VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 106329

Last change on this file since 106329 was 106329, checked in by vboxsync, 7 weeks ago

VMM/IEM: Some minor perf tweaks for iemExecMemAllocatorPrune. bugref:10720

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 356.6 KB
Line 
1/* $Id: IEMInternal.h 106329 2024-10-15 14:19:43Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEM_WITH_ADAPTIVE_TIMER_POLLING
96 * Enables the adaptive timer polling code.
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEM_WITH_ADAPTIVE_TIMER_POLLING
100#endif
101
102/** @def IEM_WITH_INTRA_TB_JUMPS
103 * Enables loop-jumps within a TB (currently only to the first call).
104 */
105#if defined(DOXYGEN_RUNNING) || 1
106# define IEM_WITH_INTRA_TB_JUMPS
107#endif
108
109/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
110 * Enables the delayed PC updating optimization (see @bugref{10373}).
111 */
112#if defined(DOXYGEN_RUNNING) || 1
113# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
114#endif
115/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
116 * Enabled delayed PC updating debugging code.
117 * This is an alternative to the ARM64-only IEMNATIVE_REG_FIXED_PC_DBG. */
118#if defined(DOXYGEN_RUNNING) || 0
119# define IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
120#endif
121
122/** Enables the SIMD register allocator @bugref{10614}. */
123#if defined(DOXYGEN_RUNNING) || 1
124# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
125#endif
126/** Enables access to even callee saved registers. */
127//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
128
129#if defined(DOXYGEN_RUNNING) || 1
130/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
131 * Delay the writeback or dirty registers as long as possible. */
132# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
133#endif
134
135/** @def IEM_WITH_TLB_STATISTICS
136 * Enables all TLB statistics. */
137#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
138# define IEM_WITH_TLB_STATISTICS
139#endif
140
141/** @def IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
142 * Enable this to use native emitters for certain SIMD FP operations. */
143#if 1 || defined(DOXYGEN_RUNNING)
144# define IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
145#endif
146
147/** @def VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING
148 * Enable this to create a saved state file with the threaded translation
149 * blocks fed to the native recompiler on VCPU \#0. The resulting file can
150 * then be fed into the native recompiler for code profiling purposes.
151 * This is not a feature that should be normally be enabled! */
152#if 0 || defined(DOXYGEN_RUNNING)
153# define VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING
154#endif
155
156/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
157 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
158 * executing native translation blocks.
159 *
160 * This exploits the fact that we save all non-volatile registers in the TB
161 * prologue and thus just need to do the same as the TB epilogue to get the
162 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
163 * non-volatile (and does something even more crazy for ARM), this probably
164 * won't work reliably on Windows. */
165#ifdef RT_ARCH_ARM64
166# ifndef RT_OS_WINDOWS
167# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
168# endif
169#endif
170/* ASM-NOINC-START */
171#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
172# if !defined(IN_RING3) \
173 || !defined(VBOX_WITH_IEM_RECOMPILER) \
174 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
175# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
176# elif defined(RT_OS_WINDOWS)
177# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
178# endif
179#endif
180
181
182/** @def IEM_DO_LONGJMP
183 *
184 * Wrapper around longjmp / throw.
185 *
186 * @param a_pVCpu The CPU handle.
187 * @param a_rc The status code jump back with / throw.
188 */
189#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
190# ifdef IEM_WITH_THROW_CATCH
191# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
192# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
193 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
194 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
195 throw int(a_rc); \
196 } while (0)
197# else
198# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
199# endif
200# else
201# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
202# endif
203#endif
204
205/** For use with IEM function that may do a longjmp (when enabled).
206 *
207 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
208 * attribute. So, we indicate that function that may be part of a longjmp may
209 * throw "exceptions" and that the compiler should definitely not generate and
210 * std::terminate calling unwind code.
211 *
212 * Here is one example of this ending in std::terminate:
213 * @code{.txt}
21400 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
21501 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
21602 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
21703 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
21804 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
21905 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
22006 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
22107 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
22208 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
22309 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
2240a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
2250b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
2260c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
2270d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
2280e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
2290f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
23010 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
231 @endcode
232 *
233 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
234 */
235#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
236# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
237#else
238# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
239#endif
240/* ASM-NOINC-END */
241
242#define IEM_IMPLEMENTS_TASKSWITCH
243
244/** @def IEM_WITH_3DNOW
245 * Includes the 3DNow decoding. */
246#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
247# ifndef IEM_WITHOUT_3DNOW
248# define IEM_WITH_3DNOW
249# endif
250#endif
251
252/** @def IEM_WITH_THREE_0F_38
253 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
254#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
255# ifndef IEM_WITHOUT_THREE_0F_38
256# define IEM_WITH_THREE_0F_38
257# endif
258#endif
259
260/** @def IEM_WITH_THREE_0F_3A
261 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
262#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
263# ifndef IEM_WITHOUT_THREE_0F_3A
264# define IEM_WITH_THREE_0F_3A
265# endif
266#endif
267
268/** @def IEM_WITH_VEX
269 * Includes the VEX decoding. */
270#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
271# ifndef IEM_WITHOUT_VEX
272# define IEM_WITH_VEX
273# endif
274#endif
275
276/** @def IEM_CFG_TARGET_CPU
277 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
278 *
279 * By default we allow this to be configured by the user via the
280 * CPUM/GuestCpuName config string, but this comes at a slight cost during
281 * decoding. So, for applications of this code where there is no need to
282 * be dynamic wrt target CPU, just modify this define.
283 */
284#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
285# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
286#endif
287
288//#define IEM_WITH_CODE_TLB // - work in progress
289//#define IEM_WITH_DATA_TLB // - work in progress
290
291
292/** @def IEM_USE_UNALIGNED_DATA_ACCESS
293 * Use unaligned accesses instead of elaborate byte assembly. */
294#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
295# define IEM_USE_UNALIGNED_DATA_ACCESS
296#endif /*ASM-NOINC*/
297
298//#define IEM_LOG_MEMORY_WRITES
299
300
301
302#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
303
304# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
305/** Instruction statistics. */
306typedef struct IEMINSTRSTATS
307{
308# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
309# include "IEMInstructionStatisticsTmpl.h"
310# undef IEM_DO_INSTR_STAT
311} IEMINSTRSTATS;
312#else
313struct IEMINSTRSTATS;
314typedef struct IEMINSTRSTATS IEMINSTRSTATS;
315#endif
316/** Pointer to IEM instruction statistics. */
317typedef IEMINSTRSTATS *PIEMINSTRSTATS;
318
319
320/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
321 * @{ */
322#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
323#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
324#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
325#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
326#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
327/** Selects the right variant from a_aArray.
328 * pVCpu is implicit in the caller context. */
329#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
330 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
331/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
332 * be used because the host CPU does not support the operation. */
333#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
334 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
335/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
336 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
337 * into the two.
338 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
339#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
340# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
341 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
342#else
343# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
344 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
345#endif
346/** @} */
347
348/**
349 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
350 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
351 *
352 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
353 * indicator.
354 *
355 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
356 */
357#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
358# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
359 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
360#else
361# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
362#endif
363
364/** @name Helpers for passing C++ template arguments to an
365 * IEM_MC_NATIVE_EMIT_3/4/5 style macro.
366 * @{
367 */
368#define IEM_TEMPL_ARG_1(a1) <a1>
369#define IEM_TEMPL_ARG_2(a1, a2) <a1,a2>
370#define IEM_TEMPL_ARG_3(a1, a2, a3) <a1,a2,a3>
371/** @} */
372
373
374/**
375 * Branch types.
376 */
377typedef enum IEMBRANCH
378{
379 IEMBRANCH_JUMP = 1,
380 IEMBRANCH_CALL,
381 IEMBRANCH_TRAP,
382 IEMBRANCH_SOFTWARE_INT,
383 IEMBRANCH_HARDWARE_INT
384} IEMBRANCH;
385AssertCompileSize(IEMBRANCH, 4);
386
387
388/**
389 * INT instruction types.
390 */
391typedef enum IEMINT
392{
393 /** INT n instruction (opcode 0xcd imm). */
394 IEMINT_INTN = 0,
395 /** Single byte INT3 instruction (opcode 0xcc). */
396 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
397 /** Single byte INTO instruction (opcode 0xce). */
398 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
399 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
400 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
401} IEMINT;
402AssertCompileSize(IEMINT, 4);
403
404
405/**
406 * A FPU result.
407 */
408typedef struct IEMFPURESULT
409{
410 /** The output value. */
411 RTFLOAT80U r80Result;
412 /** The output status. */
413 uint16_t FSW;
414} IEMFPURESULT;
415AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
416/** Pointer to a FPU result. */
417typedef IEMFPURESULT *PIEMFPURESULT;
418/** Pointer to a const FPU result. */
419typedef IEMFPURESULT const *PCIEMFPURESULT;
420
421
422/**
423 * A FPU result consisting of two output values and FSW.
424 */
425typedef struct IEMFPURESULTTWO
426{
427 /** The first output value. */
428 RTFLOAT80U r80Result1;
429 /** The output status. */
430 uint16_t FSW;
431 /** The second output value. */
432 RTFLOAT80U r80Result2;
433} IEMFPURESULTTWO;
434AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
435AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
436/** Pointer to a FPU result consisting of two output values and FSW. */
437typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
438/** Pointer to a const FPU result consisting of two output values and FSW. */
439typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
440
441
442/**
443 * IEM TLB entry.
444 *
445 * Lookup assembly:
446 * @code{.asm}
447 ; Calculate tag.
448 mov rax, [VA]
449 shl rax, 16
450 shr rax, 16 + X86_PAGE_SHIFT
451 or rax, [uTlbRevision]
452
453 ; Do indexing.
454 movzx ecx, al
455 lea rcx, [pTlbEntries + rcx]
456
457 ; Check tag.
458 cmp [rcx + IEMTLBENTRY.uTag], rax
459 jne .TlbMiss
460
461 ; Check access.
462 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
463 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
464 cmp rax, [uTlbPhysRev]
465 jne .TlbMiss
466
467 ; Calc address and we're done.
468 mov eax, X86_PAGE_OFFSET_MASK
469 and eax, [VA]
470 or rax, [rcx + IEMTLBENTRY.pMappingR3]
471 %ifdef VBOX_WITH_STATISTICS
472 inc qword [cTlbHits]
473 %endif
474 jmp .Done
475
476 .TlbMiss:
477 mov r8d, ACCESS_FLAGS
478 mov rdx, [VA]
479 mov rcx, [pVCpu]
480 call iemTlbTypeMiss
481 .Done:
482
483 @endcode
484 *
485 */
486typedef struct IEMTLBENTRY
487{
488 /** The TLB entry tag.
489 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
490 * is ASSUMING a virtual address width of 48 bits.
491 *
492 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
493 *
494 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
495 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
496 * revision wraps around though, the tags needs to be zeroed.
497 *
498 * @note Try use SHRD instruction? After seeing
499 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
500 *
501 * @todo This will need to be reorganized for 57-bit wide virtual address and
502 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
503 * have to move the TLB entry versioning entirely to the
504 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
505 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
506 * consumed by PCID and ASID (12 + 6 = 18).
507 */
508 uint64_t uTag;
509 /** Access flags and physical TLB revision.
510 *
511 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
512 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
513 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
514 * - Bit 3 - pgm phys/virt - not directly writable.
515 * - Bit 4 - pgm phys page - not directly readable.
516 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
517 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
518 * - Bit 7 - tlb entry - pMappingR3 member not valid.
519 * - Bits 63 thru 8 are used for the physical TLB revision number.
520 *
521 * We're using complemented bit meanings here because it makes it easy to check
522 * whether special action is required. For instance a user mode write access
523 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
524 * non-zero result would mean special handling needed because either it wasn't
525 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
526 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
527 * need to check any PTE flag.
528 */
529 uint64_t fFlagsAndPhysRev;
530 /** The guest physical page address. */
531 uint64_t GCPhys;
532 /** Pointer to the ring-3 mapping. */
533 R3PTRTYPE(uint8_t *) pbMappingR3;
534#if HC_ARCH_BITS == 32
535 uint32_t u32Padding1;
536#endif
537} IEMTLBENTRY;
538AssertCompileSize(IEMTLBENTRY, 32);
539/** Pointer to an IEM TLB entry. */
540typedef IEMTLBENTRY *PIEMTLBENTRY;
541/** Pointer to a const IEM TLB entry. */
542typedef IEMTLBENTRY const *PCIEMTLBENTRY;
543
544/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
545 * @{ */
546#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
547#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
548#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
549#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
550#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
551#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
552#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
553#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
554#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
555#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
556#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
557#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
558/** @} */
559AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
560AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
561AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
562AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
563AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
564AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
565/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
566#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
567 | PGMIEMGCPHYS2PTR_F_NO_READ \
568 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
569 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
570 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
571 | IEMTLBE_F_PHYS_REV )
572
573
574/** The TLB size (power of two).
575 * We initially chose 256 because that way we can obtain the result directly
576 * from a 8-bit register without an additional AND instruction.
577 * See also @bugref{10687}. */
578#if defined(RT_ARCH_AMD64)
579# define IEMTLB_ENTRY_COUNT 256
580# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
581#else
582# define IEMTLB_ENTRY_COUNT 8192
583# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
584#endif
585AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
586
587/** TLB slot format spec (assumes uint32_t or unsigned value). */
588#if IEMTLB_ENTRY_COUNT <= 0x100 / 2
589# define IEMTLB_SLOT_FMT "%02x"
590#elif IEMTLB_ENTRY_COUNT <= 0x1000 / 2
591# define IEMTLB_SLOT_FMT "%03x"
592#elif IEMTLB_ENTRY_COUNT <= 0x10000 / 2
593# define IEMTLB_SLOT_FMT "%04x"
594#else
595# define IEMTLB_SLOT_FMT "%05x"
596#endif
597
598/** Enable the large page bitmap TLB optimization.
599 *
600 * The idea here is to avoid scanning the full 32 KB (2MB pages, 2*512 TLB
601 * entries) or 64 KB (4MB pages, 2*1024 TLB entries) worth of TLB entries during
602 * invlpg when large pages are used, and instead just scan 128 or 256 bytes of
603 * the bmLargePage bitmap to determin which TLB entires that might be containing
604 * large pages and actually require checking.
605 *
606 * There is a good posibility of false positives since we currently don't clear
607 * the bitmap when flushing the TLB, but it should help reduce the workload when
608 * the large pages aren't fully loaded into the TLB in their entirity...
609 */
610#define IEMTLB_WITH_LARGE_PAGE_BITMAP
611
612/**
613 * An IEM TLB.
614 *
615 * We've got two of these, one for data and one for instructions.
616 */
617typedef struct IEMTLB
618{
619 /** The non-global TLB revision.
620 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
621 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
622 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
623 * (The revision zero indicates an invalid TLB entry.)
624 *
625 * The initial value is choosen to cause an early wraparound. */
626 uint64_t uTlbRevision;
627 /** The TLB physical address revision - shadow of PGM variable.
628 *
629 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
630 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
631 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
632 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
633 *
634 * The initial value is choosen to cause an early wraparound.
635 *
636 * @note This is placed between the two TLB revisions because we
637 * load it in pair with one or the other on arm64. */
638 uint64_t volatile uTlbPhysRev;
639 /** The global TLB revision.
640 * Same as uTlbRevision, but only increased for global flushes. */
641 uint64_t uTlbRevisionGlobal;
642
643 /** Large page tag range.
644 *
645 * This is used to avoid scanning a large page's worth of TLB entries for each
646 * INVLPG instruction, and only to do so iff we've loaded any and when the
647 * address is in this range. This is kept up to date when we loading new TLB
648 * entries.
649 */
650 struct LARGEPAGERANGE
651 {
652 /** The lowest large page address tag, UINT64_MAX if none. */
653 uint64_t uFirstTag;
654 /** The highest large page address tag (with offset mask part set), 0 if none. */
655 uint64_t uLastTag;
656 }
657 /** Large page range for non-global pages. */
658 NonGlobalLargePageRange,
659 /** Large page range for global pages. */
660 GlobalLargePageRange;
661 /** Number of non-global entries for large pages loaded since last TLB flush. */
662 uint32_t cTlbNonGlobalLargePageCurLoads;
663 /** Number of global entries for large pages loaded since last TLB flush. */
664 uint32_t cTlbGlobalLargePageCurLoads;
665
666 /* Statistics: */
667
668 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
669 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
670 * not via safe read/write path) calls to iemMemMapJmp. */
671 uint64_t cTlbCoreHits;
672 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
673 * only; data tlb only). */
674 uint64_t cTlbSafeHits;
675 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
676 uint64_t cTlbInlineCodeHits;
677
678 /** TLB misses in IEMAll.cpp code (both).
679 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
680 * not via safe read/write path) calls to iemMemMapJmp. So,
681 * for the data TLB this more like 'other misses', while for the code
682 * TLB is all misses. */
683 uint64_t cTlbCoreMisses;
684 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
685 uint64_t cTlbCoreGlobalLoads;
686 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
687 uint64_t cTlbSafeMisses;
688 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
689 uint64_t cTlbSafeGlobalLoads;
690 /** Safe read path taken (data only). */
691 uint64_t cTlbSafeReadPath;
692 /** Safe write path taken (data only). */
693 uint64_t cTlbSafeWritePath;
694
695 /** @name Details for native code TLB misses.
696 * @note These counts are included in the above counters (cTlbSafeReadPath,
697 * cTlbSafeWritePath, cTlbInlineCodeHits).
698 * @{ */
699 /** TLB misses in native code due to tag mismatch. */
700 STAMCOUNTER cTlbNativeMissTag;
701 /** TLB misses in native code due to flags or physical revision mismatch. */
702 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
703 /** TLB misses in native code due to misaligned access. */
704 STAMCOUNTER cTlbNativeMissAlignment;
705 /** TLB misses in native code due to cross page access. */
706 uint32_t cTlbNativeMissCrossPage;
707 /** TLB misses in native code due to non-canonical address. */
708 uint32_t cTlbNativeMissNonCanonical;
709 /** @} */
710
711 /** Slow read path (code only). */
712 uint32_t cTlbSlowCodeReadPath;
713
714 /** Regular TLB flush count. */
715 uint32_t cTlsFlushes;
716 /** Global TLB flush count. */
717 uint32_t cTlsGlobalFlushes;
718 /** Revision rollovers. */
719 uint32_t cTlbRevisionRollovers;
720 /** Physical revision flushes. */
721 uint32_t cTlbPhysRevFlushes;
722 /** Physical revision rollovers. */
723 uint32_t cTlbPhysRevRollovers;
724
725 /** Number of INVLPG (and similar) operations. */
726 uint32_t cTlbInvlPg;
727 /** Subset of cTlbInvlPg that involved non-global large pages. */
728 uint32_t cTlbInvlPgLargeNonGlobal;
729 /** Subset of cTlbInvlPg that involved global large pages. */
730 uint32_t cTlbInvlPgLargeGlobal;
731
732 uint32_t au32Padding[13];
733
734 /** The TLB entries.
735 * Even entries are for PTE.G=0 and uses uTlbRevision.
736 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
737 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
738#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
739 /** Bitmap tracking TLB entries for large pages.
740 * This duplicates IEMTLBE_F_PT_LARGE_PAGE for each TLB entry. */
741 uint64_t bmLargePage[IEMTLB_ENTRY_COUNT * 2 / 64];
742#endif
743} IEMTLB;
744AssertCompileSizeAlignment(IEMTLB, 64);
745#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
746AssertCompile(IEMTLB_ENTRY_COUNT >= 32 /* bmLargePage ASSUMPTION */);
747#endif
748/** The width (in bits) of the address portion of the TLB tag. */
749#define IEMTLB_TAG_ADDR_WIDTH 36
750/** IEMTLB::uTlbRevision increment. */
751#define IEMTLB_REVISION_INCR RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH)
752/** IEMTLB::uTlbRevision mask. */
753#define IEMTLB_REVISION_MASK (~(RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH) - 1))
754
755/** IEMTLB::uTlbPhysRev increment.
756 * @sa IEMTLBE_F_PHYS_REV */
757#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
758AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
759
760/**
761 * Calculates the TLB tag for a virtual address but without TLB revision.
762 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
763 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
764 * the clearing of the top 16 bits won't work (if 32-bit
765 * we'll end up with mostly zeros).
766 */
767#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
768/**
769 * Converts a TLB tag value into a even TLB index.
770 * @returns Index into IEMTLB::aEntries.
771 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
772 */
773#if IEMTLB_ENTRY_COUNT == 256
774# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
775#else
776# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
777AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
778#endif
779/**
780 * Converts a TLB tag value into an even TLB index.
781 * @returns Pointer into IEMTLB::aEntries corresponding to .
782 * @param a_pTlb The TLB.
783 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
784 * IEMTLB_CALC_TAG_NO_REV.
785 */
786#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
787
788/** Converts a GC address to an even TLB index. */
789#define IEMTLB_ADDR_TO_EVEN_INDEX(a_GCPtr) IEMTLB_TAG_TO_EVEN_INDEX(IEMTLB_CALC_TAG_NO_REV(a_GCPtr))
790
791
792/** @def IEM_WITH_TLB_TRACE
793 * Enables the TLB tracing.
794 * Adjust buffer size in IEMR3Init. */
795#if defined(DOXYGEN_RUNNING) || 0
796# define IEM_WITH_TLB_TRACE
797#endif
798
799#ifdef IEM_WITH_TLB_TRACE
800
801/** TLB trace entry types. */
802typedef enum : uint8_t
803{
804 kIemTlbTraceType_Invalid,
805 kIemTlbTraceType_InvlPg,
806 kIemTlbTraceType_EvictSlot,
807 kIemTlbTraceType_LargeEvictSlot,
808 kIemTlbTraceType_LargeScan,
809 kIemTlbTraceType_Flush,
810 kIemTlbTraceType_FlushGlobal,
811 kIemTlbTraceType_Load,
812 kIemTlbTraceType_LoadGlobal,
813 kIemTlbTraceType_Load_Cr0,
814 kIemTlbTraceType_Load_Cr3,
815 kIemTlbTraceType_Load_Cr4,
816 kIemTlbTraceType_Load_Efer,
817 kIemTlbTraceType_Irq,
818 kIemTlbTraceType_Xcpt,
819 kIemTlbTraceType_IRet,
820 kIemTlbTraceType_Tb_Compile,
821 kIemTlbTraceType_Tb_Exec_Threaded,
822 kIemTlbTraceType_Tb_Exec_Native,
823 kIemTlbTraceType_User0,
824 kIemTlbTraceType_User1,
825 kIemTlbTraceType_User2,
826 kIemTlbTraceType_User3,
827} IEMTLBTRACETYPE;
828
829/** TLB trace entry. */
830typedef struct IEMTLBTRACEENTRY
831{
832 /** The flattened RIP for the event. */
833 uint64_t rip;
834 /** The event type. */
835 IEMTLBTRACETYPE enmType;
836 /** Byte parameter - typically used as 'bool fDataTlb'. */
837 uint8_t bParam;
838 /** 16-bit parameter value. */
839 uint16_t u16Param;
840 /** 32-bit parameter value. */
841 uint32_t u32Param;
842 /** 64-bit parameter value. */
843 uint64_t u64Param;
844 /** 64-bit parameter value. */
845 uint64_t u64Param2;
846} IEMTLBTRACEENTRY;
847AssertCompileSize(IEMTLBTRACEENTRY, 32);
848/** Pointer to a TLB trace entry. */
849typedef IEMTLBTRACEENTRY *PIEMTLBTRACEENTRY;
850/** Pointer to a const TLB trace entry. */
851typedef IEMTLBTRACEENTRY const *PCIEMTLBTRACEENTRY;
852#endif /* !IEM_WITH_TLB_TRACE */
853
854#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
855# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) \
856 iemTlbTrace(a_pVCpu, kIemTlbTraceType_InvlPg, a_GCPtr)
857# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
858 iemTlbTrace(a_pVCpu, kIemTlbTraceType_EvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
859# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
860 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeEvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
861# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) \
862 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeScan, 0, 0, a_fDataTlb, (uint8_t)a_fGlobal | ((uint8_t)a_fNonGlobal << 1))
863# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) \
864 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Flush, a_uRev, 0, a_fDataTlb)
865# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) \
866 iemTlbTrace(a_pVCpu, kIemTlbTraceType_FlushGlobal, a_uRev, a_uGRev, a_fDataTlb)
867# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
868 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
869# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
870 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LoadGlobal, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
871#else
872# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) do { } while (0)
873# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
874# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
875# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) do { } while (0)
876# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) do { } while (0)
877# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) do { } while (0)
878# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
879# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
880#endif
881
882#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
883# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr0, a_uNew, a_uOld)
884# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr3, a_uNew, a_uOld)
885# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr4, a_uNew, a_uOld)
886# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Efer, a_uNew, a_uOld)
887#else
888# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) do { } while (0)
889# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) do { } while (0)
890# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) do { } while (0)
891# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) do { } while (0)
892#endif
893
894#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
895# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) \
896 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Irq, a_fEFlags, 0, a_uVector, a_fFlags)
897# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) \
898 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Xcpt, a_uErr, a_uCr2, a_uVector, a_fFlags)
899# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) \
900 iemTlbTrace(a_pVCpu, kIemTlbTraceType_IRet, a_uRetRip, a_fEFlags, 0, a_uRetCs)
901#else
902# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) do { } while (0)
903# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) do { } while (0)
904# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) do { } while (0)
905#endif
906
907#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
908# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) \
909 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Compile, a_GCPhysPc)
910# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) \
911 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Threaded, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
912# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) \
913 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Native, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
914#else
915# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) do { } while (0)
916# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) do { } while (0)
917# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) do { } while (0)
918#endif
919
920#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
921# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
922 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User0, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
923# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
924 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User1, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
925# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
926 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User2, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
927# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
928 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User3, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
929#else
930# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
931# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
932# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
933# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
934#endif
935
936
937/** @name IEM_MC_F_XXX - MC block flags/clues.
938 * @todo Merge with IEM_CIMPL_F_XXX
939 * @{ */
940#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
941#define IEM_MC_F_MIN_186 RT_BIT_32(1)
942#define IEM_MC_F_MIN_286 RT_BIT_32(2)
943#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
944#define IEM_MC_F_MIN_386 RT_BIT_32(3)
945#define IEM_MC_F_MIN_486 RT_BIT_32(4)
946#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
947#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
948#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
949#define IEM_MC_F_64BIT RT_BIT_32(6)
950#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
951/** This is set by IEMAllN8vePython.py to indicate a variation with the
952 * flags-clearing-and-checking. */
953#define IEM_MC_F_WITH_FLAGS RT_BIT_32(8)
954/** This is set by IEMAllN8vePython.py to indicate a variation without the
955 * flags-clearing-and-checking, when there is also a variation with that.
956 * @note Do not set this manully, it's only for python and for testing in
957 * the native recompiler! */
958#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(9)
959/** @} */
960
961/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
962 *
963 * These clues are mainly for the recompiler, so that it can emit correct code.
964 *
965 * They are processed by the python script and which also automatically
966 * calculates flags for MC blocks based on the statements, extending the use of
967 * these flags to describe MC block behavior to the recompiler core. The python
968 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
969 * error checking purposes. The script emits the necessary fEndTb = true and
970 * similar statements as this reduces compile time a tiny bit.
971 *
972 * @{ */
973/** Flag set if direct branch, clear if absolute or indirect. */
974#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
975/** Flag set if indirect branch, clear if direct or relative.
976 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
977 * as well as for return instructions (RET, IRET, RETF). */
978#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
979/** Flag set if relative branch, clear if absolute or indirect. */
980#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
981/** Flag set if conditional branch, clear if unconditional. */
982#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
983/** Flag set if it's a far branch (changes CS). */
984#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
985/** Convenience: Testing any kind of branch. */
986#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
987
988/** Execution flags may change (IEMCPU::fExec). */
989#define IEM_CIMPL_F_MODE RT_BIT_32(5)
990/** May change significant portions of RFLAGS. */
991#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
992/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
993#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
994/** May trigger interrupt shadowing. */
995#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
996/** May enable interrupts, so recheck IRQ immediately afterwards executing
997 * the instruction. */
998#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
999/** May disable interrupts, so recheck IRQ immediately before executing the
1000 * instruction. */
1001#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
1002/** Convenience: Check for IRQ both before and after an instruction. */
1003#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
1004/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
1005#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
1006/** May modify FPU state.
1007 * @todo Not sure if this is useful yet. */
1008#define IEM_CIMPL_F_FPU RT_BIT_32(12)
1009/** REP prefixed instruction which may yield before updating PC.
1010 * @todo Not sure if this is useful, REP functions now return non-zero
1011 * status if they don't update the PC. */
1012#define IEM_CIMPL_F_REP RT_BIT_32(13)
1013/** I/O instruction.
1014 * @todo Not sure if this is useful yet. */
1015#define IEM_CIMPL_F_IO RT_BIT_32(14)
1016/** Force end of TB after the instruction. */
1017#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
1018/** Flag set if a branch may also modify the stack (push/pop return address). */
1019#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
1020/** Flag set if a branch may also modify the stack (push/pop return address)
1021 * and switch it (load/restore SS:RSP). */
1022#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
1023/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
1024#define IEM_CIMPL_F_XCPT \
1025 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
1026 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
1027
1028/** The block calls a C-implementation instruction function with two implicit arguments.
1029 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
1030 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1031 * @note The python scripts will add this if missing. */
1032#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
1033/** The block calls an ASM-implementation instruction function.
1034 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
1035 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1036 * @note The python scripts will add this if missing. */
1037#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
1038/** The block calls an ASM-implementation instruction function with an implicit
1039 * X86FXSTATE pointer argument.
1040 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1041 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
1042 * @note The python scripts will add this if missing. */
1043#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
1044/** The block calls an ASM-implementation instruction function with an implicit
1045 * X86XSAVEAREA pointer argument.
1046 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1047 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1048 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
1049 * @note The python scripts will add this if missing. */
1050#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
1051/** @} */
1052
1053
1054/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
1055 *
1056 * These flags are set when entering IEM and adjusted as code is executed, such
1057 * that they will always contain the current values as instructions are
1058 * finished.
1059 *
1060 * In recompiled execution mode, (most of) these flags are included in the
1061 * translation block selection key and stored in IEMTB::fFlags alongside the
1062 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
1063 * in IEMCPU::fExec.
1064 *
1065 * @{ */
1066/** Mode: The block target mode mask. */
1067#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
1068/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
1069#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
1070/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
1071 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
1072 * 32-bit mode (for simplifying most memory accesses). */
1073#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
1074/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
1075#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
1076/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
1077#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
1078
1079/** X86 Mode: 16-bit on 386 or later. */
1080#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
1081/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
1082#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
1083/** X86 Mode: 16-bit protected mode on 386 or later. */
1084#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
1085/** X86 Mode: 16-bit protected mode on 386 or later. */
1086#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
1087/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
1088#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
1089
1090/** X86 Mode: 32-bit on 386 or later. */
1091#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
1092/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
1093#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
1094/** X86 Mode: 32-bit protected mode. */
1095#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
1096/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
1097#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
1098
1099/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
1100#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
1101
1102/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
1103#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
1104 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
1105 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
1106
1107/** Bypass access handlers when set. */
1108#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
1109/** Have pending hardware instruction breakpoints. */
1110#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
1111/** Have pending hardware data breakpoints. */
1112#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
1113
1114/** X86: Have pending hardware I/O breakpoints. */
1115#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
1116/** X86: Disregard the lock prefix (implied or not) when set. */
1117#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
1118
1119/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
1120#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
1121
1122/** Caller configurable options. */
1123#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
1124
1125/** X86: The current protection level (CPL) shift factor. */
1126#define IEM_F_X86_CPL_SHIFT 8
1127/** X86: The current protection level (CPL) mask. */
1128#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
1129/** X86: The current protection level (CPL) shifted mask. */
1130#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
1131
1132/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
1133#define IEM_F_X86_AC UINT32_C(0x00080000)
1134
1135/** X86 execution context.
1136 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
1137 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
1138 * mode. */
1139#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
1140/** X86 context: Plain regular execution context. */
1141#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
1142/** X86 context: VT-x enabled. */
1143#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
1144/** X86 context: AMD-V enabled. */
1145#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
1146/** X86 context: In AMD-V or VT-x guest mode. */
1147#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
1148/** X86 context: System management mode (SMM). */
1149#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
1150
1151/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1152 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
1153 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
1154 * alread). */
1155
1156/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1157 * iemRegFinishClearingRF() most for most situations
1158 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
1159 * the IEM_F_PENDING_BRK_XXX bits alread). */
1160
1161/** @} */
1162
1163
1164/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
1165 *
1166 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
1167 * translation block flags. The combined flag mask (subject to
1168 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
1169 *
1170 * @{ */
1171/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
1172#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
1173
1174/** Type: The block type mask. */
1175#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
1176/** Type: Purly threaded recompiler (via tables). */
1177#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
1178/** Type: Native recompilation. */
1179#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
1180
1181/** Set when we're starting the block in an "interrupt shadow".
1182 * We don't need to distingish between the two types of this mask, thus the one.
1183 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
1184#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
1185/** Set when we're currently inhibiting NMIs
1186 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
1187#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
1188
1189/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
1190 * we're close the limit before starting a TB, as determined by
1191 * iemGetTbFlagsForCurrentPc(). */
1192#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
1193
1194/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
1195 *
1196 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
1197 * don't implement), because we don't currently generate any context
1198 * specific code - that's all handled in CIMPL functions.
1199 *
1200 * For the threaded recompiler we don't generate any CPL specific code
1201 * either, but the native recompiler does for memory access (saves getting
1202 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
1203 * Since most OSes will not share code between rings, this shouldn't
1204 * have any real effect on TB/memory/recompiling load.
1205 */
1206#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
1207/** @} */
1208
1209AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1210AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1211AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
1212AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
1213AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1214AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1215AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
1216AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1217AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1218AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1219AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1220AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
1221AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1222AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1223AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
1224AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1225AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
1226AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1227AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
1228
1229AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1230AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1231AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
1232AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1233AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1234AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
1235AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1236AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1237AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1238AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1239AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1240AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
1241
1242AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
1243AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
1244AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1245
1246/** Native instruction type for use with the native code generator.
1247 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
1248#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1249typedef uint8_t IEMNATIVEINSTR;
1250#else
1251typedef uint32_t IEMNATIVEINSTR;
1252#endif
1253/** Pointer to a native instruction unit. */
1254typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
1255/** Pointer to a const native instruction unit. */
1256typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
1257
1258/**
1259 * A call for the threaded call table.
1260 */
1261typedef struct IEMTHRDEDCALLENTRY
1262{
1263 /** The function to call (IEMTHREADEDFUNCS). */
1264 uint16_t enmFunction;
1265
1266 /** Instruction number in the TB (for statistics). */
1267 uint8_t idxInstr;
1268 /** The opcode length. */
1269 uint8_t cbOpcode;
1270 /** Offset into IEMTB::pabOpcodes. */
1271 uint16_t offOpcode;
1272
1273 /** TB lookup table index (7 bits) and large size (1 bits).
1274 *
1275 * The default size is 1 entry, but for indirect calls and returns we set the
1276 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1277 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1278 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1279 *
1280 * By default lookup table entry 0 for a TB is reserved as a fallback for
1281 * calltable entries w/o explicit entreis, so this member will be non-zero if
1282 * there is a lookup entry associated with this call.
1283 *
1284 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1285 */
1286 uint8_t uTbLookup;
1287
1288 /** Flags - IEMTHREADEDCALLENTRY_F_XXX. */
1289 uint8_t fFlags;
1290
1291 /** Generic parameters. */
1292 uint64_t auParams[3];
1293} IEMTHRDEDCALLENTRY;
1294AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1295/** Pointer to a threaded call entry. */
1296typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1297/** Pointer to a const threaded call entry. */
1298typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1299
1300/** The number of TB lookup table entries for a large allocation
1301 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1302#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1303/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1304#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1305/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1306#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1307/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1308#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1309 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1310
1311/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1312#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1313
1314
1315/** The call entry is a jump target. */
1316#define IEMTHREADEDCALLENTRY_F_JUMP_TARGET UINT8_C(0x01)
1317
1318
1319/**
1320 * Native IEM TB 'function' typedef.
1321 *
1322 * This will throw/longjmp on occation.
1323 *
1324 * @note AMD64 doesn't have that many non-volatile registers and does sport
1325 * 32-bit address displacments, so we don't need pCtx.
1326 *
1327 * On ARM64 pCtx allows us to directly address the whole register
1328 * context without requiring a separate indexing register holding the
1329 * offset. This saves an instruction loading the offset for each guest
1330 * CPU context access, at the cost of a non-volatile register.
1331 * Fortunately, ARM64 has quite a lot more registers.
1332 */
1333typedef
1334#ifdef RT_ARCH_AMD64
1335int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1336#else
1337int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1338#endif
1339#if RT_CPLUSPLUS_PREREQ(201700)
1340 IEM_NOEXCEPT_MAY_LONGJMP
1341#endif
1342 ;
1343/** Pointer to a native IEM TB entry point function.
1344 * This will throw/longjmp on occation. */
1345typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1346
1347
1348/**
1349 * Translation block.
1350 *
1351 * The current plan is to just keep TBs and associated lookup hash table private
1352 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1353 * avoids using expensive atomic primitives for updating lists and stuff.
1354 */
1355#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1356typedef struct IEMTB
1357{
1358 /** Next block with the same hash table entry. */
1359 struct IEMTB *pNext;
1360 /** Usage counter. */
1361 uint32_t cUsed;
1362 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1363 uint32_t msLastUsed;
1364
1365 /** @name What uniquely identifies the block.
1366 * @{ */
1367 RTGCPHYS GCPhysPc;
1368 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1369 uint32_t fFlags;
1370 union
1371 {
1372 struct
1373 {
1374 /**< Relevant CS X86DESCATTR_XXX bits. */
1375 uint16_t fAttr;
1376 } x86;
1377 };
1378 /** @} */
1379
1380 /** Number of opcode ranges. */
1381 uint8_t cRanges;
1382 /** Statistics: Number of instructions in the block. */
1383 uint8_t cInstructions;
1384
1385 /** Type specific info. */
1386 union
1387 {
1388 struct
1389 {
1390 /** The call sequence table. */
1391 PIEMTHRDEDCALLENTRY paCalls;
1392 /** Number of calls in paCalls. */
1393 uint16_t cCalls;
1394 /** Number of calls allocated. */
1395 uint16_t cAllocated;
1396 } Thrd;
1397 struct
1398 {
1399 /** The native instructions (PFNIEMTBNATIVE). */
1400 PIEMNATIVEINSTR paInstructions;
1401 /** Number of instructions pointed to by paInstructions. */
1402 uint32_t cInstructions;
1403 } Native;
1404 /** Generic view for zeroing when freeing. */
1405 struct
1406 {
1407 uintptr_t uPtr;
1408 uint32_t uData;
1409 } Gen;
1410 };
1411
1412 /** The allocation chunk this TB belongs to. */
1413 uint8_t idxAllocChunk;
1414 /** The number of entries in the lookup table.
1415 * Because we're out of space, the TB lookup table is located before the
1416 * opcodes pointed to by pabOpcodes. */
1417 uint8_t cTbLookupEntries;
1418
1419 /** Number of bytes of opcodes stored in pabOpcodes.
1420 * @todo this field isn't really needed, aRanges keeps the actual info. */
1421 uint16_t cbOpcodes;
1422 /** Pointer to the opcode bytes this block was recompiled from.
1423 * This also points to the TB lookup table, which starts cTbLookupEntries
1424 * entries before the opcodes (we don't have room atm for another point). */
1425 uint8_t *pabOpcodes;
1426
1427 union
1428 {
1429 /** Native recompilation debug info if enabled.
1430 * This is only generated by the native recompiler. */
1431 struct IEMTBDBG *pDbgInfo;
1432 /** For threaded TBs and natives when debug info is disabled, this is the flat
1433 * PC corresponding to GCPhysPc. */
1434 RTGCPTR FlatPc;
1435 };
1436
1437 /* --- 64 byte cache line end --- */
1438
1439 /** Opcode ranges.
1440 *
1441 * The opcode checkers and maybe TLB loading functions will use this to figure
1442 * out what to do. The parameter will specify an entry and the opcode offset to
1443 * start at and the minimum number of bytes to verify (instruction length).
1444 *
1445 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1446 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1447 * code TLB (must have a valid entry for that address) and scan the ranges to
1448 * locate the corresponding opcodes. Probably.
1449 */
1450 struct IEMTBOPCODERANGE
1451 {
1452 /** Offset within pabOpcodes. */
1453 uint16_t offOpcodes;
1454 /** Number of bytes. */
1455 uint16_t cbOpcodes;
1456 /** The page offset. */
1457 RT_GCC_EXTENSION
1458 uint16_t offPhysPage : 12;
1459 /** Unused bits. */
1460 RT_GCC_EXTENSION
1461 uint16_t u2Unused : 2;
1462 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1463 RT_GCC_EXTENSION
1464 uint16_t idxPhysPage : 2;
1465 } aRanges[8];
1466
1467 /** Physical pages that this TB covers.
1468 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1469 RTGCPHYS aGCPhysPages[2];
1470} IEMTB;
1471#pragma pack()
1472AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1473AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1474AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1475AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1476AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1477AssertCompileMemberOffset(IEMTB, aRanges, 64);
1478AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1479#if 1
1480AssertCompileSize(IEMTB, 128);
1481# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1482#else
1483AssertCompileSize(IEMTB, 168);
1484# undef IEMTB_SIZE_IS_POWER_OF_TWO
1485#endif
1486
1487/** Pointer to a translation block. */
1488typedef IEMTB *PIEMTB;
1489/** Pointer to a const translation block. */
1490typedef IEMTB const *PCIEMTB;
1491
1492/** Gets address of the given TB lookup table entry. */
1493#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1494 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1495
1496/**
1497 * Gets the physical address for a TB opcode range.
1498 */
1499DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1500{
1501 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1502 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1503 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1504 if (idxPage == 0)
1505 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1506 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1507 return pTb->aGCPhysPages[idxPage - 1];
1508}
1509
1510
1511/**
1512 * A chunk of memory in the TB allocator.
1513 */
1514typedef struct IEMTBCHUNK
1515{
1516 /** Pointer to the translation blocks in this chunk. */
1517 PIEMTB paTbs;
1518#ifdef IN_RING0
1519 /** Allocation handle. */
1520 RTR0MEMOBJ hMemObj;
1521#endif
1522} IEMTBCHUNK;
1523
1524/**
1525 * A per-CPU translation block allocator.
1526 *
1527 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1528 * the length of the collision list, and of course also for cache line alignment
1529 * reasons, the TBs must be allocated with at least 64-byte alignment.
1530 * Memory is there therefore allocated using one of the page aligned allocators.
1531 *
1532 *
1533 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1534 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1535 * that enables us to quickly calculate the allocation bitmap position when
1536 * freeing the translation block.
1537 */
1538typedef struct IEMTBALLOCATOR
1539{
1540 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1541 uint32_t uMagic;
1542
1543#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1544 /** Mask corresponding to cTbsPerChunk - 1. */
1545 uint32_t fChunkMask;
1546 /** Shift count corresponding to cTbsPerChunk. */
1547 uint8_t cChunkShift;
1548#else
1549 uint32_t uUnused;
1550 uint8_t bUnused;
1551#endif
1552 /** Number of chunks we're allowed to allocate. */
1553 uint8_t cMaxChunks;
1554 /** Number of chunks currently populated. */
1555 uint16_t cAllocatedChunks;
1556 /** Number of translation blocks per chunk. */
1557 uint32_t cTbsPerChunk;
1558 /** Chunk size. */
1559 uint32_t cbPerChunk;
1560
1561 /** The maximum number of TBs. */
1562 uint32_t cMaxTbs;
1563 /** Total number of TBs in the populated chunks.
1564 * (cAllocatedChunks * cTbsPerChunk) */
1565 uint32_t cTotalTbs;
1566 /** The current number of TBs in use.
1567 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1568 uint32_t cInUseTbs;
1569 /** Statistics: Number of the cInUseTbs that are native ones. */
1570 uint32_t cNativeTbs;
1571 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1572 uint32_t cThreadedTbs;
1573
1574 /** Where to start pruning TBs from when we're out.
1575 * See iemTbAllocatorAllocSlow for details. */
1576 uint32_t iPruneFrom;
1577 /** Where to start pruning native TBs from when we're out of executable memory.
1578 * See iemTbAllocatorFreeupNativeSpace for details. */
1579 uint32_t iPruneNativeFrom;
1580 uint64_t u64Padding;
1581
1582 /** Statistics: Number of TB allocation calls. */
1583 STAMCOUNTER StatAllocs;
1584 /** Statistics: Number of TB free calls. */
1585 STAMCOUNTER StatFrees;
1586 /** Statistics: Time spend pruning. */
1587 STAMPROFILE StatPrune;
1588 /** Statistics: Time spend pruning native TBs. */
1589 STAMPROFILE StatPruneNative;
1590
1591 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1592 PIEMTB pDelayedFreeHead;
1593 /* Head of the list of free TBs. */
1594 PIEMTB pTbsFreeHead;
1595
1596 /** Allocation chunks. */
1597 IEMTBCHUNK aChunks[256];
1598} IEMTBALLOCATOR;
1599/** Pointer to a TB allocator. */
1600typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1601
1602/** Magic value for the TB allocator (Emmet Harley Cohen). */
1603#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1604
1605
1606/**
1607 * A per-CPU translation block cache (hash table).
1608 *
1609 * The hash table is allocated once during IEM initialization and size double
1610 * the max TB count, rounded up to the nearest power of two (so we can use and
1611 * AND mask rather than a rest division when hashing).
1612 */
1613typedef struct IEMTBCACHE
1614{
1615 /** Magic value (IEMTBCACHE_MAGIC). */
1616 uint32_t uMagic;
1617 /** Size of the hash table. This is a power of two. */
1618 uint32_t cHash;
1619 /** The mask corresponding to cHash. */
1620 uint32_t uHashMask;
1621 uint32_t uPadding;
1622
1623 /** @name Statistics
1624 * @{ */
1625 /** Number of collisions ever. */
1626 STAMCOUNTER cCollisions;
1627
1628 /** Statistics: Number of TB lookup misses. */
1629 STAMCOUNTER cLookupMisses;
1630 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1631 STAMCOUNTER cLookupHits;
1632 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1633 STAMCOUNTER cLookupHitsViaTbLookupTable;
1634 STAMCOUNTER auPadding2[2];
1635 /** Statistics: Collision list length pruning. */
1636 STAMPROFILE StatPrune;
1637 /** @} */
1638
1639 /** The hash table itself.
1640 * @note The lower 6 bits of the pointer is used for keeping the collision
1641 * list length, so we can take action when it grows too long.
1642 * This works because TBs are allocated using a 64 byte (or
1643 * higher) alignment from page aligned chunks of memory, so the lower
1644 * 6 bits of the address will always be zero.
1645 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1646 */
1647 RT_FLEXIBLE_ARRAY_EXTENSION
1648 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1649} IEMTBCACHE;
1650/** Pointer to a per-CPU translation block cahce. */
1651typedef IEMTBCACHE *PIEMTBCACHE;
1652
1653/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1654#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1655
1656/** The collision count mask for IEMTBCACHE::apHash entries. */
1657#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1658/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1659#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1660/** Combine a TB pointer and a collision list length into a value for an
1661 * IEMTBCACHE::apHash entry. */
1662#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1663/** Combine a TB pointer and a collision list length into a value for an
1664 * IEMTBCACHE::apHash entry. */
1665#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1666/** Combine a TB pointer and a collision list length into a value for an
1667 * IEMTBCACHE::apHash entry. */
1668#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1669
1670/**
1671 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1672 */
1673#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1674 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1675
1676/**
1677 * Calculates the hash table slot for a TB from physical PC address and TB
1678 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1679 */
1680#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1681 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1682
1683
1684/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1685 *
1686 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1687 *
1688 * @{ */
1689/** Value if no branching happened recently. */
1690#define IEMBRANCHED_F_NO UINT8_C(0x00)
1691/** Flag set if direct branch, clear if absolute or indirect. */
1692#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1693/** Flag set if indirect branch, clear if direct or relative. */
1694#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1695/** Flag set if relative branch, clear if absolute or indirect. */
1696#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1697/** Flag set if conditional branch, clear if unconditional. */
1698#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1699/** Flag set if it's a far branch. */
1700#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1701/** Flag set if the stack pointer is modified. */
1702#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1703/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1704#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1705/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1706#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1707/** @} */
1708
1709
1710/**
1711 * The per-CPU IEM state.
1712 */
1713typedef struct IEMCPU
1714{
1715 /** Info status code that needs to be propagated to the IEM caller.
1716 * This cannot be passed internally, as it would complicate all success
1717 * checks within the interpreter making the code larger and almost impossible
1718 * to get right. Instead, we'll store status codes to pass on here. Each
1719 * source of these codes will perform appropriate sanity checks. */
1720 int32_t rcPassUp; /* 0x00 */
1721 /** Execution flag, IEM_F_XXX. */
1722 uint32_t fExec; /* 0x04 */
1723
1724 /** @name Decoder state.
1725 * @{ */
1726#ifdef IEM_WITH_CODE_TLB
1727 /** The offset of the next instruction byte. */
1728 uint32_t offInstrNextByte; /* 0x08 */
1729 /** The number of bytes available at pbInstrBuf for the current instruction.
1730 * This takes the max opcode length into account so that doesn't need to be
1731 * checked separately. */
1732 uint32_t cbInstrBuf; /* 0x0c */
1733 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1734 * This can be NULL if the page isn't mappable for some reason, in which
1735 * case we'll do fallback stuff.
1736 *
1737 * If we're executing an instruction from a user specified buffer,
1738 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1739 * aligned pointer but pointer to the user data.
1740 *
1741 * For instructions crossing pages, this will start on the first page and be
1742 * advanced to the next page by the time we've decoded the instruction. This
1743 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1744 */
1745 uint8_t const *pbInstrBuf; /* 0x10 */
1746# if ARCH_BITS == 32
1747 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1748# endif
1749 /** The program counter corresponding to pbInstrBuf.
1750 * This is set to a non-canonical address when we need to invalidate it. */
1751 uint64_t uInstrBufPc; /* 0x18 */
1752 /** The guest physical address corresponding to pbInstrBuf. */
1753 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1754 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1755 * This takes the CS segment limit into account.
1756 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1757 uint16_t cbInstrBufTotal; /* 0x28 */
1758 /** Offset into pbInstrBuf of the first byte of the current instruction.
1759 * Can be negative to efficiently handle cross page instructions. */
1760 int16_t offCurInstrStart; /* 0x2a */
1761
1762# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1763 /** The prefix mask (IEM_OP_PRF_XXX). */
1764 uint32_t fPrefixes; /* 0x2c */
1765 /** The extra REX ModR/M register field bit (REX.R << 3). */
1766 uint8_t uRexReg; /* 0x30 */
1767 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1768 * (REX.B << 3). */
1769 uint8_t uRexB; /* 0x31 */
1770 /** The extra REX SIB index field bit (REX.X << 3). */
1771 uint8_t uRexIndex; /* 0x32 */
1772
1773 /** The effective segment register (X86_SREG_XXX). */
1774 uint8_t iEffSeg; /* 0x33 */
1775
1776 /** The offset of the ModR/M byte relative to the start of the instruction. */
1777 uint8_t offModRm; /* 0x34 */
1778
1779# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1780 /** The current offset into abOpcode. */
1781 uint8_t offOpcode; /* 0x35 */
1782# else
1783 uint8_t bUnused; /* 0x35 */
1784# endif
1785# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1786 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1787# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1788
1789#else /* !IEM_WITH_CODE_TLB */
1790# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1791 /** The size of what has currently been fetched into abOpcode. */
1792 uint8_t cbOpcode; /* 0x08 */
1793 /** The current offset into abOpcode. */
1794 uint8_t offOpcode; /* 0x09 */
1795 /** The offset of the ModR/M byte relative to the start of the instruction. */
1796 uint8_t offModRm; /* 0x0a */
1797
1798 /** The effective segment register (X86_SREG_XXX). */
1799 uint8_t iEffSeg; /* 0x0b */
1800
1801 /** The prefix mask (IEM_OP_PRF_XXX). */
1802 uint32_t fPrefixes; /* 0x0c */
1803 /** The extra REX ModR/M register field bit (REX.R << 3). */
1804 uint8_t uRexReg; /* 0x10 */
1805 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1806 * (REX.B << 3). */
1807 uint8_t uRexB; /* 0x11 */
1808 /** The extra REX SIB index field bit (REX.X << 3). */
1809 uint8_t uRexIndex; /* 0x12 */
1810
1811# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1812 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1813# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1814#endif /* !IEM_WITH_CODE_TLB */
1815
1816#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1817 /** The effective operand mode. */
1818 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1819 /** The default addressing mode. */
1820 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1821 /** The effective addressing mode. */
1822 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1823 /** The default operand mode. */
1824 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1825
1826 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1827 uint8_t idxPrefix; /* 0x3a, 0x17 */
1828 /** 3rd VEX/EVEX/XOP register.
1829 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1830 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1831 /** The VEX/EVEX/XOP length field. */
1832 uint8_t uVexLength; /* 0x3c, 0x19 */
1833 /** Additional EVEX stuff. */
1834 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1835
1836# ifndef IEM_WITH_CODE_TLB
1837 /** Explicit alignment padding. */
1838 uint8_t abAlignment2a[1]; /* 0x1b */
1839# endif
1840 /** The FPU opcode (FOP). */
1841 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1842# ifndef IEM_WITH_CODE_TLB
1843 /** Explicit alignment padding. */
1844 uint8_t abAlignment2b[2]; /* 0x1e */
1845# endif
1846
1847 /** The opcode bytes. */
1848 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1849 /** Explicit alignment padding. */
1850# ifdef IEM_WITH_CODE_TLB
1851 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1852# else
1853 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1854# endif
1855
1856#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1857# ifdef IEM_WITH_CODE_TLB
1858 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1859# else
1860 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1861# endif
1862#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1863 /** @} */
1864
1865
1866 /** The number of active guest memory mappings. */
1867 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1868
1869 /** Records for tracking guest memory mappings. */
1870 struct
1871 {
1872 /** The address of the mapped bytes. */
1873 R3R0PTRTYPE(void *) pv;
1874 /** The access flags (IEM_ACCESS_XXX).
1875 * IEM_ACCESS_INVALID if the entry is unused. */
1876 uint32_t fAccess;
1877#if HC_ARCH_BITS == 64
1878 uint32_t u32Alignment4; /**< Alignment padding. */
1879#endif
1880 } aMemMappings[3]; /* 0x50 LB 0x30 */
1881
1882 /** Locking records for the mapped memory. */
1883 union
1884 {
1885 PGMPAGEMAPLOCK Lock;
1886 uint64_t au64Padding[2];
1887 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1888
1889 /** Bounce buffer info.
1890 * This runs in parallel to aMemMappings. */
1891 struct
1892 {
1893 /** The physical address of the first byte. */
1894 RTGCPHYS GCPhysFirst;
1895 /** The physical address of the second page. */
1896 RTGCPHYS GCPhysSecond;
1897 /** The number of bytes in the first page. */
1898 uint16_t cbFirst;
1899 /** The number of bytes in the second page. */
1900 uint16_t cbSecond;
1901 /** Whether it's unassigned memory. */
1902 bool fUnassigned;
1903 /** Explicit alignment padding. */
1904 bool afAlignment5[3];
1905 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1906
1907 /** The flags of the current exception / interrupt. */
1908 uint32_t fCurXcpt; /* 0xf8 */
1909 /** The current exception / interrupt. */
1910 uint8_t uCurXcpt; /* 0xfc */
1911 /** Exception / interrupt recursion depth. */
1912 int8_t cXcptRecursions; /* 0xfb */
1913
1914 /** The next unused mapping index.
1915 * @todo try find room for this up with cActiveMappings. */
1916 uint8_t iNextMapping; /* 0xfd */
1917 uint8_t abAlignment7[1];
1918
1919 /** Bounce buffer storage.
1920 * This runs in parallel to aMemMappings and aMemBbMappings. */
1921 struct
1922 {
1923 uint8_t ab[512];
1924 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1925
1926
1927 /** Pointer set jump buffer - ring-3 context. */
1928 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1929 /** Pointer set jump buffer - ring-0 context. */
1930 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1931
1932 /** @todo Should move this near @a fCurXcpt later. */
1933 /** The CR2 for the current exception / interrupt. */
1934 uint64_t uCurXcptCr2;
1935 /** The error code for the current exception / interrupt. */
1936 uint32_t uCurXcptErr;
1937
1938 /** @name Statistics
1939 * @{ */
1940 /** The number of instructions we've executed. */
1941 uint32_t cInstructions;
1942 /** The number of potential exits. */
1943 uint32_t cPotentialExits;
1944 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1945 * This may contain uncommitted writes. */
1946 uint32_t cbWritten;
1947 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1948 uint32_t cRetInstrNotImplemented;
1949 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1950 uint32_t cRetAspectNotImplemented;
1951 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1952 uint32_t cRetInfStatuses;
1953 /** Counts other error statuses returned. */
1954 uint32_t cRetErrStatuses;
1955 /** Number of times rcPassUp has been used. */
1956 uint32_t cRetPassUpStatus;
1957 /** Number of times RZ left with instruction commit pending for ring-3. */
1958 uint32_t cPendingCommit;
1959 /** Number of misaligned (host sense) atomic instruction accesses. */
1960 uint32_t cMisalignedAtomics;
1961 /** Number of long jumps. */
1962 uint32_t cLongJumps;
1963 /** @} */
1964
1965 /** @name Target CPU information.
1966 * @{ */
1967#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1968 /** The target CPU. */
1969 uint8_t uTargetCpu;
1970#else
1971 uint8_t bTargetCpuPadding;
1972#endif
1973 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1974 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1975 * native host support and the 2nd for when there is.
1976 *
1977 * The two values are typically indexed by a g_CpumHostFeatures bit.
1978 *
1979 * This is for instance used for the BSF & BSR instructions where AMD and
1980 * Intel CPUs produce different EFLAGS. */
1981 uint8_t aidxTargetCpuEflFlavour[2];
1982
1983 /** The CPU vendor. */
1984 CPUMCPUVENDOR enmCpuVendor;
1985 /** @} */
1986
1987 /** @name Host CPU information.
1988 * @{ */
1989 /** The CPU vendor. */
1990 CPUMCPUVENDOR enmHostCpuVendor;
1991 /** @} */
1992
1993 /** Counts RDMSR \#GP(0) LogRel(). */
1994 uint8_t cLogRelRdMsr;
1995 /** Counts WRMSR \#GP(0) LogRel(). */
1996 uint8_t cLogRelWrMsr;
1997 /** Alignment padding. */
1998 uint8_t abAlignment9[42];
1999
2000
2001 /** @name Recompiled Exection
2002 * @{ */
2003 /** Pointer to the current translation block.
2004 * This can either be one being executed or one being compiled. */
2005 R3PTRTYPE(PIEMTB) pCurTbR3;
2006#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
2007 /** Frame pointer for the last native TB to execute. */
2008 R3PTRTYPE(void *) pvTbFramePointerR3;
2009#else
2010 R3PTRTYPE(void *) pvUnusedR3;
2011#endif
2012#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2013 /** The saved host floating point control register (MXCSR on x86, FPCR on arm64)
2014 * needing restore when the TB finished, IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED indicates the TB
2015 * didn't modify it so we don't need to restore it. */
2016# ifdef RT_ARCH_AMD64
2017 uint32_t uRegFpCtrl;
2018 /** Temporary copy of MXCSR for stmxcsr/ldmxcsr (so we don't have to fiddle with stack pointers). */
2019 uint32_t uRegMxcsrTmp;
2020# elif defined(RT_ARCH_ARM64)
2021 uint64_t uRegFpCtrl;
2022# else
2023# error "Port me"
2024# endif
2025#else
2026 uint64_t u64Unused;
2027#endif
2028 /** Pointer to the ring-3 TB cache for this EMT. */
2029 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
2030 /** Pointer to the ring-3 TB lookup entry.
2031 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
2032 * entry, thus it can always safely be used w/o NULL checking. */
2033 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
2034#if 0 /* unused */
2035 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
2036 * The TBs are based on physical addresses, so this is needed to correleated
2037 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
2038 uint64_t uCurTbStartPc;
2039#endif
2040
2041 /** Number of threaded TBs executed. */
2042 uint64_t cTbExecThreaded;
2043 /** Number of native TBs executed. */
2044 uint64_t cTbExecNative;
2045
2046 /** The number of IRQ/FF checks till the next timer poll call. */
2047 uint32_t cTbsTillNextTimerPoll;
2048 /** The virtual sync time at the last timer poll call in milliseconds. */
2049 uint32_t msRecompilerPollNow;
2050 /** The virtual sync time at the last timer poll call in nanoseconds. */
2051 uint64_t nsRecompilerPollNow;
2052 /** The previous cTbsTillNextTimerPoll value. */
2053 uint32_t cTbsTillNextTimerPollPrev;
2054
2055 /** The current instruction number in a native TB.
2056 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
2057 * and will be picked up by the TB execution loop. Only used when
2058 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
2059 uint8_t idxTbCurInstr;
2060 /** @} */
2061
2062 /** @name Recompilation
2063 * @{ */
2064 /** Whether we need to check the opcode bytes for the current instruction.
2065 * This is set by a previous instruction if it modified memory or similar. */
2066 bool fTbCheckOpcodes;
2067 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
2068 uint8_t fTbBranched;
2069 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
2070 bool fTbCrossedPage;
2071 /** Whether to end the current TB. */
2072 bool fEndTb;
2073 /** Indicates that the current instruction is an STI. This is set by the
2074 * iemCImpl_sti code and subsequently cleared by the recompiler. */
2075 bool fTbCurInstrIsSti;
2076 /** Spaced reserved for recompiler data / alignment. */
2077 bool afRecompilerStuff1[1];
2078 /** Number of instructions before we need emit an IRQ check call again.
2079 * This helps making sure we don't execute too long w/o checking for
2080 * interrupts and immediately following instructions that may enable
2081 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
2082 * required to make sure we check following the next instruction as well, see
2083 * fTbCurInstrIsSti. */
2084 uint8_t cInstrTillIrqCheck;
2085 /** The index of the last CheckIrq call during threaded recompilation. */
2086 uint16_t idxLastCheckIrqCallNo;
2087 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
2088 uint16_t cbOpcodesAllocated;
2089 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
2090 uint32_t uTbNativeRecompileAtUsedCount;
2091 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
2092 uint32_t fTbCurInstr;
2093 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
2094 uint32_t fTbPrevInstr;
2095 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
2096 * currently not up to date in EFLAGS. */
2097 uint32_t fSkippingEFlags;
2098#if 0 /* unused */
2099 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
2100 RTGCPHYS GCPhysInstrBufPrev;
2101#endif
2102
2103 /** Fixed TB used for threaded recompilation.
2104 * This is allocated once with maxed-out sizes and re-used afterwards. */
2105 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
2106 /** Pointer to the ring-3 TB allocator for this EMT. */
2107 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
2108 /** Pointer to the ring-3 executable memory allocator for this EMT. */
2109 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
2110 /** Pointer to the native recompiler state for ring-3. */
2111 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
2112 /** Dummy entry for ppTbLookupEntryR3. */
2113 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
2114#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
2115 /** The debug code advances this register as if it was CPUMCTX::rip and we
2116 * didn't do delayed PC updating. When CPUMCTX::rip is finally updated,
2117 * the result is compared with this value. */
2118 uint64_t uPcUpdatingDebug;
2119#elif defined(VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING)
2120 /** The SSM handle used for saving threaded TBs for recompiler profiling. */
2121 R3PTRTYPE(PSSMHANDLE) pSsmThreadedTbsForProfiling;
2122#else
2123 uint64_t u64Placeholder;
2124#endif
2125 /**
2126 * Whether we should use the host instruction invalidation APIs of the
2127 * host OS or our own version of it (macOS). */
2128 uint8_t fHostICacheInvalidation;
2129#define IEMNATIVE_ICACHE_F_USE_HOST_API UINT8_C(0x01) /**< Use the host API (macOS) instead of our code. */
2130#define IEMNATIVE_ICACHE_F_END_WITH_ISH UINT8_C(0x02) /**< Whether to end with a ISH barrier (arm). */
2131 bool afRecompilerStuff2[7];
2132 /** @} */
2133
2134 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
2135 IEMTLBENTRY DataBreakpointTlbe;
2136
2137 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
2138 STAMCOUNTER StatTbThreadedExecBreaks;
2139 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
2140 STAMCOUNTER StatCheckIrqBreaks;
2141 /** Statistics: Times BltIn_CheckTimers breaks direct linking TBs. */
2142 STAMCOUNTER StatCheckTimersBreaks;
2143 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
2144 STAMCOUNTER StatCheckModeBreaks;
2145 /** Threaded TB statistics: Times execution break on call with lookup entries. */
2146 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
2147 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2148 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2149 /** Statistics: Times a post jump target check missed and had to find new TB. */
2150 STAMCOUNTER StatCheckBranchMisses;
2151 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2152 STAMCOUNTER StatCheckNeedCsLimChecking;
2153 /** Statistics: Times a loop was detected within a TB. */
2154 STAMCOUNTER StatTbLoopInTbDetected;
2155 /** Statistics: Times a loop back to the start of the TB was detected. */
2156 STAMCOUNTER StatTbLoopFullTbDetected;
2157 /** Statistics: Times a loop back to the start of the TB was detected, var 2. */
2158 STAMCOUNTER StatTbLoopFullTbDetected2;
2159 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2160 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2161 /** Native TB statistics: Number of fully recompiled TBs. */
2162 STAMCOUNTER StatNativeFullyRecompiledTbs;
2163 /** TB statistics: Number of instructions per TB. */
2164 STAMPROFILE StatTbInstr;
2165 /** TB statistics: Number of TB lookup table entries per TB. */
2166 STAMPROFILE StatTbLookupEntries;
2167 /** Threaded TB statistics: Number of calls per TB. */
2168 STAMPROFILE StatTbThreadedCalls;
2169 /** Native TB statistics: Native code size per TB. */
2170 STAMPROFILE StatTbNativeCode;
2171 /** Native TB statistics: Profiling native recompilation. */
2172 STAMPROFILE StatNativeRecompilation;
2173 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2174 STAMPROFILE StatNativeCallsRecompiled;
2175 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2176 STAMPROFILE StatNativeCallsThreaded;
2177 /** Native recompiled execution: TLB hits for data fetches. */
2178 STAMCOUNTER StatNativeTlbHitsForFetch;
2179 /** Native recompiled execution: TLB hits for data stores. */
2180 STAMCOUNTER StatNativeTlbHitsForStore;
2181 /** Native recompiled execution: TLB hits for stack accesses. */
2182 STAMCOUNTER StatNativeTlbHitsForStack;
2183 /** Native recompiled execution: TLB hits for mapped accesses. */
2184 STAMCOUNTER StatNativeTlbHitsForMapped;
2185 /** Native recompiled execution: Code TLB misses for new page. */
2186 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2187 /** Native recompiled execution: Code TLB hits for new page. */
2188 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2189 /** Native recompiled execution: Code TLB misses for new page with offset. */
2190 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2191 /** Native recompiled execution: Code TLB hits for new page with offset. */
2192 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2193
2194 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2195 STAMCOUNTER StatNativeRegFindFree;
2196 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2197 * to free a variable. */
2198 STAMCOUNTER StatNativeRegFindFreeVar;
2199 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2200 * not need to free any variables. */
2201 STAMCOUNTER StatNativeRegFindFreeNoVar;
2202 /** Native recompiler: Liveness info freed shadowed guest registers in
2203 * iemNativeRegAllocFindFree. */
2204 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2205 /** Native recompiler: Liveness info helped with the allocation in
2206 * iemNativeRegAllocFindFree. */
2207 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2208
2209 /** Native recompiler: Number of times status flags calc has been skipped. */
2210 STAMCOUNTER StatNativeEflSkippedArithmetic;
2211 /** Native recompiler: Number of times status flags calc has been postponed. */
2212 STAMCOUNTER StatNativeEflPostponedArithmetic;
2213 /** Native recompiler: Total number instructions in this category. */
2214 STAMCOUNTER StatNativeEflTotalArithmetic;
2215
2216 /** Native recompiler: Number of times status flags calc has been skipped. */
2217 STAMCOUNTER StatNativeEflSkippedLogical;
2218 /** Native recompiler: Number of times status flags calc has been postponed. */
2219 STAMCOUNTER StatNativeEflPostponedLogical;
2220 /** Native recompiler: Total number instructions in this category. */
2221 STAMCOUNTER StatNativeEflTotalLogical;
2222
2223 /** Native recompiler: Number of times status flags calc has been skipped. */
2224 STAMCOUNTER StatNativeEflSkippedShift;
2225 /** Native recompiler: Number of times status flags calc has been postponed. */
2226 STAMCOUNTER StatNativeEflPostponedShift;
2227 /** Native recompiler: Total number instructions in this category. */
2228 STAMCOUNTER StatNativeEflTotalShift;
2229
2230 /** Native recompiler: Number of emits per postponement. */
2231 STAMPROFILE StatNativeEflPostponedEmits;
2232
2233 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2234 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2235 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2236 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2237 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2238 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2239 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2240 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2241 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2242 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2243 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2244 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2245 /** Native recompiler: Number of required EFLAGS.CF updates. */
2246 STAMCOUNTER StatNativeLivenessEflCfRequired;
2247 /** Native recompiler: Number of required EFLAGS.PF updates. */
2248 STAMCOUNTER StatNativeLivenessEflPfRequired;
2249 /** Native recompiler: Number of required EFLAGS.AF updates. */
2250 STAMCOUNTER StatNativeLivenessEflAfRequired;
2251 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2252 STAMCOUNTER StatNativeLivenessEflZfRequired;
2253 /** Native recompiler: Number of required EFLAGS.SF updates. */
2254 STAMCOUNTER StatNativeLivenessEflSfRequired;
2255 /** Native recompiler: Number of required EFLAGS.OF updates. */
2256 STAMCOUNTER StatNativeLivenessEflOfRequired;
2257 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2258 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2259 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2260 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2261 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2262 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2263 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2264 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2265 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2266 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2267 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2268 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2269
2270 /** Native recompiler: Number of potential PC updates in total. */
2271 STAMCOUNTER StatNativePcUpdateTotal;
2272 /** Native recompiler: Number of PC updates which could be delayed. */
2273 STAMCOUNTER StatNativePcUpdateDelayed;
2274
2275 /** Native recompiler: Number of time we had complicated dirty shadow
2276 * register situations with the other branch in IEM_MC_ENDIF. */
2277 STAMCOUNTER StatNativeEndIfOtherBranchDirty;
2278
2279//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2280 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2281 STAMCOUNTER StatNativeSimdRegFindFree;
2282 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2283 * to free a variable. */
2284 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2285 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2286 * not need to free any variables. */
2287 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2288 /** Native recompiler: Liveness info freed shadowed guest registers in
2289 * iemNativeSimdRegAllocFindFree. */
2290 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2291 /** Native recompiler: Liveness info helped with the allocation in
2292 * iemNativeSimdRegAllocFindFree. */
2293 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2294
2295 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2296 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2297 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2298 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2299 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2300 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2301 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2302 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2303
2304 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2305 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2306 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2307 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2308 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2309 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2310 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2311 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2312//#endif
2313
2314 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2315 * Not availabe in release builds. */
2316 STAMCOUNTER StatNativeTbFinished;
2317 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2318 STAMCOUNTER StatNativeTbExitReturnBreak;
2319 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2320 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2321 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2322 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2323 /** Native recompiler: The TB finished executing with other non-zero status. */
2324 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2325 /** Native recompiler: The TB finished executing via throw / long jump. */
2326 STAMCOUNTER StatNativeTbExitLongJump;
2327 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2328 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2329 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2330 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2331 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2332 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2333 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2334 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2335 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2336 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2337 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2338 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2339
2340 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2341 STAMCOUNTER StatNativeTbExitRaiseDe;
2342 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2343 STAMCOUNTER StatNativeTbExitRaiseUd;
2344 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2345 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2346 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2347 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2348 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2349 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2350 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2351 STAMCOUNTER StatNativeTbExitRaiseNm;
2352 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2353 STAMCOUNTER StatNativeTbExitRaiseGp0;
2354 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2355 STAMCOUNTER StatNativeTbExitRaiseMf;
2356 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2357 STAMCOUNTER StatNativeTbExitRaiseXf;
2358 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2359 STAMCOUNTER StatNativeTbExitObsoleteTb;
2360
2361 /** Native recompiler: Number of full TB loops (jumps from end to start). */
2362 STAMCOUNTER StatNativeTbExitLoopFullTb;
2363
2364 /** Native recompiler: Failure situations with direct linking scenario \#1.
2365 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2366 * @{ */
2367 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2368 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2369 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2370 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2371 /** @} */
2372
2373 /** Native recompiler: Failure situations with direct linking scenario \#2.
2374 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2375 * @{ */
2376 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2377 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2378 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2379 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2380 /** @} */
2381
2382 /** iemMemMap and iemMemMapJmp statistics.
2383 * @{ */
2384 STAMCOUNTER StatMemMapJmp;
2385 STAMCOUNTER StatMemMapNoJmp;
2386 STAMCOUNTER StatMemBounceBufferCrossPage;
2387 STAMCOUNTER StatMemBounceBufferMapPhys;
2388 /** @} */
2389
2390 /** Timer polling statistics (debug only).
2391 * @{ */
2392 STAMPROFILE StatTimerPoll;
2393 STAMPROFILE StatTimerPollPoll;
2394 STAMPROFILE StatTimerPollRun;
2395 STAMCOUNTER StatTimerPollUnchanged;
2396 STAMCOUNTER StatTimerPollTiny;
2397 STAMCOUNTER StatTimerPollDefaultCalc;
2398 STAMCOUNTER StatTimerPollMax;
2399 STAMPROFILE StatTimerPollFactorDivision;
2400 STAMPROFILE StatTimerPollFactorMultiplication;
2401 /** @} */
2402
2403#ifdef IEM_WITH_TLB_TRACE
2404 /*uint64_t au64Padding[0];*/
2405#else
2406 uint64_t au64Padding[2];
2407#endif
2408
2409#ifdef IEM_WITH_TLB_TRACE
2410 /** The end (next) trace entry. */
2411 uint32_t idxTlbTraceEntry;
2412 /** Number of trace entries allocated expressed as a power of two. */
2413 uint32_t cTlbTraceEntriesShift;
2414 /** The trace entries. */
2415 PIEMTLBTRACEENTRY paTlbTraceEntries;
2416#endif
2417
2418 /** Data TLB.
2419 * @remarks Must be 64-byte aligned. */
2420 IEMTLB DataTlb;
2421 /** Instruction TLB.
2422 * @remarks Must be 64-byte aligned. */
2423 IEMTLB CodeTlb;
2424
2425 /** Exception statistics. */
2426 STAMCOUNTER aStatXcpts[32];
2427 /** Interrupt statistics. */
2428 uint32_t aStatInts[256];
2429
2430#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2431 /** Instruction statistics for ring-0/raw-mode. */
2432 IEMINSTRSTATS StatsRZ;
2433 /** Instruction statistics for ring-3. */
2434 IEMINSTRSTATS StatsR3;
2435# ifdef VBOX_WITH_IEM_RECOMPILER
2436 /** Statistics per threaded function call.
2437 * Updated by both the threaded and native recompilers. */
2438 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2439# endif
2440#endif
2441} IEMCPU;
2442AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2443AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2444AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2445AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2446AssertCompileMemberAlignment(IEMCPU, pCurTbR3, 64);
2447AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2448AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2449
2450/** Pointer to the per-CPU IEM state. */
2451typedef IEMCPU *PIEMCPU;
2452/** Pointer to the const per-CPU IEM state. */
2453typedef IEMCPU const *PCIEMCPU;
2454
2455/** @def IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED
2456 * Value indicating the TB didn't modified the floating point control register.
2457 * @note Neither FPCR nor MXCSR accept this as a valid value (MXCSR is not fully populated,
2458 * FPCR has the upper 32-bit reserved), so this is safe. */
2459#if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) || defined(DOXYGEN_RUNNING)
2460# ifdef RT_ARCH_AMD64
2461# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT32_MAX
2462# elif defined(RT_ARCH_ARM64)
2463# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT64_MAX
2464# else
2465# error "Port me"
2466# endif
2467#endif
2468
2469/** @def IEM_GET_CTX
2470 * Gets the guest CPU context for the calling EMT.
2471 * @returns PCPUMCTX
2472 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2473 */
2474#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2475
2476/** @def IEM_CTX_ASSERT
2477 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2478 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2479 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2480 */
2481#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2482 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2483 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2484 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2485
2486/** @def IEM_CTX_IMPORT_RET
2487 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2488 *
2489 * Will call the keep to import the bits as needed.
2490 *
2491 * Returns on import failure.
2492 *
2493 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2494 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2495 */
2496#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2497 do { \
2498 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2499 { /* likely */ } \
2500 else \
2501 { \
2502 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2503 AssertRCReturn(rcCtxImport, rcCtxImport); \
2504 } \
2505 } while (0)
2506
2507/** @def IEM_CTX_IMPORT_NORET
2508 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2509 *
2510 * Will call the keep to import the bits as needed.
2511 *
2512 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2513 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2514 */
2515#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2516 do { \
2517 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2518 { /* likely */ } \
2519 else \
2520 { \
2521 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2522 AssertLogRelRC(rcCtxImport); \
2523 } \
2524 } while (0)
2525
2526/** @def IEM_CTX_IMPORT_JMP
2527 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2528 *
2529 * Will call the keep to import the bits as needed.
2530 *
2531 * Jumps on import failure.
2532 *
2533 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2534 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2535 */
2536#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2537 do { \
2538 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2539 { /* likely */ } \
2540 else \
2541 { \
2542 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2543 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2544 } \
2545 } while (0)
2546
2547
2548
2549/** @def IEM_GET_TARGET_CPU
2550 * Gets the current IEMTARGETCPU value.
2551 * @returns IEMTARGETCPU value.
2552 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2553 */
2554#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2555# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2556#else
2557# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2558#endif
2559
2560/** @def IEM_GET_INSTR_LEN
2561 * Gets the instruction length. */
2562#ifdef IEM_WITH_CODE_TLB
2563# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2564#else
2565# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2566#endif
2567
2568/** @def IEM_TRY_SETJMP
2569 * Wrapper around setjmp / try, hiding all the ugly differences.
2570 *
2571 * @note Use with extreme care as this is a fragile macro.
2572 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2573 * @param a_rcTarget The variable that should receive the status code in case
2574 * of a longjmp/throw.
2575 */
2576/** @def IEM_TRY_SETJMP_AGAIN
2577 * For when setjmp / try is used again in the same variable scope as a previous
2578 * IEM_TRY_SETJMP invocation.
2579 */
2580/** @def IEM_CATCH_LONGJMP_BEGIN
2581 * Start wrapper for catch / setjmp-else.
2582 *
2583 * This will set up a scope.
2584 *
2585 * @note Use with extreme care as this is a fragile macro.
2586 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2587 * @param a_rcTarget The variable that should receive the status code in case
2588 * of a longjmp/throw.
2589 */
2590/** @def IEM_CATCH_LONGJMP_END
2591 * End wrapper for catch / setjmp-else.
2592 *
2593 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2594 * state.
2595 *
2596 * @note Use with extreme care as this is a fragile macro.
2597 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2598 */
2599#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2600# ifdef IEM_WITH_THROW_CATCH
2601# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2602 a_rcTarget = VINF_SUCCESS; \
2603 try
2604# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2605 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2606# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2607 catch (int rcThrown) \
2608 { \
2609 a_rcTarget = rcThrown
2610# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2611 } \
2612 ((void)0)
2613# else /* !IEM_WITH_THROW_CATCH */
2614# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2615 jmp_buf JmpBuf; \
2616 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2617 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2618 if ((rcStrict = setjmp(JmpBuf)) == 0)
2619# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2620 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2621 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2622 if ((rcStrict = setjmp(JmpBuf)) == 0)
2623# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2624 else \
2625 { \
2626 ((void)0)
2627# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2628 } \
2629 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2630# endif /* !IEM_WITH_THROW_CATCH */
2631#endif /* IEM_WITH_SETJMP */
2632
2633
2634/**
2635 * Shared per-VM IEM data.
2636 */
2637typedef struct IEM
2638{
2639 /** The VMX APIC-access page handler type. */
2640 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2641#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2642 /** Set if the CPUID host call functionality is enabled. */
2643 bool fCpuIdHostCall;
2644#endif
2645} IEM;
2646
2647
2648
2649/** @name IEM_ACCESS_XXX - Access details.
2650 * @{ */
2651#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2652#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2653#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2654#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2655#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2656#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2657#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2658#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2659#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2660#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2661/** The writes are partial, so if initialize the bounce buffer with the
2662 * orignal RAM content. */
2663#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2664/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2665#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2666/** Bounce buffer with ring-3 write pending, first page. */
2667#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2668/** Bounce buffer with ring-3 write pending, second page. */
2669#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2670/** Not locked, accessed via the TLB. */
2671#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2672/** Atomic access.
2673 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2674 * fallback for misaligned stuff. See @bugref{10547}. */
2675#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2676/** Valid bit mask. */
2677#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2678/** Shift count for the TLB flags (upper word). */
2679#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2680
2681/** Atomic read+write data alias. */
2682#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2683/** Read+write data alias. */
2684#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2685/** Write data alias. */
2686#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2687/** Read data alias. */
2688#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2689/** Instruction fetch alias. */
2690#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2691/** Stack write alias. */
2692#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2693/** Stack read alias. */
2694#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2695/** Stack read+write alias. */
2696#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2697/** Read system table alias. */
2698#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2699/** Read+write system table alias. */
2700#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2701/** @} */
2702
2703/** @name Prefix constants (IEMCPU::fPrefixes)
2704 * @{ */
2705#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2706#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2707#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2708#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2709#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2710#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2711#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2712
2713#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2714#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2715#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2716
2717#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2718#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2719#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2720
2721#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2722#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2723#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2724#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2725/** Mask with all the REX prefix flags.
2726 * This is generally for use when needing to undo the REX prefixes when they
2727 * are followed legacy prefixes and therefore does not immediately preceed
2728 * the first opcode byte.
2729 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2730#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2731
2732#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2733#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2734#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2735/** @} */
2736
2737/** @name IEMOPFORM_XXX - Opcode forms
2738 * @note These are ORed together with IEMOPHINT_XXX.
2739 * @{ */
2740/** ModR/M: reg, r/m */
2741#define IEMOPFORM_RM 0
2742/** ModR/M: reg, r/m (register) */
2743#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2744/** ModR/M: reg, r/m (memory) */
2745#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2746/** ModR/M: reg, r/m, imm */
2747#define IEMOPFORM_RMI 1
2748/** ModR/M: reg, r/m (register), imm */
2749#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2750/** ModR/M: reg, r/m (memory), imm */
2751#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2752/** ModR/M: reg, r/m, xmm0 */
2753#define IEMOPFORM_RM0 2
2754/** ModR/M: reg, r/m (register), xmm0 */
2755#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2756/** ModR/M: reg, r/m (memory), xmm0 */
2757#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2758/** ModR/M: r/m, reg */
2759#define IEMOPFORM_MR 3
2760/** ModR/M: r/m (register), reg */
2761#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2762/** ModR/M: r/m (memory), reg */
2763#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2764/** ModR/M: r/m, reg, imm */
2765#define IEMOPFORM_MRI 4
2766/** ModR/M: r/m (register), reg, imm */
2767#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2768/** ModR/M: r/m (memory), reg, imm */
2769#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2770/** ModR/M: r/m only */
2771#define IEMOPFORM_M 5
2772/** ModR/M: r/m only (register). */
2773#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2774/** ModR/M: r/m only (memory). */
2775#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2776/** ModR/M: r/m, imm */
2777#define IEMOPFORM_MI 6
2778/** ModR/M: r/m (register), imm */
2779#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2780/** ModR/M: r/m (memory), imm */
2781#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2782/** ModR/M: r/m, 1 (shift and rotate instructions) */
2783#define IEMOPFORM_M1 7
2784/** ModR/M: r/m (register), 1. */
2785#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2786/** ModR/M: r/m (memory), 1. */
2787#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2788/** ModR/M: r/m, CL (shift and rotate instructions)
2789 * @todo This should just've been a generic fixed register. But the python
2790 * code doesn't needs more convincing. */
2791#define IEMOPFORM_M_CL 8
2792/** ModR/M: r/m (register), CL. */
2793#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2794/** ModR/M: r/m (memory), CL. */
2795#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2796/** ModR/M: reg only */
2797#define IEMOPFORM_R 9
2798
2799/** VEX+ModR/M: reg, r/m */
2800#define IEMOPFORM_VEX_RM 16
2801/** VEX+ModR/M: reg, r/m (register) */
2802#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2803/** VEX+ModR/M: reg, r/m (memory) */
2804#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2805/** VEX+ModR/M: r/m, reg */
2806#define IEMOPFORM_VEX_MR 17
2807/** VEX+ModR/M: r/m (register), reg */
2808#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2809/** VEX+ModR/M: r/m (memory), reg */
2810#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2811/** VEX+ModR/M: r/m, reg, imm8 */
2812#define IEMOPFORM_VEX_MRI 18
2813/** VEX+ModR/M: r/m (register), reg, imm8 */
2814#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2815/** VEX+ModR/M: r/m (memory), reg, imm8 */
2816#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2817/** VEX+ModR/M: r/m only */
2818#define IEMOPFORM_VEX_M 19
2819/** VEX+ModR/M: r/m only (register). */
2820#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2821/** VEX+ModR/M: r/m only (memory). */
2822#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2823/** VEX+ModR/M: reg only */
2824#define IEMOPFORM_VEX_R 20
2825/** VEX+ModR/M: reg, vvvv, r/m */
2826#define IEMOPFORM_VEX_RVM 21
2827/** VEX+ModR/M: reg, vvvv, r/m (register). */
2828#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2829/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2830#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2831/** VEX+ModR/M: reg, vvvv, r/m, imm */
2832#define IEMOPFORM_VEX_RVMI 22
2833/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2834#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2835/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2836#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2837/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2838#define IEMOPFORM_VEX_RVMR 23
2839/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2840#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2841/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2842#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2843/** VEX+ModR/M: reg, r/m, vvvv */
2844#define IEMOPFORM_VEX_RMV 24
2845/** VEX+ModR/M: reg, r/m, vvvv (register). */
2846#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2847/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2848#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2849/** VEX+ModR/M: reg, r/m, imm8 */
2850#define IEMOPFORM_VEX_RMI 25
2851/** VEX+ModR/M: reg, r/m, imm8 (register). */
2852#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2853/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2854#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2855/** VEX+ModR/M: r/m, vvvv, reg */
2856#define IEMOPFORM_VEX_MVR 26
2857/** VEX+ModR/M: r/m, vvvv, reg (register) */
2858#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2859/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2860#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2861/** VEX+ModR/M+/n: vvvv, r/m */
2862#define IEMOPFORM_VEX_VM 27
2863/** VEX+ModR/M+/n: vvvv, r/m (register) */
2864#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2865/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2866#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2867/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2868#define IEMOPFORM_VEX_VMI 28
2869/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2870#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2871/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2872#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2873
2874/** Fixed register instruction, no R/M. */
2875#define IEMOPFORM_FIXED 32
2876
2877/** The r/m is a register. */
2878#define IEMOPFORM_MOD3 RT_BIT_32(8)
2879/** The r/m is a memory access. */
2880#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2881/** @} */
2882
2883/** @name IEMOPHINT_XXX - Additional Opcode Hints
2884 * @note These are ORed together with IEMOPFORM_XXX.
2885 * @{ */
2886/** Ignores the operand size prefix (66h). */
2887#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2888/** Ignores REX.W (aka WIG). */
2889#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2890/** Both the operand size prefixes (66h + REX.W) are ignored. */
2891#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2892/** Allowed with the lock prefix. */
2893#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2894/** The VEX.L value is ignored (aka LIG). */
2895#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2896/** The VEX.L value must be zero (i.e. 128-bit width only). */
2897#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2898/** The VEX.L value must be one (i.e. 256-bit width only). */
2899#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2900/** The VEX.V value must be zero. */
2901#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2902/** The REX.W/VEX.V value must be zero. */
2903#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2904#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2905/** The REX.W/VEX.V value must be one. */
2906#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2907#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2908
2909/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2910#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2911/** @} */
2912
2913/**
2914 * Possible hardware task switch sources.
2915 */
2916typedef enum IEMTASKSWITCH
2917{
2918 /** Task switch caused by an interrupt/exception. */
2919 IEMTASKSWITCH_INT_XCPT = 1,
2920 /** Task switch caused by a far CALL. */
2921 IEMTASKSWITCH_CALL,
2922 /** Task switch caused by a far JMP. */
2923 IEMTASKSWITCH_JUMP,
2924 /** Task switch caused by an IRET. */
2925 IEMTASKSWITCH_IRET
2926} IEMTASKSWITCH;
2927AssertCompileSize(IEMTASKSWITCH, 4);
2928
2929/**
2930 * Possible CrX load (write) sources.
2931 */
2932typedef enum IEMACCESSCRX
2933{
2934 /** CrX access caused by 'mov crX' instruction. */
2935 IEMACCESSCRX_MOV_CRX,
2936 /** CrX (CR0) write caused by 'lmsw' instruction. */
2937 IEMACCESSCRX_LMSW,
2938 /** CrX (CR0) write caused by 'clts' instruction. */
2939 IEMACCESSCRX_CLTS,
2940 /** CrX (CR0) read caused by 'smsw' instruction. */
2941 IEMACCESSCRX_SMSW
2942} IEMACCESSCRX;
2943
2944#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2945/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2946 *
2947 * These flags provide further context to SLAT page-walk failures that could not be
2948 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2949 *
2950 * @{
2951 */
2952/** Translating a nested-guest linear address failed accessing a nested-guest
2953 * physical address. */
2954# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2955/** Translating a nested-guest linear address failed accessing a
2956 * paging-structure entry or updating accessed/dirty bits. */
2957# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2958/** @} */
2959
2960DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2961# ifndef IN_RING3
2962DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2963# endif
2964#endif
2965
2966/**
2967 * Indicates to the verifier that the given flag set is undefined.
2968 *
2969 * Can be invoked again to add more flags.
2970 *
2971 * This is a NOOP if the verifier isn't compiled in.
2972 *
2973 * @note We're temporarily keeping this until code is converted to new
2974 * disassembler style opcode handling.
2975 */
2976#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2977
2978
2979/** @def IEM_DECL_IMPL_TYPE
2980 * For typedef'ing an instruction implementation function.
2981 *
2982 * @param a_RetType The return type.
2983 * @param a_Name The name of the type.
2984 * @param a_ArgList The argument list enclosed in parentheses.
2985 */
2986
2987/** @def IEM_DECL_IMPL_DEF
2988 * For defining an instruction implementation function.
2989 *
2990 * @param a_RetType The return type.
2991 * @param a_Name The name of the type.
2992 * @param a_ArgList The argument list enclosed in parentheses.
2993 */
2994
2995#if defined(__GNUC__) && defined(RT_ARCH_X86)
2996# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2997 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2998# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2999 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3000# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3001 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3002
3003#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
3004# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3005 a_RetType (__fastcall a_Name) a_ArgList
3006# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3007 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3008# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3009 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3010
3011#elif __cplusplus >= 201700 /* P0012R1 support */
3012# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3013 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
3014# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3015 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3016# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3017 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3018
3019#else
3020# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3021 a_RetType (VBOXCALL a_Name) a_ArgList
3022# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3023 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3024# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3025 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3026
3027#endif
3028
3029/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
3030RT_C_DECLS_BEGIN
3031extern uint8_t const g_afParity[256];
3032RT_C_DECLS_END
3033
3034
3035/** @name Arithmetic assignment operations on bytes (binary).
3036 * @{ */
3037typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
3038typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
3039FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
3040FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
3041FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
3042FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
3043FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
3044FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
3045FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
3046/** @} */
3047
3048/** @name Arithmetic assignment operations on words (binary).
3049 * @{ */
3050typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
3051typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
3052FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
3053FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
3054FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
3055FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
3056FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
3057FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
3058FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
3059/** @} */
3060
3061
3062/** @name Arithmetic assignment operations on double words (binary).
3063 * @{ */
3064typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
3065typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
3066FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
3067FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
3068FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
3069FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
3070FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
3071FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
3072FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
3073FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
3074FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
3075FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
3076/** @} */
3077
3078/** @name Arithmetic assignment operations on quad words (binary).
3079 * @{ */
3080typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
3081typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
3082FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
3083FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
3084FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
3085FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
3086FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
3087FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
3088FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
3089FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
3090FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
3091FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
3092/** @} */
3093
3094typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
3095typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
3096typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
3097typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
3098typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
3099typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
3100typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
3101typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
3102
3103/** @name Compare operations (thrown in with the binary ops).
3104 * @{ */
3105FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
3106FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
3107FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
3108FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
3109/** @} */
3110
3111/** @name Test operations (thrown in with the binary ops).
3112 * @{ */
3113FNIEMAIMPLBINROU8 iemAImpl_test_u8;
3114FNIEMAIMPLBINROU16 iemAImpl_test_u16;
3115FNIEMAIMPLBINROU32 iemAImpl_test_u32;
3116FNIEMAIMPLBINROU64 iemAImpl_test_u64;
3117/** @} */
3118
3119/** @name Bit operations operations (thrown in with the binary ops).
3120 * @{ */
3121FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
3122FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
3123FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
3124FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
3125FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
3126FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
3127FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
3128FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
3129FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
3130FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
3131FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
3132FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
3133/** @} */
3134
3135/** @name Arithmetic three operand operations on double words (binary).
3136 * @{ */
3137typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
3138typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
3139FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
3140FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
3141FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
3142/** @} */
3143
3144/** @name Arithmetic three operand operations on quad words (binary).
3145 * @{ */
3146typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
3147typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
3148FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
3149FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
3150FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
3151/** @} */
3152
3153/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
3154 * @{ */
3155typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
3156typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
3157FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
3158FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
3159FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
3160FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
3161FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
3162FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
3163/** @} */
3164
3165/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
3166 * @{ */
3167typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
3168typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
3169FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
3170FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
3171FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
3172FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
3173FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
3174FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
3175/** @} */
3176
3177/** @name MULX 32-bit and 64-bit.
3178 * @{ */
3179typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
3180typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
3181FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
3182
3183typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
3184typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
3185FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
3186/** @} */
3187
3188
3189/** @name Exchange memory with register operations.
3190 * @{ */
3191IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3192IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3193IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3194IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3195IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3196IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3197IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3198IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3199/** @} */
3200
3201/** @name Exchange and add operations.
3202 * @{ */
3203IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3204IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3205IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3206IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3207IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3208IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3209IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3210IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3211/** @} */
3212
3213/** @name Compare and exchange.
3214 * @{ */
3215IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3216IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3217IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3218IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3219IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3220IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3221#if ARCH_BITS == 32
3222IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3223IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3224#else
3225IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3226IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3227#endif
3228IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3229 uint32_t *pEFlags));
3230IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3231 uint32_t *pEFlags));
3232IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3233 uint32_t *pEFlags));
3234IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3235 uint32_t *pEFlags));
3236#ifndef RT_ARCH_ARM64
3237IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3238 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3239#endif
3240/** @} */
3241
3242/** @name Memory ordering
3243 * @{ */
3244typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3245typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3246IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3247IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3248IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3249#ifndef RT_ARCH_ARM64
3250IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3251#endif
3252/** @} */
3253
3254/** @name Double precision shifts
3255 * @{ */
3256typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3257typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3258typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3259typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3260typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3261typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3262FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3263FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3264FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3265FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3266FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3267FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3268/** @} */
3269
3270
3271/** @name Bit search operations (thrown in with the binary ops).
3272 * @{ */
3273FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3274FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3275FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3276FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3277FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3278FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3279FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3280FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3281FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3282FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3283FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3284FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3285FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3286FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3287FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3288/** @} */
3289
3290/** @name Signed multiplication operations (thrown in with the binary ops).
3291 * @{ */
3292FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3293FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3294FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3295/** @} */
3296
3297/** @name Arithmetic assignment operations on bytes (unary).
3298 * @{ */
3299typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3300typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3301FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3302FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3303FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3304FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3305/** @} */
3306
3307/** @name Arithmetic assignment operations on words (unary).
3308 * @{ */
3309typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3310typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3311FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3312FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3313FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3314FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3315/** @} */
3316
3317/** @name Arithmetic assignment operations on double words (unary).
3318 * @{ */
3319typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3320typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3321FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3322FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3323FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3324FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3325/** @} */
3326
3327/** @name Arithmetic assignment operations on quad words (unary).
3328 * @{ */
3329typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3330typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3331FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3332FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3333FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3334FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3335/** @} */
3336
3337
3338/** @name Shift operations on bytes (Group 2).
3339 * @{ */
3340typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3341typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3342FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3343FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3344FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3345FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3346FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3347FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3348FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3349/** @} */
3350
3351/** @name Shift operations on words (Group 2).
3352 * @{ */
3353typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3354typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3355FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3356FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3357FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3358FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3359FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3360FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3361FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3362/** @} */
3363
3364/** @name Shift operations on double words (Group 2).
3365 * @{ */
3366typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3367typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3368FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3369FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3370FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3371FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3372FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3373FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3374FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3375/** @} */
3376
3377/** @name Shift operations on words (Group 2).
3378 * @{ */
3379typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3380typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3381FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3382FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3383FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3384FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3385FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3386FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3387FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3388/** @} */
3389
3390/** @name Multiplication and division operations.
3391 * @{ */
3392typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t fEFlags));
3393typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3394FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3395FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3396FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3397FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3398
3399typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t fEFlags));
3400typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3401FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3402FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3403FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3404FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3405
3406typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t fEFlags));
3407typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3408FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3409FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3410FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3411FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3412
3413typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t fEFlags));
3414typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3415FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3416FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3417FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3418FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3419/** @} */
3420
3421/** @name Byte Swap.
3422 * @{ */
3423IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3424IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3425IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3426/** @} */
3427
3428/** @name Misc.
3429 * @{ */
3430FNIEMAIMPLBINU16 iemAImpl_arpl;
3431/** @} */
3432
3433/** @name RDRAND and RDSEED
3434 * @{ */
3435typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3436typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3437typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3438typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3439typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3440typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3441
3442FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3443FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3444FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3445FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3446FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3447FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3448/** @} */
3449
3450/** @name ADOX and ADCX
3451 * @{ */
3452FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3453FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3454FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3455FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3456/** @} */
3457
3458/** @name FPU operations taking a 32-bit float argument
3459 * @{ */
3460typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3461 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3462typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3463
3464typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3465 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3466typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3467
3468FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3469FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3470FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3471FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3472FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3473FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3474FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3475
3476IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3477IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3478 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3479/** @} */
3480
3481/** @name FPU operations taking a 64-bit float argument
3482 * @{ */
3483typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3484 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3485typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3486
3487typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3488 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3489typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3490
3491FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3492FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3493FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3494FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3495FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3496FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3497FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3498
3499IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3500IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3501 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3502/** @} */
3503
3504/** @name FPU operations taking a 80-bit float argument
3505 * @{ */
3506typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3507 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3508typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3509FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3510FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3511FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3512FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3513FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3514FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3515FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3516FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3517FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3518
3519FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3520FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3521FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3522
3523typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3524 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3525typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3526FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3527FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3528
3529typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3530 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3531typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3532FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3533FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3534
3535typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3536typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3537FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3538FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3539FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3540FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3541FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3542FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3543FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3544
3545typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3546typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3547FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3548FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3549
3550typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3551typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3552FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3553FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3554FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3555FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3556FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3557FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3558FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3559
3560typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3561 PCRTFLOAT80U pr80Val));
3562typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3563FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3564FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3565FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3566
3567IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3568IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3569 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3570
3571IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3572IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3573 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3574
3575/** @} */
3576
3577/** @name FPU operations taking a 16-bit signed integer argument
3578 * @{ */
3579typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3580 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3581typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3582typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3583 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3584typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3585
3586FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3587FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3588FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3589FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3590FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3591FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3592
3593typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3594 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3595typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3596FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3597
3598IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3599FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3600FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3601/** @} */
3602
3603/** @name FPU operations taking a 32-bit signed integer argument
3604 * @{ */
3605typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3606 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3607typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3608typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3609 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3610typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3611
3612FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3613FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3614FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3615FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3616FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3617FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3618
3619typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3620 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3621typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3622FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3623
3624IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3625FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3626FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3627/** @} */
3628
3629/** @name FPU operations taking a 64-bit signed integer argument
3630 * @{ */
3631typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3632 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3633typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3634
3635IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3636FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3637FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3638/** @} */
3639
3640
3641/** Temporary type representing a 256-bit vector register. */
3642typedef struct { uint64_t au64[4]; } IEMVMM256;
3643/** Temporary type pointing to a 256-bit vector register. */
3644typedef IEMVMM256 *PIEMVMM256;
3645/** Temporary type pointing to a const 256-bit vector register. */
3646typedef IEMVMM256 *PCIEMVMM256;
3647
3648
3649/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3650 * @{ */
3651typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3652typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3653typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
3654typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3655typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc));
3656typedef FNIEMAIMPLMEDIAF2U256 *PFNIEMAIMPLMEDIAF2U256;
3657typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3658typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3659typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3660typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3662typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3663typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3664typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3665typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3666typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3667typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3668typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3669typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3670typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3671FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3672FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3673FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3674FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3675FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3676FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3677FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3678FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3679FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3680FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3681FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3682FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3683FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3684FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3685FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3686FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3687FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3688FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3689FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3690FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3691FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3692FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3693FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3694FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3695FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3696FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3697FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3698FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3699FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3700FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3701FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3702FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3703FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3704FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3705FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3706FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3707FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3708FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3709FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3710
3711FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3712FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3713FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3714FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3715FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3716FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3717FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3718FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3719FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3720FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3721FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3722FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3723FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3724FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3725FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3726FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3727FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3728FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3735FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3736FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3738FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3739FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3740FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3741FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3742FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3743FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3744FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3745FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3746FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3747FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3748FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3749FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3750FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3751FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3752FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3753FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3754FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3755FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3756FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3757FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3758FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3759FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3760FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3761FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3762FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3763FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3764FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3765FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3766FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3767FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3768FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3769
3770FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3771FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3772FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3773FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3774FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3775FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3776FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3777FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3778FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3779FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3780FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3786FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3801FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3802FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3803FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3804FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3805FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3806FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3807FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3808FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3809FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3810FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3811FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3812FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3813FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3814FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3815FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3816FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3817FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3818FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3819FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3820FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3821FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3822FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3823FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3824FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3825FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3826FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3827FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3828FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3829FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3830FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3831FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3832FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3833FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3834FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3835FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3836FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3837FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3838FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3839FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3840FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3841FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3842FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3843FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3844
3845FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3846FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3847FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3848FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3849
3850FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3851FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3852FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3853FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3854FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3855FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3856FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3857FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3858FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3859FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3860FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3861FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3862FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3863FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3864FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3865FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3866FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3867FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3872FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3873FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3874FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3875FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3876FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3877FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3878FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3879FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3880FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3881FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3883FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3884FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3885FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3886FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3887FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3888FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3889FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3890FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3891FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3892FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3893FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3894FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3895FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3896FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3897FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3898FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3899FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3900FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3901FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3902FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3903FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3904FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3905FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3906FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3907FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3908FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3909FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3910FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3911FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3912FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3913FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3914FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3915FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3916FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3917FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3918FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3919FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3920FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3921FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3922FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3923FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3924FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermps_u256, iemAImpl_vpermps_u256_fallback;
3925FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermd_u256, iemAImpl_vpermd_u256_fallback;
3926
3927FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3928FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3929FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3930/** @} */
3931
3932/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3933 * @{ */
3934FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3935FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3936FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3937 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3938 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3939 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3940 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3941 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3942 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3943 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3944
3945FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3946 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3947 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3948 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3949 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3950 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3951 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3952 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3953/** @} */
3954
3955/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3956 * @{ */
3957FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3958FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3959FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3960 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3961 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3962 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3963FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3964 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3965 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3966 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3967/** @} */
3968
3969/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3970 * @{ */
3971typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3972typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3973typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3974typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3975IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3976FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3977#ifndef IEM_WITHOUT_ASSEMBLY
3978FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3979#endif
3980FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3981/** @} */
3982
3983/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3984 * @{ */
3985typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3986typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3987typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3988typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3989typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3990typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3991FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3992FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3993FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3994FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3995FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3996FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3997FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3998/** @} */
3999
4000/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
4001 * @{ */
4002IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
4003IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
4004IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
4005IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
4006#ifndef IEM_WITHOUT_ASSEMBLY
4007IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4008#endif
4009IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4010/** @} */
4011
4012/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
4013 * @{ */
4014typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
4015typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
4016typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
4017typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
4018typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
4019typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
4020
4021FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
4022FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
4023FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
4024FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
4025FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
4026FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
4027
4028FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
4029FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
4030FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
4031FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
4032FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
4033FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
4034
4035FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
4036FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
4037FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
4038FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
4039FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
4040FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
4041/** @} */
4042
4043
4044/** @name Media (SSE/MMX/AVX) operation: Sort this later
4045 * @{ */
4046IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4047IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4048IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4049IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4050IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4051
4052IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4053IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4054IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4055IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4056IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4057
4058IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4059IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4060IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4061IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4062IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4063
4064IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4065IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4066IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4067IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4068IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4069
4070IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4071IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4072IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4073IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4074IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4075
4076IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4077IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4078IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4079IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4080IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4081
4082IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4083IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4084IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4085IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4086IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4087
4088IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4089IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4090IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4091IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4092IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4093
4094IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4095IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4096IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4097IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4098IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4099
4100IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4101IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4102IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4103IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4104IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4105
4106IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4107IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4108IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4109IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4110IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4111
4112IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4113IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4114IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4115IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4116IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4117
4118IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4119IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4120IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4121IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4122IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4123
4124IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4125IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4126IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4127IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4128IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4129
4130IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4131IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4132
4133IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4134IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4135IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4136IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4137IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4138
4139IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4140IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4141IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4142IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4143IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4144
4145
4146typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4147typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
4148typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4149typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
4150typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4151typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
4152typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4153typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
4154
4155FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
4156FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
4157FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
4158FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
4159
4160FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
4161FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
4162FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
4163FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
4164FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
4165
4166FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
4167FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
4168FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
4169FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
4170FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
4171FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
4172FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
4173
4174FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
4175FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
4176FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
4177FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
4178FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
4179
4180FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
4181FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
4182FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
4183FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
4184FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
4185
4186FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
4187
4188FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
4189
4190FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
4191FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
4192FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
4193FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
4194FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
4195FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
4196IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4197IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4198
4199FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermq_u256, iemAImpl_vpermq_u256_fallback;
4200FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermpd_u256, iemAImpl_vpermpd_u256_fallback;
4201
4202typedef struct IEMPCMPISTRXSRC
4203{
4204 RTUINT128U uSrc1;
4205 RTUINT128U uSrc2;
4206} IEMPCMPISTRXSRC;
4207typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
4208typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
4209
4210typedef struct IEMPCMPESTRXSRC
4211{
4212 RTUINT128U uSrc1;
4213 RTUINT128U uSrc2;
4214 uint64_t u64Rax;
4215 uint64_t u64Rdx;
4216} IEMPCMPESTRXSRC;
4217typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
4218typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
4219
4220typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
4221typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
4222typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4223typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4224
4225typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4226typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4227typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4228typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4229
4230FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4231FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4232FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4233FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4234FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_vpcmpistri_u128, iemAImpl_vpcmpistri_u128_fallback;
4235FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_vpcmpestri_u128, iemAImpl_vpcmpestri_u128_fallback;
4236FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_vpcmpistrm_u128, iemAImpl_vpcmpistrm_u128_fallback;
4237FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_vpcmpestrm_u128, iemAImpl_vpcmpestrm_u128_fallback;
4238
4239
4240FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4241FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4242
4243FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4244FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4245FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4246
4247FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4248FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4249FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4250FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4251FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4252FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4253IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4254IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4255IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4256IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4257
4258FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4259FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4260FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4261FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4262
4263FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4264FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4265FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4266FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4267FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4268FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4269IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4270IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4271IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4272IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4273
4274FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4275FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4276FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4277FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4278
4279FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4280FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4281FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4282FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4283
4284FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4285FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4286FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4287FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4288FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4289FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4290FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4291FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4292FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4293FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4294/** @} */
4295
4296/** @name Media Odds and Ends
4297 * @{ */
4298typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4299typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4300typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4301typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4302FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4303FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4304FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4305FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4306
4307typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4308typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4309typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4310typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4311FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4312FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4313FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4314FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4315FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4316FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4317
4318typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4319typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4320typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4321typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4322typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4323typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4324typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4325typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4326typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R32,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT32U pr32Src));
4327typedef FNIEMAIMPLSSEF2I32R32 *PFNIEMAIMPLSSEF2I32R32;
4328typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R32,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT32U pr32Src));
4329typedef FNIEMAIMPLSSEF2I64R32 *PFNIEMAIMPLSSEF2I64R32;
4330typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R64,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT64U pr64Src));
4331typedef FNIEMAIMPLSSEF2I32R64 *PFNIEMAIMPLSSEF2I32R64;
4332typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R64,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT64U pr64Src));
4333typedef FNIEMAIMPLSSEF2I64R64 *PFNIEMAIMPLSSEF2I64R64;
4334
4335FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4336FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4337
4338FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4339FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4340
4341FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4342FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4343
4344FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4345FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4346
4347FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttss2si_i32_r32, iemAImpl_vcvttss2si_i32_r32_fallback;
4348FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttss2si_i64_r32, iemAImpl_vcvttss2si_i64_r32_fallback;
4349FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtss2si_i32_r32, iemAImpl_vcvtss2si_i32_r32_fallback;
4350FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtss2si_i64_r32, iemAImpl_vcvtss2si_i64_r32_fallback;
4351
4352FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttss2si_i32_r64, iemAImpl_vcvttss2si_i32_r64_fallback;
4353FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttss2si_i64_r64, iemAImpl_vcvttss2si_i64_r64_fallback;
4354FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtss2si_i32_r64, iemAImpl_vcvtss2si_i32_r64_fallback;
4355FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtss2si_i64_r64, iemAImpl_vcvtss2si_i64_r64_fallback;
4356
4357FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttsd2si_i32_r32, iemAImpl_vcvttsd2si_i32_r32_fallback;
4358FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttsd2si_i64_r32, iemAImpl_vcvttsd2si_i64_r32_fallback;
4359FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtsd2si_i32_r32, iemAImpl_vcvtsd2si_i32_r32_fallback;
4360FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtsd2si_i64_r32, iemAImpl_vcvtsd2si_i64_r32_fallback;
4361
4362FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttsd2si_i32_r64, iemAImpl_vcvttsd2si_i32_r64_fallback;
4363FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttsd2si_i64_r64, iemAImpl_vcvttsd2si_i64_r64_fallback;
4364FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtsd2si_i32_r64, iemAImpl_vcvtsd2si_i32_r64_fallback;
4365FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtsd2si_i64_r64, iemAImpl_vcvtsd2si_i64_r64_fallback;
4366
4367typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4368typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4369typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4370typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4371
4372FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4373FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4374
4375typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI32,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int32_t *pi32Src));
4376typedef FNIEMAIMPLAVXF3XMMI32 *PFNIEMAIMPLAVXF3XMMI32;
4377typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI64,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int64_t *pi64Src));
4378typedef FNIEMAIMPLAVXF3XMMI64 *PFNIEMAIMPLAVXF3XMMI64;
4379
4380FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2ss_u128_i32, iemAImpl_vcvtsi2ss_u128_i32_fallback;
4381FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2ss_u128_i64, iemAImpl_vcvtsi2ss_u128_i64_fallback;
4382
4383
4384typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4385typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4386typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4387typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4388
4389FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4390FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4391
4392FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2sd_u128_i32, iemAImpl_vcvtsi2sd_u128_i32_fallback;
4393FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2sd_u128_i64, iemAImpl_vcvtsi2sd_u128_i64_fallback;
4394
4395IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4396IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4397IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4398IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4399
4400
4401IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4402IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4403IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4404IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4405
4406
4407typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4408typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4409
4410typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4411typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4412
4413FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4414FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4415
4416FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4417FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4418
4419FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4420FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4421
4422FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4423FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4424
4425
4426typedef struct IEMMEDIAF2XMMSRC
4427{
4428 X86XMMREG uSrc1;
4429 X86XMMREG uSrc2;
4430} IEMMEDIAF2XMMSRC;
4431typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4432typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4433
4434
4435typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4436typedef FNIEMAIMPLMEDIAF3XMMIMM8 *PFNIEMAIMPLMEDIAF3XMMIMM8;
4437
4438
4439typedef struct IEMMEDIAF2YMMSRC
4440{
4441 X86YMMREG uSrc1;
4442 X86YMMREG uSrc2;
4443} IEMMEDIAF2YMMSRC;
4444typedef IEMMEDIAF2YMMSRC *PIEMMEDIAF2YMMSRC;
4445typedef const IEMMEDIAF2YMMSRC *PCIEMMEDIAF2YMMSRC;
4446
4447
4448typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3YMMIMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCIEMMEDIAF2YMMSRC puSrc, uint8_t bEvil));
4449typedef FNIEMAIMPLMEDIAF3YMMIMM8 *PFNIEMAIMPLMEDIAF3YMMIMM8;
4450
4451
4452FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpps_u128;
4453FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmppd_u128;
4454FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpss_u128;
4455FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpsd_u128;
4456
4457FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpps_u128, iemAImpl_vcmpps_u128_fallback;
4458FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmppd_u128, iemAImpl_vcmppd_u128_fallback;
4459FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpss_u128, iemAImpl_vcmpss_u128_fallback;
4460FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpsd_u128, iemAImpl_vcmpsd_u128_fallback;
4461
4462FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmpps_u256, iemAImpl_vcmpps_u256_fallback;
4463FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmppd_u256, iemAImpl_vcmppd_u256_fallback;
4464
4465FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundss_u128;
4466FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundsd_u128;
4467
4468FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4469FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4470
4471
4472typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128IMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, uint8_t bEvil));
4473typedef FNIEMAIMPLMEDIAF2U128IMM8 *PFNIEMAIMPLMEDIAF2U128IMM8;
4474
4475
4476typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256IMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc, uint8_t bEvil));
4477typedef FNIEMAIMPLMEDIAF2U256IMM8 *PFNIEMAIMPLMEDIAF2U256IMM8;
4478
4479
4480FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4481FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4482
4483FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundps_u128, iemAImpl_vroundps_u128_fallback;
4484FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundpd_u128, iemAImpl_vroundpd_u128_fallback;
4485
4486FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundps_u256, iemAImpl_vroundps_u256_fallback;
4487FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundpd_u256, iemAImpl_vroundpd_u256_fallback;
4488
4489FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundss_u128, iemAImpl_vroundss_u128_fallback;
4490FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundsd_u128, iemAImpl_vroundsd_u128_fallback;
4491
4492FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdpps_u128, iemAImpl_vdpps_u128_fallback;
4493FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdppd_u128, iemAImpl_vdppd_u128_fallback;
4494
4495FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vdpps_u256, iemAImpl_vdpps_u256_fallback;
4496
4497
4498typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4499typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4500
4501FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4502FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4503
4504typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4505typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4506
4507FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4508FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4509
4510typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4511typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4512
4513FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4514FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4515
4516/** @} */
4517
4518
4519/** @name Function tables.
4520 * @{
4521 */
4522
4523/**
4524 * Function table for a binary operator providing implementation based on
4525 * operand size.
4526 */
4527typedef struct IEMOPBINSIZES
4528{
4529 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4530 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4531 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4532 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4533} IEMOPBINSIZES;
4534/** Pointer to a binary operator function table. */
4535typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4536
4537
4538/**
4539 * Function table for a unary operator providing implementation based on
4540 * operand size.
4541 */
4542typedef struct IEMOPUNARYSIZES
4543{
4544 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4545 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4546 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4547 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4548} IEMOPUNARYSIZES;
4549/** Pointer to a unary operator function table. */
4550typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4551
4552
4553/**
4554 * Function table for a shift operator providing implementation based on
4555 * operand size.
4556 */
4557typedef struct IEMOPSHIFTSIZES
4558{
4559 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4560 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4561 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4562 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4563} IEMOPSHIFTSIZES;
4564/** Pointer to a shift operator function table. */
4565typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4566
4567
4568/**
4569 * Function table for a multiplication or division operation.
4570 */
4571typedef struct IEMOPMULDIVSIZES
4572{
4573 PFNIEMAIMPLMULDIVU8 pfnU8;
4574 PFNIEMAIMPLMULDIVU16 pfnU16;
4575 PFNIEMAIMPLMULDIVU32 pfnU32;
4576 PFNIEMAIMPLMULDIVU64 pfnU64;
4577} IEMOPMULDIVSIZES;
4578/** Pointer to a multiplication or division operation function table. */
4579typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4580
4581
4582/**
4583 * Function table for a double precision shift operator providing implementation
4584 * based on operand size.
4585 */
4586typedef struct IEMOPSHIFTDBLSIZES
4587{
4588 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4589 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4590 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4591} IEMOPSHIFTDBLSIZES;
4592/** Pointer to a double precision shift function table. */
4593typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4594
4595
4596/**
4597 * Function table for media instruction taking two full sized media source
4598 * registers and one full sized destination register (AVX).
4599 */
4600typedef struct IEMOPMEDIAF3
4601{
4602 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4603 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4604} IEMOPMEDIAF3;
4605/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4606typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4607
4608/** @def IEMOPMEDIAF3_INIT_VARS_EX
4609 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4610 * given functions as initializers. For use in AVX functions where a pair of
4611 * functions are only used once and the function table need not be public. */
4612#ifndef TST_IEM_CHECK_MC
4613# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4614# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4615 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4616 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4617# else
4618# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4619 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4620# endif
4621#else
4622# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4623#endif
4624/** @def IEMOPMEDIAF3_INIT_VARS
4625 * Generate AVX function tables for the @a a_InstrNm instruction.
4626 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4627#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4628 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4629 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4630
4631
4632/**
4633 * Function table for media instruction taking one full sized media source
4634 * registers and one full sized destination register (AVX).
4635 */
4636typedef struct IEMOPMEDIAF2
4637{
4638 PFNIEMAIMPLMEDIAF2U128 pfnU128;
4639 PFNIEMAIMPLMEDIAF2U256 pfnU256;
4640} IEMOPMEDIAF2;
4641/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4642typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
4643
4644/** @def IEMOPMEDIAF2_INIT_VARS_EX
4645 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4646 * given functions as initializers. For use in AVX functions where a pair of
4647 * functions are only used once and the function table need not be public. */
4648#ifndef TST_IEM_CHECK_MC
4649# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4650# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4651 static IEMOPMEDIAF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4652 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4653# else
4654# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4655 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4656# endif
4657#else
4658# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4659#endif
4660/** @def IEMOPMEDIAF2_INIT_VARS
4661 * Generate AVX function tables for the @a a_InstrNm instruction.
4662 * @sa IEMOPMEDIAF2_INIT_VARS_EX */
4663#define IEMOPMEDIAF2_INIT_VARS(a_InstrNm) \
4664 IEMOPMEDIAF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4665 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4666
4667
4668/**
4669 * Function table for media instruction taking two full sized media source
4670 * registers and one full sized destination register, but no additional state
4671 * (AVX).
4672 */
4673typedef struct IEMOPMEDIAOPTF3
4674{
4675 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4676 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4677} IEMOPMEDIAOPTF3;
4678/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4679typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4680
4681/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4682 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4683 * given functions as initializers. For use in AVX functions where a pair of
4684 * functions are only used once and the function table need not be public. */
4685#ifndef TST_IEM_CHECK_MC
4686# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4687# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4688 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4689 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4690# else
4691# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4692 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4693# endif
4694#else
4695# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4696#endif
4697/** @def IEMOPMEDIAOPTF3_INIT_VARS
4698 * Generate AVX function tables for the @a a_InstrNm instruction.
4699 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4700#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4701 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4702 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4703
4704/**
4705 * Function table for media instruction taking one full sized media source
4706 * registers and one full sized destination register, but no additional state
4707 * (AVX).
4708 */
4709typedef struct IEMOPMEDIAOPTF2
4710{
4711 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4712 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4713} IEMOPMEDIAOPTF2;
4714/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4715typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4716
4717/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4718 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4719 * given functions as initializers. For use in AVX functions where a pair of
4720 * functions are only used once and the function table need not be public. */
4721#ifndef TST_IEM_CHECK_MC
4722# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4723# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4724 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4725 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4726# else
4727# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4728 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4729# endif
4730#else
4731# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4732#endif
4733/** @def IEMOPMEDIAOPTF2_INIT_VARS
4734 * Generate AVX function tables for the @a a_InstrNm instruction.
4735 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4736#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4737 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4738 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4739
4740
4741/**
4742 * Function table for media instruction taking one full sized media source
4743 * register and one full sized destination register and an 8-bit immediate (AVX).
4744 */
4745typedef struct IEMOPMEDIAF2IMM8
4746{
4747 PFNIEMAIMPLMEDIAF2U128IMM8 pfnU128;
4748 PFNIEMAIMPLMEDIAF2U256IMM8 pfnU256;
4749} IEMOPMEDIAF2IMM8;
4750/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4751typedef IEMOPMEDIAF2IMM8 const *PCIEMOPMEDIAF2IMM8;
4752
4753/** @def IEMOPMEDIAF2IMM8_INIT_VARS_EX
4754 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4755 * given functions as initializers. For use in AVX functions where a pair of
4756 * functions are only used once and the function table need not be public. */
4757#ifndef TST_IEM_CHECK_MC
4758# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4759# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4760 static IEMOPMEDIAF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4761 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4762# else
4763# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4764 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4765# endif
4766#else
4767# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4768#endif
4769/** @def IEMOPMEDIAF2IMM8_INIT_VARS
4770 * Generate AVX function tables for the @a a_InstrNm instruction.
4771 * @sa IEMOPMEDIAF2IMM8_INIT_VARS_EX */
4772#define IEMOPMEDIAF2IMM8_INIT_VARS(a_InstrNm) \
4773 IEMOPMEDIAF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4774 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4775
4776
4777/**
4778 * Function table for media instruction taking one full sized media source
4779 * register and one full sized destination register and an 8-bit immediate, but no additional state
4780 * (AVX).
4781 */
4782typedef struct IEMOPMEDIAOPTF2IMM8
4783{
4784 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4785 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4786} IEMOPMEDIAOPTF2IMM8;
4787/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4788typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4789
4790/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4791 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4792 * given functions as initializers. For use in AVX functions where a pair of
4793 * functions are only used once and the function table need not be public. */
4794#ifndef TST_IEM_CHECK_MC
4795# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4796# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4797 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4798 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4799# else
4800# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4801 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4802# endif
4803#else
4804# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4805#endif
4806/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4807 * Generate AVX function tables for the @a a_InstrNm instruction.
4808 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4809#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4810 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4811 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4812
4813/**
4814 * Function table for media instruction taking two full sized media source
4815 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4816 * (AVX).
4817 */
4818typedef struct IEMOPMEDIAOPTF3IMM8
4819{
4820 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4821 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4822} IEMOPMEDIAOPTF3IMM8;
4823/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4824typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4825
4826/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4827 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4828 * given functions as initializers. For use in AVX functions where a pair of
4829 * functions are only used once and the function table need not be public. */
4830#ifndef TST_IEM_CHECK_MC
4831# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4832# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4833 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4834 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4835# else
4836# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4837 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4838# endif
4839#else
4840# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4841#endif
4842/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4843 * Generate AVX function tables for the @a a_InstrNm instruction.
4844 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4845#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4846 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4847 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4848/** @} */
4849
4850
4851/**
4852 * Function table for blend type instruction taking three full sized media source
4853 * registers and one full sized destination register, but no additional state
4854 * (AVX).
4855 */
4856typedef struct IEMOPBLENDOP
4857{
4858 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4859 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4860} IEMOPBLENDOP;
4861/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4862typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4863
4864/** @def IEMOPBLENDOP_INIT_VARS_EX
4865 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4866 * given functions as initializers. For use in AVX functions where a pair of
4867 * functions are only used once and the function table need not be public. */
4868#ifndef TST_IEM_CHECK_MC
4869# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4870# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4871 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4872 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4873# else
4874# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4875 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4876# endif
4877#else
4878# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4879#endif
4880/** @def IEMOPBLENDOP_INIT_VARS
4881 * Generate AVX function tables for the @a a_InstrNm instruction.
4882 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4883#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4884 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4885 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4886
4887
4888/** @name SSE/AVX single/double precision floating point operations.
4889 * @{ */
4890typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4891typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4892typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4893typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4894typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4895typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4896
4897typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4898typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4899typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4900typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4901typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4902typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4903
4904typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4905typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4906
4907FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4908FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4909FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4910FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4911FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4912FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4913FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4914FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4915FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4916FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4917FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4918FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4919FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4920FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4921FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4922FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4923FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4924FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4925FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4926FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4927FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4928FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4929
4930FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4931IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4932
4933FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4934FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4935FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4936FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4937FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4938FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4939
4940FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4941FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4942FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4943FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4944FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4945FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4946FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4947FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4948FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4949FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4950FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4951FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4952FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4953FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4954FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4955FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4956FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4957FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4958
4959FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4960FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4961FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4962FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4963FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4964FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4965FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4966FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4967FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4968FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4969FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4970FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4971FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4972FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4973FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4974FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4975FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4976FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4977FNIEMAIMPLMEDIAF2U128 iemAImpl_vrsqrtps_u128, iemAImpl_vrsqrtps_u128_fallback;
4978FNIEMAIMPLMEDIAF2U128 iemAImpl_vrcpps_u128, iemAImpl_vrcpps_u128_fallback;
4979FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4980FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4981FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtdq2ps_u128, iemAImpl_vcvtdq2ps_u128_fallback;
4982FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtps2dq_u128, iemAImpl_vcvtps2dq_u128_fallback;
4983FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvttps2dq_u128, iemAImpl_vcvttps2dq_u128_fallback;
4984IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4985IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4986IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4987IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4988IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4989IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4990
4991
4992FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4993FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4994FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4995FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4996FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4997FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4998FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4999FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
5000FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
5001FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
5002FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
5003FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
5004FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
5005FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
5006FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrsqrtss_u128_r32, iemAImpl_vrsqrtss_u128_r32_fallback;
5007FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrcpss_u128_r32, iemAImpl_vrcpss_u128_r32_fallback;
5008FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vcvtss2sd_u128_r32, iemAImpl_vcvtss2sd_u128_r32_fallback;
5009FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vcvtsd2ss_u128_r64, iemAImpl_vcvtsd2ss_u128_r64_fallback;
5010
5011
5012FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
5013FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
5014FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
5015FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
5016FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
5017FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
5018FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
5019FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
5020FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
5021FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
5022FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
5023FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
5024FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
5025FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
5026FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
5027FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
5028FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubps_u256, iemAImpl_vaddsubps_u256_fallback;
5029FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubpd_u256, iemAImpl_vaddsubpd_u256_fallback;
5030FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtps_u256, iemAImpl_vsqrtps_u256_fallback;
5031FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtpd_u256, iemAImpl_vsqrtpd_u256_fallback;
5032FNIEMAIMPLMEDIAF2U256 iemAImpl_vrsqrtps_u256, iemAImpl_vrsqrtps_u256_fallback;
5033FNIEMAIMPLMEDIAF2U256 iemAImpl_vrcpps_u256, iemAImpl_vrcpps_u256_fallback;
5034FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtdq2ps_u256, iemAImpl_vcvtdq2ps_u256_fallback;
5035FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtps2dq_u256, iemAImpl_vcvtps2dq_u256_fallback;
5036FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvttps2dq_u256, iemAImpl_vcvttps2dq_u256_fallback;
5037IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5038IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5039IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5040IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5041IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5042IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5043/** @} */
5044
5045/** @name C instruction implementations for anything slightly complicated.
5046 * @{ */
5047
5048/**
5049 * For typedef'ing or declaring a C instruction implementation function taking
5050 * no extra arguments.
5051 *
5052 * @param a_Name The name of the type.
5053 */
5054# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
5055 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5056/**
5057 * For defining a C instruction implementation function taking no extra
5058 * arguments.
5059 *
5060 * @param a_Name The name of the function
5061 */
5062# define IEM_CIMPL_DEF_0(a_Name) \
5063 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5064/**
5065 * Prototype version of IEM_CIMPL_DEF_0.
5066 */
5067# define IEM_CIMPL_PROTO_0(a_Name) \
5068 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5069/**
5070 * For calling a C instruction implementation function taking no extra
5071 * arguments.
5072 *
5073 * This special call macro adds default arguments to the call and allow us to
5074 * change these later.
5075 *
5076 * @param a_fn The name of the function.
5077 */
5078# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
5079
5080/** Type for a C instruction implementation function taking no extra
5081 * arguments. */
5082typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
5083/** Function pointer type for a C instruction implementation function taking
5084 * no extra arguments. */
5085typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
5086
5087/**
5088 * For typedef'ing or declaring a C instruction implementation function taking
5089 * one extra argument.
5090 *
5091 * @param a_Name The name of the type.
5092 * @param a_Type0 The argument type.
5093 * @param a_Arg0 The argument name.
5094 */
5095# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
5096 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5097/**
5098 * For defining a C instruction implementation function taking one extra
5099 * argument.
5100 *
5101 * @param a_Name The name of the function
5102 * @param a_Type0 The argument type.
5103 * @param a_Arg0 The argument name.
5104 */
5105# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
5106 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5107/**
5108 * Prototype version of IEM_CIMPL_DEF_1.
5109 */
5110# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
5111 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5112/**
5113 * For calling a C instruction implementation function taking one extra
5114 * argument.
5115 *
5116 * This special call macro adds default arguments to the call and allow us to
5117 * change these later.
5118 *
5119 * @param a_fn The name of the function.
5120 * @param a0 The name of the 1st argument.
5121 */
5122# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
5123
5124/**
5125 * For typedef'ing or declaring a C instruction implementation function taking
5126 * two extra arguments.
5127 *
5128 * @param a_Name The name of the type.
5129 * @param a_Type0 The type of the 1st argument
5130 * @param a_Arg0 The name of the 1st argument.
5131 * @param a_Type1 The type of the 2nd argument.
5132 * @param a_Arg1 The name of the 2nd argument.
5133 */
5134# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5135 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5136/**
5137 * For defining a C instruction implementation function taking two extra
5138 * arguments.
5139 *
5140 * @param a_Name The name of the function.
5141 * @param a_Type0 The type of the 1st argument
5142 * @param a_Arg0 The name of the 1st argument.
5143 * @param a_Type1 The type of the 2nd argument.
5144 * @param a_Arg1 The name of the 2nd argument.
5145 */
5146# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5147 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5148/**
5149 * Prototype version of IEM_CIMPL_DEF_2.
5150 */
5151# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5152 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5153/**
5154 * For calling a C instruction implementation function taking two extra
5155 * arguments.
5156 *
5157 * This special call macro adds default arguments to the call and allow us to
5158 * change these later.
5159 *
5160 * @param a_fn The name of the function.
5161 * @param a0 The name of the 1st argument.
5162 * @param a1 The name of the 2nd argument.
5163 */
5164# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
5165
5166/**
5167 * For typedef'ing or declaring a C instruction implementation function taking
5168 * three extra arguments.
5169 *
5170 * @param a_Name The name of the type.
5171 * @param a_Type0 The type of the 1st argument
5172 * @param a_Arg0 The name of the 1st argument.
5173 * @param a_Type1 The type of the 2nd argument.
5174 * @param a_Arg1 The name of the 2nd argument.
5175 * @param a_Type2 The type of the 3rd argument.
5176 * @param a_Arg2 The name of the 3rd argument.
5177 */
5178# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5179 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5180/**
5181 * For defining a C instruction implementation function taking three extra
5182 * arguments.
5183 *
5184 * @param a_Name The name of the function.
5185 * @param a_Type0 The type of the 1st argument
5186 * @param a_Arg0 The name of the 1st argument.
5187 * @param a_Type1 The type of the 2nd argument.
5188 * @param a_Arg1 The name of the 2nd argument.
5189 * @param a_Type2 The type of the 3rd argument.
5190 * @param a_Arg2 The name of the 3rd argument.
5191 */
5192# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5193 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5194/**
5195 * Prototype version of IEM_CIMPL_DEF_3.
5196 */
5197# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5198 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5199/**
5200 * For calling a C instruction implementation function taking three extra
5201 * arguments.
5202 *
5203 * This special call macro adds default arguments to the call and allow us to
5204 * change these later.
5205 *
5206 * @param a_fn The name of the function.
5207 * @param a0 The name of the 1st argument.
5208 * @param a1 The name of the 2nd argument.
5209 * @param a2 The name of the 3rd argument.
5210 */
5211# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
5212
5213
5214/**
5215 * For typedef'ing or declaring a C instruction implementation function taking
5216 * four extra arguments.
5217 *
5218 * @param a_Name The name of the type.
5219 * @param a_Type0 The type of the 1st argument
5220 * @param a_Arg0 The name of the 1st argument.
5221 * @param a_Type1 The type of the 2nd argument.
5222 * @param a_Arg1 The name of the 2nd argument.
5223 * @param a_Type2 The type of the 3rd argument.
5224 * @param a_Arg2 The name of the 3rd argument.
5225 * @param a_Type3 The type of the 4th argument.
5226 * @param a_Arg3 The name of the 4th argument.
5227 */
5228# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5229 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
5230/**
5231 * For defining a C instruction implementation function taking four extra
5232 * arguments.
5233 *
5234 * @param a_Name The name of the function.
5235 * @param a_Type0 The type of the 1st argument
5236 * @param a_Arg0 The name of the 1st argument.
5237 * @param a_Type1 The type of the 2nd argument.
5238 * @param a_Arg1 The name of the 2nd argument.
5239 * @param a_Type2 The type of the 3rd argument.
5240 * @param a_Arg2 The name of the 3rd argument.
5241 * @param a_Type3 The type of the 4th argument.
5242 * @param a_Arg3 The name of the 4th argument.
5243 */
5244# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5245 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5246 a_Type2 a_Arg2, a_Type3 a_Arg3))
5247/**
5248 * Prototype version of IEM_CIMPL_DEF_4.
5249 */
5250# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5251 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5252 a_Type2 a_Arg2, a_Type3 a_Arg3))
5253/**
5254 * For calling a C instruction implementation function taking four extra
5255 * arguments.
5256 *
5257 * This special call macro adds default arguments to the call and allow us to
5258 * change these later.
5259 *
5260 * @param a_fn The name of the function.
5261 * @param a0 The name of the 1st argument.
5262 * @param a1 The name of the 2nd argument.
5263 * @param a2 The name of the 3rd argument.
5264 * @param a3 The name of the 4th argument.
5265 */
5266# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
5267
5268
5269/**
5270 * For typedef'ing or declaring a C instruction implementation function taking
5271 * five extra arguments.
5272 *
5273 * @param a_Name The name of the type.
5274 * @param a_Type0 The type of the 1st argument
5275 * @param a_Arg0 The name of the 1st argument.
5276 * @param a_Type1 The type of the 2nd argument.
5277 * @param a_Arg1 The name of the 2nd argument.
5278 * @param a_Type2 The type of the 3rd argument.
5279 * @param a_Arg2 The name of the 3rd argument.
5280 * @param a_Type3 The type of the 4th argument.
5281 * @param a_Arg3 The name of the 4th argument.
5282 * @param a_Type4 The type of the 5th argument.
5283 * @param a_Arg4 The name of the 5th argument.
5284 */
5285# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5286 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
5287 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
5288 a_Type3 a_Arg3, a_Type4 a_Arg4))
5289/**
5290 * For defining a C instruction implementation function taking five extra
5291 * arguments.
5292 *
5293 * @param a_Name The name of the function.
5294 * @param a_Type0 The type of the 1st argument
5295 * @param a_Arg0 The name of the 1st argument.
5296 * @param a_Type1 The type of the 2nd argument.
5297 * @param a_Arg1 The name of the 2nd argument.
5298 * @param a_Type2 The type of the 3rd argument.
5299 * @param a_Arg2 The name of the 3rd argument.
5300 * @param a_Type3 The type of the 4th argument.
5301 * @param a_Arg3 The name of the 4th argument.
5302 * @param a_Type4 The type of the 5th argument.
5303 * @param a_Arg4 The name of the 5th argument.
5304 */
5305# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5306 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5307 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5308/**
5309 * Prototype version of IEM_CIMPL_DEF_5.
5310 */
5311# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5312 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5313 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5314/**
5315 * For calling a C instruction implementation function taking five extra
5316 * arguments.
5317 *
5318 * This special call macro adds default arguments to the call and allow us to
5319 * change these later.
5320 *
5321 * @param a_fn The name of the function.
5322 * @param a0 The name of the 1st argument.
5323 * @param a1 The name of the 2nd argument.
5324 * @param a2 The name of the 3rd argument.
5325 * @param a3 The name of the 4th argument.
5326 * @param a4 The name of the 5th argument.
5327 */
5328# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
5329
5330/** @} */
5331
5332
5333/** @name Opcode Decoder Function Types.
5334 * @{ */
5335
5336/** @typedef PFNIEMOP
5337 * Pointer to an opcode decoder function.
5338 */
5339
5340/** @def FNIEMOP_DEF
5341 * Define an opcode decoder function.
5342 *
5343 * We're using macors for this so that adding and removing parameters as well as
5344 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
5345 *
5346 * @param a_Name The function name.
5347 */
5348
5349/** @typedef PFNIEMOPRM
5350 * Pointer to an opcode decoder function with RM byte.
5351 */
5352
5353/** @def FNIEMOPRM_DEF
5354 * Define an opcode decoder function with RM byte.
5355 *
5356 * We're using macors for this so that adding and removing parameters as well as
5357 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
5358 *
5359 * @param a_Name The function name.
5360 */
5361
5362#if defined(__GNUC__) && defined(RT_ARCH_X86)
5363typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
5364typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5365# define FNIEMOP_DEF(a_Name) \
5366 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
5367# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5368 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5369# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5370 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5371
5372#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
5373typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
5374typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5375# define FNIEMOP_DEF(a_Name) \
5376 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5377# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5378 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5379# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5380 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5381
5382#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5383typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5384typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5385# define FNIEMOP_DEF(a_Name) \
5386 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
5387# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5388 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5389# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5390 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5391
5392#else
5393typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5394typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5395# define FNIEMOP_DEF(a_Name) \
5396 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5397# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5398 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5399# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5400 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5401
5402#endif
5403#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
5404
5405/**
5406 * Call an opcode decoder function.
5407 *
5408 * We're using macors for this so that adding and removing parameters can be
5409 * done as we please. See FNIEMOP_DEF.
5410 */
5411#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
5412
5413/**
5414 * Call a common opcode decoder function taking one extra argument.
5415 *
5416 * We're using macors for this so that adding and removing parameters can be
5417 * done as we please. See FNIEMOP_DEF_1.
5418 */
5419#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
5420
5421/**
5422 * Call a common opcode decoder function taking one extra argument.
5423 *
5424 * We're using macors for this so that adding and removing parameters can be
5425 * done as we please. See FNIEMOP_DEF_1.
5426 */
5427#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5428/** @} */
5429
5430
5431/** @name Misc Helpers
5432 * @{ */
5433
5434/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5435 * due to GCC lacking knowledge about the value range of a switch. */
5436#if RT_CPLUSPLUS_PREREQ(202000)
5437# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5438#else
5439# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5440#endif
5441
5442/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5443#if RT_CPLUSPLUS_PREREQ(202000)
5444# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5445#else
5446# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5447#endif
5448
5449/**
5450 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5451 * occation.
5452 */
5453#ifdef LOG_ENABLED
5454# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5455 do { \
5456 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5457 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5458 } while (0)
5459#else
5460# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5461 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5462#endif
5463
5464/**
5465 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5466 * occation using the supplied logger statement.
5467 *
5468 * @param a_LoggerArgs What to log on failure.
5469 */
5470#ifdef LOG_ENABLED
5471# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5472 do { \
5473 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5474 /*LogFunc(a_LoggerArgs);*/ \
5475 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5476 } while (0)
5477#else
5478# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5479 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5480#endif
5481
5482/**
5483 * Gets the CPU mode (from fExec) as a IEMMODE value.
5484 *
5485 * @returns IEMMODE
5486 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5487 */
5488#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5489
5490/**
5491 * Check if we're currently executing in real or virtual 8086 mode.
5492 *
5493 * @returns @c true if it is, @c false if not.
5494 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5495 */
5496#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5497 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5498
5499/**
5500 * Check if we're currently executing in virtual 8086 mode.
5501 *
5502 * @returns @c true if it is, @c false if not.
5503 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5504 */
5505#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5506
5507/**
5508 * Check if we're currently executing in long mode.
5509 *
5510 * @returns @c true if it is, @c false if not.
5511 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5512 */
5513#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5514
5515/**
5516 * Check if we're currently executing in a 16-bit code segment.
5517 *
5518 * @returns @c true if it is, @c false if not.
5519 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5520 */
5521#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5522
5523/**
5524 * Check if we're currently executing in a 32-bit code segment.
5525 *
5526 * @returns @c true if it is, @c false if not.
5527 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5528 */
5529#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5530
5531/**
5532 * Check if we're currently executing in a 64-bit code segment.
5533 *
5534 * @returns @c true if it is, @c false if not.
5535 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5536 */
5537#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5538
5539/**
5540 * Check if we're currently executing in real mode.
5541 *
5542 * @returns @c true if it is, @c false if not.
5543 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5544 */
5545#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5546
5547/**
5548 * Gets the current protection level (CPL).
5549 *
5550 * @returns 0..3
5551 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5552 */
5553#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5554
5555/**
5556 * Sets the current protection level (CPL).
5557 *
5558 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5559 */
5560#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5561 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5562
5563/**
5564 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5565 * @returns PCCPUMFEATURES
5566 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5567 */
5568#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5569
5570/**
5571 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5572 * @returns PCCPUMFEATURES
5573 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5574 */
5575#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5576
5577/**
5578 * Evaluates to true if we're presenting an Intel CPU to the guest.
5579 */
5580#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5581
5582/**
5583 * Evaluates to true if we're presenting an AMD CPU to the guest.
5584 */
5585#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5586
5587/**
5588 * Check if the address is canonical.
5589 */
5590#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5591
5592/** Checks if the ModR/M byte is in register mode or not. */
5593#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5594/** Checks if the ModR/M byte is in memory mode or not. */
5595#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5596
5597/**
5598 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5599 *
5600 * For use during decoding.
5601 */
5602#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5603/**
5604 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5605 *
5606 * For use during decoding.
5607 */
5608#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5609
5610/**
5611 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5612 *
5613 * For use during decoding.
5614 */
5615#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5616/**
5617 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5618 *
5619 * For use during decoding.
5620 */
5621#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5622
5623/**
5624 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5625 * register index, with REX.R added in.
5626 *
5627 * For use during decoding.
5628 *
5629 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5630 */
5631#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5632 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5633 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5634 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5635/**
5636 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5637 * with REX.B added in.
5638 *
5639 * For use during decoding.
5640 *
5641 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5642 */
5643#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5644 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5645 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5646 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5647
5648/**
5649 * Combines the prefix REX and ModR/M byte for passing to
5650 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5651 *
5652 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5653 * The two bits are part of the REG sub-field, which isn't needed in
5654 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5655 *
5656 * For use during decoding/recompiling.
5657 */
5658#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5659 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5660 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5661AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5662AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5663
5664/**
5665 * Gets the effective VEX.VVVV value.
5666 *
5667 * The 4th bit is ignored if not 64-bit code.
5668 * @returns effective V-register value.
5669 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5670 */
5671#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5672 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5673
5674
5675/**
5676 * Gets the register (reg) part of a the special 4th register byte used by
5677 * vblendvps and vblendvpd.
5678 *
5679 * For use during decoding.
5680 */
5681#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5682 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5683
5684
5685/**
5686 * Checks if we're executing inside an AMD-V or VT-x guest.
5687 */
5688#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5689# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5690#else
5691# define IEM_IS_IN_GUEST(a_pVCpu) false
5692#endif
5693
5694
5695#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5696
5697/**
5698 * Check if the guest has entered VMX root operation.
5699 */
5700# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5701
5702/**
5703 * Check if the guest has entered VMX non-root operation.
5704 */
5705# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5706 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5707
5708/**
5709 * Check if the nested-guest has the given Pin-based VM-execution control set.
5710 */
5711# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5712
5713/**
5714 * Check if the nested-guest has the given Processor-based VM-execution control set.
5715 */
5716# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5717
5718/**
5719 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5720 * control set.
5721 */
5722# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5723
5724/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5725# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5726
5727/** Whether a shadow VMCS is present for the given VCPU. */
5728# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5729
5730/** Gets the VMXON region pointer. */
5731# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5732
5733/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5734# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5735
5736/** Whether a current VMCS is present for the given VCPU. */
5737# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5738
5739/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5740# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5741 do \
5742 { \
5743 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5744 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5745 } while (0)
5746
5747/** Clears any current VMCS for the given VCPU. */
5748# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5749 do \
5750 { \
5751 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5752 } while (0)
5753
5754/**
5755 * Invokes the VMX VM-exit handler for an instruction intercept.
5756 */
5757# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5758 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5759
5760/**
5761 * Invokes the VMX VM-exit handler for an instruction intercept where the
5762 * instruction provides additional VM-exit information.
5763 */
5764# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5765 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5766
5767/**
5768 * Invokes the VMX VM-exit handler for a task switch.
5769 */
5770# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5771 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5772
5773/**
5774 * Invokes the VMX VM-exit handler for MWAIT.
5775 */
5776# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5777 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5778
5779/**
5780 * Invokes the VMX VM-exit handler for EPT faults.
5781 */
5782# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5783 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5784
5785/**
5786 * Invokes the VMX VM-exit handler.
5787 */
5788# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5789 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5790
5791#else
5792# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5793# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5794# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5795# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5796# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5797# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5798# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5799# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5800# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5801# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5802# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5803
5804#endif
5805
5806#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5807/**
5808 * Checks if we're executing a guest using AMD-V.
5809 */
5810# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5811 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5812/**
5813 * Check if an SVM control/instruction intercept is set.
5814 */
5815# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5816 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5817
5818/**
5819 * Check if an SVM read CRx intercept is set.
5820 */
5821# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5822 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5823
5824/**
5825 * Check if an SVM write CRx intercept is set.
5826 */
5827# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5828 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5829
5830/**
5831 * Check if an SVM read DRx intercept is set.
5832 */
5833# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5834 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5835
5836/**
5837 * Check if an SVM write DRx intercept is set.
5838 */
5839# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5840 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5841
5842/**
5843 * Check if an SVM exception intercept is set.
5844 */
5845# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5846 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5847
5848/**
5849 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5850 */
5851# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5852 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5853
5854/**
5855 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5856 * corresponding decode assist information.
5857 */
5858# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5859 do \
5860 { \
5861 uint64_t uExitInfo1; \
5862 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5863 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5864 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5865 else \
5866 uExitInfo1 = 0; \
5867 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5868 } while (0)
5869
5870/** Check and handles SVM nested-guest instruction intercept and updates
5871 * NRIP if needed.
5872 */
5873# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5874 do \
5875 { \
5876 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5877 { \
5878 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5879 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5880 } \
5881 } while (0)
5882
5883/** Checks and handles SVM nested-guest CR0 read intercept. */
5884# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5885 do \
5886 { \
5887 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5888 { /* probably likely */ } \
5889 else \
5890 { \
5891 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5892 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5893 } \
5894 } while (0)
5895
5896/**
5897 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5898 */
5899# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5900 do { \
5901 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5902 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5903 } while (0)
5904
5905#else
5906# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5907# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5908# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5909# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5910# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5911# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5912# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5913# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5914# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5915 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5916# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5917# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5918
5919#endif
5920
5921/** @} */
5922
5923uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5924VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5925
5926
5927/**
5928 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5929 */
5930typedef union IEMSELDESC
5931{
5932 /** The legacy view. */
5933 X86DESC Legacy;
5934 /** The long mode view. */
5935 X86DESC64 Long;
5936} IEMSELDESC;
5937/** Pointer to a selector descriptor table entry. */
5938typedef IEMSELDESC *PIEMSELDESC;
5939
5940/** @name Raising Exceptions.
5941 * @{ */
5942VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5943 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5944
5945VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5946 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5947#ifdef IEM_WITH_SETJMP
5948DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5949 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5950#endif
5951VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5952#ifdef IEM_WITH_SETJMP
5953DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5954#endif
5955VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5956VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5957VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5958#ifdef IEM_WITH_SETJMP
5959DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5960#endif
5961VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5962#ifdef IEM_WITH_SETJMP
5963DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5964#endif
5965VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5966VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5967VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5968VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5969/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5970VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5971VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5972VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5973VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5974VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5975VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5976#ifdef IEM_WITH_SETJMP
5977DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5978#endif
5979VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5980VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5981VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5982#ifdef IEM_WITH_SETJMP
5983DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5984#endif
5985VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5986#ifdef IEM_WITH_SETJMP
5987DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5988#endif
5989VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5990#ifdef IEM_WITH_SETJMP
5991DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5992#endif
5993VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5994#ifdef IEM_WITH_SETJMP
5995DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5996#endif
5997VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5998#ifdef IEM_WITH_SETJMP
5999DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6000#endif
6001VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6002#ifdef IEM_WITH_SETJMP
6003DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6004#endif
6005VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6006#ifdef IEM_WITH_SETJMP
6007DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6008#endif
6009
6010void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6011void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6012
6013IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
6014IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
6015IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
6016
6017/**
6018 * Macro for calling iemCImplRaiseDivideError().
6019 *
6020 * This is for things that will _always_ decode to an \#DE, taking the
6021 * recompiler into consideration and everything.
6022 *
6023 * @return Strict VBox status code.
6024 */
6025#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
6026
6027/**
6028 * Macro for calling iemCImplRaiseInvalidLockPrefix().
6029 *
6030 * This is for things that will _always_ decode to an \#UD, taking the
6031 * recompiler into consideration and everything.
6032 *
6033 * @return Strict VBox status code.
6034 */
6035#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
6036
6037/**
6038 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
6039 *
6040 * This is for things that will _always_ decode to an \#UD, taking the
6041 * recompiler into consideration and everything.
6042 *
6043 * @return Strict VBox status code.
6044 */
6045#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6046
6047/**
6048 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
6049 *
6050 * Using this macro means you've got _buggy_ _code_ and are doing things that
6051 * belongs exclusively in IEMAllCImpl.cpp during decoding.
6052 *
6053 * @return Strict VBox status code.
6054 * @see IEMOP_RAISE_INVALID_OPCODE_RET
6055 */
6056#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6057
6058/** @} */
6059
6060/** @name Register Access.
6061 * @{ */
6062VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
6063 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6064VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
6065VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
6066 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6067/** @} */
6068
6069/** @name FPU access and helpers.
6070 * @{ */
6071void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6072void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6073void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6074void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6075void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6076void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6077 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6078void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6079 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6080void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6081void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6082void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6083void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6084void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6085void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6086void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6087void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6088void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6089void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6090void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6091void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6092void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6093void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6094void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6095/** @} */
6096
6097/** @name SSE+AVX SIMD access and helpers.
6098 * @{ */
6099void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
6100/** @} */
6101
6102/** @name Memory access.
6103 * @{ */
6104
6105/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
6106#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
6107/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
6108 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
6109#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
6110/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
6111 * Users include FXSAVE & FXRSTOR. */
6112#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
6113
6114VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
6115 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
6116VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6117#ifndef IN_RING3
6118VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6119#endif
6120void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6121void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
6122VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
6123VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6124VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
6125
6126void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
6127void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
6128#ifdef IEM_WITH_CODE_TLB
6129void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
6130#else
6131VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
6132#endif
6133#ifdef IEM_WITH_SETJMP
6134uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6135uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6136uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6137uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6138#else
6139VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
6140VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6141VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6142VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6143VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6144VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6145VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6146VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6147VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6148VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6149VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6150#endif
6151
6152VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6153VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6154VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6155VBOXSTRICTRC iemMemFetchDataU32NoAc(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6156VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6157VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6158VBOXSTRICTRC iemMemFetchDataU64NoAc(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6159VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6160VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6161VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6162VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6163VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6164VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6165VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6166VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6167VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6168VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
6169 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
6170#ifdef IEM_WITH_SETJMP
6171uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6172uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6173uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6174uint32_t iemMemFetchDataU32NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6175uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6176uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6177uint64_t iemMemFetchDataU64NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6178uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6179void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6180void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6181void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6182void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6183void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6184void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6185void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6186void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6187# if 0 /* these are inlined now */
6188uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6189uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6190uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6191uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6192uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6193uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6194void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6195void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6196void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6197void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6198void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6199void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6200void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6201# endif
6202void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6203#endif
6204
6205VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6206VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6207VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6208VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6209VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
6210
6211VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
6212VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
6213VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
6214VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
6215VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6216VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6217VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6218VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6219VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6220VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6221VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6222#ifdef IEM_WITH_SETJMP
6223void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6224void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6225void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6226void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6227void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6228void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6229void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6230void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6231void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6232void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6233void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6234void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6235#if 0
6236void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6237void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6238void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6239void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6240void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6241void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6242void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6243void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6244#endif
6245void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6246void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6247#endif
6248
6249#ifdef IEM_WITH_SETJMP
6250uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6251uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6252uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6253uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6254uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6255uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6256uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6257uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6258uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6259uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6260uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6261uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6262uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6263uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6264uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6265uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6266PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6267PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6268PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6269PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6270PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6271PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6272PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6273PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6274PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6275PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6276
6277void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6278void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6279void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6280void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6281void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6282void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6283#endif
6284
6285VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6286 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6287VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
6288VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
6289VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6290VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
6291VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6292VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6293VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6294VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6295VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6296 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6297VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
6298 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
6299VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6300VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
6301VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
6302VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
6303VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6304VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6305VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6306
6307#ifdef IEM_WITH_SETJMP
6308void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6309void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6310void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6311void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6312void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6313void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6314void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6315
6316void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6317void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6318void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6319void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6320void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6321
6322void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6323void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6324void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6325void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6326
6327void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6328void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6329void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6330void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6331
6332uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6333uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6334uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6335
6336#endif
6337
6338/** @} */
6339
6340/** @name IEMAllCImpl.cpp
6341 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
6342 * @{ */
6343IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6344IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6345IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6346IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
6347IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
6348IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
6349IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
6350IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
6351IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
6352IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6353IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6354typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6355typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
6356IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
6357IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
6358IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
6359IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
6360IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
6361IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
6362IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
6363IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
6364IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
6365IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
6366IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
6367IEM_CIMPL_PROTO_0(iemCImpl_syscall);
6368IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
6369IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
6370IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
6371IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
6372IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
6373IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
6374IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
6375IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
6376IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
6377IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
6378IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6379IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6380IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6381IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6382IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
6383IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6384IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6385IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
6386IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6387IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6388IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
6389IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6390IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6391IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
6392IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
6393IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
6394IEM_CIMPL_PROTO_0(iemCImpl_clts);
6395IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
6396IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
6397IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
6398IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
6399IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
6400IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
6401IEM_CIMPL_PROTO_0(iemCImpl_invd);
6402IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
6403IEM_CIMPL_PROTO_0(iemCImpl_rsm);
6404IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
6405IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
6406IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
6407IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
6408IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
6409IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6410IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6411IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6412IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6413IEM_CIMPL_PROTO_0(iemCImpl_cli);
6414IEM_CIMPL_PROTO_0(iemCImpl_sti);
6415IEM_CIMPL_PROTO_0(iemCImpl_hlt);
6416IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
6417IEM_CIMPL_PROTO_0(iemCImpl_mwait);
6418IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
6419IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
6420IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
6421IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
6422IEM_CIMPL_PROTO_0(iemCImpl_daa);
6423IEM_CIMPL_PROTO_0(iemCImpl_das);
6424IEM_CIMPL_PROTO_0(iemCImpl_aaa);
6425IEM_CIMPL_PROTO_0(iemCImpl_aas);
6426IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
6427IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
6428IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
6429IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
6430IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
6431 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6432IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6433IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6434IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6435IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6436IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6437IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6438IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6439IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6440IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6441IEM_CIMPL_PROTO_2(iemCImpl_vldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6442IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6443IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6444IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6445IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6446IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6447IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6448IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6449IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6450IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6451IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6452IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6453IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6454IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6455IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6456IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6457IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6458IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6459IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6460IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6461IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6462IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6463IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6464IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6465IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6466IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6467IEM_CIMPL_PROTO_2(iemCImpl_vpgather_worker_xx, uint32_t, u32PackedArgs, uint32_t, u32Disp);
6468
6469/** @} */
6470
6471/** @name IEMAllCImplStrInstr.cpp.h
6472 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6473 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6474 * @{ */
6475IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6476IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6477IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6478IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6479IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6480IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6481IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6482IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6483IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6484IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6485IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6486
6487IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6488IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6489IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6490IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6491IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6492IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6493IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6494IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6495IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6496IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6497IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6498
6499IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6500IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6501IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6502IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6503IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6504IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6505IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6506IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6507IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6508IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6509IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6510
6511
6512IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6513IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6514IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6515IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6516IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6517IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6518IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6519IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6520IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6521IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6522IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6523
6524IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6525IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6526IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6527IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6528IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6529IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6530IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6531IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6532IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6533IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6534IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6535
6536IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6537IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6538IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6539IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6540IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6541IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6542IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6543IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6544IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6545IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6546IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6547
6548IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6549IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6550IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6551IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6552IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6553IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6554IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6555IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6556IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6557IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6558IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6559
6560
6561IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6562IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6563IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6564IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6565IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6566IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6567IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6568IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6569IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6570IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6571IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6572
6573IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6574IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6575IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6576IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6577IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6578IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6579IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6580IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6581IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6582IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6583IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6584
6585IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6586IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6587IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6588IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6589IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6590IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6591IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6592IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6593IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6594IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6595IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6596
6597IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6598IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6599IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6600IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6601IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6602IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6603IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6604IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6605IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6606IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6607IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6608/** @} */
6609
6610#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6611VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6612VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6613VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6614VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6615VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6616VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6617VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6618VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6619VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6620VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6621 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6622VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6623 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6624VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6625VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6626VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6627VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6628VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6629VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6630VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6631VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6632 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6633VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6634VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6635VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6636uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6637void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6638VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6639 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6640bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6641IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6642IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6643IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6644IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6645IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6646IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6647IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6648IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6649IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6650IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6651IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6652IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6653IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6654IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6655IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6656IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6657#endif
6658
6659#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6660VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6661VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6662VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6663 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6664VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6665IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6666IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6667IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6668IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6669IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6670IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6671IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6672IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6673#endif
6674
6675IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6676IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6677IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6678
6679extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6680extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6681extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6682extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6683extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6684extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6685extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6686
6687/*
6688 * Recompiler related stuff.
6689 */
6690extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6691extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6692extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6693extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6694extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6695extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6696extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6697
6698DECLHIDDEN(int) iemPollTimers(PVMCC pVM, PVMCPUCC pVCpu) RT_NOEXCEPT;
6699
6700DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6701 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6702void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6703DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6704void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6705void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6706DECLHIDDEN(PIEMTBALLOCATOR) iemTbAllocatorFreeBulkStart(PVMCPUCC pVCpu);
6707DECLHIDDEN(void) iemTbAllocatorFreeBulk(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator, PIEMTB pTb);
6708DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6709DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6710#if defined(VBOX_WITH_IEM_NATIVE_RECOMPILER) && defined(VBOX_WITH_SAVE_THREADED_TBS_FOR_PROFILING)
6711DECLHIDDEN(void) iemThreadedSaveTbForProfilingCleanup(PVMCPU pVCpu);
6712#endif
6713
6714
6715/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6716#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6717typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6718typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6719# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6720 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6721# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6722 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6723
6724#else
6725typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6726typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6727# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6728 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6729# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6730 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6731#endif
6732
6733
6734IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6735IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6736
6737IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6738
6739IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6740IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimers);
6741IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimersAndIrq);
6742IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6743IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6744IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6745
6746IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6747IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6748IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6749
6750/* Branching: */
6751IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6752IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6753IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6754
6755IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6756IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6757IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6758
6759/* Natural page crossing: */
6760IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6761IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6762IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6763
6764IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6765IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6766IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6767
6768IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6769IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6770IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6771
6772IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Jump);
6773
6774bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6775bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6776#ifdef IEM_WITH_INTRA_TB_JUMPS
6777DECLHIDDEN(int) iemThreadedCompileBackAtFirstInstruction(PVMCPU pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6778#endif
6779
6780/* Native recompiler public bits: */
6781
6782DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6783DECLHIDDEN(void) iemNativeDisassembleTb(PVMCPU pVCpu, PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6784int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6785DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, PIEMNATIVEINSTR *ppaExec,
6786 struct IEMNATIVEPERCHUNKCTX const **ppChunkCtx) RT_NOEXCEPT;
6787DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAllocFromChunk(PVMCPU pVCpu, uint32_t idxChunk, uint32_t cbReq,
6788 PIEMNATIVEINSTR *ppaExec);
6789DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6790void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6791DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6792DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemExecMemGetTbChunkCtx(PVMCPU pVCpu, PCIEMTB pTb);
6793DECLHIDDEN(int) iemNativeRecompileAttachExecMemChunkCtx(PVMCPU pVCpu, uint32_t idxChunk, struct IEMNATIVEPERCHUNKCTX const **ppCtx);
6794
6795/** Packed 32-bit argument for iemCImpl_vpgather_worker_xx. */
6796typedef union IEMGATHERARGS
6797{
6798 /** Integer view. */
6799 uint32_t u;
6800 /** Bitfield view. */
6801 struct
6802 {
6803 uint32_t iYRegDst : 4; /**< 0 - XMM or YMM register number (destination) */
6804 uint32_t iYRegIdc : 4; /**< 4 - XMM or YMM register number (indices) */
6805 uint32_t iYRegMsk : 4; /**< 8 - XMM or YMM register number (mask) */
6806 uint32_t iGRegBase : 4; /**< 12 - general register number (base ptr) */
6807 uint32_t iScale : 2; /**< 16 - scale factor (1/2/4/8) */
6808 uint32_t enmEffOpSize : 2; /**< 18 - operand size (16/32/64/--) */
6809 uint32_t enmEffAddrMode : 2; /**< 20 - addressing mode (16/32/64/--) */
6810 uint32_t iEffSeg : 3; /**< 22 - effective segment (ES/CS/SS/DS/FS/GS) */
6811 uint32_t fVex256 : 1; /**< 25 - overall instruction width (128/256 bits) */
6812 uint32_t fIdxQword : 1; /**< 26 - individual index width (4/8 bytes) */
6813 uint32_t fValQword : 1; /**< 27 - individual value width (4/8 bytes) */
6814 } s;
6815} IEMGATHERARGS;
6816AssertCompileSize(IEMGATHERARGS, sizeof(uint32_t));
6817
6818#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6819
6820
6821/** @} */
6822
6823RT_C_DECLS_END
6824
6825/* ASM-INC: %include "IEMInternalStruct.mac" */
6826
6827#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6828
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette