
1731 * Maps guest memory for byte atomic read+write direct (or bounce) buffer
1732 * acccess, flat address variant.
1733 *
1734 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1735 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1736 * @param[in] a_GCPtrMem The memory address.
1737 * @remarks Will return/long jump on errors.
1738 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1739 */
1740#ifndef IEM_WITH_SETJMP
1741# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1742 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1743 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, 0))
1744#else
1745# define IEM_MC_MEM_FLAT_MAP_U8_ATOMIC(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1746 (a_pu8Mem) = iemMemFlatMapDataU8AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1747#endif
1748
1749/**
1750 * Maps guest memory for byte read+write direct (or bounce) buffer acccess, flat
1751 * address variant.
1752 *
1753 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1754 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1755 * @param[in] a_GCPtrMem The memory address.
1756 * @remarks Will return/long jump on errors.
1757 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1758 */
1759#ifndef IEM_WITH_SETJMP
1760# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1761 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1762 (a_GCPtrMem), IEM_ACCESS_DATA_RW, 0))
1763#else
1764# define IEM_MC_MEM_FLAT_MAP_U8_RW(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1765 (a_pu8Mem) = iemMemFlatMapDataU8RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1766#endif
1767
1768/**
1769 * Maps guest memory for byte writeonly direct (or bounce) buffer acccess, flat
1770 * address variant.
1771 *
1772 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1773 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1774 * @param[in] a_GCPtrMem The memory address.
1775 * @remarks Will return/long jump on errors.
1776 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1777 */
1778#ifndef IEM_WITH_SETJMP
1779# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1780 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1781 (a_GCPtrMem), IEM_ACCESS_DATA_W, 0))
1782#else
1783# define IEM_MC_MEM_FLAT_MAP_U8_WO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1784 (a_pu8Mem) = iemMemFlatMapDataU8WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1785#endif
1786
1787/**
1788 * Maps guest memory for byte readonly direct (or bounce) buffer acccess, flat
1789 * address variant.
1790 *
1791 * @param[out] a_pu8Mem Where to return the pointer to the mapping.
1792 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1793 * @param[in] a_GCPtrMem The memory address.
1794 * @remarks Will return/long jump on errors.
1795 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1796 */
1797#ifndef IEM_WITH_SETJMP
1798# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1799 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu8Mem), &(a_bUnmapInfo), sizeof(uint8_t), UINT8_MAX, \
1800 (a_GCPtrMem), IEM_ACCESS_DATA_R, 0))
1801#else
1802# define IEM_MC_MEM_FLAT_MAP_U8_RO(a_pu8Mem, a_bUnmapInfo, a_GCPtrMem) \
1803 (a_pu8Mem) = iemMemFlatMapDataU8RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1804#endif
1805
1806
1807/* 16-bit */
1808
1809/**
1810 * Maps guest memory for word atomic read+write direct (or bounce) buffer acccess.
1811 *
1812 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1813 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1814 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1815 * @param[in] a_GCPtrMem The memory address.
1816 * @remarks Will return/long jump on errors.
1817 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1818 */
1819#ifndef IEM_WITH_SETJMP
1820# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1821 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1822 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1823#else
1824# define IEM_MC_MEM_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1825 (a_pu16Mem) = iemMemMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1826#endif
1827
1828/**
1829 * Maps guest memory for word read+write direct (or bounce) buffer acccess.
1830 *
1831 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1832 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1833 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1834 * @param[in] a_GCPtrMem The memory address.
1835 * @remarks Will return/long jump on errors.
1836 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1837 */
1838#ifndef IEM_WITH_SETJMP
1839# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1840 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1841 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1842#else
1843# define IEM_MC_MEM_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1844 (a_pu16Mem) = iemMemMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1845#endif
1846
1847/**
1848 * Maps guest memory for word writeonly direct (or bounce) buffer acccess.
1849 *
1850 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1851 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1852 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1853 * @param[in] a_GCPtrMem The memory address.
1854 * @remarks Will return/long jump on errors.
1855 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1856 */
1857#ifndef IEM_WITH_SETJMP
1858# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1859 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1860 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1861#else
1862# define IEM_MC_MEM_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1863 (a_pu16Mem) = iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1864#endif
1865
1866/**
1867 * Maps guest memory for word readonly direct (or bounce) buffer acccess.
1868 *
1869 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1870 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1871 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1872 * @param[in] a_GCPtrMem The memory address.
1873 * @remarks Will return/long jump on errors.
1874 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1875 */
1876#ifndef IEM_WITH_SETJMP
1877# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1878 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), (a_iSeg), \
1879 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1880#else
1881# define IEM_MC_MEM_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1882 (a_pu16Mem) = iemMemMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1883#endif
1884
1885/**
1886 * Maps guest memory for word atomic read+write direct (or bounce) buffer
1887 * acccess, flat address variant.
1888 *
1889 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1890 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1891 * @param[in] a_GCPtrMem The memory address.
1892 * @remarks Will return/long jump on errors.
1893 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1894 */
1895#ifndef IEM_WITH_SETJMP
1896# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1897 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1898 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint16_t) - 1))
1899#else
1900# define IEM_MC_MEM_FLAT_MAP_U16_ATOMIC(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1901 (a_pu16Mem) = iemMemFlatMapDataU16AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1902#endif
1903
1904/**
1905 * Maps guest memory for word read+write direct (or bounce) buffer acccess, flat
1906 * address variant.
1907 *
1908 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1909 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1910 * @param[in] a_GCPtrMem The memory address.
1911 * @remarks Will return/long jump on errors.
1912 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
1913 */
1914#ifndef IEM_WITH_SETJMP
1915# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1916 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1917 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint16_t) - 1))
1918#else
1919# define IEM_MC_MEM_FLAT_MAP_U16_RW(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1920 (a_pu16Mem) = iemMemFlatMapDataU16RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1921#endif
1922
1923/**
1924 * Maps guest memory for word writeonly direct (or bounce) buffer acccess, flat
1925 * address variant.
1926 *
1927 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1928 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1929 * @param[in] a_GCPtrMem The memory address.
1930 * @remarks Will return/long jump on errors.
1931 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
1932 */
1933#ifndef IEM_WITH_SETJMP
1934# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1935 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1936 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint16_t) - 1))
1937#else
1938# define IEM_MC_MEM_FLAT_MAP_U16_WO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1939 (a_pu16Mem) = iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1940#endif
1941
1942/**
1943 * Maps guest memory for word readonly direct (or bounce) buffer acccess, flat
1944 * address variant.
1945 *
1946 * @param[out] a_pu16Mem Where to return the pointer to the mapping.
1947 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1948 * @param[in] a_GCPtrMem The memory address.
1949 * @remarks Will return/long jump on errors.
1950 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
1951 */
1952#ifndef IEM_WITH_SETJMP
1953# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1954 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu16Mem), &(a_bUnmapInfo), sizeof(uint16_t), UINT8_MAX, \
1955 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint16_t) - 1))
1956#else
1957# define IEM_MC_MEM_FLAT_MAP_U16_RO(a_pu16Mem, a_bUnmapInfo, a_GCPtrMem) \
1958 (a_pu16Mem) = iemMemFlatMapDataU16RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1959#endif
1960
1961/** int16_t alias. */
1962#ifndef IEM_WITH_SETJMP
1963# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1964 IEM_MC_MEM_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
1965#else
1966# define IEM_MC_MEM_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1967 (a_pi16Mem) = (int16_t *)iemMemMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1968#endif
1969
1970/** Flat int16_t alias. */
1971#ifndef IEM_WITH_SETJMP
1972# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1973 IEM_MC_MEM_FLAT_MAP_U16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem)
1974#else
1975# define IEM_MC_MEM_FLAT_MAP_I16_WO(a_pi16Mem, a_bUnmapInfo, a_GCPtrMem) \
1976 (a_pi16Mem) = (int16_t *)iemMemFlatMapDataU16WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
1977#endif
1978
1979
1980/* 32-bit */
1981
1982/**
1983 * Maps guest memory for dword atomic read+write direct (or bounce) buffer acccess.
1984 *
1985 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
1986 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
1987 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
1988 * @param[in] a_GCPtrMem The memory address.
1989 * @remarks Will return/long jump on errors.
1990 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
1991 */
1992#ifndef IEM_WITH_SETJMP
1993# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1994 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
1995 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
1996#else
1997# define IEM_MC_MEM_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
1998 (a_pu32Mem) = iemMemMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
1999#endif
2000
2001/**
2002 * Maps guest memory for dword read+write direct (or bounce) buffer acccess.
2003 *
2004 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2005 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2006 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2007 * @param[in] a_GCPtrMem The memory address.
2008 * @remarks Will return/long jump on errors.
2009 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2010 */
2011#ifndef IEM_WITH_SETJMP
2012# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2013 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2014 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
2015#else
2016# define IEM_MC_MEM_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2017 (a_pu32Mem) = iemMemMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2018#endif
2019
2020/**
2021 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess.
2022 *
2023 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2024 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2025 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2026 * @param[in] a_GCPtrMem The memory address.
2027 * @remarks Will return/long jump on errors.
2028 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2029 */
2030#ifndef IEM_WITH_SETJMP
2031# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2032 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2033 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
2034#else
2035# define IEM_MC_MEM_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2036 (a_pu32Mem) = iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2037#endif
2038
2039/**
2040 * Maps guest memory for dword readonly direct (or bounce) buffer acccess.
2041 *
2042 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2043 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2044 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2045 * @param[in] a_GCPtrMem The memory address.
2046 * @remarks Will return/long jump on errors.
2047 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2048 */
2049#ifndef IEM_WITH_SETJMP
2050# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2051 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), (a_iSeg), \
2052 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2053#else
2054# define IEM_MC_MEM_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2055 (a_pu32Mem) = iemMemMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2056#endif
2057
2058/**
2059 * Maps guest memory for dword atomic read+write direct (or bounce) buffer
2060 * acccess, flat address variant.
2061 *
2062 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2063 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2064 * @param[in] a_GCPtrMem The memory address.
2065 * @remarks Will return/long jump on errors.
2066 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2067 */
2068#ifndef IEM_WITH_SETJMP
2069# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2070 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2071 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint32_t) - 1))
2072#else
2073# define IEM_MC_MEM_FLAT_MAP_U32_ATOMIC(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2074 (a_pu32Mem) = iemMemFlatMapDataU32AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2075#endif
2076
2077/**
2078 * Maps guest memory for dword read+write direct (or bounce) buffer acccess,
2079 * flat address variant.
2080 *
2081 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2082 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2083 * @param[in] a_GCPtrMem The memory address.
2084 * @remarks Will return/long jump on errors.
2085 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2086 */
2087#ifndef IEM_WITH_SETJMP
2088# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2089 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2090 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint32_t) - 1))
2091#else
2092# define IEM_MC_MEM_FLAT_MAP_U32_RW(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2093 (a_pu32Mem) = iemMemFlatMapDataU32RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2094#endif
2095
2096/**
2097 * Maps guest memory for dword writeonly direct (or bounce) buffer acccess, flat
2098 * address variant.
2099 *
2100 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2101 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2102 * @param[in] a_GCPtrMem The memory address.
2103 * @remarks Will return/long jump on errors.
2104 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2105 */
2106#ifndef IEM_WITH_SETJMP
2107# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2108 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2109 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint32_t) - 1))
2110#else
2111# define IEM_MC_MEM_FLAT_MAP_U32_WO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2112 (a_pu32Mem) = iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2113#endif
2114
2115/**
2116 * Maps guest memory for dword readonly direct (or bounce) buffer acccess, flat
2117 * address variant.
2118 *
2119 * @param[out] a_pu32Mem Where to return the pointer to the mapping.
2120 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2121 * @param[in] a_GCPtrMem The memory address.
2122 * @remarks Will return/long jump on errors.
2123 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2124 */
2125#ifndef IEM_WITH_SETJMP
2126# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2127 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu32Mem), &(a_bUnmapInfo), sizeof(uint32_t), UINT8_MAX, \
2128 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint32_t) - 1))
2129#else
2130# define IEM_MC_MEM_FLAT_MAP_U32_RO(a_pu32Mem, a_bUnmapInfo, a_GCPtrMem) \
2131 (a_pu32Mem) = iemMemFlatMapDataU32RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2132#endif
2133
2134/** int32_t alias. */
2135#ifndef IEM_WITH_SETJMP
2136# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2137 IEM_MC_MEM_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2138#else
2139# define IEM_MC_MEM_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2140 (a_pi32Mem) = (int32_t *)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2141#endif
2142
2143/** Flat int32_t alias. */
2144#ifndef IEM_WITH_SETJMP
2145# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2146 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem)
2147#else
2148# define IEM_MC_MEM_FLAT_MAP_I32_WO(a_pi32Mem, a_bUnmapInfo, a_GCPtrMem) \
2149 (a_pi32Mem) = (int32_t *)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2150#endif
2151
2152/** RTFLOAT32U alias. */
2153#ifndef IEM_WITH_SETJMP
2154# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2155 IEM_MC_MEM_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2156#else
2157# define IEM_MC_MEM_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2158 (a_pr32Mem) = (PRTFLOAT32U)iemMemMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2159#endif
2160
2161/** Flat RTFLOAT32U alias. */
2162#ifndef IEM_WITH_SETJMP
2163# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2164 IEM_MC_MEM_FLAT_MAP_U32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem)
2165#else
2166# define IEM_MC_MEM_FLAT_MAP_R32_WO(a_pr32Mem, a_bUnmapInfo, a_GCPtrMem) \
2167 (a_pr32Mem) = (PRTFLOAT32U)iemMemFlatMapDataU32WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2168#endif
2169
2170
2171/* 64-bit */
2172
2173/**
2174 * Maps guest memory for qword atomic read+write direct (or bounce) buffer acccess.
2175 *
2176 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2177 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2178 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2179 * @param[in] a_GCPtrMem The memory address.
2180 * @remarks Will return/long jump on errors.
2181 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2182 */
2183#ifndef IEM_WITH_SETJMP
2184# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2185 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2186 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2187#else
2188# define IEM_MC_MEM_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2189 (a_pu64Mem) = iemMemMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2190#endif
2191
2192/**
2193 * Maps guest memory for qword read+write direct (or bounce) buffer acccess.
2194 *
2195 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2196 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2197 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2198 * @param[in] a_GCPtrMem The memory address.
2199 * @remarks Will return/long jump on errors.
2200 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2201 */
2202#ifndef IEM_WITH_SETJMP
2203# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2204 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2205 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2206#else
2207# define IEM_MC_MEM_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2208 (a_pu64Mem) = iemMemMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2209#endif
2210
2211/**
2212 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess.
2213 *
2214 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2215 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2216 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2217 * @param[in] a_GCPtrMem The memory address.
2218 * @remarks Will return/long jump on errors.
2219 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2220 */
2221#ifndef IEM_WITH_SETJMP
2222# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2223 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2224 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2225#else
2226# define IEM_MC_MEM_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2227 (a_pu64Mem) = iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2228#endif
2229
2230/**
2231 * Maps guest memory for qword readonly direct (or bounce) buffer acccess.
2232 *
2233 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2234 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2235 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2236 * @param[in] a_GCPtrMem The memory address.
2237 * @remarks Will return/long jump on errors.
2238 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2239 */
2240#ifndef IEM_WITH_SETJMP
2241# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2242 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), (a_iSeg), \
2243 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2244#else
2245# define IEM_MC_MEM_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2246 (a_pu64Mem) = iemMemMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2247#endif
2248
2249/**
2250 * Maps guest memory for qword atomic read+write direct (or bounce) buffer
2251 * acccess, flat address variant.
2252 *
2253 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2254 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2255 * @param[in] a_GCPtrMem The memory address.
2256 * @remarks Will return/long jump on errors.
2257 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2258 */
2259#ifndef IEM_WITH_SETJMP
2260# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2261 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2262 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(uint64_t) - 1))
2263#else
2264# define IEM_MC_MEM_FLAT_MAP_U64_ATOMIC(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2265 (a_pu64Mem) = iemMemFlatMapDataU64AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2266#endif
2267
2268/**
2269 * Maps guest memory for qword read+write direct (or bounce) buffer acccess,
2270 * flat address variant.
2271 *
2272 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2273 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2274 * @param[in] a_GCPtrMem The memory address.
2275 * @remarks Will return/long jump on errors.
2276 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2277 */
2278#ifndef IEM_WITH_SETJMP
2279# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2280 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2281 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(uint64_t) - 1))
2282#else
2283# define IEM_MC_MEM_FLAT_MAP_U64_RW(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2284 (a_pu64Mem) = iemMemFlatMapDataU64RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2285#endif
2286
2287/**
2288 * Maps guest memory for qword writeonly direct (or bounce) buffer acccess, flat
2289 * address variant.
2290 *
2291 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2292 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2293 * @param[in] a_GCPtrMem The memory address.
2294 * @remarks Will return/long jump on errors.
2295 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2296 */
2297#ifndef IEM_WITH_SETJMP
2298# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2299 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2300 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2301#else
2302# define IEM_MC_MEM_FLAT_MAP_U64_WO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2303 (a_pu64Mem) = iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2304#endif
2305
2306/**
2307 * Maps guest memory for qword readonly direct (or bounce) buffer acccess, flat
2308 * address variant.
2309 *
2310 * @param[out] a_pu64Mem Where to return the pointer to the mapping.
2311 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2312 * @param[in] a_GCPtrMem The memory address.
2313 * @remarks Will return/long jump on errors.
2314 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2315 */
2316#ifndef IEM_WITH_SETJMP
2317# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2318 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu64Mem), &(a_bUnmapInfo), sizeof(uint64_t), UINT8_MAX, \
2319 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(uint64_t) - 1))
2320#else
2321# define IEM_MC_MEM_FLAT_MAP_U64_RO(a_pu64Mem, a_bUnmapInfo, a_GCPtrMem) \
2322 (a_pu64Mem) = iemMemFlatMapDataU64RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2323#endif
2324
2325/** int64_t alias. */
2326#ifndef IEM_WITH_SETJMP
2327# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2328 IEM_MC_MEM_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2329#else
2330# define IEM_MC_MEM_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2331 (a_pi64Mem) = (int64_t *)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2332#endif
2333
2334/** Flat int64_t alias. */
2335#ifndef IEM_WITH_SETJMP
2336# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2337 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem)
2338#else
2339# define IEM_MC_MEM_FLAT_MAP_I64_WO(a_pi64Mem, a_bUnmapInfo, a_GCPtrMem) \
2340 (a_pi64Mem) = (int64_t *)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2341#endif
2342
2343/** RTFLOAT64U alias. */
2344#ifndef IEM_WITH_SETJMP
2345# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2346 IEM_MC_MEM_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem)
2347#else
2348# define IEM_MC_MEM_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2349 (a_pr64Mem) = (PRTFLOAT64U)iemMemMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2350#endif
2351
2352/** Flat RTFLOAT64U alias. */
2353#ifndef IEM_WITH_SETJMP
2354# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2355 IEM_MC_MEM_FLAT_MAP_U64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem)
2356#else
2357# define IEM_MC_MEM_FLAT_MAP_R64_WO(a_pr64Mem, a_bUnmapInfo, a_GCPtrMem) \
2358 (a_pr64Mem) = (PRTFLOAT64U)iemMemFlatMapDataU64WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2359#endif
2360
2361
2362/* 128-bit */
2363
2364/**
2365 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer acccess.
2366 *
2367 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2368 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2369 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2370 * @param[in] a_GCPtrMem The memory address.
2371 * @remarks Will return/long jump on errors.
2372 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2373 */
2374#ifndef IEM_WITH_SETJMP
2375# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2376 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2377 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128U) - 1))
2378#else
2379# define IEM_MC_MEM_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2380 (a_pu128Mem) = iemMemMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2381#endif
2382
2383/**
2384 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess.
2385 *
2386 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2387 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2388 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2389 * @param[in] a_GCPtrMem The memory address.
2390 * @remarks Will return/long jump on errors.
2391 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2392 */
2393#ifndef IEM_WITH_SETJMP
2394# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2395 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128U), (a_iSeg), \
2396 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128U) - 1))
2397#else
2398# define IEM_MC_MEM_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2399 (a_pu128Mem) = iemMemMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2400#endif
2401
2402/**
2403 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess.
2404 *
2405 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2406 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2407 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2408 * @param[in] a_GCPtrMem The memory address.
2409 * @remarks Will return/long jump on errors.
2410 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2411 */
2412#ifndef IEM_WITH_SETJMP
2413# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2414 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2415 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2416#else
2417# define IEM_MC_MEM_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2418 (a_pu128Mem) = iemMemMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2419#endif
2420
2421/**
2422 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess.
2423 *
2424 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2425 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2426 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2427 * @param[in] a_GCPtrMem The memory address.
2428 * @remarks Will return/long jump on errors.
2429 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2430 */
2431#ifndef IEM_WITH_SETJMP
2432# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2433 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), (a_iSeg), \
2434 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2435#else
2436# define IEM_MC_MEM_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2437 (a_pu128Mem) = iemMemMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2438#endif
2439
2440/**
2441 * Maps guest memory for dqword atomic read+write direct (or bounce) buffer
2442 * access, flat address variant.
2443 *
2444 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2445 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2446 * @param[in] a_GCPtrMem The memory address.
2447 * @remarks Will return/long jump on errors.
2448 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC
2449 */
2450#ifndef IEM_WITH_SETJMP
2451# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2452 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2453 (a_GCPtrMem), IEM_ACCESS_DATA_ATOMIC, sizeof(RTUINT128) - 1))
2454#else
2455# define IEM_MC_MEM_FLAT_MAP_U128_ATOMIC(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2456 (a_pu128Mem) = iemMemFlatMapDataU128AtJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2457#endif
2458
2459/**
2460 * Maps guest memory for dqword read+write direct (or bounce) buffer acccess,
2461 * flat address variant.
2462 *
2463 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2464 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2465 * @param[in] a_GCPtrMem The memory address.
2466 * @remarks Will return/long jump on errors.
2467 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RW
2468 */
2469#ifndef IEM_WITH_SETJMP
2470# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2471 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2472 (a_GCPtrMem), IEM_ACCESS_DATA_RW, sizeof(RTUINT128) - 1))
2473#else
2474# define IEM_MC_MEM_FLAT_MAP_U128_RW(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2475 (a_pu128Mem) = iemMemFlatMapDataU128RwJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2476#endif
2477
2478/**
2479 * Maps guest memory for dqword writeonly direct (or bounce) buffer acccess,
2480 * flat address variant.
2481 *
2482 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2483 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2484 * @param[in] a_GCPtrMem The memory address.
2485 * @remarks Will return/long jump on errors.
2486 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2487 */
2488#ifndef IEM_WITH_SETJMP
2489# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2490 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2491 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(RTUINT128) - 1))
2492#else
2493# define IEM_MC_MEM_FLAT_MAP_U128_WO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2494 (a_pu128Mem) = iemMemFlatMapDataU128WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2495#endif
2496
2497/**
2498 * Maps guest memory for dqword readonly direct (or bounce) buffer acccess, flat
2499 * address variant.
2500 *
2501 * @param[out] a_pu128Mem Where to return the pointer to the mapping.
2502 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2503 * @param[in] a_GCPtrMem The memory address.
2504 * @remarks Will return/long jump on errors.
2505 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_RO
2506 */
2507#ifndef IEM_WITH_SETJMP
2508# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2509 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pu128Mem), &(a_bUnmapInfo), sizeof(RTUINT128), UINT8_MAX, \
2510 (a_GCPtrMem), IEM_ACCESS_DATA_R, sizeof(RTUINT128) - 1))
2511#else
2512# define IEM_MC_MEM_FLAT_MAP_U128_RO(a_pu128Mem, a_bUnmapInfo, a_GCPtrMem) \
2513 (a_pu128Mem) = iemMemFlatMapDataU128RoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2514#endif
2515
2516
2517/* misc */
2518
2519/**
2520 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2521 *
2522 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2523 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2524 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2525 * @param[in] a_GCPtrMem The memory address.
2526 * @remarks Will return/long jump on errors.
2527 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2528 */
2529#ifndef IEM_WITH_SETJMP
2530# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2531 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2532 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2533#else
2534# define IEM_MC_MEM_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2535 (a_pr80Mem) = iemMemMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2536#endif
2537
2538/**
2539 * Maps guest memory for 80-bit float writeonly direct (or bounce) buffer acccess.
2540 *
2541 * @param[out] a_pr80Mem Where to return the pointer to the mapping.
2542 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2543 * @param[in] a_GCPtrMem The memory address.
2544 * @remarks Will return/long jump on errors.
2545 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2546 */
2547#ifndef IEM_WITH_SETJMP
2548# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2549 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pr80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2550 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2551#else
2552# define IEM_MC_MEM_FLAT_MAP_R80_WO(a_pr80Mem, a_bUnmapInfo, a_GCPtrMem) \
2553 (a_pr80Mem) = iemMemFlatMapDataR80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2554#endif
2555
2556
2557/**
2558 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2559 *
2560 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2561 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2562 * @param[in] a_iSeg The segment register to access via. No UINT8_MAX!
2563 * @param[in] a_GCPtrMem The memory address.
2564 * @remarks Will return/long jump on errors.
2565 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2566 */
2567#ifndef IEM_WITH_SETJMP
2568# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2569 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), (a_iSeg), \
2570 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2571#else
2572# define IEM_MC_MEM_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_iSeg, a_GCPtrMem) \
2573 (a_pd80Mem) = iemMemMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_iSeg), (a_GCPtrMem))
2574#endif
2575
2576/**
2577 * Maps guest memory for 80-bit BCD writeonly direct (or bounce) buffer acccess.
2578 *
2579 * @param[out] a_pd80Mem Where to return the pointer to the mapping.
2580 * @param[out] a_bUnmapInfo Where to return umapping instructions. uint8_t.
2581 * @param[in] a_GCPtrMem The memory address.
2582 * @remarks Will return/long jump on errors.
2583 * @see IEM_MC_MEM_COMMIT_AND_UNMAP_WO
2584 */
2585#ifndef IEM_WITH_SETJMP
2586# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2587 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pd80Mem), &(a_bUnmapInfo), sizeof(RTFLOAT80U), UINT8_MAX, \
2588 (a_GCPtrMem), IEM_ACCESS_DATA_W, sizeof(uint64_t) - 1))
2589#else
2590# define IEM_MC_MEM_FLAT_MAP_D80_WO(a_pd80Mem, a_bUnmapInfo, a_GCPtrMem) \
2591 (a_pd80Mem) = iemMemFlatMapDataD80WoJmp(pVCpu, &(a_bUnmapInfo), (a_GCPtrMem))
2592#endif
2593
2594
2595
2596/* commit + unmap */
2597
2598/** Commits the memory and unmaps guest memory previously mapped RW.
2599 * @remarks May return.
2600 * @note Implictly frees the a_bMapInfo variable.
2601 */
2602#ifndef IEM_WITH_SETJMP
2603# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2604#else
2605# define IEM_MC_MEM_COMMIT_AND_UNMAP_RW(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2606#endif
2607
2608/** Commits the memory and unmaps guest memory previously mapped ATOMIC.
2609 * @remarks May return.
2610 * @note Implictly frees the a_bMapInfo variable.
2611 */
2612#ifndef IEM_WITH_SETJMP
2613# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2614#else
2615# define IEM_MC_MEM_COMMIT_AND_UNMAP_ATOMIC(a_bMapInfo) iemMemCommitAndUnmapRwJmp(pVCpu, (a_bMapInfo))
2616#endif
2617
2618/** Commits the memory and unmaps guest memory previously mapped W.
2619 * @remarks May return.
2620 * @note Implictly frees the a_bMapInfo variable.
2621 */
2622#ifndef IEM_WITH_SETJMP
2623# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2624#else
2625# define IEM_MC_MEM_COMMIT_AND_UNMAP_WO(a_bMapInfo) iemMemCommitAndUnmapWoJmp(pVCpu, (a_bMapInfo))
2626#endif
2627
2628/** Commits the memory and unmaps guest memory previously mapped R.
2629 * @remarks May return.
2630 * @note Implictly frees the a_bMapInfo variable.
2631 */
2632#ifndef IEM_WITH_SETJMP
2633# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo))
2634#else
2635# define IEM_MC_MEM_COMMIT_AND_UNMAP_RO(a_bMapInfo) iemMemCommitAndUnmapRoJmp(pVCpu, (a_bMapInfo))
2636#endif
2637
2638
2639/** Commits the memory and unmaps the guest memory unless the FPU status word
2640 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
2641 * that would cause FLD not to store.
2642 *
2643 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
2644 * store, while \#P will not.
2645 *
2646 * @remarks May in theory return - for now.
2647 * @note Implictly frees both the a_bMapInfo and a_u16FSW variables.
2648 */
2649#ifndef IEM_WITH_SETJMP
2650# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2651 if ( !(a_u16FSW & X86_FSW_ES) \
2652 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2653 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2654 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, a_bMapInfo)); \
2655 else \
2656 iemMemRollbackAndUnmap(pVCpu, (a_pvMem), IEM_ACCESS_DATA_W); \
2657 } while (0)
2658#else
2659# define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE_WO(a_bMapInfo, a_u16FSW) do { \
2660 if ( !(a_u16FSW & X86_FSW_ES) \
2661 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
2662 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
2663 iemMemCommitAndUnmapWoJmp(pVCpu, a_bMapInfo); \
2664 else \
2665 iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo); \
2666 } while (0)
2667#endif
2668
2669/** Rolls back (conceptually only, assumes no writes) and unmaps the guest memory.
2670 * @note Implictly frees the a_bMapInfo variable. */
2671#ifndef IEM_WITH_SETJMP
2672# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmap(pVCpu, a_bMapInfo)
2673#else
2674# define IEM_MC_MEM_ROLLBACK_AND_UNMAP_WO(a_bMapInfo) iemMemRollbackAndUnmapWo(pVCpu, a_bMapInfo)
2675#endif
2676
2677
2678
2679/** Calculate efficient address from R/M. */
2680#ifndef IEM_WITH_SETJMP
2681# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2682 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff)))
2683#else
2684# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
2685 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (a_bRm), (a_cbImmAndRspOffset)))
2686#endif
2687
2688
2689/** The @a a_fSupportedHosts mask are ORed together RT_ARCH_VAL_XXX values. */
2690#define IEM_MC_NATIVE_IF(a_fSupportedHosts) if (false) {
2691#define IEM_MC_NATIVE_ELSE() } else {
2692#define IEM_MC_NATIVE_ENDIF() } ((void)0)
2693
2694#define IEM_MC_NATIVE_EMIT_0(a_fnEmitter)
2695#define IEM_MC_NATIVE_EMIT_1(a_fnEmitter, a0) (void)(a0)
2696#define IEM_MC_NATIVE_EMIT_2(a_fnEmitter, a0, a1) (void)(a0), (void)(a1)
2697#define IEM_MC_NATIVE_EMIT_2_EX(a_fnEmitter, a0, a1) (void)(a0), (void)(a1)
2698#define IEM_MC_NATIVE_EMIT_3(a_fnEmitter, a0, a1, a2) (void)(a0), (void)(a1), (void)(a2)
2699#define IEM_MC_NATIVE_EMIT_4(a_fnEmitter, a0, a1, a2, a3) (void)(a0), (void)(a1), (void)(a2), (void)(a3)
2700#define IEM_MC_NATIVE_EMIT_5(a_fnEmitter, a0, a1, a2, a3, a4) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4)
2701#define IEM_MC_NATIVE_EMIT_6(a_fnEmitter, a0, a1, a2, a3, a4, a5) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5)
2702#define IEM_MC_NATIVE_EMIT_7(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6)
2703#define IEM_MC_NATIVE_EMIT_8(a_fnEmitter, a0, a1, a2, a3, a4, a5, a6, a7) (void)(a0), (void)(a1), (void)(a2), (void)(a3), (void)(a4), (void)(a5), (void)(a6), (void)(a7)
2704
2705/** This can be used to direct the register allocator when dealing with
2706 * x86/AMD64 instructions (like SHL reg,CL) that takes fixed registers. */
2707#define IEM_MC_NATIVE_SET_AMD64_HOST_REG_FOR_LOCAL(a_VarNm, a_idxHostReg) ((void)0)
2708
2709
2710#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
2711#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
2712#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
2713#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
2714#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
2715#define IEM_MC_CALL_AIMPL_3(a_rcType, a_rc, a_pfn, a0, a1, a2) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2))
2716#define IEM_MC_CALL_AIMPL_4(a_rcType, a_rc, a_pfn, a0, a1, a2, a3) a_rcType const a_rc = (a_pfn)((a0), (a1), (a2), (a3))
2717
2718
2719/** @def IEM_MC_CALL_CIMPL_HLP_RET
2720 * Helper macro for check that all important IEM_CIMPL_F_XXX bits are set.
2721 */
2722#ifdef VBOX_STRICT
2723# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) \
2724 do { \
2725 uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu); /* may be flushed */ \
2726 uint16_t const uCsBefore = pVCpu->cpum.GstCtx.cs.Sel; \
2727 uint64_t const uRipBefore = pVCpu->cpum.GstCtx.rip; \
2728 uint32_t const fEflBefore = pVCpu->cpum.GstCtx.eflags.u; \
2729 uint32_t const fExecBefore = pVCpu->iem.s.fExec; \
2730 VBOXSTRICTRC const rcStrictHlp = a_CallExpr; \
2731 if (rcStrictHlp == VINF_SUCCESS) \
2732 { \
2733 uint64_t const fRipMask = (pVCpu->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT ? UINT64_MAX : UINT32_MAX; \
2734 AssertMsg( ((a_fFlags) & IEM_CIMPL_F_BRANCH_ANY) \
2735 || ( ((uRipBefore + cbInstr) & fRipMask) == pVCpu->cpum.GstCtx.rip \
2736 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel) \
2737 || ( ((a_fFlags) & IEM_CIMPL_F_REP) \
2738 && uRipBefore == pVCpu->cpum.GstCtx.rip \
2739 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel), \
2740 ("CS:RIP=%04x:%08RX64 + %x -> %04x:%08RX64, expected %04x:%08RX64\n", uCsBefore, uRipBefore, cbInstr, \
2741 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uCsBefore, (uRipBefore + cbInstr) & fRipMask)); \
2742 if ((a_fFlags) & IEM_CIMPL_F_RFLAGS) \
2743 { /* No need to check fEflBefore */ Assert(!((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS)); } \
2744 else if ((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS) \
2745 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)) \
2746 == (fEflBefore & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)), \
2747 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2748 else \
2749 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_RF)) \
2750 == (fEflBefore & ~(X86_EFL_RF)), \
2751 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
2752 if (!((a_fFlags) & IEM_CIMPL_F_MODE)) \
2753 { \
2754 uint32_t fExecRecalc = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS); \
2755 AssertMsg( fExecBefore == fExecRecalc \
2756 /* in case ES, DS or SS was external initially (happens alot with HM): */ \
2757 || ( fExecBefore == (fExecRecalc & ~IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK) \
2758 && (fExecRecalc & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT), \
2759 ("fExec=%#x -> %#x (diff %#x)\n", fExecBefore, fExecRecalc, fExecBefore ^ fExecRecalc)); \
2760 } \
2761 } \
2762 return rcStrictHlp; \
2763 } while (0)
2764#else
2765# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) return a_CallExpr
2766#endif
2767
2768/**
2769 * Defers the rest of the instruction emulation to a C implementation routine
2770 * and returns, only taking the standard parameters.
2771 *
2772 * @param a_fFlags IEM_CIMPL_F_XXX.
2773 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2774 * in the native recompiler.
2775 * @param a_pfnCImpl The pointer to the C routine.
2776 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2777 */
2778#define IEM_MC_CALL_CIMPL_0(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2779 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2780
2781/**
2782 * Defers the rest of instruction emulation to a C implementation routine and
2783 * returns, taking one argument in addition to the standard ones.
2784 *
2785 * @param a_fFlags IEM_CIMPL_F_XXX.
2786 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2787 * in the native recompiler.
2788 * @param a_pfnCImpl The pointer to the C routine.
2789 * @param a0 The argument.
2790 */
2791#define IEM_MC_CALL_CIMPL_1(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2792 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2793
2794/**
2795 * Defers the rest of the instruction emulation to a C implementation routine
2796 * and returns, taking two arguments in addition to the standard ones.
2797 *
2798 * @param a_fFlags IEM_CIMPL_F_XXX.
2799 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2800 * in the native recompiler.
2801 * @param a_pfnCImpl The pointer to the C routine.
2802 * @param a0 The first extra argument.
2803 * @param a1 The second extra argument.
2804 */
2805#define IEM_MC_CALL_CIMPL_2(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2806 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2807
2808/**
2809 * Defers the rest of the instruction emulation to a C implementation routine
2810 * and returns, taking three arguments in addition to the standard ones.
2811 *
2812 * @param a_fFlags IEM_CIMPL_F_XXX.
2813 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2814 * in the native recompiler.
2815 * @param a_pfnCImpl The pointer to the C routine.
2816 * @param a0 The first extra argument.
2817 * @param a1 The second extra argument.
2818 * @param a2 The third extra argument.
2819 */
2820#define IEM_MC_CALL_CIMPL_3(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2821 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2822
2823/**
2824 * Defers the rest of the instruction emulation to a C implementation routine
2825 * and returns, taking four arguments in addition to the standard ones.
2826 *
2827 * @param a_fFlags IEM_CIMPL_F_XXX.
2828 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2829 * in the native recompiler.
2830 * @param a_pfnCImpl The pointer to the C routine.
2831 * @param a0 The first extra argument.
2832 * @param a1 The second extra argument.
2833 * @param a2 The third extra argument.
2834 * @param a3 The fourth extra argument.
2835 */
2836#define IEM_MC_CALL_CIMPL_4(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3) \
2837 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3))
2838
2839/**
2840 * Defers the rest of the instruction emulation to a C implementation routine
2841 * and returns, taking five arguments in addition to the standard ones.
2842 *
2843 * @param a_fFlags IEM_CIMPL_F_XXX.
2844 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2845 * in the native recompiler.
2846 * @param a_pfnCImpl The pointer to the C routine.
2847 * @param a0 The first extra argument.
2848 * @param a1 The second extra argument.
2849 * @param a2 The third extra argument.
2850 * @param a3 The fourth extra argument.
2851 * @param a4 The fifth extra argument.
2852 */
2853#define IEM_MC_CALL_CIMPL_5(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2, a3, a4) \
2854 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4))
2855
2856/**
2857 * Defers the entire instruction emulation to a C implementation routine and
2858 * returns, only taking the standard parameters.
2859 *
2860 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2861 *
2862 * @param a_fFlags IEM_CIMPL_F_XXX.
2863 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2864 * in the native recompiler.
2865 * @param a_pfnCImpl The pointer to the C routine.
2866 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
2867 */
2868#define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl) \
2869 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
2870
2871/**
2872 * Defers the entire instruction emulation to a C implementation routine and
2873 * returns, taking one argument in addition to the standard ones.
2874 *
2875 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2876 *
2877 * @param a_fFlags IEM_CIMPL_F_XXX.
2878 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2879 * in the native recompiler.
2880 * @param a_pfnCImpl The pointer to the C routine.
2881 * @param a0 The argument.
2882 */
2883#define IEM_MC_DEFER_TO_CIMPL_1_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0) \
2884 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
2885
2886/**
2887 * Defers the entire instruction emulation to a C implementation routine and
2888 * returns, taking two arguments in addition to the standard ones.
2889 *
2890 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2891 *
2892 * @param a_fFlags IEM_CIMPL_F_XXX.
2893 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2894 * in the native recompiler.
2895 * @param a_pfnCImpl The pointer to the C routine.
2896 * @param a0 The first extra argument.
2897 * @param a1 The second extra argument.
2898 */
2899#define IEM_MC_DEFER_TO_CIMPL_2_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1) \
2900 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
2901
2902/**
2903 * Defers the entire instruction emulation to a C implementation routine and
2904 * returns, taking three arguments in addition to the standard ones.
2905 *
2906 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
2907 *
2908 * @param a_fFlags IEM_CIMPL_F_XXX.
2909 * @param a_fGstShwFlush Guest shadow register copies needing to be flushed
2910 * in the native recompiler.
2911 * @param a_pfnCImpl The pointer to the C routine.
2912 * @param a0 The first extra argument.
2913 * @param a1 The second extra argument.
2914 * @param a2 The third extra argument.
2915 */
2916#define IEM_MC_DEFER_TO_CIMPL_3_RET(a_fFlags, a_fGstShwFlush, a_pfnCImpl, a0, a1, a2) \
2917 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
2918
2919
2920/**
2921 * Calls a FPU assembly implementation taking one visible argument.
2922 *
2923 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2924 * @param a0 The first extra argument.
2925 */
2926#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
2927 do { \
2928 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
2929 } while (0)
2930
2931/**
2932 * Calls a FPU assembly implementation taking two visible arguments.
2933 *
2934 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2935 * @param a0 The first extra argument.
2936 * @param a1 The second extra argument.
2937 */
2938#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
2939 do { \
2940 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
2941 } while (0)
2942
2943/**
2944 * Calls a FPU assembly implementation taking three visible arguments.
2945 *
2946 * @param a_pfnAImpl Pointer to the assembly FPU routine.
2947 * @param a0 The first extra argument.
2948 * @param a1 The second extra argument.
2949 * @param a2 The third extra argument.
2950 */
2951#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
2952 do { \
2953 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
2954 } while (0)
2955
2956#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
2957 do { \
2958 (a_FpuData).FSW = (a_FSW); \
2959 (a_FpuData).r80Result = *(a_pr80Value); \
2960 } while (0)
2961
2962/** Pushes FPU result onto the stack. */
2963#define IEM_MC_PUSH_FPU_RESULT(a_FpuData, a_uFpuOpcode) \
2964 iemFpuPushResult(pVCpu, &a_FpuData, a_uFpuOpcode)
2965/** Pushes FPU result onto the stack and sets the FPUDP. */
2966#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2967 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2968
2969/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
2970#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo, a_uFpuOpcode) \
2971 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo, a_uFpuOpcode)
2972
2973/** Stores FPU result in a stack register. */
2974#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg, a_uFpuOpcode) \
2975 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2976/** Stores FPU result in a stack register and pops the stack. */
2977#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg, a_uFpuOpcode) \
2978 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
2979/** Stores FPU result in a stack register and sets the FPUDP. */
2980#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2981 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2982/** Stores FPU result in a stack register, sets the FPUDP, and pops the
2983 * stack. */
2984#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
2985 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
2986
2987/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
2988#define IEM_MC_UPDATE_FPU_OPCODE_IP(a_uFpuOpcode) \
2989 iemFpuUpdateOpcodeAndIp(pVCpu, a_uFpuOpcode)
2990/** Free a stack register (for FFREE and FFREEP). */
2991#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
2992 iemFpuStackFree(pVCpu, a_iStReg)
2993/** Increment the FPU stack pointer. */
2994#define IEM_MC_FPU_STACK_INC_TOP() \
2995 iemFpuStackIncTop(pVCpu)
2996/** Decrement the FPU stack pointer. */
2997#define IEM_MC_FPU_STACK_DEC_TOP() \
2998 iemFpuStackDecTop(pVCpu)
2999
3000/** Updates the FSW, FOP, FPUIP, and FPUCS. */
3001#define IEM_MC_UPDATE_FSW(a_u16FSW, a_uFpuOpcode) \
3002 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
3003/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
3004#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW, a_uFpuOpcode) \
3005 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
3006/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
3007#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3008 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3009/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
3010#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW, a_uFpuOpcode) \
3011 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW, a_uFpuOpcode)
3012/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
3013 * stack. */
3014#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3015 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3016/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
3017#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW, a_uFpuOpcode) \
3018 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW, a_uFpuOpcode)
3019
3020/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
3021#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst, a_uFpuOpcode) \
3022 iemFpuStackUnderflow(pVCpu, a_iStDst, a_uFpuOpcode)
3023/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
3024 * stack. */
3025#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst, a_uFpuOpcode) \
3026 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst, a_uFpuOpcode)
3027/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
3028 * FPUDS. */
3029#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3030 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3031/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
3032 * FPUDS. Pops stack. */
3033#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3034 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3035/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
3036 * stack twice. */
3037#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP(a_uFpuOpcode) \
3038 iemFpuStackUnderflowThenPopPop(pVCpu, a_uFpuOpcode)
3039/** Raises a FPU stack underflow exception for an instruction pushing a result
3040 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
3041#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW(a_uFpuOpcode) \
3042 iemFpuStackPushUnderflow(pVCpu, a_uFpuOpcode)
3043/** Raises a FPU stack underflow exception for an instruction pushing a result
3044 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
3045#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO(a_uFpuOpcode) \
3046 iemFpuStackPushUnderflowTwo(pVCpu, a_uFpuOpcode)
3047
3048/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3049 * FPUIP, FPUCS and FOP. */
3050#define IEM_MC_FPU_STACK_PUSH_OVERFLOW(a_uFpuOpcode) \
3051 iemFpuStackPushOverflow(pVCpu, a_uFpuOpcode)
3052/** Raises a FPU stack overflow exception as part of a push attempt. Sets
3053 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
3054#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
3055 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
3056/** Prepares for using the FPU state.
3057 * Ensures that we can use the host FPU in the current context (RC+R0.
3058 * Ensures the guest FPU state in the CPUMCTX is up to date. */
3059#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
3060/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
3061#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
3062/** Actualizes the guest FPU state so it can be accessed and modified. */
3063#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
3064
3065/** Prepares for using the SSE state.
3066 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
3067 * Ensures the guest SSE state in the CPUMCTX is up to date. */
3068#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
3069/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3070#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
3071/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
3072#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
3073
3074/** Prepares for using the AVX state.
3075 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
3076 * Ensures the guest AVX state in the CPUMCTX is up to date.
3077 * @note This will include the AVX512 state too when support for it is added
3078 * due to the zero extending feature of VEX instruction. */
3079#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
3080/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
3081#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
3082/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
3083#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
3084
3085/**
3086 * Calls a MMX assembly implementation taking two visible arguments.
3087 *
3088 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3089 * @param a0 The first extra argument.
3090 * @param a1 The second extra argument.
3091 */
3092#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
3093 do { \
3094 IEM_MC_PREPARE_FPU_USAGE(); \
3095 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
3096 } while (0)
3097
3098/**
3099 * Calls a MMX assembly implementation taking three visible arguments.
3100 *
3101 * @param a_pfnAImpl Pointer to the assembly MMX routine.
3102 * @param a0 The first extra argument.
3103 * @param a1 The second extra argument.
3104 * @param a2 The third extra argument.
3105 */
3106#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3107 do { \
3108 IEM_MC_PREPARE_FPU_USAGE(); \
3109 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
3110 } while (0)
3111
3112
3113/**
3114 * Calls a SSE assembly implementation taking two visible arguments.
3115 *
3116 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3117 * @param a0 The first extra argument.
3118 * @param a1 The second extra argument.
3119 *
3120 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3121 * which is unmasked in the guest's MXCSR.
3122 */
3123#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
3124 do { \
3125 IEM_MC_PREPARE_SSE_USAGE(); \
3126 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3127 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3128 (a0), (a1)); \
3129 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3130 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3131 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3132 { /* probable */ } \
3133 else \
3134 { \
3135 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3136 return iemRaiseSimdFpException(pVCpu); \
3137 return iemRaiseUndefinedOpcode(pVCpu); \
3138 } \
3139 } while (0)
3140
3141/**
3142 * Calls a SSE assembly implementation taking three visible arguments.
3143 *
3144 * @param a_pfnAImpl Pointer to the assembly SSE routine.
3145 * @param a0 The first extra argument.
3146 * @param a1 The second extra argument.
3147 * @param a2 The third extra argument.
3148 *
3149 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3150 * which is unmasked in the guest's MXCSR.
3151 */
3152#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3153 do { \
3154 IEM_MC_PREPARE_SSE_USAGE(); \
3155 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3156 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3157 (a0), (a1), (a2)); \
3158 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3159 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3160 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3161 { /* probable */ } \
3162 else \
3163 { \
3164 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3165 return iemRaiseSimdFpException(pVCpu); \
3166 return iemRaiseUndefinedOpcode(pVCpu); \
3167 } \
3168 } while (0)
3169
3170
3171/**
3172 * Calls a AVX assembly implementation taking two visible arguments.
3173 *
3174 * There is one implicit zero'th argument, a pointer to the extended state.
3175 *
3176 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3177 * @param a0 The first extra argument.
3178 * @param a1 The second extra argument.
3179 *
3180 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3181 * which is unmasked in the guest's MXCSR.
3182 */
3183#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a0, a1) \
3184 do { \
3185 IEM_MC_PREPARE_AVX_USAGE(); \
3186 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3187 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3188 (a0), (a1)); \
3189 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3190 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3191 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3192 { /* probable */ } \
3193 else \
3194 { \
3195 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3196 return iemRaiseSimdFpException(pVCpu); \
3197 return iemRaiseUndefinedOpcode(pVCpu); \
3198 } \
3199 } while (0)
3200
3201/**
3202 * Calls a AVX assembly implementation taking three visible arguments.
3203 *
3204 * There is one implicit zero'th argument, a pointer to the extended state.
3205 *
3206 * @param a_pfnAImpl Pointer to the assembly AVX routine.
3207 * @param a0 The first extra argument.
3208 * @param a1 The second extra argument.
3209 * @param a2 The third extra argument.
3210 *
3211 * @note This throws an \#XF/\#UD exception if the helper indicates an exception
3212 * which is unmasked in the guest's MXCSR.
3213 */
3214#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
3215 do { \
3216 IEM_MC_PREPARE_AVX_USAGE(); \
3217 const uint32_t fMxcsrOld = pVCpu->cpum.GstCtx.XState.x87.MXCSR; \
3218 const uint32_t fMxcsrNew = a_pfnAImpl(fMxcsrOld & ~X86_MXCSR_XCPT_FLAGS, \
3219 (a0), (a1), (a2)); \
3220 pVCpu->cpum.GstCtx.XState.x87.MXCSR |= fMxcsrNew; \
3221 if (RT_LIKELY(( ~((fMxcsrOld & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
3222 & (fMxcsrNew & X86_MXCSR_XCPT_FLAGS)) == 0)) \
3223 { /* probable */ } \
3224 else \
3225 { \
3226 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
3227 return iemRaiseSimdFpException(pVCpu); \
3228 return iemRaiseUndefinedOpcode(pVCpu); \
3229 } \
3230 } while (0)
3231
3232/** @note Not for IOPL or IF testing. */
3233#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
3234/** @note Not for IOPL or IF testing. */
3235#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
3236/** @note Not for IOPL or IF testing. */
3237#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
3238/** @note Not for IOPL or IF testing. */
3239#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
3240/** @note Not for IOPL or IF testing. */
3241#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
3242 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3243 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3244/** @note Not for IOPL or IF testing. */
3245#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
3246 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3247 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3248/** @note Not for IOPL or IF testing. */
3249#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
3250 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3251 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3252 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3253/** @note Not for IOPL or IF testing. */
3254#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
3255 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
3256 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
3257 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
3258#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
3259#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
3260#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
3261#define IEM_MC_IF_CX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.cx != 1) {
3262#define IEM_MC_IF_ECX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.ecx != 1) {
3263#define IEM_MC_IF_RCX_IS_NOT_ONE() if (pVCpu->cpum.GstCtx.rcx != 1) {
3264/** @note Not for IOPL or IF testing. */
3265#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3266 if ( pVCpu->cpum.GstCtx.cx != 1 \
3267 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3268/** @note Not for IOPL or IF testing. */
3269#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3270 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3271 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3272/** @note Not for IOPL or IF testing. */
3273#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_SET(a_fBit) \
3274 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3275 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3276/** @note Not for IOPL or IF testing. */
3277#define IEM_MC_IF_CX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3278 if ( pVCpu->cpum.GstCtx.cx != 1 \
3279 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3280/** @note Not for IOPL or IF testing. */
3281#define IEM_MC_IF_ECX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3282 if ( pVCpu->cpum.GstCtx.ecx != 1 \
3283 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3284/** @note Not for IOPL or IF testing. */
3285#define IEM_MC_IF_RCX_IS_NOT_ONE_AND_EFL_BIT_NOT_SET(a_fBit) \
3286 if ( pVCpu->cpum.GstCtx.rcx != 1 \
3287 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
3288#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
3289#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
3290
3291#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
3292 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80; } while (0)
3293#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
3294 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
3295#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
3296 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
3297#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
3298 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
3299#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
3300 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
3301#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
3302 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
3303#define IEM_MC_IF_FCW_IM() \
3304 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
3305
3306#define IEM_MC_ELSE() } else {
3307#define IEM_MC_ENDIF() } do {} while (0)
3308
3309
3310/** Recompiler debugging: Flush guest register shadow copies. */
3311#define IEM_MC_HINT_FLUSH_GUEST_SHADOW(g_fGstShwFlush) ((void)0)
3312
3313/** Recompiler liveness info: input GPR */
3314#define IEM_MC_LIVENESS_GREG_INPUT(a_iGReg) ((void)0)
3315/** Recompiler liveness info: clobbered GPR */
3316#define IEM_MC_LIVENESS_GREG_CLOBBER(a_iGReg) ((void)0)
3317/** Recompiler liveness info: modified GPR register (i.e. input & output) */
3318#define IEM_MC_LIVENESS_GREG_MODIFY(a_iGReg) ((void)0)
3319
3320/** Recompiler liveness info: input MM register */
3321#define IEM_MC_LIVENESS_MREG_INPUT(a_iMReg) ((void)0)
3322/** Recompiler liveness info: clobbered MM register */
3323#define IEM_MC_LIVENESS_MREG_CLOBBER(a_iMReg) ((void)0)
3324/** Recompiler liveness info: modified MM register (i.e. input & output) */
3325#define IEM_MC_LIVENESS_MREG_MODIFY(a_iMReg) ((void)0)
3326
3327/** Recompiler liveness info: input SSE register */
3328#define IEM_MC_LIVENESS_XREG_INPUT(a_iXReg) ((void)0)
3329/** Recompiler liveness info: clobbered SSE register */
3330#define IEM_MC_LIVENESS_XREG_CLOBBER(a_iXReg) ((void)0)
3331/** Recompiler liveness info: modified SSE register (i.e. input & output) */
3332#define IEM_MC_LIVENESS_XREG_MODIFY(a_iXReg) ((void)0)
3333
3334/** @todo add more as needed. */
3335
3336/** @} */
3337
3338#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
3339
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette