VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMMc.h@ 100787

Last change on this file since 100787 was 100787, checked in by vboxsync, 17 months ago

VMM/IEM: Check for IRQs immediately after STI as well as after the following instruction. Also check before and after POPF. Ignore IEM_CIMPL_F_VMEXIT for now as it prevents sti+sti+cli and similar tests from forming a single TB, sabotaging testing of these changes. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 101.1 KB
Line 
1/* $Id: IEMMc.h 100787 2023-08-03 21:53:28Z vboxsync $ */
2/** @file
3 * IEM - Interpreted Execution Manager - IEM_MC_XXX.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMMc_h
29#define VMM_INCLUDED_SRC_include_IEMMc_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34
35/** @name "Microcode" macros.
36 *
37 * The idea is that we should be able to use the same code to interpret
38 * instructions as well as recompiler instructions. Thus this obfuscation.
39 *
40 * @{
41 */
42#define IEM_MC_BEGIN(a_cArgs, a_cLocals) {
43#define IEM_MC_END() }
44
45/** Internal macro. */
46#define IEM_MC_RETURN_ON_FAILURE(a_Expr) \
47 do \
48 { \
49 VBOXSTRICTRC rcStrict2 = a_Expr; \
50 if (rcStrict2 != VINF_SUCCESS) \
51 return rcStrict2; \
52 } while (0)
53
54
55/** Advances RIP, finishes the instruction and returns.
56 * This may include raising debug exceptions and such. */
57#define IEM_MC_ADVANCE_RIP_AND_FINISH() return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu))
58/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
59#define IEM_MC_REL_JMP_S8_AND_FINISH(a_i8) \
60 return iemRegRipRelativeJumpS8AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i8), pVCpu->iem.s.enmEffOpSize)
61/** Sets RIP (may trigger \#GP), finishes the instruction and returns.
62 * @note only usable in 16-bit op size mode. */
63#define IEM_MC_REL_JMP_S16_AND_FINISH(a_i16) \
64 return iemRegRipRelativeJumpS16AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i16))
65/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
66#define IEM_MC_REL_JMP_S32_AND_FINISH(a_i32) \
67 return iemRegRipRelativeJumpS32AndFinishClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu), (a_i32), pVCpu->iem.s.enmEffOpSize)
68/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
69#define IEM_MC_SET_RIP_U16_AND_FINISH(a_u16NewIP) return iemRegRipJumpU16AndFinishClearningRF((pVCpu), (a_u16NewIP))
70/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
71#define IEM_MC_SET_RIP_U32_AND_FINISH(a_u32NewIP) return iemRegRipJumpU32AndFinishClearningRF((pVCpu), (a_u32NewIP))
72/** Sets RIP (may trigger \#GP), finishes the instruction and returns. */
73#define IEM_MC_SET_RIP_U64_AND_FINISH(a_u64NewIP) return iemRegRipJumpU64AndFinishClearningRF((pVCpu), (a_u64NewIP))
74
75#define IEM_MC_RAISE_DIVIDE_ERROR() return iemRaiseDivideError(pVCpu)
76#define IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() \
77 do { \
78 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)))) \
79 { /* probable */ } \
80 else return iemRaiseDeviceNotAvailable(pVCpu); \
81 } while (0)
82#define IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() \
83 do { \
84 if (RT_LIKELY(!((pVCpu->cpum.GstCtx.cr0 & (X86_CR0_MP | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)))) \
85 { /* probable */ } \
86 else return iemRaiseDeviceNotAvailable(pVCpu); \
87 } while (0)
88#define IEM_MC_MAYBE_RAISE_FPU_XCPT() \
89 do { \
90 if (RT_LIKELY(!(pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES))) \
91 { /* probable */ } \
92 else return iemRaiseMathFault(pVCpu); \
93 } while (0)
94#define IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() \
95 do { \
96 /* Since none of the bits we compare from XCR0, CR4 and CR0 overlap, it can \
97 be reduced to a single compare branch in the more probably code path. */ \
98 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) \
99 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE) \
100 | (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS)) \
101 == (XSAVE_C_YMM | XSAVE_C_SSE | X86_CR4_OSXSAVE))) \
102 { /* probable */ } \
103 else if ( (pVCpu->cpum.GstCtx.aXcr[0] & (XSAVE_C_YMM | XSAVE_C_SSE)) != (XSAVE_C_YMM | XSAVE_C_SSE) \
104 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXSAVE)) \
105 return iemRaiseUndefinedOpcode(pVCpu); \
106 else \
107 return iemRaiseDeviceNotAvailable(pVCpu); \
108 } while (0)
109AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR4_OSXSAVE));
110AssertCompile(!((XSAVE_C_YMM | XSAVE_C_SSE) & X86_CR0_TS));
111AssertCompile(!(X86_CR4_OSXSAVE & X86_CR0_TS));
112#define IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() \
113 do { \
114 /* Since the CR4 and CR0 bits doesn't overlap, it can be reduced to a
115 single compare branch in the more probable code path. */ \
116 if (RT_LIKELY( ( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
117 | (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
118 == X86_CR4_OSFXSR)) \
119 { /* likely */ } \
120 else if ( (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
121 || !(pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSFXSR)) \
122 return iemRaiseUndefinedOpcode(pVCpu); \
123 else \
124 return iemRaiseDeviceNotAvailable(pVCpu); \
125 } while (0)
126AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_CR4_OSFXSR));
127#define IEM_MC_MAYBE_RAISE_MMX_RELATED_XCPT() \
128 do { \
129 /* Since the two CR0 bits doesn't overlap with FSW.ES, this can be reduced to a
130 single compare branch in the more probable code path. */ \
131 if (RT_LIKELY(!( (pVCpu->cpum.GstCtx.cr0 & (X86_CR0_EM | X86_CR0_TS)) \
132 | (pVCpu->cpum.GstCtx.XState.x87.FSW & X86_FSW_ES)))) \
133 { /* probable */ } \
134 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_EM) \
135 return iemRaiseUndefinedOpcode(pVCpu); \
136 else if (pVCpu->cpum.GstCtx.cr0 & X86_CR0_TS) \
137 return iemRaiseDeviceNotAvailable(pVCpu); \
138 else \
139 return iemRaiseMathFault(pVCpu); \
140 } while (0)
141AssertCompile(!((X86_CR0_EM | X86_CR0_TS) & X86_FSW_ES));
142#define IEM_MC_RAISE_GP0_IF_CPL_NOT_ZERO() \
143 do { \
144 if (RT_LIKELY(IEM_GET_CPL(pVCpu) == 0)) { /* probable */ } \
145 else return iemRaiseGeneralProtectionFault0(pVCpu); \
146 } while (0)
147#define IEM_MC_RAISE_GP0_IF_EFF_ADDR_UNALIGNED(a_EffAddr, a_cbAlign) \
148 do { \
149 if (!((a_EffAddr) & ((a_cbAlign) - 1))) { /* likely */ } \
150 else return iemRaiseGeneralProtectionFault0(pVCpu); \
151 } while (0)
152#define IEM_MC_MAYBE_RAISE_FSGSBASE_XCPT() \
153 do { \
154 if (RT_LIKELY( ((pVCpu->cpum.GstCtx.cr4 & X86_CR4_FSGSBASE) | IEM_GET_CPU_MODE(pVCpu)) \
155 == (X86_CR4_FSGSBASE | IEMMODE_64BIT))) \
156 { /* probable */ } \
157 else return iemRaiseUndefinedOpcode(pVCpu); \
158 } while (0)
159AssertCompile(X86_CR4_FSGSBASE > UINT8_MAX);
160#define IEM_MC_MAYBE_RAISE_NON_CANONICAL_ADDR_GP0(a_u64Addr) \
161 do { \
162 if (RT_LIKELY(IEM_IS_CANONICAL(a_u64Addr))) { /* likely */ } \
163 else return iemRaiseGeneralProtectionFault0(pVCpu); \
164 } while (0)
165#define IEM_MC_MAYBE_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
166 do { \
167 if (RT_LIKELY(( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
168 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) == 0)) \
169 { /* probable */ } \
170 else \
171 { \
172 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT) \
173 return iemRaiseSimdFpException(pVCpu); \
174 return iemRaiseUndefinedOpcode(pVCpu); \
175 } \
176 } while (0)
177#define IEM_MC_RAISE_SSE_AVX_SIMD_FP_OR_UD_XCPT() \
178 do { \
179 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_OSXMMEEXCPT)\
180 return iemRaiseSimdFpException(pVCpu); \
181 return iemRaiseUndefinedOpcode(pVCpu); \
182 } while (0)
183
184
185#define IEM_MC_LOCAL(a_Type, a_Name) a_Type a_Name
186#define IEM_MC_LOCAL_CONST(a_Type, a_Name, a_Value) a_Type const a_Name = (a_Value)
187#define IEM_MC_REF_LOCAL(a_pRefArg, a_Local) (a_pRefArg) = &(a_Local)
188#define IEM_MC_ARG(a_Type, a_Name, a_iArg) a_Type a_Name
189#define IEM_MC_ARG_CONST(a_Type, a_Name, a_Value, a_iArg) a_Type const a_Name = (a_Value)
190#define IEM_MC_ARG_LOCAL_REF(a_Type, a_Name, a_Local, a_iArg) a_Type const a_Name = &(a_Local)
191#define IEM_MC_ARG_LOCAL_EFLAGS(a_pName, a_Name, a_iArg) \
192 uint32_t a_Name; \
193 uint32_t *a_pName = &a_Name
194#define IEM_MC_COMMIT_EFLAGS(a_EFlags) \
195 do { pVCpu->cpum.GstCtx.eflags.u = (a_EFlags); Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_1); } while (0)
196
197#define IEM_MC_ASSIGN(a_VarOrArg, a_CVariableOrConst) (a_VarOrArg) = (a_CVariableOrConst)
198#define IEM_MC_ASSIGN_TO_SMALLER IEM_MC_ASSIGN
199#define IEM_MC_ASSIGN_U8_SX_U64(a_u64VarOrArg, a_u8CVariableOrConst) \
200 (a_u64VarOrArg) = (int8_t)(a_u8CVariableOrConst)
201#define IEM_MC_ASSIGN_U32_SX_U64(a_u64VarOrArg, a_u32CVariableOrConst) \
202 (a_u64VarOrArg) = (int32_t)(a_u32CVariableOrConst)
203
204#define IEM_MC_FETCH_GREG_U8(a_u8Dst, a_iGReg) (a_u8Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
205#define IEM_MC_FETCH_GREG_U8_ZX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
206#define IEM_MC_FETCH_GREG_U8_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
207#define IEM_MC_FETCH_GREG_U8_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU8(pVCpu, (a_iGReg))
208#define IEM_MC_FETCH_GREG_U8_SX_U16(a_u16Dst, a_iGReg) (a_u16Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
209#define IEM_MC_FETCH_GREG_U8_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
210#define IEM_MC_FETCH_GREG_U8_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int8_t)iemGRegFetchU8(pVCpu, (a_iGReg))
211#define IEM_MC_FETCH_GREG_U16(a_u16Dst, a_iGReg) (a_u16Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
212#define IEM_MC_FETCH_GREG_U16_ZX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
213#define IEM_MC_FETCH_GREG_U16_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU16(pVCpu, (a_iGReg))
214#define IEM_MC_FETCH_GREG_U16_SX_U32(a_u32Dst, a_iGReg) (a_u32Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
215#define IEM_MC_FETCH_GREG_U16_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int16_t)iemGRegFetchU16(pVCpu, (a_iGReg))
216#define IEM_MC_FETCH_GREG_U32(a_u32Dst, a_iGReg) (a_u32Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
217#define IEM_MC_FETCH_GREG_U32_ZX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU32(pVCpu, (a_iGReg))
218#define IEM_MC_FETCH_GREG_U32_SX_U64(a_u64Dst, a_iGReg) (a_u64Dst) = (int32_t)iemGRegFetchU32(pVCpu, (a_iGReg))
219#define IEM_MC_FETCH_GREG_U64(a_u64Dst, a_iGReg) (a_u64Dst) = iemGRegFetchU64(pVCpu, (a_iGReg))
220#define IEM_MC_FETCH_GREG_U64_ZX_U64 IEM_MC_FETCH_GREG_U64
221#define IEM_MC_FETCH_SREG_U16(a_u16Dst, a_iSReg) do { \
222 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
223 (a_u16Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
224 } while (0)
225#define IEM_MC_FETCH_SREG_ZX_U32(a_u32Dst, a_iSReg) do { \
226 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
227 (a_u32Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
228 } while (0)
229#define IEM_MC_FETCH_SREG_ZX_U64(a_u64Dst, a_iSReg) do { \
230 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
231 (a_u64Dst) = iemSRegFetchU16(pVCpu, (a_iSReg)); \
232 } while (0)
233/** @todo IEM_MC_FETCH_SREG_BASE_U64 & IEM_MC_FETCH_SREG_BASE_U32 probably aren't worth it... */
234#define IEM_MC_FETCH_SREG_BASE_U64(a_u64Dst, a_iSReg) do { \
235 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
236 (a_u64Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
237 } while (0)
238#define IEM_MC_FETCH_SREG_BASE_U32(a_u32Dst, a_iSReg) do { \
239 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
240 (a_u32Dst) = iemSRegBaseFetchU64(pVCpu, (a_iSReg)); \
241 } while (0)
242/** @note Not for IOPL or IF testing or modification. */
243#define IEM_MC_FETCH_EFLAGS(a_EFlags) (a_EFlags) = pVCpu->cpum.GstCtx.eflags.u
244#define IEM_MC_FETCH_EFLAGS_U8(a_EFlags) (a_EFlags) = (uint8_t)pVCpu->cpum.GstCtx.eflags.u
245#define IEM_MC_FETCH_FSW(a_u16Fsw) (a_u16Fsw) = pVCpu->cpum.GstCtx.XState.x87.FSW
246#define IEM_MC_FETCH_FCW(a_u16Fcw) (a_u16Fcw) = pVCpu->cpum.GstCtx.XState.x87.FCW
247
248#define IEM_MC_STORE_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) = (a_u8Value)
249#define IEM_MC_STORE_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) = (a_u16Value)
250#define IEM_MC_STORE_GREG_U32(a_iGReg, a_u32Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (uint32_t)(a_u32Value) /* clear high bits. */
251#define IEM_MC_STORE_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) = (a_u64Value)
252#define IEM_MC_STORE_GREG_I64(a_iGReg, a_i64Value) *iemGRegRefI64(pVCpu, (a_iGReg)) = (a_i64Value)
253#define IEM_MC_STORE_GREG_U8_CONST IEM_MC_STORE_GREG_U8
254#define IEM_MC_STORE_GREG_U16_CONST IEM_MC_STORE_GREG_U16
255#define IEM_MC_STORE_GREG_U32_CONST IEM_MC_STORE_GREG_U32
256#define IEM_MC_STORE_GREG_U64_CONST IEM_MC_STORE_GREG_U64
257#define IEM_MC_CLEAR_HIGH_GREG_U64(a_iGReg) *iemGRegRefU64(pVCpu, (a_iGReg)) &= UINT32_MAX
258#define IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(a_pu32Dst) do { (a_pu32Dst)[1] = 0; } while (0)
259/** @todo IEM_MC_STORE_SREG_BASE_U64 & IEM_MC_STORE_SREG_BASE_U32 aren't worth it... */
260#define IEM_MC_STORE_SREG_BASE_U64(a_iSReg, a_u64Value) do { \
261 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
262 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (a_u64Value); \
263 } while (0)
264#define IEM_MC_STORE_SREG_BASE_U32(a_iSReg, a_u32Value) do { \
265 IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(a_iSReg)); \
266 *iemSRegBaseRefU64(pVCpu, (a_iSReg)) = (uint32_t)(a_u32Value); /* clear high bits. */ \
267 } while (0)
268#define IEM_MC_STORE_FPUREG_R80_SRC_REF(a_iSt, a_pr80Src) \
269 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80 = *(a_pr80Src); } while (0)
270
271
272#define IEM_MC_REF_GREG_U8(a_pu8Dst, a_iGReg) (a_pu8Dst) = iemGRegRefU8( pVCpu, (a_iGReg))
273#define IEM_MC_REF_GREG_U16(a_pu16Dst, a_iGReg) (a_pu16Dst) = iemGRegRefU16(pVCpu, (a_iGReg))
274/** @todo User of IEM_MC_REF_GREG_U32 needs to clear the high bits on commit.
275 * Use IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF! */
276#define IEM_MC_REF_GREG_U32(a_pu32Dst, a_iGReg) (a_pu32Dst) = iemGRegRefU32(pVCpu, (a_iGReg))
277#define IEM_MC_REF_GREG_I32(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t *)iemGRegRefU32(pVCpu, (a_iGReg))
278#define IEM_MC_REF_GREG_I32_CONST(a_pi32Dst, a_iGReg) (a_pi32Dst) = (int32_t const *)iemGRegRefU32(pVCpu, (a_iGReg))
279#define IEM_MC_REF_GREG_U64(a_pu64Dst, a_iGReg) (a_pu64Dst) = iemGRegRefU64(pVCpu, (a_iGReg))
280#define IEM_MC_REF_GREG_I64(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t *)iemGRegRefU64(pVCpu, (a_iGReg))
281#define IEM_MC_REF_GREG_I64_CONST(a_pi64Dst, a_iGReg) (a_pi64Dst) = (int64_t const *)iemGRegRefU64(pVCpu, (a_iGReg))
282/** @note Not for IOPL or IF testing or modification.
283 * @note Must preserve any undefined bits, see CPUMX86EFLAGS! */
284#define IEM_MC_REF_EFLAGS(a_pEFlags) (a_pEFlags) = &pVCpu->cpum.GstCtx.eflags.uBoth
285#define IEM_MC_REF_MXCSR(a_pfMxcsr) (a_pfMxcsr) = &pVCpu->cpum.GstCtx.XState.x87.MXCSR
286
287#define IEM_MC_ADD_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) += (a_u8Value)
288#define IEM_MC_ADD_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) += (a_u16Value)
289#define IEM_MC_ADD_GREG_U32(a_iGReg, a_u32Value) \
290 do { \
291 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
292 *pu32Reg += (a_u32Value); \
293 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
294 } while (0)
295#define IEM_MC_ADD_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) += (a_u64Value)
296
297#define IEM_MC_SUB_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) -= (a_u8Value)
298#define IEM_MC_SUB_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) -= (a_u16Value)
299#define IEM_MC_SUB_GREG_U32(a_iGReg, a_u32Value) \
300 do { \
301 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
302 *pu32Reg -= (a_u32Value); \
303 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
304 } while (0)
305#define IEM_MC_SUB_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) -= (a_u64Value)
306#define IEM_MC_SUB_LOCAL_U16(a_u16Value, a_u16Const) do { (a_u16Value) -= a_u16Const; } while (0)
307
308#define IEM_MC_ADD_GREG_U8_TO_LOCAL(a_u8Value, a_iGReg) do { (a_u8Value) += iemGRegFetchU8( pVCpu, (a_iGReg)); } while (0)
309#define IEM_MC_ADD_GREG_U16_TO_LOCAL(a_u16Value, a_iGReg) do { (a_u16Value) += iemGRegFetchU16(pVCpu, (a_iGReg)); } while (0)
310#define IEM_MC_ADD_GREG_U32_TO_LOCAL(a_u32Value, a_iGReg) do { (a_u32Value) += iemGRegFetchU32(pVCpu, (a_iGReg)); } while (0)
311#define IEM_MC_ADD_GREG_U64_TO_LOCAL(a_u64Value, a_iGReg) do { (a_u64Value) += iemGRegFetchU64(pVCpu, (a_iGReg)); } while (0)
312#define IEM_MC_ADD_LOCAL_S16_TO_EFF_ADDR(a_EffAddr, a_i16) do { (a_EffAddr) += (a_i16); } while (0)
313#define IEM_MC_ADD_LOCAL_S32_TO_EFF_ADDR(a_EffAddr, a_i32) do { (a_EffAddr) += (a_i32); } while (0)
314#define IEM_MC_ADD_LOCAL_S64_TO_EFF_ADDR(a_EffAddr, a_i64) do { (a_EffAddr) += (a_i64); } while (0)
315
316#define IEM_MC_AND_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) &= (a_u8Mask); } while (0)
317#define IEM_MC_AND_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) &= (a_u16Mask); } while (0)
318#define IEM_MC_AND_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
319#define IEM_MC_AND_LOCAL_U64(a_u64Local, a_u64Mask) do { (a_u64Local) &= (a_u64Mask); } while (0)
320
321#define IEM_MC_AND_ARG_U16(a_u16Arg, a_u16Mask) do { (a_u16Arg) &= (a_u16Mask); } while (0)
322#define IEM_MC_AND_ARG_U32(a_u32Arg, a_u32Mask) do { (a_u32Arg) &= (a_u32Mask); } while (0)
323#define IEM_MC_AND_ARG_U64(a_u64Arg, a_u64Mask) do { (a_u64Arg) &= (a_u64Mask); } while (0)
324
325#define IEM_MC_OR_LOCAL_U8(a_u8Local, a_u8Mask) do { (a_u8Local) |= (a_u8Mask); } while (0)
326#define IEM_MC_OR_LOCAL_U16(a_u16Local, a_u16Mask) do { (a_u16Local) |= (a_u16Mask); } while (0)
327#define IEM_MC_OR_LOCAL_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
328
329#define IEM_MC_SAR_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) >>= (a_cShift); } while (0)
330#define IEM_MC_SAR_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) >>= (a_cShift); } while (0)
331#define IEM_MC_SAR_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) >>= (a_cShift); } while (0)
332
333#define IEM_MC_SHR_LOCAL_U8(a_u8Local, a_cShift) do { (a_u8Local) >>= (a_cShift); } while (0)
334
335#define IEM_MC_SHL_LOCAL_S16(a_i16Local, a_cShift) do { (a_i16Local) <<= (a_cShift); } while (0)
336#define IEM_MC_SHL_LOCAL_S32(a_i32Local, a_cShift) do { (a_i32Local) <<= (a_cShift); } while (0)
337#define IEM_MC_SHL_LOCAL_S64(a_i64Local, a_cShift) do { (a_i64Local) <<= (a_cShift); } while (0)
338
339#define IEM_MC_AND_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) &= (a_u32Mask); } while (0)
340
341#define IEM_MC_OR_2LOCS_U32(a_u32Local, a_u32Mask) do { (a_u32Local) |= (a_u32Mask); } while (0)
342
343#define IEM_MC_AND_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) &= (a_u8Value)
344#define IEM_MC_AND_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) &= (a_u16Value)
345#define IEM_MC_AND_GREG_U32(a_iGReg, a_u32Value) \
346 do { \
347 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
348 *pu32Reg &= (a_u32Value); \
349 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
350 } while (0)
351#define IEM_MC_AND_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) &= (a_u64Value)
352
353#define IEM_MC_OR_GREG_U8(a_iGReg, a_u8Value) *iemGRegRefU8( pVCpu, (a_iGReg)) |= (a_u8Value)
354#define IEM_MC_OR_GREG_U16(a_iGReg, a_u16Value) *iemGRegRefU16(pVCpu, (a_iGReg)) |= (a_u16Value)
355#define IEM_MC_OR_GREG_U32(a_iGReg, a_u32Value) \
356 do { \
357 uint32_t *pu32Reg = iemGRegRefU32(pVCpu, (a_iGReg)); \
358 *pu32Reg |= (a_u32Value); \
359 pu32Reg[1] = 0; /* implicitly clear the high bit. */ \
360 } while (0)
361#define IEM_MC_OR_GREG_U64(a_iGReg, a_u64Value) *iemGRegRefU64(pVCpu, (a_iGReg)) |= (a_u64Value)
362
363#define IEM_MC_BSWAP_LOCAL_U16(a_u16Local) (a_u16Local) = RT_BSWAP_U16((a_u16Local));
364#define IEM_MC_BSWAP_LOCAL_U32(a_u32Local) (a_u32Local) = RT_BSWAP_U32((a_u32Local));
365#define IEM_MC_BSWAP_LOCAL_U64(a_u64Local) (a_u64Local) = RT_BSWAP_U64((a_u64Local));
366
367/** @note Not for IOPL or IF modification. */
368#define IEM_MC_SET_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u |= (a_fBit); } while (0)
369/** @note Not for IOPL or IF modification. */
370#define IEM_MC_CLEAR_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u &= ~(a_fBit); } while (0)
371/** @note Not for IOPL or IF modification. */
372#define IEM_MC_FLIP_EFL_BIT(a_fBit) do { pVCpu->cpum.GstCtx.eflags.u ^= (a_fBit); } while (0)
373
374#define IEM_MC_CLEAR_FSW_EX() do { pVCpu->cpum.GstCtx.XState.x87.FSW &= X86_FSW_C_MASK | X86_FSW_TOP_MASK; } while (0)
375
376/** Switches the FPU state to MMX mode (FSW.TOS=0, FTW=0) if necessary. */
377#define IEM_MC_FPU_TO_MMX_MODE() do { \
378 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
379 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
380 pVCpu->cpum.GstCtx.XState.x87.FTW = 0xff; \
381 } while (0)
382
383/** Switches the FPU state from MMX mode (FSW.TOS=0, FTW=0xffff). */
384#define IEM_MC_FPU_FROM_MMX_MODE() do { \
385 iemFpuRotateStackSetTop(&pVCpu->cpum.GstCtx.XState.x87, 0); \
386 pVCpu->cpum.GstCtx.XState.x87.FSW &= ~X86_FSW_TOP_MASK; \
387 pVCpu->cpum.GstCtx.XState.x87.FTW = 0; \
388 } while (0)
389
390#define IEM_MC_FETCH_MREG_U64(a_u64Value, a_iMReg) \
391 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx; } while (0)
392#define IEM_MC_FETCH_MREG_U32(a_u32Value, a_iMReg) \
393 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[0]; } while (0)
394#define IEM_MC_STORE_MREG_U64(a_iMReg, a_u64Value) do { \
395 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (a_u64Value); \
396 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
397 } while (0)
398#define IEM_MC_STORE_MREG_U32_ZX_U64(a_iMReg, a_u32Value) do { \
399 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx = (uint32_t)(a_u32Value); \
400 pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; \
401 } while (0)
402#define IEM_MC_REF_MREG_U64(a_pu64Dst, a_iMReg) /** @todo need to set high word to 0xffff on commit (see IEM_MC_STORE_MREG_U64) */ \
403 (a_pu64Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
404#define IEM_MC_REF_MREG_U64_CONST(a_pu64Dst, a_iMReg) \
405 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
406#define IEM_MC_REF_MREG_U32_CONST(a_pu32Dst, a_iMReg) \
407 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].mmx)
408#define IEM_MC_MODIFIED_MREG(a_iMReg) \
409 do { pVCpu->cpum.GstCtx.XState.x87.aRegs[(a_iMReg)].au32[2] = 0xffff; } while (0)
410#define IEM_MC_MODIFIED_MREG_BY_REF(a_pu64Dst) \
411 do { ((uint32_t *)(a_pu64Dst))[2] = 0xffff; } while (0)
412
413#define IEM_MC_CLEAR_XREG_U32_MASK(a_iXReg, a_bMask) \
414 do { if ((a_bMask) & (1 << 0)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0] = 0; \
415 if ((a_bMask) & (1 << 1)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[1] = 0; \
416 if ((a_bMask) & (1 << 2)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[2] = 0; \
417 if ((a_bMask) & (1 << 3)) pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[3] = 0; \
418 } while (0)
419#define IEM_MC_FETCH_XREG_U128(a_u128Value, a_iXReg) \
420 do { (a_u128Value).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
421 (a_u128Value).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
422 } while (0)
423#define IEM_MC_FETCH_XREG_XMM(a_XmmValue, a_iXReg) \
424 do { (a_XmmValue).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0]; \
425 (a_XmmValue).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1]; \
426 } while (0)
427#define IEM_MC_FETCH_XREG_U64(a_u64Value, a_iXReg, a_iQWord) \
428 do { (a_u64Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQWord)]; } while (0)
429#define IEM_MC_FETCH_XREG_U32(a_u32Value, a_iXReg, a_iDWord) \
430 do { (a_u32Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDWord)]; } while (0)
431#define IEM_MC_FETCH_XREG_U16(a_u16Value, a_iXReg, a_iWord) \
432 do { (a_u16Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iWord)]; } while (0)
433#define IEM_MC_FETCH_XREG_U8( a_u8Value, a_iXReg, a_iByte) \
434 do { (a_u8Value) = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au16[(a_iByte)]; } while (0)
435#define IEM_MC_STORE_XREG_U128(a_iXReg, a_u128Value) \
436 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u128Value).au64[0]; \
437 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u128Value).au64[1]; \
438 } while (0)
439#define IEM_MC_STORE_XREG_XMM(a_iXReg, a_XmmValue) \
440 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_XmmValue).au64[0]; \
441 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_XmmValue).au64[1]; \
442 } while (0)
443#define IEM_MC_STORE_XREG_XMM_U32(a_iXReg, a_iDword, a_XmmValue) \
444 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_XmmValue).au32[(a_iDword)]; } while (0)
445#define IEM_MC_STORE_XREG_XMM_U64(a_iXReg, a_iQword, a_XmmValue) \
446 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_XmmValue).au64[(a_iQword)]; } while (0)
447#define IEM_MC_STORE_XREG_U64(a_iXReg, a_iQword, a_u64Value) \
448 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[(a_iQword)] = (a_u64Value); } while (0)
449#define IEM_MC_STORE_XREG_U32(a_iXReg, a_iDword, a_u32Value) \
450 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDword)] = (a_u32Value); } while (0)
451#define IEM_MC_STORE_XREG_U16(a_iXReg, a_iWord, a_u16Value) \
452 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iWord)] = (a_u16Value); } while (0)
453#define IEM_MC_STORE_XREG_U8(a_iXReg, a_iByte, a_u8Value) \
454 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iByte)] = (a_u8Value); } while (0)
455
456#define IEM_MC_STORE_XREG_U64_ZX_U128(a_iXReg, a_u64Value) \
457 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (a_u64Value); \
458 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
459 } while (0)
460
461#define IEM_MC_STORE_XREG_U32_U128(a_iXReg, a_iDwDst, a_u128Value, a_iDwSrc) \
462 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[(a_iDwDst)] = (a_u128Value).au32[(a_iDwSrc)]; } while (0)
463#define IEM_MC_STORE_XREG_R32(a_iXReg, a_r32Value) \
464 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0] = (a_r32Value); } while (0)
465#define IEM_MC_STORE_XREG_R64(a_iXReg, a_r64Value) \
466 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0] = (a_r64Value); } while (0)
467#define IEM_MC_STORE_XREG_U32_ZX_U128(a_iXReg, a_u32Value) \
468 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0] = (uint32_t)(a_u32Value); \
469 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = 0; \
470 } while (0)
471#define IEM_MC_STORE_XREG_HI_U64(a_iXReg, a_u64Value) \
472 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[1] = (a_u64Value); } while (0)
473
474#define IEM_MC_BROADCAST_XREG_U8_ZX_VLMAX(a_iXRegDst, a_u8Src) \
475 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
476 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[0] = (a_u8Src); \
477 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[1] = (a_u8Src); \
478 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[2] = (a_u8Src); \
479 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[3] = (a_u8Src); \
480 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[4] = (a_u8Src); \
481 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[5] = (a_u8Src); \
482 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[6] = (a_u8Src); \
483 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[7] = (a_u8Src); \
484 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[8] = (a_u8Src); \
485 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[9] = (a_u8Src); \
486 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[10] = (a_u8Src); \
487 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[11] = (a_u8Src); \
488 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[12] = (a_u8Src); \
489 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[13] = (a_u8Src); \
490 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[14] = (a_u8Src); \
491 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au8[15] = (a_u8Src); \
492 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
493 } while (0)
494#define IEM_MC_BROADCAST_XREG_U16_ZX_VLMAX(a_iXRegDst, a_u16Src) \
495 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
496 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[0] = (a_u16Src); \
497 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[1] = (a_u16Src); \
498 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[2] = (a_u16Src); \
499 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[3] = (a_u16Src); \
500 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[4] = (a_u16Src); \
501 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[5] = (a_u16Src); \
502 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[6] = (a_u16Src); \
503 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au16[7] = (a_u16Src); \
504 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
505 } while (0)
506#define IEM_MC_BROADCAST_XREG_U32_ZX_VLMAX(a_iXRegDst, a_u32Src) \
507 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
508 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[0] = (a_u32Src); \
509 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[1] = (a_u32Src); \
510 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[2] = (a_u32Src); \
511 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au32[3] = (a_u32Src); \
512 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
513 } while (0)
514#define IEM_MC_BROADCAST_XREG_U64_ZX_VLMAX(a_iXRegDst, a_u64Src) \
515 do { uintptr_t const iXRegDstTmp = (a_iXRegDst); \
516 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[0] = (a_u64Src); \
517 pVCpu->cpum.GstCtx.XState.x87.aXMM[iXRegDstTmp].au64[1] = (a_u64Src); \
518 IEM_MC_CLEAR_YREG_128_UP(iXRegDstTmp); \
519 } while (0)
520
521#define IEM_MC_REF_XREG_U128(a_pu128Dst, a_iXReg) \
522 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
523#define IEM_MC_REF_XREG_U128_CONST(a_pu128Dst, a_iXReg) \
524 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].uXmm)
525#define IEM_MC_REF_XREG_XMM_CONST(a_pXmmDst, a_iXReg) \
526 (a_pXmmDst) = (&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)])
527#define IEM_MC_REF_XREG_U32_CONST(a_pu32Dst, a_iXReg) \
528 (a_pu32Dst) = ((uint32_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au32[0])
529#define IEM_MC_REF_XREG_U64_CONST(a_pu64Dst, a_iXReg) \
530 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].au64[0])
531#define IEM_MC_REF_XREG_R32_CONST(a_pr32Dst, a_iXReg) \
532 (a_pr32Dst) = ((RTFLOAT32U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar32[0])
533#define IEM_MC_REF_XREG_R64_CONST(a_pr64Dst, a_iXReg) \
534 (a_pr64Dst) = ((RTFLOAT64U const *)&pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXReg)].ar64[0])
535#define IEM_MC_COPY_XREG_U128(a_iXRegDst, a_iXRegSrc) \
536 do { pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[0] \
537 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[0]; \
538 pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegDst)].au64[1] \
539 = pVCpu->cpum.GstCtx.XState.x87.aXMM[(a_iXRegSrc)].au64[1]; \
540 } while (0)
541
542#define IEM_MC_FETCH_YREG_U32(a_u32Dst, a_iYRegSrc) \
543 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
544 (a_u32Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au32[0]; \
545 } while (0)
546#define IEM_MC_FETCH_YREG_U64(a_u64Dst, a_iYRegSrc) \
547 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
548 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
549 } while (0)
550#define IEM_MC_FETCH_YREG_2ND_U64(a_u64Dst, a_iYRegSrc) \
551 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
552 (a_u64Dst) = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
553 } while (0)
554#define IEM_MC_FETCH_YREG_U128(a_u128Dst, a_iYRegSrc) \
555 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
556 (a_u128Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
557 (a_u128Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
558 } while (0)
559#define IEM_MC_FETCH_YREG_U256(a_u256Dst, a_iYRegSrc) \
560 do { uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
561 (a_u256Dst).au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
562 (a_u256Dst).au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
563 (a_u256Dst).au64[2] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
564 (a_u256Dst).au64[3] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
565 } while (0)
566
567#define IEM_MC_STORE_YREG_U128(a_iYRegDst, a_iDQword, a_u128Value) \
568 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
569 if ((a_iDQword) == 0) \
570 { \
571 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
572 pVCpu->cpum.GstCtx.XState.x87.aXMM[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
573 } \
574 else \
575 { \
576 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[0] = (a_u128Value).au64[0]; \
577 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[(iYRegDstTmp)].au64[1] = (a_u128Value).au64[1]; \
578 } \
579 } while (0)
580
581#define IEM_MC_INT_CLEAR_ZMM_256_UP(a_iXRegDst) do { /* For AVX512 and AVX1024 support. */ } while (0)
582#define IEM_MC_STORE_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
583 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
584 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
585 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = 0; \
586 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
587 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
588 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
589 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
590 } while (0)
591#define IEM_MC_STORE_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
592 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
593 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
594 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
595 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
596 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
597 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
598 } while (0)
599#define IEM_MC_STORE_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
600 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
601 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
602 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
603 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
604 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
605 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
606 } while (0)
607#define IEM_MC_STORE_YREG_U256_ZX_VLMAX(a_iYRegDst, a_u256Src) \
608 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
609 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u256Src).au64[0]; \
610 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u256Src).au64[1]; \
611 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u256Src).au64[2]; \
612 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u256Src).au64[3]; \
613 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
614 } while (0)
615
616#define IEM_MC_BROADCAST_YREG_U8_ZX_VLMAX(a_iYRegDst, a_u8Src) \
617 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
618 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[0] = (a_u8Src); \
619 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[1] = (a_u8Src); \
620 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[2] = (a_u8Src); \
621 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[3] = (a_u8Src); \
622 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[4] = (a_u8Src); \
623 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[5] = (a_u8Src); \
624 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[6] = (a_u8Src); \
625 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[7] = (a_u8Src); \
626 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[8] = (a_u8Src); \
627 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[9] = (a_u8Src); \
628 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[10] = (a_u8Src); \
629 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[11] = (a_u8Src); \
630 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[12] = (a_u8Src); \
631 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[13] = (a_u8Src); \
632 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[14] = (a_u8Src); \
633 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au8[15] = (a_u8Src); \
634 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[0] = (a_u8Src); \
635 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[1] = (a_u8Src); \
636 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[2] = (a_u8Src); \
637 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[3] = (a_u8Src); \
638 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[4] = (a_u8Src); \
639 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[5] = (a_u8Src); \
640 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[6] = (a_u8Src); \
641 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[7] = (a_u8Src); \
642 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[8] = (a_u8Src); \
643 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[9] = (a_u8Src); \
644 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[10] = (a_u8Src); \
645 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[11] = (a_u8Src); \
646 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[12] = (a_u8Src); \
647 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[13] = (a_u8Src); \
648 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[14] = (a_u8Src); \
649 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au8[15] = (a_u8Src); \
650 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
651 } while (0)
652#define IEM_MC_BROADCAST_YREG_U16_ZX_VLMAX(a_iYRegDst, a_u16Src) \
653 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
654 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[0] = (a_u16Src); \
655 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[1] = (a_u16Src); \
656 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[2] = (a_u16Src); \
657 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[3] = (a_u16Src); \
658 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[4] = (a_u16Src); \
659 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[5] = (a_u16Src); \
660 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[6] = (a_u16Src); \
661 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au16[7] = (a_u16Src); \
662 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[0] = (a_u16Src); \
663 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[1] = (a_u16Src); \
664 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[2] = (a_u16Src); \
665 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[3] = (a_u16Src); \
666 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[4] = (a_u16Src); \
667 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[5] = (a_u16Src); \
668 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[6] = (a_u16Src); \
669 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au16[7] = (a_u16Src); \
670 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
671 } while (0)
672#define IEM_MC_BROADCAST_YREG_U32_ZX_VLMAX(a_iYRegDst, a_u32Src) \
673 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
674 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = (a_u32Src); \
675 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = (a_u32Src); \
676 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[2] = (a_u32Src); \
677 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[3] = (a_u32Src); \
678 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[0] = (a_u32Src); \
679 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[1] = (a_u32Src); \
680 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[2] = (a_u32Src); \
681 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au32[3] = (a_u32Src); \
682 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
683 } while (0)
684#define IEM_MC_BROADCAST_YREG_U64_ZX_VLMAX(a_iYRegDst, a_u64Src) \
685 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
686 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Src); \
687 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Src); \
688 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u64Src); \
689 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u64Src); \
690 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
691 } while (0)
692#define IEM_MC_BROADCAST_YREG_U128_ZX_VLMAX(a_iYRegDst, a_u128Src) \
693 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
694 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
695 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
696 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = (a_u128Src).au64[0]; \
697 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = (a_u128Src).au64[1]; \
698 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
699 } while (0)
700
701#define IEM_MC_REF_YREG_U128(a_pu128Dst, a_iYReg) \
702 (a_pu128Dst) = (&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
703#define IEM_MC_REF_YREG_U128_CONST(a_pu128Dst, a_iYReg) \
704 (a_pu128Dst) = ((PCRTUINT128U)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].uXmm)
705#define IEM_MC_REF_YREG_U64_CONST(a_pu64Dst, a_iYReg) \
706 (a_pu64Dst) = ((uint64_t const *)&pVCpu->cpum.GstCtx.XState.x87.aYMM[(a_iYReg)].au64[0])
707#define IEM_MC_CLEAR_YREG_128_UP(a_iYReg) \
708 do { uintptr_t const iYRegTmp = (a_iYReg); \
709 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[0] = 0; \
710 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegTmp].au64[1] = 0; \
711 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegTmp); \
712 } while (0)
713
714#define IEM_MC_COPY_YREG_U256_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
715 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
716 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
717 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
718 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
719 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[0]; \
720 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegSrcTmp].au64[1]; \
721 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
722 } while (0)
723#define IEM_MC_COPY_YREG_U128_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
724 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
725 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
726 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
727 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[1]; \
728 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
729 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
730 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
731 } while (0)
732#define IEM_MC_COPY_YREG_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc) \
733 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
734 uintptr_t const iYRegSrcTmp = (a_iYRegSrc); \
735 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcTmp].au64[0]; \
736 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = 0; \
737 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
738 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
739 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
740 } while (0)
741
742#define IEM_MC_MERGE_YREG_U32_U96_ZX_VLMAX(a_iYRegDst, a_iYRegSrc32, a_iYRegSrcHx) \
743 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
744 uintptr_t const iYRegSrc32Tmp = (a_iYRegSrc32); \
745 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
746 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc32Tmp].au32[0]; \
747 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au32[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au32[1]; \
748 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
749 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
750 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
751 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
752 } while (0)
753#define IEM_MC_MERGE_YREG_U64_U64_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) \
754 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
755 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
756 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
757 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
758 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
759 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
760 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
761 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
762 } while (0)
763#define IEM_MC_MERGE_YREG_U64LO_U64LO_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
764 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
765 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
766 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
767 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[0]; \
768 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
769 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
770 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
771 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
772 } while (0)
773#define IEM_MC_MERGE_YREG_U64HI_U64HI_ZX_VLMAX(a_iYRegDst, a_iYRegSrc64, a_iYRegSrcHx) /* for vmovhlps */ \
774 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
775 uintptr_t const iYRegSrc64Tmp = (a_iYRegSrc64); \
776 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
777 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrc64Tmp].au64[1]; \
778 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
779 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
780 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
781 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
782 } while (0)
783#define IEM_MC_MERGE_YREG_U64LO_U64LOCAL_ZX_VLMAX(a_iYRegDst, a_iYRegSrcHx, a_u64Local) \
784 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
785 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
786 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[0]; \
787 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = (a_u64Local); \
788 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
789 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
790 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
791 } while (0)
792#define IEM_MC_MERGE_YREG_U64LOCAL_U64HI_ZX_VLMAX(a_iYRegDst, a_u64Local, a_iYRegSrcHx) \
793 do { uintptr_t const iYRegDstTmp = (a_iYRegDst); \
794 uintptr_t const iYRegSrcHxTmp = (a_iYRegSrcHx); \
795 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[0] = (a_u64Local); \
796 pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegDstTmp].au64[1] = pVCpu->cpum.GstCtx.XState.x87.aXMM[iYRegSrcHxTmp].au64[1]; \
797 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[0] = 0; \
798 pVCpu->cpum.GstCtx.XState.u.YmmHi.aYmmHi[iYRegDstTmp].au64[1] = 0; \
799 IEM_MC_INT_CLEAR_ZMM_256_UP(iYRegDstTmp); \
800 } while (0)
801
802#ifndef IEM_WITH_SETJMP
803# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
804 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem)))
805# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
806 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem16)))
807# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
808 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &(a_u8Dst), (a_iSeg), (a_GCPtrMem32)))
809#else
810# define IEM_MC_FETCH_MEM_U8(a_u8Dst, a_iSeg, a_GCPtrMem) \
811 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
812# define IEM_MC_FETCH_MEM16_U8(a_u8Dst, a_iSeg, a_GCPtrMem16) \
813 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem16)))
814# define IEM_MC_FETCH_MEM32_U8(a_u8Dst, a_iSeg, a_GCPtrMem32) \
815 ((a_u8Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem32)))
816#endif
817
818#ifndef IEM_WITH_SETJMP
819# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
820 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem)))
821# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
822 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &(a_u16Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
823# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
824 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, (uint16_t *)&(a_i16Dst), (a_iSeg), (a_GCPtrMem)))
825#else
826# define IEM_MC_FETCH_MEM_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
827 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
828# define IEM_MC_FETCH_MEM_U16_DISP(a_u16Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
829 ((a_u16Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
830# define IEM_MC_FETCH_MEM_I16(a_i16Dst, a_iSeg, a_GCPtrMem) \
831 ((a_i16Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
832#endif
833
834#ifndef IEM_WITH_SETJMP
835# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
836 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem)))
837# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
838 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_u32Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
839# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
840 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, (uint32_t *)&(a_i32Dst), (a_iSeg), (a_GCPtrMem)))
841#else
842# define IEM_MC_FETCH_MEM_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
843 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
844# define IEM_MC_FETCH_MEM_U32_DISP(a_u32Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
845 ((a_u32Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
846# define IEM_MC_FETCH_MEM_I32(a_i32Dst, a_iSeg, a_GCPtrMem) \
847 ((a_i32Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
848#endif
849
850#ifdef SOME_UNUSED_FUNCTION
851# define IEM_MC_FETCH_MEM_S32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
852 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataS32SxU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
853#endif
854
855#ifndef IEM_WITH_SETJMP
856# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
857 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
858# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
859 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
860# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
861 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64AlignedU128(pVCpu, &(a_u64Dst), (a_iSeg), (a_GCPtrMem)))
862# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
863 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, (uint64_t *)&(a_i64Dst), (a_iSeg), (a_GCPtrMem)))
864#else
865# define IEM_MC_FETCH_MEM_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
866 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
867# define IEM_MC_FETCH_MEM_U64_DISP(a_u64Dst, a_iSeg, a_GCPtrMem, a_offDisp) \
868 ((a_u64Dst) = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem) + (a_offDisp)))
869# define IEM_MC_FETCH_MEM_U64_ALIGN_U128(a_u64Dst, a_iSeg, a_GCPtrMem) \
870 ((a_u64Dst) = iemMemFetchDataU64AlignedU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
871# define IEM_MC_FETCH_MEM_I64(a_i64Dst, a_iSeg, a_GCPtrMem) \
872 ((a_i64Dst) = (int64_t)iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
873#endif
874
875#ifndef IEM_WITH_SETJMP
876# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
877 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_r32Dst).u, (a_iSeg), (a_GCPtrMem)))
878# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
879 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_r64Dst).u, (a_iSeg), (a_GCPtrMem)))
880# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
881 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataR80(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem)))
882# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
883 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataD80(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem)))
884#else
885# define IEM_MC_FETCH_MEM_R32(a_r32Dst, a_iSeg, a_GCPtrMem) \
886 ((a_r32Dst).u = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
887# define IEM_MC_FETCH_MEM_R64(a_r64Dst, a_iSeg, a_GCPtrMem) \
888 ((a_r64Dst).u = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
889# define IEM_MC_FETCH_MEM_R80(a_r80Dst, a_iSeg, a_GCPtrMem) \
890 iemMemFetchDataR80Jmp(pVCpu, &(a_r80Dst), (a_iSeg), (a_GCPtrMem))
891# define IEM_MC_FETCH_MEM_D80(a_d80Dst, a_iSeg, a_GCPtrMem) \
892 iemMemFetchDataD80Jmp(pVCpu, &(a_d80Dst), (a_iSeg), (a_GCPtrMem))
893#endif
894
895#ifndef IEM_WITH_SETJMP
896# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
897 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
898# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
899 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
900# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
901 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem)))
902
903# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
904 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
905# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
906 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
907# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
908 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU128AlignedSse(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem)))
909# define IEM_MC_FETCH_MEM_XMM_U32(a_XmmDst, a_iDWord, a_iSeg, a_GCPtrMem) \
910 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &(a_XmmDst).au32[(a_iDWord)], (a_iSeg), (a_GCPtrMem)))
911# define IEM_MC_FETCH_MEM_XMM_U64(a_XmmDst, a_iQWord, a_iSeg, a_GCPtrMem) \
912 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU64(pVCpu, &(a_XmmDst).au64[(a_iQWord)], (a_iSeg), (a_GCPtrMem)))
913#else
914# define IEM_MC_FETCH_MEM_U128(a_u128Dst, a_iSeg, a_GCPtrMem) \
915 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
916# define IEM_MC_FETCH_MEM_U128_NO_AC(a_u128Dst, a_iSeg, a_GCPtrMem) \
917 iemMemFetchDataU128Jmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
918# define IEM_MC_FETCH_MEM_U128_ALIGN_SSE(a_u128Dst, a_iSeg, a_GCPtrMem) \
919 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_u128Dst), (a_iSeg), (a_GCPtrMem))
920
921# define IEM_MC_FETCH_MEM_XMM(a_XmmDst, a_iSeg, a_GCPtrMem) \
922 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
923# define IEM_MC_FETCH_MEM_XMM_NO_AC(a_XmmDst, a_iSeg, a_GCPtrMem) \
924 iemMemFetchDataU128Jmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
925# define IEM_MC_FETCH_MEM_XMM_ALIGN_SSE(a_XmmDst, a_iSeg, a_GCPtrMem) \
926 iemMemFetchDataU128AlignedSseJmp(pVCpu, &(a_XmmDst).uXmm, (a_iSeg), (a_GCPtrMem))
927# define IEM_MC_FETCH_MEM_XMM_U32(a_XmmDst, a_iDWord, a_iSeg, a_GCPtrMem) \
928 (a_XmmDst).au32[(a_iDWord)] = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem))
929# define IEM_MC_FETCH_MEM_XMM_U64(a_XmmDst, a_iQWord, a_iSeg, a_GCPtrMem) \
930 (a_XmmDst).au64[(a_iQWord)] = iemMemFetchDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem))
931#endif
932
933#ifndef IEM_WITH_SETJMP
934# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
935 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
936# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
937 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
938# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
939 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem)))
940
941# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
942 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
943# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
944 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
945# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
946 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU256AlignedSse(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem)))
947#else
948# define IEM_MC_FETCH_MEM_U256(a_u256Dst, a_iSeg, a_GCPtrMem) \
949 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
950# define IEM_MC_FETCH_MEM_U256_NO_AC(a_u256Dst, a_iSeg, a_GCPtrMem) \
951 iemMemFetchDataU256Jmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
952# define IEM_MC_FETCH_MEM_U256_ALIGN_AVX(a_u256Dst, a_iSeg, a_GCPtrMem) \
953 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_u256Dst), (a_iSeg), (a_GCPtrMem))
954
955# define IEM_MC_FETCH_MEM_YMM(a_YmmDst, a_iSeg, a_GCPtrMem) \
956 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
957# define IEM_MC_FETCH_MEM_YMM_NO_AC(a_YmmDst, a_iSeg, a_GCPtrMem) \
958 iemMemFetchDataU256Jmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
959# define IEM_MC_FETCH_MEM_YMM_ALIGN_AVX(a_YmmDst, a_iSeg, a_GCPtrMem) \
960 iemMemFetchDataU256AlignedSseJmp(pVCpu, &(a_YmmDst).ymm, (a_iSeg), (a_GCPtrMem))
961#endif
962
963
964
965#ifndef IEM_WITH_SETJMP
966# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
967 do { \
968 uint8_t u8Tmp; \
969 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
970 (a_u16Dst) = u8Tmp; \
971 } while (0)
972# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
973 do { \
974 uint8_t u8Tmp; \
975 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
976 (a_u32Dst) = u8Tmp; \
977 } while (0)
978# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
979 do { \
980 uint8_t u8Tmp; \
981 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
982 (a_u64Dst) = u8Tmp; \
983 } while (0)
984# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
985 do { \
986 uint16_t u16Tmp; \
987 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
988 (a_u32Dst) = u16Tmp; \
989 } while (0)
990# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
991 do { \
992 uint16_t u16Tmp; \
993 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
994 (a_u64Dst) = u16Tmp; \
995 } while (0)
996# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
997 do { \
998 uint32_t u32Tmp; \
999 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1000 (a_u64Dst) = u32Tmp; \
1001 } while (0)
1002#else /* IEM_WITH_SETJMP */
1003# define IEM_MC_FETCH_MEM_U8_ZX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1004 ((a_u16Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1005# define IEM_MC_FETCH_MEM_U8_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1006 ((a_u32Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1007# define IEM_MC_FETCH_MEM_U8_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1008 ((a_u64Dst) = iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1009# define IEM_MC_FETCH_MEM_U16_ZX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1010 ((a_u32Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1011# define IEM_MC_FETCH_MEM_U16_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1012 ((a_u64Dst) = iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1013# define IEM_MC_FETCH_MEM_U32_ZX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1014 ((a_u64Dst) = iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1015#endif /* IEM_WITH_SETJMP */
1016
1017#ifndef IEM_WITH_SETJMP
1018# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1019 do { \
1020 uint8_t u8Tmp; \
1021 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1022 (a_u16Dst) = (int8_t)u8Tmp; \
1023 } while (0)
1024# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1025 do { \
1026 uint8_t u8Tmp; \
1027 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1028 (a_u32Dst) = (int8_t)u8Tmp; \
1029 } while (0)
1030# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1031 do { \
1032 uint8_t u8Tmp; \
1033 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU8(pVCpu, &u8Tmp, (a_iSeg), (a_GCPtrMem))); \
1034 (a_u64Dst) = (int8_t)u8Tmp; \
1035 } while (0)
1036# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1037 do { \
1038 uint16_t u16Tmp; \
1039 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1040 (a_u32Dst) = (int16_t)u16Tmp; \
1041 } while (0)
1042# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1043 do { \
1044 uint16_t u16Tmp; \
1045 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU16(pVCpu, &u16Tmp, (a_iSeg), (a_GCPtrMem))); \
1046 (a_u64Dst) = (int16_t)u16Tmp; \
1047 } while (0)
1048# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1049 do { \
1050 uint32_t u32Tmp; \
1051 IEM_MC_RETURN_ON_FAILURE(iemMemFetchDataU32(pVCpu, &u32Tmp, (a_iSeg), (a_GCPtrMem))); \
1052 (a_u64Dst) = (int32_t)u32Tmp; \
1053 } while (0)
1054#else /* IEM_WITH_SETJMP */
1055# define IEM_MC_FETCH_MEM_U8_SX_U16(a_u16Dst, a_iSeg, a_GCPtrMem) \
1056 ((a_u16Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1057# define IEM_MC_FETCH_MEM_U8_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1058 ((a_u32Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1059# define IEM_MC_FETCH_MEM_U8_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1060 ((a_u64Dst) = (int8_t)iemMemFetchDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1061# define IEM_MC_FETCH_MEM_U16_SX_U32(a_u32Dst, a_iSeg, a_GCPtrMem) \
1062 ((a_u32Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1063# define IEM_MC_FETCH_MEM_U16_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1064 ((a_u64Dst) = (int16_t)iemMemFetchDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1065# define IEM_MC_FETCH_MEM_U32_SX_U64(a_u64Dst, a_iSeg, a_GCPtrMem) \
1066 ((a_u64Dst) = (int32_t)iemMemFetchDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem)))
1067#endif /* IEM_WITH_SETJMP */
1068
1069#ifndef IEM_WITH_SETJMP
1070# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1071 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value)))
1072# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1073 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value)))
1074# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1075 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value)))
1076# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1077 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value)))
1078#else
1079# define IEM_MC_STORE_MEM_U8(a_iSeg, a_GCPtrMem, a_u8Value) \
1080 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8Value))
1081# define IEM_MC_STORE_MEM_U16(a_iSeg, a_GCPtrMem, a_u16Value) \
1082 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16Value))
1083# define IEM_MC_STORE_MEM_U32(a_iSeg, a_GCPtrMem, a_u32Value) \
1084 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32Value))
1085# define IEM_MC_STORE_MEM_U64(a_iSeg, a_GCPtrMem, a_u64Value) \
1086 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64Value))
1087#endif
1088
1089#ifndef IEM_WITH_SETJMP
1090# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1091 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU8(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C)))
1092# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1093 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU16(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C)))
1094# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1095 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU32(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C)))
1096# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1097 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU64(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C)))
1098#else
1099# define IEM_MC_STORE_MEM_U8_CONST(a_iSeg, a_GCPtrMem, a_u8C) \
1100 iemMemStoreDataU8Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u8C))
1101# define IEM_MC_STORE_MEM_U16_CONST(a_iSeg, a_GCPtrMem, a_u16C) \
1102 iemMemStoreDataU16Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u16C))
1103# define IEM_MC_STORE_MEM_U32_CONST(a_iSeg, a_GCPtrMem, a_u32C) \
1104 iemMemStoreDataU32Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u32C))
1105# define IEM_MC_STORE_MEM_U64_CONST(a_iSeg, a_GCPtrMem, a_u64C) \
1106 iemMemStoreDataU64Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u64C))
1107#endif
1108
1109#define IEM_MC_STORE_MEM_I8_CONST_BY_REF( a_pi8Dst, a_i8C) *(a_pi8Dst) = (a_i8C)
1110#define IEM_MC_STORE_MEM_I16_CONST_BY_REF(a_pi16Dst, a_i16C) *(a_pi16Dst) = (a_i16C)
1111#define IEM_MC_STORE_MEM_I32_CONST_BY_REF(a_pi32Dst, a_i32C) *(a_pi32Dst) = (a_i32C)
1112#define IEM_MC_STORE_MEM_I64_CONST_BY_REF(a_pi64Dst, a_i64C) *(a_pi64Dst) = (a_i64C)
1113#define IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(a_pr32Dst) (a_pr32Dst)->u = UINT32_C(0xffc00000)
1114#define IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(a_pr64Dst) (a_pr64Dst)->u = UINT64_C(0xfff8000000000000)
1115#define IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(a_pr80Dst) \
1116 do { \
1117 (a_pr80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1118 (a_pr80Dst)->au16[4] = UINT16_C(0xffff); \
1119 } while (0)
1120#define IEM_MC_STORE_MEM_INDEF_D80_BY_REF(a_pd80Dst) \
1121 do { \
1122 (a_pd80Dst)->au64[0] = UINT64_C(0xc000000000000000); \
1123 (a_pd80Dst)->au16[4] = UINT16_C(0xffff); \
1124 } while (0)
1125
1126#ifndef IEM_WITH_SETJMP
1127# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1128 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1129# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1130 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU128AlignedSse(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value)))
1131#else
1132# define IEM_MC_STORE_MEM_U128(a_iSeg, a_GCPtrMem, a_u128Value) \
1133 iemMemStoreDataU128Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1134# define IEM_MC_STORE_MEM_U128_ALIGN_SSE(a_iSeg, a_GCPtrMem, a_u128Value) \
1135 iemMemStoreDataU128AlignedSseJmp(pVCpu, (a_iSeg), (a_GCPtrMem), (a_u128Value))
1136#endif
1137
1138#ifndef IEM_WITH_SETJMP
1139# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1140 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1141# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1142 IEM_MC_RETURN_ON_FAILURE(iemMemStoreDataU256AlignedAvx(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value)))
1143#else
1144# define IEM_MC_STORE_MEM_U256(a_iSeg, a_GCPtrMem, a_u256Value) \
1145 iemMemStoreDataU256Jmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1146# define IEM_MC_STORE_MEM_U256_ALIGN_AVX(a_iSeg, a_GCPtrMem, a_u256Value) \
1147 iemMemStoreDataU256AlignedAvxJmp(pVCpu, (a_iSeg), (a_GCPtrMem), &(a_u256Value))
1148#endif
1149
1150
1151#define IEM_MC_PUSH_U16(a_u16Value) \
1152 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU16(pVCpu, (a_u16Value)))
1153#define IEM_MC_PUSH_U32(a_u32Value) \
1154 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32(pVCpu, (a_u32Value)))
1155#define IEM_MC_PUSH_U32_SREG(a_u32Value) \
1156 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU32SReg(pVCpu, (a_u32Value)))
1157#define IEM_MC_PUSH_U64(a_u64Value) \
1158 IEM_MC_RETURN_ON_FAILURE(iemMemStackPushU64(pVCpu, (a_u64Value)))
1159
1160#define IEM_MC_POP_U16(a_pu16Value) \
1161 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16(pVCpu, (a_pu16Value)))
1162#define IEM_MC_POP_U32(a_pu32Value) \
1163 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
1164#define IEM_MC_POP_U64(a_pu64Value) \
1165 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
1166
1167#define IEM_MC_POP_EX_U16(a_pu16Value, a_) \
1168 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU16Ex(pVCpu, (a_pu16Value), (a_pNewRsp)))
1169#define IEM_MC_POP_EX_U32(a_pu32Value) \
1170 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU32(pVCpu, (a_pu32Value)))
1171#define IEM_MC_POP_EX_U64(a_pu64Value) \
1172 IEM_MC_RETURN_ON_FAILURE(iemMemStackPopU64(pVCpu, (a_pu64Value)))
1173
1174/** Maps guest memory for direct or bounce buffered access.
1175 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1176 * @remarks May return.
1177 */
1178#define IEM_MC_MEM_MAP(a_pMem, a_fAccess, a_iSeg, a_GCPtrMem, a_iArg) \
1179 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pMem), sizeof(*(a_pMem)), (a_iSeg), \
1180 (a_GCPtrMem), (a_fAccess), sizeof(*(a_pMem)) - 1))
1181
1182/** Maps guest memory for direct or bounce buffered access.
1183 * The purpose is to pass it to an operand implementation, thus the a_iArg.
1184 * @remarks May return.
1185 */
1186#define IEM_MC_MEM_MAP_EX(a_pvMem, a_fAccess, a_cbMem, a_iSeg, a_GCPtrMem, a_cbAlign, a_iArg) \
1187 IEM_MC_RETURN_ON_FAILURE(iemMemMap(pVCpu, (void **)&(a_pvMem), (a_cbMem), (a_iSeg), \
1188 (a_GCPtrMem), (a_fAccess), (a_cbAlign)))
1189
1190/** Commits the memory and unmaps the guest memory.
1191 * @remarks May return.
1192 */
1193#define IEM_MC_MEM_COMMIT_AND_UNMAP(a_pvMem, a_fAccess) \
1194 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess)))
1195
1196/** Commits the memory and unmaps the guest memory unless the FPU status word
1197 * indicates (@a a_u16FSW) and FPU control word indicates a pending exception
1198 * that would cause FLD not to store.
1199 *
1200 * The current understanding is that \#O, \#U, \#IA and \#IS will prevent a
1201 * store, while \#P will not.
1202 *
1203 * @remarks May in theory return - for now.
1204 */
1205#define IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(a_pvMem, a_fAccess, a_u16FSW) \
1206 do { \
1207 if ( !(a_u16FSW & X86_FSW_ES) \
1208 || !( (a_u16FSW & (X86_FSW_UE | X86_FSW_OE | X86_FSW_IE)) \
1209 & ~(pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_MASK_ALL) ) ) \
1210 IEM_MC_RETURN_ON_FAILURE(iemMemCommitAndUnmap(pVCpu, (a_pvMem), (a_fAccess))); \
1211 } while (0)
1212
1213/** Calculate efficient address from R/M. */
1214#ifndef IEM_WITH_SETJMP
1215# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
1216 IEM_MC_RETURN_ON_FAILURE(iemOpHlpCalcRmEffAddr(pVCpu, (a_bRm), (a_cbImmAndRspOffset), &(a_GCPtrEff)))
1217#else
1218# define IEM_MC_CALC_RM_EFF_ADDR(a_GCPtrEff, a_bRm, a_cbImmAndRspOffset) \
1219 ((a_GCPtrEff) = iemOpHlpCalcRmEffAddrJmp(pVCpu, (a_bRm), (a_cbImmAndRspOffset)))
1220#endif
1221
1222#define IEM_MC_CALL_VOID_AIMPL_0(a_pfn) (a_pfn)()
1223#define IEM_MC_CALL_VOID_AIMPL_1(a_pfn, a0) (a_pfn)((a0))
1224#define IEM_MC_CALL_VOID_AIMPL_2(a_pfn, a0, a1) (a_pfn)((a0), (a1))
1225#define IEM_MC_CALL_VOID_AIMPL_3(a_pfn, a0, a1, a2) (a_pfn)((a0), (a1), (a2))
1226#define IEM_MC_CALL_VOID_AIMPL_4(a_pfn, a0, a1, a2, a3) (a_pfn)((a0), (a1), (a2), (a3))
1227#define IEM_MC_CALL_AIMPL_3(a_rc, a_pfn, a0, a1, a2) (a_rc) = (a_pfn)((a0), (a1), (a2))
1228#define IEM_MC_CALL_AIMPL_4(a_rc, a_pfn, a0, a1, a2, a3) (a_rc) = (a_pfn)((a0), (a1), (a2), (a3))
1229
1230/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
1231 *
1232 * These clues are mainly for the recompiler, so that it can emit correct code.
1233 *
1234 * They are processed by the python script and which also automatically
1235 * calculates flags for MC blocks based on the statements, extending the use of
1236 * these flags to describe MC block behavior to the recompiler core. The python
1237 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
1238 * error checking purposes. The script emits the necessary fEndTb = true and
1239 * similar statements as this reduces compile time a tiny bit.
1240 *
1241 * @{ */
1242/** Flag set if direct branch, clear if absolute or indirect. */
1243#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
1244/** Flag set if indirect branch, clear if direct or relative.
1245 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
1246 * as well as for return instructions (RET, IRET, RETF). */
1247#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
1248/** Flag set if relative branch, clear if absolute or indirect. */
1249#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
1250/** Flag set if conditional branch, clear if unconditional. */
1251#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
1252/** Flag set if it's a far branch (changes CS). */
1253#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
1254/** Convenience: Testing any kind of branch. */
1255#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
1256
1257/** Execution flags may change (IEMCPU::fExec). */
1258#define IEM_CIMPL_F_MODE RT_BIT_32(5)
1259/** May change significant portions of RFLAGS. */
1260#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
1261/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS . */
1262#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
1263/** May enable interrupts, so recheck IRQ immediately afterwards executing
1264 * the instruction. */
1265#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(8)
1266/** May disable interrupts, so recheck IRQ immediately before executing the
1267 * instruction. */
1268#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(9)
1269/** Convenience: Check for IRQ both before and after an instruction. */
1270#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
1271/** May trigger a VM exit. */
1272#define IEM_CIMPL_F_VMEXIT RT_BIT_32(10)
1273/** May modify FPU state. */
1274#define IEM_CIMPL_F_FPU RT_BIT_32(11)
1275/** REP prefixed instruction which may yield before updating PC. */
1276#define IEM_CIMPL_F_REP RT_BIT_32(12)
1277/** Force end of TB after the instruction. */
1278#define IEM_CIMPL_F_END_TB RT_BIT_32(13)
1279/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
1280#define IEM_CIMPL_F_XCPT \
1281 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
1282/** @} */
1283
1284/** @def IEM_MC_CALL_CIMPL_HLP_RET
1285 * Helper macro for check that all important IEM_CIMPL_F_XXX bits are set.
1286 */
1287#ifdef VBOX_STRICT
1288#define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) \
1289 do { \
1290 uint8_t const cbInstr = IEM_GET_INSTR_LEN(pVCpu); /* may be flushed */ \
1291 uint16_t const uCsBefore = pVCpu->cpum.GstCtx.cs.Sel; \
1292 uint64_t const uRipBefore = pVCpu->cpum.GstCtx.rip; \
1293 uint32_t const fEflBefore = pVCpu->cpum.GstCtx.eflags.u; \
1294 uint32_t const fExecBefore = pVCpu->iem.s.fExec; \
1295 VBOXSTRICTRC const rcStrictHlp = a_CallExpr; \
1296 if (rcStrictHlp == VINF_SUCCESS) \
1297 { \
1298 AssertMsg( ((a_fFlags) & IEM_CIMPL_F_BRANCH_ANY) \
1299 || ( uRipBefore + cbInstr == pVCpu->cpum.GstCtx.rip \
1300 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel) \
1301 || ( ((a_fFlags) & IEM_CIMPL_F_REP) \
1302 && uRipBefore == pVCpu->cpum.GstCtx.rip \
1303 && uCsBefore == pVCpu->cpum.GstCtx.cs.Sel), \
1304 ("CS:RIP=%04x:%08RX64 + %x -> %04x:%08RX64, expected %04x:%08RX64\n", uCsBefore, uRipBefore, cbInstr, \
1305 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uCsBefore, uRipBefore + cbInstr)); \
1306 if ((a_fFlags) & IEM_CIMPL_F_RFLAGS) \
1307 { /* No need to check fEflBefore */ Assert(!((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS)); } \
1308 else if ((a_fFlags) & IEM_CIMPL_F_STATUS_FLAGS) \
1309 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)) \
1310 == (fEflBefore & ~(X86_EFL_STATUS_BITS | X86_EFL_RF)), \
1311 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
1312 else \
1313 AssertMsg( (pVCpu->cpum.GstCtx.eflags.u & ~(X86_EFL_RF)) \
1314 == (fEflBefore & ~(X86_EFL_RF)), \
1315 ("EFL=%#RX32 -> %#RX32\n", fEflBefore, pVCpu->cpum.GstCtx.eflags.u)); \
1316 if (!((a_fFlags) & IEM_CIMPL_F_MODE)) \
1317 { \
1318 uint32_t fExecRecalc = iemCalcExecFlags(pVCpu) | (pVCpu->iem.s.fExec & IEM_F_USER_OPTS); \
1319 AssertMsg(fExecBefore == fExecRecalc, \
1320 ("fExec=%#x -> %#x (diff %#x)\n", fExecBefore, fExecRecalc, fExecBefore ^ fExecRecalc)); \
1321 } \
1322 } \
1323 return rcStrictHlp; \
1324 } while (0)
1325#else
1326# define IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, a_CallExpr) return a_CallExpr
1327#endif
1328
1329/**
1330 * Defers the rest of the instruction emulation to a C implementation routine
1331 * and returns, only taking the standard parameters.
1332 *
1333 * @param a_fFlags IEM_CIMPL_F_XXX.
1334 * @param a_pfnCImpl The pointer to the C routine.
1335 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1336 */
1337#define IEM_MC_CALL_CIMPL_0(a_fFlags, a_pfnCImpl) \
1338 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
1339
1340/**
1341 * Defers the rest of instruction emulation to a C implementation routine and
1342 * returns, taking one argument in addition to the standard ones.
1343 *
1344 * @param a_fFlags IEM_CIMPL_F_XXX.
1345 * @param a_pfnCImpl The pointer to the C routine.
1346 * @param a0 The argument.
1347 */
1348#define IEM_MC_CALL_CIMPL_1(a_fFlags, a_pfnCImpl, a0) \
1349 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
1350
1351/**
1352 * Defers the rest of the instruction emulation to a C implementation routine
1353 * and returns, taking two arguments in addition to the standard ones.
1354 *
1355 * @param a_fFlags IEM_CIMPL_F_XXX.
1356 * @param a_pfnCImpl The pointer to the C routine.
1357 * @param a0 The first extra argument.
1358 * @param a1 The second extra argument.
1359 */
1360#define IEM_MC_CALL_CIMPL_2(a_fFlags, a_pfnCImpl, a0, a1) \
1361 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
1362
1363/**
1364 * Defers the rest of the instruction emulation to a C implementation routine
1365 * and returns, taking three arguments in addition to the standard ones.
1366 *
1367 * @param a_fFlags IEM_CIMPL_F_XXX.
1368 * @param a_pfnCImpl The pointer to the C routine.
1369 * @param a0 The first extra argument.
1370 * @param a1 The second extra argument.
1371 * @param a2 The third extra argument.
1372 */
1373#define IEM_MC_CALL_CIMPL_3(a_fFlags, a_pfnCImpl, a0, a1, a2) \
1374 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
1375
1376/**
1377 * Defers the rest of the instruction emulation to a C implementation routine
1378 * and returns, taking four arguments in addition to the standard ones.
1379 *
1380 * @param a_fFlags IEM_CIMPL_F_XXX.
1381 * @param a_pfnCImpl The pointer to the C routine.
1382 * @param a0 The first extra argument.
1383 * @param a1 The second extra argument.
1384 * @param a2 The third extra argument.
1385 * @param a3 The fourth extra argument.
1386 */
1387#define IEM_MC_CALL_CIMPL_4(a_fFlags, a_pfnCImpl, a0, a1, a2, a3) \
1388 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3))
1389
1390/**
1391 * Defers the rest of the instruction emulation to a C implementation routine
1392 * and returns, taking two arguments in addition to the standard ones.
1393 *
1394 * @param a_fFlags IEM_CIMPL_F_XXX.
1395 * @param a_pfnCImpl The pointer to the C routine.
1396 * @param a0 The first extra argument.
1397 * @param a1 The second extra argument.
1398 * @param a2 The third extra argument.
1399 * @param a3 The fourth extra argument.
1400 * @param a4 The fifth extra argument.
1401 */
1402#define IEM_MC_CALL_CIMPL_5(a_fFlags, a_pfnCImpl, a0, a1, a2, a3, a4) \
1403 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2, a3, a4))
1404
1405/**
1406 * Defers the entire instruction emulation to a C implementation routine and
1407 * returns, only taking the standard parameters.
1408 *
1409 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1410 *
1411 * @param a_fFlags IEM_CIMPL_F_XXX.
1412 * @param a_pfnCImpl The pointer to the C routine.
1413 * @sa IEM_DECL_IMPL_C_TYPE_0 and IEM_CIMPL_DEF_0.
1414 */
1415#define IEM_MC_DEFER_TO_CIMPL_0_RET(a_fFlags, a_pfnCImpl) \
1416 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu)))
1417
1418/**
1419 * Defers the entire instruction emulation to a C implementation routine and
1420 * returns, taking one argument in addition to the standard ones.
1421 *
1422 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1423 *
1424 * @param a_fFlags IEM_CIMPL_F_XXX.
1425 * @param a_pfnCImpl The pointer to the C routine.
1426 * @param a0 The argument.
1427 */
1428#define IEM_MC_DEFER_TO_CIMPL_1_RET(a_fFlags, a_pfnCImpl, a0) \
1429 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0))
1430
1431/**
1432 * Defers the entire instruction emulation to a C implementation routine and
1433 * returns, taking two arguments in addition to the standard ones.
1434 *
1435 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1436 *
1437 * @param a_fFlags IEM_CIMPL_F_XXX.
1438 * @param a_pfnCImpl The pointer to the C routine.
1439 * @param a0 The first extra argument.
1440 * @param a1 The second extra argument.
1441 */
1442#define IEM_MC_DEFER_TO_CIMPL_2_RET(a_fFlags, a_pfnCImpl, a0, a1) \
1443 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1))
1444
1445/**
1446 * Defers the entire instruction emulation to a C implementation routine and
1447 * returns, taking three arguments in addition to the standard ones.
1448 *
1449 * This shall be used without any IEM_MC_BEGIN or IEM_END macro surrounding it.
1450 *
1451 * @param a_fFlags IEM_CIMPL_F_XXX.
1452 * @param a_pfnCImpl The pointer to the C routine.
1453 * @param a0 The first extra argument.
1454 * @param a1 The second extra argument.
1455 * @param a2 The third extra argument.
1456 */
1457#define IEM_MC_DEFER_TO_CIMPL_3_RET(a_fFlags, a_pfnCImpl, a0, a1, a2) \
1458 IEM_MC_CALL_CIMPL_HLP_RET(a_fFlags, (a_pfnCImpl)(pVCpu, IEM_GET_INSTR_LEN(pVCpu), a0, a1, a2))
1459
1460
1461/**
1462 * Calls a FPU assembly implementation taking one visible argument.
1463 *
1464 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1465 * @param a0 The first extra argument.
1466 */
1467#define IEM_MC_CALL_FPU_AIMPL_1(a_pfnAImpl, a0) \
1468 do { \
1469 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0)); \
1470 } while (0)
1471
1472/**
1473 * Calls a FPU assembly implementation taking two visible arguments.
1474 *
1475 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1476 * @param a0 The first extra argument.
1477 * @param a1 The second extra argument.
1478 */
1479#define IEM_MC_CALL_FPU_AIMPL_2(a_pfnAImpl, a0, a1) \
1480 do { \
1481 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1482 } while (0)
1483
1484/**
1485 * Calls a FPU assembly implementation taking three visible arguments.
1486 *
1487 * @param a_pfnAImpl Pointer to the assembly FPU routine.
1488 * @param a0 The first extra argument.
1489 * @param a1 The second extra argument.
1490 * @param a2 The third extra argument.
1491 */
1492#define IEM_MC_CALL_FPU_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1493 do { \
1494 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1495 } while (0)
1496
1497#define IEM_MC_SET_FPU_RESULT(a_FpuData, a_FSW, a_pr80Value) \
1498 do { \
1499 (a_FpuData).FSW = (a_FSW); \
1500 (a_FpuData).r80Result = *(a_pr80Value); \
1501 } while (0)
1502
1503/** Pushes FPU result onto the stack. */
1504#define IEM_MC_PUSH_FPU_RESULT(a_FpuData, a_uFpuOpcode) \
1505 iemFpuPushResult(pVCpu, &a_FpuData, a_uFpuOpcode)
1506/** Pushes FPU result onto the stack and sets the FPUDP. */
1507#define IEM_MC_PUSH_FPU_RESULT_MEM_OP(a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1508 iemFpuPushResultWithMemOp(pVCpu, &a_FpuData, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1509
1510/** Replaces ST0 with value one and pushes value 2 onto the FPU stack. */
1511#define IEM_MC_PUSH_FPU_RESULT_TWO(a_FpuDataTwo, a_uFpuOpcode) \
1512 iemFpuPushResultTwo(pVCpu, &a_FpuDataTwo, a_uFpuOpcode)
1513
1514/** Stores FPU result in a stack register. */
1515#define IEM_MC_STORE_FPU_RESULT(a_FpuData, a_iStReg, a_uFpuOpcode) \
1516 iemFpuStoreResult(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
1517/** Stores FPU result in a stack register and pops the stack. */
1518#define IEM_MC_STORE_FPU_RESULT_THEN_POP(a_FpuData, a_iStReg, a_uFpuOpcode) \
1519 iemFpuStoreResultThenPop(pVCpu, &a_FpuData, a_iStReg, a_uFpuOpcode)
1520/** Stores FPU result in a stack register and sets the FPUDP. */
1521#define IEM_MC_STORE_FPU_RESULT_MEM_OP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1522 iemFpuStoreResultWithMemOp(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1523/** Stores FPU result in a stack register, sets the FPUDP, and pops the
1524 * stack. */
1525#define IEM_MC_STORE_FPU_RESULT_WITH_MEM_OP_THEN_POP(a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1526 iemFpuStoreResultWithMemOpThenPop(pVCpu, &a_FpuData, a_iStReg, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1527
1528/** Only update the FOP, FPUIP, and FPUCS. (For FNOP.) */
1529#define IEM_MC_UPDATE_FPU_OPCODE_IP(a_uFpuOpcode) \
1530 iemFpuUpdateOpcodeAndIp(pVCpu, a_uFpuOpcode)
1531/** Free a stack register (for FFREE and FFREEP). */
1532#define IEM_MC_FPU_STACK_FREE(a_iStReg) \
1533 iemFpuStackFree(pVCpu, a_iStReg)
1534/** Increment the FPU stack pointer. */
1535#define IEM_MC_FPU_STACK_INC_TOP() \
1536 iemFpuStackIncTop(pVCpu)
1537/** Decrement the FPU stack pointer. */
1538#define IEM_MC_FPU_STACK_DEC_TOP() \
1539 iemFpuStackDecTop(pVCpu)
1540
1541/** Updates the FSW, FOP, FPUIP, and FPUCS. */
1542#define IEM_MC_UPDATE_FSW(a_u16FSW, a_uFpuOpcode) \
1543 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
1544/** Updates the FSW with a constant value as well as FOP, FPUIP, and FPUCS. */
1545#define IEM_MC_UPDATE_FSW_CONST(a_u16FSW, a_uFpuOpcode) \
1546 iemFpuUpdateFSW(pVCpu, a_u16FSW, a_uFpuOpcode)
1547/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP, and FPUDS. */
1548#define IEM_MC_UPDATE_FSW_WITH_MEM_OP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1549 iemFpuUpdateFSWWithMemOp(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1550/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack. */
1551#define IEM_MC_UPDATE_FSW_THEN_POP(a_u16FSW, a_uFpuOpcode) \
1552 iemFpuUpdateFSWThenPop(pVCpu, a_u16FSW, a_uFpuOpcode)
1553/** Updates the FSW, FOP, FPUIP, FPUCS, FPUDP and FPUDS, and then pops the
1554 * stack. */
1555#define IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1556 iemFpuUpdateFSWWithMemOpThenPop(pVCpu, a_u16FSW, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1557/** Updates the FSW, FOP, FPUIP, and FPUCS, and then pops the stack twice. */
1558#define IEM_MC_UPDATE_FSW_THEN_POP_POP(a_u16FSW, a_uFpuOpcode) \
1559 iemFpuUpdateFSWThenPopPop(pVCpu, a_u16FSW, a_uFpuOpcode)
1560
1561/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. */
1562#define IEM_MC_FPU_STACK_UNDERFLOW(a_iStDst, a_uFpuOpcode) \
1563 iemFpuStackUnderflow(pVCpu, a_iStDst, a_uFpuOpcode)
1564/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1565 * stack. */
1566#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(a_iStDst, a_uFpuOpcode) \
1567 iemFpuStackUnderflowThenPop(pVCpu, a_iStDst, a_uFpuOpcode)
1568/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1569 * FPUDS. */
1570#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1571 iemFpuStackUnderflowWithMemOp(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1572/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS, FOP, FPUDP and
1573 * FPUDS. Pops stack. */
1574#define IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1575 iemFpuStackUnderflowWithMemOpThenPop(pVCpu, a_iStDst, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1576/** Raises a FPU stack underflow exception. Sets FPUIP, FPUCS and FOP. Pops
1577 * stack twice. */
1578#define IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP(a_uFpuOpcode) \
1579 iemFpuStackUnderflowThenPopPop(pVCpu, a_uFpuOpcode)
1580/** Raises a FPU stack underflow exception for an instruction pushing a result
1581 * value onto the stack. Sets FPUIP, FPUCS and FOP. */
1582#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW(a_uFpuOpcode) \
1583 iemFpuStackPushUnderflow(pVCpu, a_uFpuOpcode)
1584/** Raises a FPU stack underflow exception for an instruction pushing a result
1585 * value onto the stack and replacing ST0. Sets FPUIP, FPUCS and FOP. */
1586#define IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO(a_uFpuOpcode) \
1587 iemFpuStackPushUnderflowTwo(pVCpu, a_uFpuOpcode)
1588
1589/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1590 * FPUIP, FPUCS and FOP. */
1591#define IEM_MC_FPU_STACK_PUSH_OVERFLOW(a_uFpuOpcode) \
1592 iemFpuStackPushOverflow(pVCpu, a_uFpuOpcode)
1593/** Raises a FPU stack overflow exception as part of a push attempt. Sets
1594 * FPUIP, FPUCS, FOP, FPUDP and FPUDS. */
1595#define IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(a_iEffSeg, a_GCPtrEff, a_uFpuOpcode) \
1596 iemFpuStackPushOverflowWithMemOp(pVCpu, a_iEffSeg, a_GCPtrEff, a_uFpuOpcode)
1597/** Prepares for using the FPU state.
1598 * Ensures that we can use the host FPU in the current context (RC+R0.
1599 * Ensures the guest FPU state in the CPUMCTX is up to date. */
1600#define IEM_MC_PREPARE_FPU_USAGE() iemFpuPrepareUsage(pVCpu)
1601/** Actualizes the guest FPU state so it can be accessed read-only fashion. */
1602#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ() iemFpuActualizeStateForRead(pVCpu)
1603/** Actualizes the guest FPU state so it can be accessed and modified. */
1604#define IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE() iemFpuActualizeStateForChange(pVCpu)
1605
1606/** Stores SSE SIMD result updating MXCSR. */
1607#define IEM_MC_STORE_SSE_RESULT(a_SseData, a_iXmmReg) \
1608 iemSseStoreResult(pVCpu, &a_SseData, a_iXmmReg)
1609/** Updates MXCSR. */
1610#define IEM_MC_SSE_UPDATE_MXCSR(a_fMxcsr) \
1611 iemSseUpdateMxcsr(pVCpu, a_fMxcsr)
1612
1613/** Prepares for using the SSE state.
1614 * Ensures that we can use the host SSE/FPU in the current context (RC+R0.
1615 * Ensures the guest SSE state in the CPUMCTX is up to date. */
1616#define IEM_MC_PREPARE_SSE_USAGE() iemFpuPrepareUsageSse(pVCpu)
1617/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1618#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_READ() iemFpuActualizeSseStateForRead(pVCpu)
1619/** Actualizes the guest XMM0..15 and MXCSR register state for read-write access. */
1620#define IEM_MC_ACTUALIZE_SSE_STATE_FOR_CHANGE() iemFpuActualizeSseStateForChange(pVCpu)
1621
1622/** Prepares for using the AVX state.
1623 * Ensures that we can use the host AVX/FPU in the current context (RC+R0.
1624 * Ensures the guest AVX state in the CPUMCTX is up to date.
1625 * @note This will include the AVX512 state too when support for it is added
1626 * due to the zero extending feature of VEX instruction. */
1627#define IEM_MC_PREPARE_AVX_USAGE() iemFpuPrepareUsageAvx(pVCpu)
1628/** Actualizes the guest XMM0..15 and MXCSR register state for read-only access. */
1629#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_READ() iemFpuActualizeAvxStateForRead(pVCpu)
1630/** Actualizes the guest YMM0..15 and MXCSR register state for read-write access. */
1631#define IEM_MC_ACTUALIZE_AVX_STATE_FOR_CHANGE() iemFpuActualizeAvxStateForChange(pVCpu)
1632
1633/**
1634 * Calls a MMX assembly implementation taking two visible arguments.
1635 *
1636 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1637 * @param a0 The first extra argument.
1638 * @param a1 The second extra argument.
1639 */
1640#define IEM_MC_CALL_MMX_AIMPL_2(a_pfnAImpl, a0, a1) \
1641 do { \
1642 IEM_MC_PREPARE_FPU_USAGE(); \
1643 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1644 } while (0)
1645
1646/**
1647 * Calls a MMX assembly implementation taking three visible arguments.
1648 *
1649 * @param a_pfnAImpl Pointer to the assembly MMX routine.
1650 * @param a0 The first extra argument.
1651 * @param a1 The second extra argument.
1652 * @param a2 The third extra argument.
1653 */
1654#define IEM_MC_CALL_MMX_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1655 do { \
1656 IEM_MC_PREPARE_FPU_USAGE(); \
1657 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1658 } while (0)
1659
1660
1661/**
1662 * Calls a SSE assembly implementation taking two visible arguments.
1663 *
1664 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1665 * @param a0 The first extra argument.
1666 * @param a1 The second extra argument.
1667 */
1668#define IEM_MC_CALL_SSE_AIMPL_2(a_pfnAImpl, a0, a1) \
1669 do { \
1670 IEM_MC_PREPARE_SSE_USAGE(); \
1671 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1)); \
1672 } while (0)
1673
1674/**
1675 * Calls a SSE assembly implementation taking three visible arguments.
1676 *
1677 * @param a_pfnAImpl Pointer to the assembly SSE routine.
1678 * @param a0 The first extra argument.
1679 * @param a1 The second extra argument.
1680 * @param a2 The third extra argument.
1681 */
1682#define IEM_MC_CALL_SSE_AIMPL_3(a_pfnAImpl, a0, a1, a2) \
1683 do { \
1684 IEM_MC_PREPARE_SSE_USAGE(); \
1685 a_pfnAImpl(&pVCpu->cpum.GstCtx.XState.x87, (a0), (a1), (a2)); \
1686 } while (0)
1687
1688
1689/** Declares implicit arguments for IEM_MC_CALL_AVX_AIMPL_2,
1690 * IEM_MC_CALL_AVX_AIMPL_3, IEM_MC_CALL_AVX_AIMPL_4, ... */
1691#define IEM_MC_IMPLICIT_AVX_AIMPL_ARGS() \
1692 IEM_MC_ARG_CONST(PX86XSAVEAREA, pXState, &pVCpu->cpum.GstCtx.XState, 0)
1693
1694/**
1695 * Calls a AVX assembly implementation taking two visible arguments.
1696 *
1697 * There is one implicit zero'th argument, a pointer to the extended state.
1698 *
1699 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1700 * @param a1 The first extra argument.
1701 * @param a2 The second extra argument.
1702 */
1703#define IEM_MC_CALL_AVX_AIMPL_2(a_pfnAImpl, a1, a2) \
1704 do { \
1705 IEM_MC_PREPARE_AVX_USAGE(); \
1706 a_pfnAImpl(pXState, (a1), (a2)); \
1707 } while (0)
1708
1709/**
1710 * Calls a AVX assembly implementation taking three visible arguments.
1711 *
1712 * There is one implicit zero'th argument, a pointer to the extended state.
1713 *
1714 * @param a_pfnAImpl Pointer to the assembly AVX routine.
1715 * @param a1 The first extra argument.
1716 * @param a2 The second extra argument.
1717 * @param a3 The third extra argument.
1718 */
1719#define IEM_MC_CALL_AVX_AIMPL_3(a_pfnAImpl, a1, a2, a3) \
1720 do { \
1721 IEM_MC_PREPARE_AVX_USAGE(); \
1722 a_pfnAImpl(pXState, (a1), (a2), (a3)); \
1723 } while (0)
1724
1725/** @note Not for IOPL or IF testing. */
1726#define IEM_MC_IF_EFL_BIT_SET(a_fBit) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) {
1727/** @note Not for IOPL or IF testing. */
1728#define IEM_MC_IF_EFL_BIT_NOT_SET(a_fBit) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit))) {
1729/** @note Not for IOPL or IF testing. */
1730#define IEM_MC_IF_EFL_ANY_BITS_SET(a_fBits) if (pVCpu->cpum.GstCtx.eflags.u & (a_fBits)) {
1731/** @note Not for IOPL or IF testing. */
1732#define IEM_MC_IF_EFL_NO_BITS_SET(a_fBits) if (!(pVCpu->cpum.GstCtx.eflags.u & (a_fBits))) {
1733/** @note Not for IOPL or IF testing. */
1734#define IEM_MC_IF_EFL_BITS_NE(a_fBit1, a_fBit2) \
1735 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1736 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1737/** @note Not for IOPL or IF testing. */
1738#define IEM_MC_IF_EFL_BITS_EQ(a_fBit1, a_fBit2) \
1739 if ( !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1740 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1741/** @note Not for IOPL or IF testing. */
1742#define IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(a_fBit, a_fBit1, a_fBit2) \
1743 if ( (pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1744 || !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1745 != !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1746/** @note Not for IOPL or IF testing. */
1747#define IEM_MC_IF_EFL_BIT_NOT_SET_AND_BITS_EQ(a_fBit, a_fBit1, a_fBit2) \
1748 if ( !(pVCpu->cpum.GstCtx.eflags.u & (a_fBit)) \
1749 && !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit1)) \
1750 == !!(pVCpu->cpum.GstCtx.eflags.u & (a_fBit2)) ) {
1751#define IEM_MC_IF_CX_IS_NZ() if (pVCpu->cpum.GstCtx.cx != 0) {
1752#define IEM_MC_IF_ECX_IS_NZ() if (pVCpu->cpum.GstCtx.ecx != 0) {
1753#define IEM_MC_IF_RCX_IS_NZ() if (pVCpu->cpum.GstCtx.rcx != 0) {
1754/** @note Not for IOPL or IF testing. */
1755#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1756 if ( pVCpu->cpum.GstCtx.cx != 0 \
1757 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1758/** @note Not for IOPL or IF testing. */
1759#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1760 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1761 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1762/** @note Not for IOPL or IF testing. */
1763#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(a_fBit) \
1764 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1765 && (pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1766/** @note Not for IOPL or IF testing. */
1767#define IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1768 if ( pVCpu->cpum.GstCtx.cx != 0 \
1769 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1770/** @note Not for IOPL or IF testing. */
1771#define IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1772 if ( pVCpu->cpum.GstCtx.ecx != 0 \
1773 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1774/** @note Not for IOPL or IF testing. */
1775#define IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(a_fBit) \
1776 if ( pVCpu->cpum.GstCtx.rcx != 0 \
1777 && !(pVCpu->cpum.GstCtx.eflags.u & a_fBit)) {
1778#define IEM_MC_IF_LOCAL_IS_Z(a_Local) if ((a_Local) == 0) {
1779#define IEM_MC_IF_GREG_BIT_SET(a_iGReg, a_iBitNo) if (iemGRegFetchU64(pVCpu, (a_iGReg)) & RT_BIT_64(a_iBitNo)) {
1780
1781#define IEM_MC_REF_FPUREG(a_pr80Dst, a_iSt) \
1782 do { (a_pr80Dst) = &pVCpu->cpum.GstCtx.XState.x87.aRegs[a_iSt].r80; } while (0)
1783#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1784 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1785#define IEM_MC_IF_FPUREG_NOT_EMPTY(a_iSt) \
1786 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) == VINF_SUCCESS) {
1787#define IEM_MC_IF_FPUREG_IS_EMPTY(a_iSt) \
1788 if (iemFpuStRegNotEmpty(pVCpu, (a_iSt)) != VINF_SUCCESS) {
1789#define IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(a_pr80Dst, a_iSt) \
1790 if (iemFpuStRegNotEmptyRef(pVCpu, (a_iSt), &(a_pr80Dst)) == VINF_SUCCESS) {
1791#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(a_pr80Dst0, a_iSt0, a_pr80Dst1, a_iSt1) \
1792 if (iemFpu2StRegsNotEmptyRef(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1), &(a_pr80Dst1)) == VINF_SUCCESS) {
1793#define IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(a_pr80Dst0, a_iSt0, a_iSt1) \
1794 if (iemFpu2StRegsNotEmptyRefFirst(pVCpu, (a_iSt0), &(a_pr80Dst0), (a_iSt1)) == VINF_SUCCESS) {
1795#define IEM_MC_IF_FCW_IM() \
1796 if (pVCpu->cpum.GstCtx.XState.x87.FCW & X86_FCW_IM) {
1797#define IEM_MC_IF_MXCSR_XCPT_PENDING() \
1798 if (( ~((pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_MASK) >> X86_MXCSR_XCPT_MASK_SHIFT) \
1799 & (pVCpu->cpum.GstCtx.XState.x87.MXCSR & X86_MXCSR_XCPT_FLAGS)) != 0) {
1800
1801#define IEM_MC_ELSE() } else {
1802#define IEM_MC_ENDIF() } do {} while (0)
1803
1804/** @} */
1805
1806#endif /* !VMM_INCLUDED_SRC_include_IEMMc_h */
1807
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette