VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 106054

Last change on this file since 106054 was 105877, checked in by vboxsync, 3 months ago

VMM/IEM: Don't flush PC prior to 64-bit relative jumps, flush it when in the #GP(0) code path. bugref:10720 bugref:10373

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 359.6 KB
Line 
1/* $Id: IEMInternal.h 105877 2024-08-27 23:17:09Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEM_WITH_ADAPTIVE_TIMER_POLLING
96 * Enables the adaptive timer polling code.
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEM_WITH_ADAPTIVE_TIMER_POLLING
100#endif
101
102/** @def IEM_WITH_INTRA_TB_JUMPS
103 * Enables loop-jumps within a TB (currently only to the first call).
104 */
105#if defined(DOXYGEN_RUNNING) || 1
106# define IEM_WITH_INTRA_TB_JUMPS
107#endif
108
109/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
110 * Enables the delayed PC updating optimization (see @bugref{10373}).
111 */
112#if defined(DOXYGEN_RUNNING) || 1
113# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
114#endif
115/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
116 * Enabled delayed PC updating debugging code.
117 * This is an alternative to the ARM64-only IEMNATIVE_REG_FIXED_PC_DBG. */
118#if defined(DOXYGEN_RUNNING) || 0
119# define IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
120#endif
121
122/** Enables the SIMD register allocator @bugref{10614}. */
123#if defined(DOXYGEN_RUNNING) || 1
124# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
125#endif
126/** Enables access to even callee saved registers. */
127//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
128
129#if defined(DOXYGEN_RUNNING) || 1
130/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
131 * Delay the writeback or dirty registers as long as possible. */
132# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
133#endif
134
135/** @def IEM_WITH_TLB_STATISTICS
136 * Enables all TLB statistics. */
137#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
138# define IEM_WITH_TLB_STATISTICS
139#endif
140
141/** @def IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
142 * Enable this to use native emitters for certain SIMD FP operations. */
143#if 1 || defined(DOXYGEN_RUNNING)
144# define IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
145#endif
146
147/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
148 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
149 * executing native translation blocks.
150 *
151 * This exploits the fact that we save all non-volatile registers in the TB
152 * prologue and thus just need to do the same as the TB epilogue to get the
153 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
154 * non-volatile (and does something even more crazy for ARM), this probably
155 * won't work reliably on Windows. */
156#ifdef RT_ARCH_ARM64
157# ifndef RT_OS_WINDOWS
158# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
159# endif
160#endif
161/* ASM-NOINC-START */
162#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
163# if !defined(IN_RING3) \
164 || !defined(VBOX_WITH_IEM_RECOMPILER) \
165 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
166# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
167# elif defined(RT_OS_WINDOWS)
168# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
169# endif
170#endif
171
172
173/** @def IEM_DO_LONGJMP
174 *
175 * Wrapper around longjmp / throw.
176 *
177 * @param a_pVCpu The CPU handle.
178 * @param a_rc The status code jump back with / throw.
179 */
180#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
181# ifdef IEM_WITH_THROW_CATCH
182# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
183# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
184 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
185 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
186 throw int(a_rc); \
187 } while (0)
188# else
189# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
190# endif
191# else
192# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
193# endif
194#endif
195
196/** For use with IEM function that may do a longjmp (when enabled).
197 *
198 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
199 * attribute. So, we indicate that function that may be part of a longjmp may
200 * throw "exceptions" and that the compiler should definitely not generate and
201 * std::terminate calling unwind code.
202 *
203 * Here is one example of this ending in std::terminate:
204 * @code{.txt}
20500 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
20601 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
20702 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
20803 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
20904 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
21005 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
21106 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
21207 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
21308 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
21409 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
2150a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
2160b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
2170c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
2180d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
2190e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
2200f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
22110 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
222 @endcode
223 *
224 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
225 */
226#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
227# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
228#else
229# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
230#endif
231/* ASM-NOINC-END */
232
233#define IEM_IMPLEMENTS_TASKSWITCH
234
235/** @def IEM_WITH_3DNOW
236 * Includes the 3DNow decoding. */
237#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
238# ifndef IEM_WITHOUT_3DNOW
239# define IEM_WITH_3DNOW
240# endif
241#endif
242
243/** @def IEM_WITH_THREE_0F_38
244 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
245#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
246# ifndef IEM_WITHOUT_THREE_0F_38
247# define IEM_WITH_THREE_0F_38
248# endif
249#endif
250
251/** @def IEM_WITH_THREE_0F_3A
252 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
253#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
254# ifndef IEM_WITHOUT_THREE_0F_3A
255# define IEM_WITH_THREE_0F_3A
256# endif
257#endif
258
259/** @def IEM_WITH_VEX
260 * Includes the VEX decoding. */
261#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
262# ifndef IEM_WITHOUT_VEX
263# define IEM_WITH_VEX
264# endif
265#endif
266
267/** @def IEM_CFG_TARGET_CPU
268 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
269 *
270 * By default we allow this to be configured by the user via the
271 * CPUM/GuestCpuName config string, but this comes at a slight cost during
272 * decoding. So, for applications of this code where there is no need to
273 * be dynamic wrt target CPU, just modify this define.
274 */
275#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
276# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
277#endif
278
279//#define IEM_WITH_CODE_TLB // - work in progress
280//#define IEM_WITH_DATA_TLB // - work in progress
281
282
283/** @def IEM_USE_UNALIGNED_DATA_ACCESS
284 * Use unaligned accesses instead of elaborate byte assembly. */
285#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
286# define IEM_USE_UNALIGNED_DATA_ACCESS
287#endif /*ASM-NOINC*/
288
289//#define IEM_LOG_MEMORY_WRITES
290
291
292
293#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
294
295# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
296/** Instruction statistics. */
297typedef struct IEMINSTRSTATS
298{
299# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
300# include "IEMInstructionStatisticsTmpl.h"
301# undef IEM_DO_INSTR_STAT
302} IEMINSTRSTATS;
303#else
304struct IEMINSTRSTATS;
305typedef struct IEMINSTRSTATS IEMINSTRSTATS;
306#endif
307/** Pointer to IEM instruction statistics. */
308typedef IEMINSTRSTATS *PIEMINSTRSTATS;
309
310
311/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
312 * @{ */
313#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
314#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
315#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
316#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
317#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
318/** Selects the right variant from a_aArray.
319 * pVCpu is implicit in the caller context. */
320#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
321 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
322/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
323 * be used because the host CPU does not support the operation. */
324#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
325 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
326/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
327 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
328 * into the two.
329 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
330#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
331# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
332 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
333#else
334# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
335 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
336#endif
337/** @} */
338
339/**
340 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
341 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
342 *
343 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
344 * indicator.
345 *
346 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
347 */
348#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
349# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
350 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
351#else
352# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
353#endif
354
355
356/**
357 * Branch types.
358 */
359typedef enum IEMBRANCH
360{
361 IEMBRANCH_JUMP = 1,
362 IEMBRANCH_CALL,
363 IEMBRANCH_TRAP,
364 IEMBRANCH_SOFTWARE_INT,
365 IEMBRANCH_HARDWARE_INT
366} IEMBRANCH;
367AssertCompileSize(IEMBRANCH, 4);
368
369
370/**
371 * INT instruction types.
372 */
373typedef enum IEMINT
374{
375 /** INT n instruction (opcode 0xcd imm). */
376 IEMINT_INTN = 0,
377 /** Single byte INT3 instruction (opcode 0xcc). */
378 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
379 /** Single byte INTO instruction (opcode 0xce). */
380 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
381 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
382 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
383} IEMINT;
384AssertCompileSize(IEMINT, 4);
385
386
387/**
388 * A FPU result.
389 */
390typedef struct IEMFPURESULT
391{
392 /** The output value. */
393 RTFLOAT80U r80Result;
394 /** The output status. */
395 uint16_t FSW;
396} IEMFPURESULT;
397AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
398/** Pointer to a FPU result. */
399typedef IEMFPURESULT *PIEMFPURESULT;
400/** Pointer to a const FPU result. */
401typedef IEMFPURESULT const *PCIEMFPURESULT;
402
403
404/**
405 * A FPU result consisting of two output values and FSW.
406 */
407typedef struct IEMFPURESULTTWO
408{
409 /** The first output value. */
410 RTFLOAT80U r80Result1;
411 /** The output status. */
412 uint16_t FSW;
413 /** The second output value. */
414 RTFLOAT80U r80Result2;
415} IEMFPURESULTTWO;
416AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
417AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
418/** Pointer to a FPU result consisting of two output values and FSW. */
419typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
420/** Pointer to a const FPU result consisting of two output values and FSW. */
421typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
422
423
424/**
425 * IEM TLB entry.
426 *
427 * Lookup assembly:
428 * @code{.asm}
429 ; Calculate tag.
430 mov rax, [VA]
431 shl rax, 16
432 shr rax, 16 + X86_PAGE_SHIFT
433 or rax, [uTlbRevision]
434
435 ; Do indexing.
436 movzx ecx, al
437 lea rcx, [pTlbEntries + rcx]
438
439 ; Check tag.
440 cmp [rcx + IEMTLBENTRY.uTag], rax
441 jne .TlbMiss
442
443 ; Check access.
444 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
445 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
446 cmp rax, [uTlbPhysRev]
447 jne .TlbMiss
448
449 ; Calc address and we're done.
450 mov eax, X86_PAGE_OFFSET_MASK
451 and eax, [VA]
452 or rax, [rcx + IEMTLBENTRY.pMappingR3]
453 %ifdef VBOX_WITH_STATISTICS
454 inc qword [cTlbHits]
455 %endif
456 jmp .Done
457
458 .TlbMiss:
459 mov r8d, ACCESS_FLAGS
460 mov rdx, [VA]
461 mov rcx, [pVCpu]
462 call iemTlbTypeMiss
463 .Done:
464
465 @endcode
466 *
467 */
468typedef struct IEMTLBENTRY
469{
470 /** The TLB entry tag.
471 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
472 * is ASSUMING a virtual address width of 48 bits.
473 *
474 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
475 *
476 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
477 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
478 * revision wraps around though, the tags needs to be zeroed.
479 *
480 * @note Try use SHRD instruction? After seeing
481 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
482 *
483 * @todo This will need to be reorganized for 57-bit wide virtual address and
484 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
485 * have to move the TLB entry versioning entirely to the
486 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
487 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
488 * consumed by PCID and ASID (12 + 6 = 18).
489 */
490 uint64_t uTag;
491 /** Access flags and physical TLB revision.
492 *
493 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
494 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
495 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
496 * - Bit 3 - pgm phys/virt - not directly writable.
497 * - Bit 4 - pgm phys page - not directly readable.
498 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
499 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
500 * - Bit 7 - tlb entry - pMappingR3 member not valid.
501 * - Bits 63 thru 8 are used for the physical TLB revision number.
502 *
503 * We're using complemented bit meanings here because it makes it easy to check
504 * whether special action is required. For instance a user mode write access
505 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
506 * non-zero result would mean special handling needed because either it wasn't
507 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
508 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
509 * need to check any PTE flag.
510 */
511 uint64_t fFlagsAndPhysRev;
512 /** The guest physical page address. */
513 uint64_t GCPhys;
514 /** Pointer to the ring-3 mapping. */
515 R3PTRTYPE(uint8_t *) pbMappingR3;
516#if HC_ARCH_BITS == 32
517 uint32_t u32Padding1;
518#endif
519} IEMTLBENTRY;
520AssertCompileSize(IEMTLBENTRY, 32);
521/** Pointer to an IEM TLB entry. */
522typedef IEMTLBENTRY *PIEMTLBENTRY;
523/** Pointer to a const IEM TLB entry. */
524typedef IEMTLBENTRY const *PCIEMTLBENTRY;
525
526/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
527 * @{ */
528#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
529#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
530#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
531#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
532#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
533#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
534#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
535#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
536#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
537#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
538#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
539#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
540/** @} */
541AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
542AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
543AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
544AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
545AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
546AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
547/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
548#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
549 | PGMIEMGCPHYS2PTR_F_NO_READ \
550 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
551 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
552 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
553 | IEMTLBE_F_PHYS_REV )
554
555
556/** The TLB size (power of two).
557 * We initially chose 256 because that way we can obtain the result directly
558 * from a 8-bit register without an additional AND instruction.
559 * See also @bugref{10687}. */
560#if defined(RT_ARCH_AMD64)
561# define IEMTLB_ENTRY_COUNT 256
562# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
563#else
564# define IEMTLB_ENTRY_COUNT 8192
565# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
566#endif
567AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
568
569/** TLB slot format spec (assumes uint32_t or unsigned value). */
570#if IEMTLB_ENTRY_COUNT <= 0x100 / 2
571# define IEMTLB_SLOT_FMT "%02x"
572#elif IEMTLB_ENTRY_COUNT <= 0x1000 / 2
573# define IEMTLB_SLOT_FMT "%03x"
574#elif IEMTLB_ENTRY_COUNT <= 0x10000 / 2
575# define IEMTLB_SLOT_FMT "%04x"
576#else
577# define IEMTLB_SLOT_FMT "%05x"
578#endif
579
580/** Enable the large page bitmap TLB optimization.
581 *
582 * The idea here is to avoid scanning the full 32 KB (2MB pages, 2*512 TLB
583 * entries) or 64 KB (4MB pages, 2*1024 TLB entries) worth of TLB entries during
584 * invlpg when large pages are used, and instead just scan 128 or 256 bytes of
585 * the bmLargePage bitmap to determin which TLB entires that might be containing
586 * large pages and actually require checking.
587 *
588 * There is a good posibility of false positives since we currently don't clear
589 * the bitmap when flushing the TLB, but it should help reduce the workload when
590 * the large pages aren't fully loaded into the TLB in their entirity...
591 */
592#define IEMTLB_WITH_LARGE_PAGE_BITMAP
593
594/**
595 * An IEM TLB.
596 *
597 * We've got two of these, one for data and one for instructions.
598 */
599typedef struct IEMTLB
600{
601 /** The non-global TLB revision.
602 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
603 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
604 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
605 * (The revision zero indicates an invalid TLB entry.)
606 *
607 * The initial value is choosen to cause an early wraparound. */
608 uint64_t uTlbRevision;
609 /** The TLB physical address revision - shadow of PGM variable.
610 *
611 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
612 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
613 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
614 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
615 *
616 * The initial value is choosen to cause an early wraparound.
617 *
618 * @note This is placed between the two TLB revisions because we
619 * load it in pair with one or the other on arm64. */
620 uint64_t volatile uTlbPhysRev;
621 /** The global TLB revision.
622 * Same as uTlbRevision, but only increased for global flushes. */
623 uint64_t uTlbRevisionGlobal;
624
625 /** Large page tag range.
626 *
627 * This is used to avoid scanning a large page's worth of TLB entries for each
628 * INVLPG instruction, and only to do so iff we've loaded any and when the
629 * address is in this range. This is kept up to date when we loading new TLB
630 * entries.
631 */
632 struct LARGEPAGERANGE
633 {
634 /** The lowest large page address tag, UINT64_MAX if none. */
635 uint64_t uFirstTag;
636 /** The highest large page address tag (with offset mask part set), 0 if none. */
637 uint64_t uLastTag;
638 }
639 /** Large page range for non-global pages. */
640 NonGlobalLargePageRange,
641 /** Large page range for global pages. */
642 GlobalLargePageRange;
643 /** Number of non-global entries for large pages loaded since last TLB flush. */
644 uint32_t cTlbNonGlobalLargePageCurLoads;
645 /** Number of global entries for large pages loaded since last TLB flush. */
646 uint32_t cTlbGlobalLargePageCurLoads;
647
648 /* Statistics: */
649
650 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
651 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
652 * not via safe read/write path) calls to iemMemMapJmp. */
653 uint64_t cTlbCoreHits;
654 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
655 * only; data tlb only). */
656 uint64_t cTlbSafeHits;
657 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
658 uint64_t cTlbInlineCodeHits;
659
660 /** TLB misses in IEMAll.cpp code (both).
661 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
662 * not via safe read/write path) calls to iemMemMapJmp. So,
663 * for the data TLB this more like 'other misses', while for the code
664 * TLB is all misses. */
665 uint64_t cTlbCoreMisses;
666 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
667 uint64_t cTlbCoreGlobalLoads;
668 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
669 uint64_t cTlbSafeMisses;
670 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
671 uint64_t cTlbSafeGlobalLoads;
672 /** Safe read path taken (data only). */
673 uint64_t cTlbSafeReadPath;
674 /** Safe write path taken (data only). */
675 uint64_t cTlbSafeWritePath;
676
677 /** @name Details for native code TLB misses.
678 * @note These counts are included in the above counters (cTlbSafeReadPath,
679 * cTlbSafeWritePath, cTlbInlineCodeHits).
680 * @{ */
681 /** TLB misses in native code due to tag mismatch. */
682 STAMCOUNTER cTlbNativeMissTag;
683 /** TLB misses in native code due to flags or physical revision mismatch. */
684 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
685 /** TLB misses in native code due to misaligned access. */
686 STAMCOUNTER cTlbNativeMissAlignment;
687 /** TLB misses in native code due to cross page access. */
688 uint32_t cTlbNativeMissCrossPage;
689 /** TLB misses in native code due to non-canonical address. */
690 uint32_t cTlbNativeMissNonCanonical;
691 /** @} */
692
693 /** Slow read path (code only). */
694 uint32_t cTlbSlowCodeReadPath;
695
696 /** Regular TLB flush count. */
697 uint32_t cTlsFlushes;
698 /** Global TLB flush count. */
699 uint32_t cTlsGlobalFlushes;
700 /** Revision rollovers. */
701 uint32_t cTlbRevisionRollovers;
702 /** Physical revision flushes. */
703 uint32_t cTlbPhysRevFlushes;
704 /** Physical revision rollovers. */
705 uint32_t cTlbPhysRevRollovers;
706
707 /** Number of INVLPG (and similar) operations. */
708 uint32_t cTlbInvlPg;
709 /** Subset of cTlbInvlPg that involved non-global large pages. */
710 uint32_t cTlbInvlPgLargeNonGlobal;
711 /** Subset of cTlbInvlPg that involved global large pages. */
712 uint32_t cTlbInvlPgLargeGlobal;
713
714 uint32_t au32Padding[13];
715
716 /** The TLB entries.
717 * Even entries are for PTE.G=0 and uses uTlbRevision.
718 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
719 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
720#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
721 /** Bitmap tracking TLB entries for large pages.
722 * This duplicates IEMTLBE_F_PT_LARGE_PAGE for each TLB entry. */
723 uint64_t bmLargePage[IEMTLB_ENTRY_COUNT * 2 / 64];
724#endif
725} IEMTLB;
726AssertCompileSizeAlignment(IEMTLB, 64);
727#ifdef IEMTLB_WITH_LARGE_PAGE_BITMAP
728AssertCompile(IEMTLB_ENTRY_COUNT >= 32 /* bmLargePage ASSUMPTION */);
729#endif
730/** The width (in bits) of the address portion of the TLB tag. */
731#define IEMTLB_TAG_ADDR_WIDTH 36
732/** IEMTLB::uTlbRevision increment. */
733#define IEMTLB_REVISION_INCR RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH)
734/** IEMTLB::uTlbRevision mask. */
735#define IEMTLB_REVISION_MASK (~(RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH) - 1))
736
737/** IEMTLB::uTlbPhysRev increment.
738 * @sa IEMTLBE_F_PHYS_REV */
739#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
740AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
741
742/**
743 * Calculates the TLB tag for a virtual address but without TLB revision.
744 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
745 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
746 * the clearing of the top 16 bits won't work (if 32-bit
747 * we'll end up with mostly zeros).
748 */
749#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
750/**
751 * Converts a TLB tag value into a even TLB index.
752 * @returns Index into IEMTLB::aEntries.
753 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
754 */
755#if IEMTLB_ENTRY_COUNT == 256
756# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
757#else
758# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
759AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
760#endif
761/**
762 * Converts a TLB tag value into an even TLB index.
763 * @returns Pointer into IEMTLB::aEntries corresponding to .
764 * @param a_pTlb The TLB.
765 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
766 * IEMTLB_CALC_TAG_NO_REV.
767 */
768#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
769
770/** Converts a GC address to an even TLB index. */
771#define IEMTLB_ADDR_TO_EVEN_INDEX(a_GCPtr) IEMTLB_TAG_TO_EVEN_INDEX(IEMTLB_CALC_TAG_NO_REV(a_GCPtr))
772
773
774/** @def IEM_WITH_TLB_TRACE
775 * Enables the TLB tracing.
776 * Adjust buffer size in IEMR3Init. */
777#if defined(DOXYGEN_RUNNING) || 0
778# define IEM_WITH_TLB_TRACE
779#endif
780
781#ifdef IEM_WITH_TLB_TRACE
782
783/** TLB trace entry types. */
784typedef enum : uint8_t
785{
786 kIemTlbTraceType_Invalid,
787 kIemTlbTraceType_InvlPg,
788 kIemTlbTraceType_EvictSlot,
789 kIemTlbTraceType_LargeEvictSlot,
790 kIemTlbTraceType_LargeScan,
791 kIemTlbTraceType_Flush,
792 kIemTlbTraceType_FlushGlobal,
793 kIemTlbTraceType_Load,
794 kIemTlbTraceType_LoadGlobal,
795 kIemTlbTraceType_Load_Cr0,
796 kIemTlbTraceType_Load_Cr3,
797 kIemTlbTraceType_Load_Cr4,
798 kIemTlbTraceType_Load_Efer,
799 kIemTlbTraceType_Irq,
800 kIemTlbTraceType_Xcpt,
801 kIemTlbTraceType_IRet,
802 kIemTlbTraceType_Tb_Compile,
803 kIemTlbTraceType_Tb_Exec_Threaded,
804 kIemTlbTraceType_Tb_Exec_Native,
805 kIemTlbTraceType_User0,
806 kIemTlbTraceType_User1,
807 kIemTlbTraceType_User2,
808 kIemTlbTraceType_User3,
809} IEMTLBTRACETYPE;
810
811/** TLB trace entry. */
812typedef struct IEMTLBTRACEENTRY
813{
814 /** The flattened RIP for the event. */
815 uint64_t rip;
816 /** The event type. */
817 IEMTLBTRACETYPE enmType;
818 /** Byte parameter - typically used as 'bool fDataTlb'. */
819 uint8_t bParam;
820 /** 16-bit parameter value. */
821 uint16_t u16Param;
822 /** 32-bit parameter value. */
823 uint32_t u32Param;
824 /** 64-bit parameter value. */
825 uint64_t u64Param;
826 /** 64-bit parameter value. */
827 uint64_t u64Param2;
828} IEMTLBTRACEENTRY;
829AssertCompileSize(IEMTLBTRACEENTRY, 32);
830/** Pointer to a TLB trace entry. */
831typedef IEMTLBTRACEENTRY *PIEMTLBTRACEENTRY;
832/** Pointer to a const TLB trace entry. */
833typedef IEMTLBTRACEENTRY const *PCIEMTLBTRACEENTRY;
834#endif /* !IEM_WITH_TLB_TRACE */
835
836#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
837# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) \
838 iemTlbTrace(a_pVCpu, kIemTlbTraceType_InvlPg, a_GCPtr)
839# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
840 iemTlbTrace(a_pVCpu, kIemTlbTraceType_EvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
841# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
842 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeEvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
843# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) \
844 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeScan, 0, 0, a_fDataTlb, (uint8_t)a_fGlobal | ((uint8_t)a_fNonGlobal << 1))
845# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) \
846 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Flush, a_uRev, 0, a_fDataTlb)
847# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) \
848 iemTlbTrace(a_pVCpu, kIemTlbTraceType_FlushGlobal, a_uRev, a_uGRev, a_fDataTlb)
849# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
850 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
851# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
852 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LoadGlobal, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
853#else
854# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) do { } while (0)
855# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
856# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
857# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) do { } while (0)
858# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) do { } while (0)
859# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) do { } while (0)
860# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
861# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
862#endif
863
864#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
865# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr0, a_uNew, a_uOld)
866# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr3, a_uNew, a_uOld)
867# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr4, a_uNew, a_uOld)
868# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Efer, a_uNew, a_uOld)
869#else
870# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) do { } while (0)
871# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) do { } while (0)
872# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) do { } while (0)
873# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) do { } while (0)
874#endif
875
876#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
877# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) \
878 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Irq, a_fEFlags, 0, a_uVector, a_fFlags)
879# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) \
880 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Xcpt, a_uErr, a_uCr2, a_uVector, a_fFlags)
881# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) \
882 iemTlbTrace(a_pVCpu, kIemTlbTraceType_IRet, a_uRetRip, a_fEFlags, 0, a_uRetCs)
883#else
884# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) do { } while (0)
885# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) do { } while (0)
886# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) do { } while (0)
887#endif
888
889#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
890# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) \
891 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Compile, a_GCPhysPc)
892# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) \
893 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Threaded, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
894# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) \
895 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Native, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
896#else
897# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) do { } while (0)
898# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) do { } while (0)
899# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) do { } while (0)
900#endif
901
902#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
903# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
904 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User0, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
905# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
906 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User1, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
907# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
908 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User2, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
909# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
910 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User3, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
911#else
912# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
913# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
914# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
915# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
916#endif
917
918
919/** @name IEM_MC_F_XXX - MC block flags/clues.
920 * @todo Merge with IEM_CIMPL_F_XXX
921 * @{ */
922#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
923#define IEM_MC_F_MIN_186 RT_BIT_32(1)
924#define IEM_MC_F_MIN_286 RT_BIT_32(2)
925#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
926#define IEM_MC_F_MIN_386 RT_BIT_32(3)
927#define IEM_MC_F_MIN_486 RT_BIT_32(4)
928#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
929#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
930#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
931#define IEM_MC_F_64BIT RT_BIT_32(6)
932#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
933/** This is set by IEMAllN8vePython.py to indicate a variation without the
934 * flags-clearing-and-checking, when there is also a variation with that.
935 * @note Do not use this manully, it's only for python and for testing in
936 * the native recompiler! */
937#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
938/** @} */
939
940/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
941 *
942 * These clues are mainly for the recompiler, so that it can emit correct code.
943 *
944 * They are processed by the python script and which also automatically
945 * calculates flags for MC blocks based on the statements, extending the use of
946 * these flags to describe MC block behavior to the recompiler core. The python
947 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
948 * error checking purposes. The script emits the necessary fEndTb = true and
949 * similar statements as this reduces compile time a tiny bit.
950 *
951 * @{ */
952/** Flag set if direct branch, clear if absolute or indirect. */
953#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
954/** Flag set if indirect branch, clear if direct or relative.
955 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
956 * as well as for return instructions (RET, IRET, RETF). */
957#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
958/** Flag set if relative branch, clear if absolute or indirect. */
959#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
960/** Flag set if conditional branch, clear if unconditional. */
961#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
962/** Flag set if it's a far branch (changes CS). */
963#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
964/** Convenience: Testing any kind of branch. */
965#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
966
967/** Execution flags may change (IEMCPU::fExec). */
968#define IEM_CIMPL_F_MODE RT_BIT_32(5)
969/** May change significant portions of RFLAGS. */
970#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
971/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
972#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
973/** May trigger interrupt shadowing. */
974#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
975/** May enable interrupts, so recheck IRQ immediately afterwards executing
976 * the instruction. */
977#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
978/** May disable interrupts, so recheck IRQ immediately before executing the
979 * instruction. */
980#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
981/** Convenience: Check for IRQ both before and after an instruction. */
982#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
983/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
984#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
985/** May modify FPU state.
986 * @todo Not sure if this is useful yet. */
987#define IEM_CIMPL_F_FPU RT_BIT_32(12)
988/** REP prefixed instruction which may yield before updating PC.
989 * @todo Not sure if this is useful, REP functions now return non-zero
990 * status if they don't update the PC. */
991#define IEM_CIMPL_F_REP RT_BIT_32(13)
992/** I/O instruction.
993 * @todo Not sure if this is useful yet. */
994#define IEM_CIMPL_F_IO RT_BIT_32(14)
995/** Force end of TB after the instruction. */
996#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
997/** Flag set if a branch may also modify the stack (push/pop return address). */
998#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
999/** Flag set if a branch may also modify the stack (push/pop return address)
1000 * and switch it (load/restore SS:RSP). */
1001#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
1002/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
1003#define IEM_CIMPL_F_XCPT \
1004 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
1005 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
1006
1007/** The block calls a C-implementation instruction function with two implicit arguments.
1008 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
1009 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1010 * @note The python scripts will add this if missing. */
1011#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
1012/** The block calls an ASM-implementation instruction function.
1013 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
1014 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1015 * @note The python scripts will add this if missing. */
1016#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
1017/** The block calls an ASM-implementation instruction function with an implicit
1018 * X86FXSTATE pointer argument.
1019 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1020 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
1021 * @note The python scripts will add this if missing. */
1022#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
1023/** The block calls an ASM-implementation instruction function with an implicit
1024 * X86XSAVEAREA pointer argument.
1025 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
1026 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
1027 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
1028 * @note The python scripts will add this if missing. */
1029#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
1030/** @} */
1031
1032
1033/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
1034 *
1035 * These flags are set when entering IEM and adjusted as code is executed, such
1036 * that they will always contain the current values as instructions are
1037 * finished.
1038 *
1039 * In recompiled execution mode, (most of) these flags are included in the
1040 * translation block selection key and stored in IEMTB::fFlags alongside the
1041 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
1042 * in IEMCPU::fExec.
1043 *
1044 * @{ */
1045/** Mode: The block target mode mask. */
1046#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
1047/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
1048#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
1049/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
1050 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
1051 * 32-bit mode (for simplifying most memory accesses). */
1052#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
1053/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
1054#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
1055/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
1056#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
1057
1058/** X86 Mode: 16-bit on 386 or later. */
1059#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
1060/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
1061#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
1062/** X86 Mode: 16-bit protected mode on 386 or later. */
1063#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
1064/** X86 Mode: 16-bit protected mode on 386 or later. */
1065#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
1066/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
1067#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
1068
1069/** X86 Mode: 32-bit on 386 or later. */
1070#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
1071/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
1072#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
1073/** X86 Mode: 32-bit protected mode. */
1074#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
1075/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
1076#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
1077
1078/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
1079#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
1080
1081/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
1082#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
1083 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
1084 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
1085
1086/** Bypass access handlers when set. */
1087#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
1088/** Have pending hardware instruction breakpoints. */
1089#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
1090/** Have pending hardware data breakpoints. */
1091#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
1092
1093/** X86: Have pending hardware I/O breakpoints. */
1094#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
1095/** X86: Disregard the lock prefix (implied or not) when set. */
1096#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
1097
1098/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
1099#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
1100
1101/** Caller configurable options. */
1102#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
1103
1104/** X86: The current protection level (CPL) shift factor. */
1105#define IEM_F_X86_CPL_SHIFT 8
1106/** X86: The current protection level (CPL) mask. */
1107#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
1108/** X86: The current protection level (CPL) shifted mask. */
1109#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
1110
1111/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
1112#define IEM_F_X86_AC UINT32_C(0x00080000)
1113
1114/** X86 execution context.
1115 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
1116 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
1117 * mode. */
1118#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
1119/** X86 context: Plain regular execution context. */
1120#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
1121/** X86 context: VT-x enabled. */
1122#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
1123/** X86 context: AMD-V enabled. */
1124#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
1125/** X86 context: In AMD-V or VT-x guest mode. */
1126#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
1127/** X86 context: System management mode (SMM). */
1128#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
1129
1130/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1131 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
1132 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
1133 * alread). */
1134
1135/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1136 * iemRegFinishClearingRF() most for most situations
1137 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
1138 * the IEM_F_PENDING_BRK_XXX bits alread). */
1139
1140/** @} */
1141
1142
1143/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
1144 *
1145 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
1146 * translation block flags. The combined flag mask (subject to
1147 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
1148 *
1149 * @{ */
1150/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
1151#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
1152
1153/** Type: The block type mask. */
1154#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
1155/** Type: Purly threaded recompiler (via tables). */
1156#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
1157/** Type: Native recompilation. */
1158#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
1159
1160/** Set when we're starting the block in an "interrupt shadow".
1161 * We don't need to distingish between the two types of this mask, thus the one.
1162 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
1163#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
1164/** Set when we're currently inhibiting NMIs
1165 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
1166#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
1167
1168/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
1169 * we're close the limit before starting a TB, as determined by
1170 * iemGetTbFlagsForCurrentPc(). */
1171#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
1172
1173/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
1174 *
1175 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
1176 * don't implement), because we don't currently generate any context
1177 * specific code - that's all handled in CIMPL functions.
1178 *
1179 * For the threaded recompiler we don't generate any CPL specific code
1180 * either, but the native recompiler does for memory access (saves getting
1181 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
1182 * Since most OSes will not share code between rings, this shouldn't
1183 * have any real effect on TB/memory/recompiling load.
1184 */
1185#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
1186/** @} */
1187
1188AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1189AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1190AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
1191AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
1192AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1193AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1194AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
1195AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1196AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1197AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1198AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1199AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
1200AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1201AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1202AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
1203AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1204AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
1205AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1206AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
1207
1208AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1209AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1210AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
1211AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1212AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1213AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
1214AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1215AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1216AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1217AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1218AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1219AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
1220
1221AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
1222AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
1223AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1224
1225/** Native instruction type for use with the native code generator.
1226 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
1227#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1228typedef uint8_t IEMNATIVEINSTR;
1229#else
1230typedef uint32_t IEMNATIVEINSTR;
1231#endif
1232/** Pointer to a native instruction unit. */
1233typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
1234/** Pointer to a const native instruction unit. */
1235typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
1236
1237/**
1238 * A call for the threaded call table.
1239 */
1240typedef struct IEMTHRDEDCALLENTRY
1241{
1242 /** The function to call (IEMTHREADEDFUNCS). */
1243 uint16_t enmFunction;
1244
1245 /** Instruction number in the TB (for statistics). */
1246 uint8_t idxInstr;
1247 /** The opcode length. */
1248 uint8_t cbOpcode;
1249 /** Offset into IEMTB::pabOpcodes. */
1250 uint16_t offOpcode;
1251
1252 /** TB lookup table index (7 bits) and large size (1 bits).
1253 *
1254 * The default size is 1 entry, but for indirect calls and returns we set the
1255 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1256 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1257 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1258 *
1259 * By default lookup table entry 0 for a TB is reserved as a fallback for
1260 * calltable entries w/o explicit entreis, so this member will be non-zero if
1261 * there is a lookup entry associated with this call.
1262 *
1263 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1264 */
1265 uint8_t uTbLookup;
1266
1267 /** Flags - IEMTHREADEDCALLENTRY_F_XXX. */
1268 uint8_t fFlags;
1269
1270 /** Generic parameters. */
1271 uint64_t auParams[3];
1272} IEMTHRDEDCALLENTRY;
1273AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1274/** Pointer to a threaded call entry. */
1275typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1276/** Pointer to a const threaded call entry. */
1277typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1278
1279/** The number of TB lookup table entries for a large allocation
1280 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1281#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1282/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1283#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1284/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1285#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1286/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1287#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1288 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1289
1290/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1291#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1292
1293
1294/** The call entry is a jump target. */
1295#define IEMTHREADEDCALLENTRY_F_JUMP_TARGET UINT8_C(0x01)
1296
1297
1298/**
1299 * Native IEM TB 'function' typedef.
1300 *
1301 * This will throw/longjmp on occation.
1302 *
1303 * @note AMD64 doesn't have that many non-volatile registers and does sport
1304 * 32-bit address displacments, so we don't need pCtx.
1305 *
1306 * On ARM64 pCtx allows us to directly address the whole register
1307 * context without requiring a separate indexing register holding the
1308 * offset. This saves an instruction loading the offset for each guest
1309 * CPU context access, at the cost of a non-volatile register.
1310 * Fortunately, ARM64 has quite a lot more registers.
1311 */
1312typedef
1313#ifdef RT_ARCH_AMD64
1314int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1315#else
1316int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1317#endif
1318#if RT_CPLUSPLUS_PREREQ(201700)
1319 IEM_NOEXCEPT_MAY_LONGJMP
1320#endif
1321 ;
1322/** Pointer to a native IEM TB entry point function.
1323 * This will throw/longjmp on occation. */
1324typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1325
1326
1327/**
1328 * Translation block debug info entry type.
1329 */
1330typedef enum IEMTBDBGENTRYTYPE
1331{
1332 kIemTbDbgEntryType_Invalid = 0,
1333 /** The entry is for marking a native code position.
1334 * Entries following this all apply to this position. */
1335 kIemTbDbgEntryType_NativeOffset,
1336 /** The entry is for a new guest instruction. */
1337 kIemTbDbgEntryType_GuestInstruction,
1338 /** Marks the start of a threaded call. */
1339 kIemTbDbgEntryType_ThreadedCall,
1340 /** Marks the location of a label. */
1341 kIemTbDbgEntryType_Label,
1342 /** Info about a host register shadowing a guest register. */
1343 kIemTbDbgEntryType_GuestRegShadowing,
1344#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1345 /** Info about a host SIMD register shadowing a guest SIMD register. */
1346 kIemTbDbgEntryType_GuestSimdRegShadowing,
1347#endif
1348#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1349 /** Info about a delayed RIP update. */
1350 kIemTbDbgEntryType_DelayedPcUpdate,
1351#endif
1352#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1353 /** Info about a shadowed guest register becoming dirty. */
1354 kIemTbDbgEntryType_GuestRegDirty,
1355 /** Info about register writeback/flush oepration. */
1356 kIemTbDbgEntryType_GuestRegWriteback,
1357#endif
1358 kIemTbDbgEntryType_End
1359} IEMTBDBGENTRYTYPE;
1360
1361/**
1362 * Translation block debug info entry.
1363 */
1364typedef union IEMTBDBGENTRY
1365{
1366 /** Plain 32-bit view. */
1367 uint32_t u;
1368
1369 /** Generic view for getting at the type field. */
1370 struct
1371 {
1372 /** IEMTBDBGENTRYTYPE */
1373 uint32_t uType : 4;
1374 uint32_t uTypeSpecific : 28;
1375 } Gen;
1376
1377 struct
1378 {
1379 /** kIemTbDbgEntryType_ThreadedCall1. */
1380 uint32_t uType : 4;
1381 /** Native code offset. */
1382 uint32_t offNative : 28;
1383 } NativeOffset;
1384
1385 struct
1386 {
1387 /** kIemTbDbgEntryType_GuestInstruction. */
1388 uint32_t uType : 4;
1389 uint32_t uUnused : 4;
1390 /** The IEM_F_XXX flags. */
1391 uint32_t fExec : 24;
1392 } GuestInstruction;
1393
1394 struct
1395 {
1396 /* kIemTbDbgEntryType_ThreadedCall. */
1397 uint32_t uType : 4;
1398 /** Set if the call was recompiled to native code, clear if just calling
1399 * threaded function. */
1400 uint32_t fRecompiled : 1;
1401 uint32_t uUnused : 11;
1402 /** The threaded call number (IEMTHREADEDFUNCS). */
1403 uint32_t enmCall : 16;
1404 } ThreadedCall;
1405
1406 struct
1407 {
1408 /* kIemTbDbgEntryType_Label. */
1409 uint32_t uType : 4;
1410 uint32_t uUnused : 4;
1411 /** The label type (IEMNATIVELABELTYPE). */
1412 uint32_t enmLabel : 8;
1413 /** The label data. */
1414 uint32_t uData : 16;
1415 } Label;
1416
1417 struct
1418 {
1419 /* kIemTbDbgEntryType_GuestRegShadowing. */
1420 uint32_t uType : 4;
1421 uint32_t uUnused : 4;
1422 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1423 uint32_t idxGstReg : 8;
1424 /** The host new register number, UINT8_MAX if dropped. */
1425 uint32_t idxHstReg : 8;
1426 /** The previous host register number, UINT8_MAX if new. */
1427 uint32_t idxHstRegPrev : 8;
1428 } GuestRegShadowing;
1429
1430#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1431 struct
1432 {
1433 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1434 uint32_t uType : 4;
1435 uint32_t uUnused : 4;
1436 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1437 uint32_t idxGstSimdReg : 8;
1438 /** The host new register number, UINT8_MAX if dropped. */
1439 uint32_t idxHstSimdReg : 8;
1440 /** The previous host register number, UINT8_MAX if new. */
1441 uint32_t idxHstSimdRegPrev : 8;
1442 } GuestSimdRegShadowing;
1443#endif
1444
1445#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1446 struct
1447 {
1448 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1449 uint32_t uType : 4;
1450 /** Number of instructions skipped. */
1451 uint32_t cInstrSkipped : 8;
1452 /* The instruction offset added to the program counter. */
1453 int32_t offPc : 20;
1454 } DelayedPcUpdate;
1455#endif
1456
1457#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1458 struct
1459 {
1460 /* kIemTbDbgEntryType_GuestRegDirty. */
1461 uint32_t uType : 4;
1462 uint32_t uUnused : 11;
1463 /** Flag whether this is about a SIMD (true) or general (false) register. */
1464 uint32_t fSimdReg : 1;
1465 /** The guest register index being marked as dirty. */
1466 uint32_t idxGstReg : 8;
1467 /** The host register number this register is shadowed in .*/
1468 uint32_t idxHstReg : 8;
1469 } GuestRegDirty;
1470
1471 struct
1472 {
1473 /* kIemTbDbgEntryType_GuestRegWriteback. */
1474 uint32_t uType : 4;
1475 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1476 uint32_t fSimdReg : 1;
1477 /** The mask shift. */
1478 uint32_t cShift : 2;
1479 /** The guest register mask being written back. */
1480 uint32_t fGstReg : 25;
1481 } GuestRegWriteback;
1482#endif
1483
1484} IEMTBDBGENTRY;
1485AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1486/** Pointer to a debug info entry. */
1487typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1488/** Pointer to a const debug info entry. */
1489typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1490
1491/**
1492 * Translation block debug info.
1493 */
1494typedef struct IEMTBDBG
1495{
1496 /** This is the flat PC corresponding to IEMTB::GCPhysPc. */
1497 RTGCPTR FlatPc;
1498 /** Number of entries in aEntries. */
1499 uint32_t cEntries;
1500 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1501 uint32_t offNativeLast;
1502 /** Debug info entries. */
1503 RT_FLEXIBLE_ARRAY_EXTENSION
1504 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1505} IEMTBDBG;
1506/** Pointer to TB debug info. */
1507typedef IEMTBDBG *PIEMTBDBG;
1508/** Pointer to const TB debug info. */
1509typedef IEMTBDBG const *PCIEMTBDBG;
1510
1511
1512/**
1513 * Translation block.
1514 *
1515 * The current plan is to just keep TBs and associated lookup hash table private
1516 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1517 * avoids using expensive atomic primitives for updating lists and stuff.
1518 */
1519#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1520typedef struct IEMTB
1521{
1522 /** Next block with the same hash table entry. */
1523 struct IEMTB *pNext;
1524 /** Usage counter. */
1525 uint32_t cUsed;
1526 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1527 uint32_t msLastUsed;
1528
1529 /** @name What uniquely identifies the block.
1530 * @{ */
1531 RTGCPHYS GCPhysPc;
1532 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1533 uint32_t fFlags;
1534 union
1535 {
1536 struct
1537 {
1538 /**< Relevant CS X86DESCATTR_XXX bits. */
1539 uint16_t fAttr;
1540 } x86;
1541 };
1542 /** @} */
1543
1544 /** Number of opcode ranges. */
1545 uint8_t cRanges;
1546 /** Statistics: Number of instructions in the block. */
1547 uint8_t cInstructions;
1548
1549 /** Type specific info. */
1550 union
1551 {
1552 struct
1553 {
1554 /** The call sequence table. */
1555 PIEMTHRDEDCALLENTRY paCalls;
1556 /** Number of calls in paCalls. */
1557 uint16_t cCalls;
1558 /** Number of calls allocated. */
1559 uint16_t cAllocated;
1560 } Thrd;
1561 struct
1562 {
1563 /** The native instructions (PFNIEMTBNATIVE). */
1564 PIEMNATIVEINSTR paInstructions;
1565 /** Number of instructions pointed to by paInstructions. */
1566 uint32_t cInstructions;
1567 } Native;
1568 /** Generic view for zeroing when freeing. */
1569 struct
1570 {
1571 uintptr_t uPtr;
1572 uint32_t uData;
1573 } Gen;
1574 };
1575
1576 /** The allocation chunk this TB belongs to. */
1577 uint8_t idxAllocChunk;
1578 /** The number of entries in the lookup table.
1579 * Because we're out of space, the TB lookup table is located before the
1580 * opcodes pointed to by pabOpcodes. */
1581 uint8_t cTbLookupEntries;
1582
1583 /** Number of bytes of opcodes stored in pabOpcodes.
1584 * @todo this field isn't really needed, aRanges keeps the actual info. */
1585 uint16_t cbOpcodes;
1586 /** Pointer to the opcode bytes this block was recompiled from.
1587 * This also points to the TB lookup table, which starts cTbLookupEntries
1588 * entries before the opcodes (we don't have room atm for another point). */
1589 uint8_t *pabOpcodes;
1590
1591 union
1592 {
1593 /** Native recompilation debug info if enabled.
1594 * This is only generated by the native recompiler. */
1595 PIEMTBDBG pDbgInfo;
1596 /** For threaded TBs and natives when debug info is disabled, this is the flat
1597 * PC corresponding to GCPhysPc. */
1598 RTGCPTR FlatPc;
1599 };
1600
1601 /* --- 64 byte cache line end --- */
1602
1603 /** Opcode ranges.
1604 *
1605 * The opcode checkers and maybe TLB loading functions will use this to figure
1606 * out what to do. The parameter will specify an entry and the opcode offset to
1607 * start at and the minimum number of bytes to verify (instruction length).
1608 *
1609 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1610 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1611 * code TLB (must have a valid entry for that address) and scan the ranges to
1612 * locate the corresponding opcodes. Probably.
1613 */
1614 struct IEMTBOPCODERANGE
1615 {
1616 /** Offset within pabOpcodes. */
1617 uint16_t offOpcodes;
1618 /** Number of bytes. */
1619 uint16_t cbOpcodes;
1620 /** The page offset. */
1621 RT_GCC_EXTENSION
1622 uint16_t offPhysPage : 12;
1623 /** Unused bits. */
1624 RT_GCC_EXTENSION
1625 uint16_t u2Unused : 2;
1626 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1627 RT_GCC_EXTENSION
1628 uint16_t idxPhysPage : 2;
1629 } aRanges[8];
1630
1631 /** Physical pages that this TB covers.
1632 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1633 RTGCPHYS aGCPhysPages[2];
1634} IEMTB;
1635#pragma pack()
1636AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1637AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1638AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1639AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1640AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1641AssertCompileMemberOffset(IEMTB, aRanges, 64);
1642AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1643#if 1
1644AssertCompileSize(IEMTB, 128);
1645# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1646#else
1647AssertCompileSize(IEMTB, 168);
1648# undef IEMTB_SIZE_IS_POWER_OF_TWO
1649#endif
1650
1651/** Pointer to a translation block. */
1652typedef IEMTB *PIEMTB;
1653/** Pointer to a const translation block. */
1654typedef IEMTB const *PCIEMTB;
1655
1656/** Gets address of the given TB lookup table entry. */
1657#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1658 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1659
1660/**
1661 * Gets the physical address for a TB opcode range.
1662 */
1663DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1664{
1665 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1666 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1667 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1668 if (idxPage == 0)
1669 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1670 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1671 return pTb->aGCPhysPages[idxPage - 1];
1672}
1673
1674
1675/**
1676 * A chunk of memory in the TB allocator.
1677 */
1678typedef struct IEMTBCHUNK
1679{
1680 /** Pointer to the translation blocks in this chunk. */
1681 PIEMTB paTbs;
1682#ifdef IN_RING0
1683 /** Allocation handle. */
1684 RTR0MEMOBJ hMemObj;
1685#endif
1686} IEMTBCHUNK;
1687
1688/**
1689 * A per-CPU translation block allocator.
1690 *
1691 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1692 * the length of the collision list, and of course also for cache line alignment
1693 * reasons, the TBs must be allocated with at least 64-byte alignment.
1694 * Memory is there therefore allocated using one of the page aligned allocators.
1695 *
1696 *
1697 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1698 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1699 * that enables us to quickly calculate the allocation bitmap position when
1700 * freeing the translation block.
1701 */
1702typedef struct IEMTBALLOCATOR
1703{
1704 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1705 uint32_t uMagic;
1706
1707#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1708 /** Mask corresponding to cTbsPerChunk - 1. */
1709 uint32_t fChunkMask;
1710 /** Shift count corresponding to cTbsPerChunk. */
1711 uint8_t cChunkShift;
1712#else
1713 uint32_t uUnused;
1714 uint8_t bUnused;
1715#endif
1716 /** Number of chunks we're allowed to allocate. */
1717 uint8_t cMaxChunks;
1718 /** Number of chunks currently populated. */
1719 uint16_t cAllocatedChunks;
1720 /** Number of translation blocks per chunk. */
1721 uint32_t cTbsPerChunk;
1722 /** Chunk size. */
1723 uint32_t cbPerChunk;
1724
1725 /** The maximum number of TBs. */
1726 uint32_t cMaxTbs;
1727 /** Total number of TBs in the populated chunks.
1728 * (cAllocatedChunks * cTbsPerChunk) */
1729 uint32_t cTotalTbs;
1730 /** The current number of TBs in use.
1731 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1732 uint32_t cInUseTbs;
1733 /** Statistics: Number of the cInUseTbs that are native ones. */
1734 uint32_t cNativeTbs;
1735 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1736 uint32_t cThreadedTbs;
1737
1738 /** Where to start pruning TBs from when we're out.
1739 * See iemTbAllocatorAllocSlow for details. */
1740 uint32_t iPruneFrom;
1741 /** Where to start pruning native TBs from when we're out of executable memory.
1742 * See iemTbAllocatorFreeupNativeSpace for details. */
1743 uint32_t iPruneNativeFrom;
1744 uint64_t u64Padding;
1745
1746 /** Statistics: Number of TB allocation calls. */
1747 STAMCOUNTER StatAllocs;
1748 /** Statistics: Number of TB free calls. */
1749 STAMCOUNTER StatFrees;
1750 /** Statistics: Time spend pruning. */
1751 STAMPROFILE StatPrune;
1752 /** Statistics: Time spend pruning native TBs. */
1753 STAMPROFILE StatPruneNative;
1754
1755 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1756 PIEMTB pDelayedFreeHead;
1757 /* Head of the list of free TBs. */
1758 PIEMTB pTbsFreeHead;
1759
1760 /** Allocation chunks. */
1761 IEMTBCHUNK aChunks[256];
1762} IEMTBALLOCATOR;
1763/** Pointer to a TB allocator. */
1764typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1765
1766/** Magic value for the TB allocator (Emmet Harley Cohen). */
1767#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1768
1769
1770/**
1771 * A per-CPU translation block cache (hash table).
1772 *
1773 * The hash table is allocated once during IEM initialization and size double
1774 * the max TB count, rounded up to the nearest power of two (so we can use and
1775 * AND mask rather than a rest division when hashing).
1776 */
1777typedef struct IEMTBCACHE
1778{
1779 /** Magic value (IEMTBCACHE_MAGIC). */
1780 uint32_t uMagic;
1781 /** Size of the hash table. This is a power of two. */
1782 uint32_t cHash;
1783 /** The mask corresponding to cHash. */
1784 uint32_t uHashMask;
1785 uint32_t uPadding;
1786
1787 /** @name Statistics
1788 * @{ */
1789 /** Number of collisions ever. */
1790 STAMCOUNTER cCollisions;
1791
1792 /** Statistics: Number of TB lookup misses. */
1793 STAMCOUNTER cLookupMisses;
1794 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1795 STAMCOUNTER cLookupHits;
1796 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1797 STAMCOUNTER cLookupHitsViaTbLookupTable;
1798 STAMCOUNTER auPadding2[2];
1799 /** Statistics: Collision list length pruning. */
1800 STAMPROFILE StatPrune;
1801 /** @} */
1802
1803 /** The hash table itself.
1804 * @note The lower 6 bits of the pointer is used for keeping the collision
1805 * list length, so we can take action when it grows too long.
1806 * This works because TBs are allocated using a 64 byte (or
1807 * higher) alignment from page aligned chunks of memory, so the lower
1808 * 6 bits of the address will always be zero.
1809 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1810 */
1811 RT_FLEXIBLE_ARRAY_EXTENSION
1812 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1813} IEMTBCACHE;
1814/** Pointer to a per-CPU translation block cahce. */
1815typedef IEMTBCACHE *PIEMTBCACHE;
1816
1817/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1818#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1819
1820/** The collision count mask for IEMTBCACHE::apHash entries. */
1821#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1822/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1823#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1824/** Combine a TB pointer and a collision list length into a value for an
1825 * IEMTBCACHE::apHash entry. */
1826#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1827/** Combine a TB pointer and a collision list length into a value for an
1828 * IEMTBCACHE::apHash entry. */
1829#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1830/** Combine a TB pointer and a collision list length into a value for an
1831 * IEMTBCACHE::apHash entry. */
1832#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1833
1834/**
1835 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1836 */
1837#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1838 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1839
1840/**
1841 * Calculates the hash table slot for a TB from physical PC address and TB
1842 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1843 */
1844#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1845 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1846
1847
1848/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1849 *
1850 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1851 *
1852 * @{ */
1853/** Value if no branching happened recently. */
1854#define IEMBRANCHED_F_NO UINT8_C(0x00)
1855/** Flag set if direct branch, clear if absolute or indirect. */
1856#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1857/** Flag set if indirect branch, clear if direct or relative. */
1858#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1859/** Flag set if relative branch, clear if absolute or indirect. */
1860#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1861/** Flag set if conditional branch, clear if unconditional. */
1862#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1863/** Flag set if it's a far branch. */
1864#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1865/** Flag set if the stack pointer is modified. */
1866#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1867/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1868#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1869/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1870#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1871/** @} */
1872
1873
1874/**
1875 * The per-CPU IEM state.
1876 */
1877typedef struct IEMCPU
1878{
1879 /** Info status code that needs to be propagated to the IEM caller.
1880 * This cannot be passed internally, as it would complicate all success
1881 * checks within the interpreter making the code larger and almost impossible
1882 * to get right. Instead, we'll store status codes to pass on here. Each
1883 * source of these codes will perform appropriate sanity checks. */
1884 int32_t rcPassUp; /* 0x00 */
1885 /** Execution flag, IEM_F_XXX. */
1886 uint32_t fExec; /* 0x04 */
1887
1888 /** @name Decoder state.
1889 * @{ */
1890#ifdef IEM_WITH_CODE_TLB
1891 /** The offset of the next instruction byte. */
1892 uint32_t offInstrNextByte; /* 0x08 */
1893 /** The number of bytes available at pbInstrBuf for the current instruction.
1894 * This takes the max opcode length into account so that doesn't need to be
1895 * checked separately. */
1896 uint32_t cbInstrBuf; /* 0x0c */
1897 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1898 * This can be NULL if the page isn't mappable for some reason, in which
1899 * case we'll do fallback stuff.
1900 *
1901 * If we're executing an instruction from a user specified buffer,
1902 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1903 * aligned pointer but pointer to the user data.
1904 *
1905 * For instructions crossing pages, this will start on the first page and be
1906 * advanced to the next page by the time we've decoded the instruction. This
1907 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1908 */
1909 uint8_t const *pbInstrBuf; /* 0x10 */
1910# if ARCH_BITS == 32
1911 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1912# endif
1913 /** The program counter corresponding to pbInstrBuf.
1914 * This is set to a non-canonical address when we need to invalidate it. */
1915 uint64_t uInstrBufPc; /* 0x18 */
1916 /** The guest physical address corresponding to pbInstrBuf. */
1917 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1918 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1919 * This takes the CS segment limit into account.
1920 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1921 uint16_t cbInstrBufTotal; /* 0x28 */
1922 /** Offset into pbInstrBuf of the first byte of the current instruction.
1923 * Can be negative to efficiently handle cross page instructions. */
1924 int16_t offCurInstrStart; /* 0x2a */
1925
1926# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1927 /** The prefix mask (IEM_OP_PRF_XXX). */
1928 uint32_t fPrefixes; /* 0x2c */
1929 /** The extra REX ModR/M register field bit (REX.R << 3). */
1930 uint8_t uRexReg; /* 0x30 */
1931 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1932 * (REX.B << 3). */
1933 uint8_t uRexB; /* 0x31 */
1934 /** The extra REX SIB index field bit (REX.X << 3). */
1935 uint8_t uRexIndex; /* 0x32 */
1936
1937 /** The effective segment register (X86_SREG_XXX). */
1938 uint8_t iEffSeg; /* 0x33 */
1939
1940 /** The offset of the ModR/M byte relative to the start of the instruction. */
1941 uint8_t offModRm; /* 0x34 */
1942
1943# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1944 /** The current offset into abOpcode. */
1945 uint8_t offOpcode; /* 0x35 */
1946# else
1947 uint8_t bUnused; /* 0x35 */
1948# endif
1949# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1950 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1951# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1952
1953#else /* !IEM_WITH_CODE_TLB */
1954# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1955 /** The size of what has currently been fetched into abOpcode. */
1956 uint8_t cbOpcode; /* 0x08 */
1957 /** The current offset into abOpcode. */
1958 uint8_t offOpcode; /* 0x09 */
1959 /** The offset of the ModR/M byte relative to the start of the instruction. */
1960 uint8_t offModRm; /* 0x0a */
1961
1962 /** The effective segment register (X86_SREG_XXX). */
1963 uint8_t iEffSeg; /* 0x0b */
1964
1965 /** The prefix mask (IEM_OP_PRF_XXX). */
1966 uint32_t fPrefixes; /* 0x0c */
1967 /** The extra REX ModR/M register field bit (REX.R << 3). */
1968 uint8_t uRexReg; /* 0x10 */
1969 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1970 * (REX.B << 3). */
1971 uint8_t uRexB; /* 0x11 */
1972 /** The extra REX SIB index field bit (REX.X << 3). */
1973 uint8_t uRexIndex; /* 0x12 */
1974
1975# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1976 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1977# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1978#endif /* !IEM_WITH_CODE_TLB */
1979
1980#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1981 /** The effective operand mode. */
1982 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1983 /** The default addressing mode. */
1984 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1985 /** The effective addressing mode. */
1986 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1987 /** The default operand mode. */
1988 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1989
1990 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1991 uint8_t idxPrefix; /* 0x3a, 0x17 */
1992 /** 3rd VEX/EVEX/XOP register.
1993 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1994 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1995 /** The VEX/EVEX/XOP length field. */
1996 uint8_t uVexLength; /* 0x3c, 0x19 */
1997 /** Additional EVEX stuff. */
1998 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1999
2000# ifndef IEM_WITH_CODE_TLB
2001 /** Explicit alignment padding. */
2002 uint8_t abAlignment2a[1]; /* 0x1b */
2003# endif
2004 /** The FPU opcode (FOP). */
2005 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
2006# ifndef IEM_WITH_CODE_TLB
2007 /** Explicit alignment padding. */
2008 uint8_t abAlignment2b[2]; /* 0x1e */
2009# endif
2010
2011 /** The opcode bytes. */
2012 uint8_t abOpcode[15]; /* 0x40, 0x20 */
2013 /** Explicit alignment padding. */
2014# ifdef IEM_WITH_CODE_TLB
2015 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
2016# else
2017 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
2018# endif
2019
2020#else /* IEM_WITH_OPAQUE_DECODER_STATE */
2021# ifdef IEM_WITH_CODE_TLB
2022 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
2023# else
2024 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
2025# endif
2026#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
2027 /** @} */
2028
2029
2030 /** The number of active guest memory mappings. */
2031 uint8_t cActiveMappings; /* 0x4f, 0x4f */
2032
2033 /** Records for tracking guest memory mappings. */
2034 struct
2035 {
2036 /** The address of the mapped bytes. */
2037 R3R0PTRTYPE(void *) pv;
2038 /** The access flags (IEM_ACCESS_XXX).
2039 * IEM_ACCESS_INVALID if the entry is unused. */
2040 uint32_t fAccess;
2041#if HC_ARCH_BITS == 64
2042 uint32_t u32Alignment4; /**< Alignment padding. */
2043#endif
2044 } aMemMappings[3]; /* 0x50 LB 0x30 */
2045
2046 /** Locking records for the mapped memory. */
2047 union
2048 {
2049 PGMPAGEMAPLOCK Lock;
2050 uint64_t au64Padding[2];
2051 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
2052
2053 /** Bounce buffer info.
2054 * This runs in parallel to aMemMappings. */
2055 struct
2056 {
2057 /** The physical address of the first byte. */
2058 RTGCPHYS GCPhysFirst;
2059 /** The physical address of the second page. */
2060 RTGCPHYS GCPhysSecond;
2061 /** The number of bytes in the first page. */
2062 uint16_t cbFirst;
2063 /** The number of bytes in the second page. */
2064 uint16_t cbSecond;
2065 /** Whether it's unassigned memory. */
2066 bool fUnassigned;
2067 /** Explicit alignment padding. */
2068 bool afAlignment5[3];
2069 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
2070
2071 /** The flags of the current exception / interrupt. */
2072 uint32_t fCurXcpt; /* 0xf8 */
2073 /** The current exception / interrupt. */
2074 uint8_t uCurXcpt; /* 0xfc */
2075 /** Exception / interrupt recursion depth. */
2076 int8_t cXcptRecursions; /* 0xfb */
2077
2078 /** The next unused mapping index.
2079 * @todo try find room for this up with cActiveMappings. */
2080 uint8_t iNextMapping; /* 0xfd */
2081 uint8_t abAlignment7[1];
2082
2083 /** Bounce buffer storage.
2084 * This runs in parallel to aMemMappings and aMemBbMappings. */
2085 struct
2086 {
2087 uint8_t ab[512];
2088 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
2089
2090
2091 /** Pointer set jump buffer - ring-3 context. */
2092 R3PTRTYPE(jmp_buf *) pJmpBufR3;
2093 /** Pointer set jump buffer - ring-0 context. */
2094 R0PTRTYPE(jmp_buf *) pJmpBufR0;
2095
2096 /** @todo Should move this near @a fCurXcpt later. */
2097 /** The CR2 for the current exception / interrupt. */
2098 uint64_t uCurXcptCr2;
2099 /** The error code for the current exception / interrupt. */
2100 uint32_t uCurXcptErr;
2101
2102 /** @name Statistics
2103 * @{ */
2104 /** The number of instructions we've executed. */
2105 uint32_t cInstructions;
2106 /** The number of potential exits. */
2107 uint32_t cPotentialExits;
2108 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
2109 * This may contain uncommitted writes. */
2110 uint32_t cbWritten;
2111 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
2112 uint32_t cRetInstrNotImplemented;
2113 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
2114 uint32_t cRetAspectNotImplemented;
2115 /** Counts informational statuses returned (other than VINF_SUCCESS). */
2116 uint32_t cRetInfStatuses;
2117 /** Counts other error statuses returned. */
2118 uint32_t cRetErrStatuses;
2119 /** Number of times rcPassUp has been used. */
2120 uint32_t cRetPassUpStatus;
2121 /** Number of times RZ left with instruction commit pending for ring-3. */
2122 uint32_t cPendingCommit;
2123 /** Number of misaligned (host sense) atomic instruction accesses. */
2124 uint32_t cMisalignedAtomics;
2125 /** Number of long jumps. */
2126 uint32_t cLongJumps;
2127 /** @} */
2128
2129 /** @name Target CPU information.
2130 * @{ */
2131#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
2132 /** The target CPU. */
2133 uint8_t uTargetCpu;
2134#else
2135 uint8_t bTargetCpuPadding;
2136#endif
2137 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
2138 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
2139 * native host support and the 2nd for when there is.
2140 *
2141 * The two values are typically indexed by a g_CpumHostFeatures bit.
2142 *
2143 * This is for instance used for the BSF & BSR instructions where AMD and
2144 * Intel CPUs produce different EFLAGS. */
2145 uint8_t aidxTargetCpuEflFlavour[2];
2146
2147 /** The CPU vendor. */
2148 CPUMCPUVENDOR enmCpuVendor;
2149 /** @} */
2150
2151 /** @name Host CPU information.
2152 * @{ */
2153 /** The CPU vendor. */
2154 CPUMCPUVENDOR enmHostCpuVendor;
2155 /** @} */
2156
2157 /** Counts RDMSR \#GP(0) LogRel(). */
2158 uint8_t cLogRelRdMsr;
2159 /** Counts WRMSR \#GP(0) LogRel(). */
2160 uint8_t cLogRelWrMsr;
2161 /** Alignment padding. */
2162 uint8_t abAlignment9[42];
2163
2164
2165 /** @name Recompiled Exection
2166 * @{ */
2167 /** Pointer to the current translation block.
2168 * This can either be one being executed or one being compiled. */
2169 R3PTRTYPE(PIEMTB) pCurTbR3;
2170#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
2171 /** Frame pointer for the last native TB to execute. */
2172 R3PTRTYPE(void *) pvTbFramePointerR3;
2173#else
2174 R3PTRTYPE(void *) pvUnusedR3;
2175#endif
2176#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2177 /** The saved host floating point control register (MXCSR on x86, FPCR on arm64)
2178 * needing restore when the TB finished, IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED indicates the TB
2179 * didn't modify it so we don't need to restore it. */
2180# ifdef RT_ARCH_AMD64
2181 uint32_t uRegFpCtrl;
2182 /** Temporary copy of MXCSR for stmxcsr/ldmxcsr (so we don't have to fiddle with stack pointers). */
2183 uint32_t uRegMxcsrTmp;
2184# elif defined(RT_ARCH_ARM64)
2185 uint64_t uRegFpCtrl;
2186# else
2187# error "Port me"
2188# endif
2189#else
2190 uint64_t u64Unused;
2191#endif
2192 /** Pointer to the ring-3 TB cache for this EMT. */
2193 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
2194 /** Pointer to the ring-3 TB lookup entry.
2195 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
2196 * entry, thus it can always safely be used w/o NULL checking. */
2197 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
2198#if 0 /* unused */
2199 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
2200 * The TBs are based on physical addresses, so this is needed to correleated
2201 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
2202 uint64_t uCurTbStartPc;
2203#endif
2204
2205 /** Number of threaded TBs executed. */
2206 uint64_t cTbExecThreaded;
2207 /** Number of native TBs executed. */
2208 uint64_t cTbExecNative;
2209
2210 /** The number of IRQ/FF checks till the next timer poll call. */
2211 uint32_t cTbsTillNextTimerPoll;
2212 /** The virtual sync time at the last timer poll call in milliseconds. */
2213 uint32_t msRecompilerPollNow;
2214 /** The virtual sync time at the last timer poll call in nanoseconds. */
2215 uint64_t nsRecompilerPollNow;
2216 /** The previous cTbsTillNextTimerPoll value. */
2217 uint32_t cTbsTillNextTimerPollPrev;
2218
2219 /** The current instruction number in a native TB.
2220 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
2221 * and will be picked up by the TB execution loop. Only used when
2222 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
2223 uint8_t idxTbCurInstr;
2224 /** @} */
2225
2226 /** @name Recompilation
2227 * @{ */
2228 /** Whether we need to check the opcode bytes for the current instruction.
2229 * This is set by a previous instruction if it modified memory or similar. */
2230 bool fTbCheckOpcodes;
2231 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
2232 uint8_t fTbBranched;
2233 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
2234 bool fTbCrossedPage;
2235 /** Whether to end the current TB. */
2236 bool fEndTb;
2237 /** Indicates that the current instruction is an STI. This is set by the
2238 * iemCImpl_sti code and subsequently cleared by the recompiler. */
2239 bool fTbCurInstrIsSti;
2240 /** Spaced reserved for recompiler data / alignment. */
2241 bool afRecompilerStuff1[1];
2242 /** Number of instructions before we need emit an IRQ check call again.
2243 * This helps making sure we don't execute too long w/o checking for
2244 * interrupts and immediately following instructions that may enable
2245 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
2246 * required to make sure we check following the next instruction as well, see
2247 * fTbCurInstrIsSti. */
2248 uint8_t cInstrTillIrqCheck;
2249 /** The index of the last CheckIrq call during threaded recompilation. */
2250 uint16_t idxLastCheckIrqCallNo;
2251 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
2252 uint16_t cbOpcodesAllocated;
2253 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
2254 uint32_t uTbNativeRecompileAtUsedCount;
2255 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
2256 uint32_t fTbCurInstr;
2257 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
2258 uint32_t fTbPrevInstr;
2259 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
2260 * currently not up to date in EFLAGS. */
2261 uint32_t fSkippingEFlags;
2262#if 0 /* unused */
2263 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
2264 RTGCPHYS GCPhysInstrBufPrev;
2265#endif
2266
2267 /** Fixed TB used for threaded recompilation.
2268 * This is allocated once with maxed-out sizes and re-used afterwards. */
2269 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
2270 /** Pointer to the ring-3 TB allocator for this EMT. */
2271 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
2272 /** Pointer to the ring-3 executable memory allocator for this EMT. */
2273 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
2274 /** Pointer to the native recompiler state for ring-3. */
2275 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
2276 /** Dummy entry for ppTbLookupEntryR3. */
2277 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
2278#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING_DEBUG
2279 /** The debug code advances this register as if it was CPUMCTX::rip and we
2280 * didn't do delayed PC updating. When CPUMCTX::rip is finally updated,
2281 * the result is compared with this value. */
2282 uint64_t uPcUpdatingDebug;
2283#else
2284 uint64_t u64Placeholder;
2285#endif
2286 /** @} */
2287
2288 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
2289 IEMTLBENTRY DataBreakpointTlbe;
2290
2291 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
2292 STAMCOUNTER StatTbThreadedExecBreaks;
2293 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
2294 STAMCOUNTER StatCheckIrqBreaks;
2295 /** Statistics: Times BltIn_CheckTimers breaks direct linking TBs. */
2296 STAMCOUNTER StatCheckTimersBreaks;
2297 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
2298 STAMCOUNTER StatCheckModeBreaks;
2299 /** Threaded TB statistics: Times execution break on call with lookup entries. */
2300 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
2301 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2302 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2303 /** Statistics: Times a post jump target check missed and had to find new TB. */
2304 STAMCOUNTER StatCheckBranchMisses;
2305 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2306 STAMCOUNTER StatCheckNeedCsLimChecking;
2307 /** Statistics: Times a loop was detected within a TB. */
2308 STAMCOUNTER StatTbLoopInTbDetected;
2309 /** Statistics: Times a loop back to the start of the TB was detected. */
2310 STAMCOUNTER StatTbLoopFullTbDetected;
2311 /** Statistics: Times a loop back to the start of the TB was detected, var 2. */
2312 STAMCOUNTER StatTbLoopFullTbDetected2;
2313 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2314 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2315 /** Native TB statistics: Number of fully recompiled TBs. */
2316 STAMCOUNTER StatNativeFullyRecompiledTbs;
2317 /** TB statistics: Number of instructions per TB. */
2318 STAMPROFILE StatTbInstr;
2319 /** TB statistics: Number of TB lookup table entries per TB. */
2320 STAMPROFILE StatTbLookupEntries;
2321 /** Threaded TB statistics: Number of calls per TB. */
2322 STAMPROFILE StatTbThreadedCalls;
2323 /** Native TB statistics: Native code size per TB. */
2324 STAMPROFILE StatTbNativeCode;
2325 /** Native TB statistics: Profiling native recompilation. */
2326 STAMPROFILE StatNativeRecompilation;
2327 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2328 STAMPROFILE StatNativeCallsRecompiled;
2329 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2330 STAMPROFILE StatNativeCallsThreaded;
2331 /** Native recompiled execution: TLB hits for data fetches. */
2332 STAMCOUNTER StatNativeTlbHitsForFetch;
2333 /** Native recompiled execution: TLB hits for data stores. */
2334 STAMCOUNTER StatNativeTlbHitsForStore;
2335 /** Native recompiled execution: TLB hits for stack accesses. */
2336 STAMCOUNTER StatNativeTlbHitsForStack;
2337 /** Native recompiled execution: TLB hits for mapped accesses. */
2338 STAMCOUNTER StatNativeTlbHitsForMapped;
2339 /** Native recompiled execution: Code TLB misses for new page. */
2340 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2341 /** Native recompiled execution: Code TLB hits for new page. */
2342 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2343 /** Native recompiled execution: Code TLB misses for new page with offset. */
2344 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2345 /** Native recompiled execution: Code TLB hits for new page with offset. */
2346 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2347
2348 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2349 STAMCOUNTER StatNativeRegFindFree;
2350 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2351 * to free a variable. */
2352 STAMCOUNTER StatNativeRegFindFreeVar;
2353 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2354 * not need to free any variables. */
2355 STAMCOUNTER StatNativeRegFindFreeNoVar;
2356 /** Native recompiler: Liveness info freed shadowed guest registers in
2357 * iemNativeRegAllocFindFree. */
2358 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2359 /** Native recompiler: Liveness info helped with the allocation in
2360 * iemNativeRegAllocFindFree. */
2361 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2362
2363 /** Native recompiler: Number of times status flags calc has been skipped. */
2364 STAMCOUNTER StatNativeEflSkippedArithmetic;
2365 /** Native recompiler: Number of times status flags calc has been skipped. */
2366 STAMCOUNTER StatNativeEflSkippedLogical;
2367
2368 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2369 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2370 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2371 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2372 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2373 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2374 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2375 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2376 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2377 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2378 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2379 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2380 /** Native recompiler: Number of required EFLAGS.CF updates. */
2381 STAMCOUNTER StatNativeLivenessEflCfRequired;
2382 /** Native recompiler: Number of required EFLAGS.PF updates. */
2383 STAMCOUNTER StatNativeLivenessEflPfRequired;
2384 /** Native recompiler: Number of required EFLAGS.AF updates. */
2385 STAMCOUNTER StatNativeLivenessEflAfRequired;
2386 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2387 STAMCOUNTER StatNativeLivenessEflZfRequired;
2388 /** Native recompiler: Number of required EFLAGS.SF updates. */
2389 STAMCOUNTER StatNativeLivenessEflSfRequired;
2390 /** Native recompiler: Number of required EFLAGS.OF updates. */
2391 STAMCOUNTER StatNativeLivenessEflOfRequired;
2392 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2393 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2394 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2395 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2396 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2397 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2398 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2399 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2400 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2401 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2402 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2403 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2404
2405 /** Native recompiler: Number of potential PC updates in total. */
2406 STAMCOUNTER StatNativePcUpdateTotal;
2407 /** Native recompiler: Number of PC updates which could be delayed. */
2408 STAMCOUNTER StatNativePcUpdateDelayed;
2409
2410 /** Native recompiler: Number of time we had complicated dirty shadow
2411 * register situations with the other branch in IEM_MC_ENDIF. */
2412 STAMCOUNTER StatNativeEndIfOtherBranchDirty;
2413
2414//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2415 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2416 STAMCOUNTER StatNativeSimdRegFindFree;
2417 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2418 * to free a variable. */
2419 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2420 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2421 * not need to free any variables. */
2422 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2423 /** Native recompiler: Liveness info freed shadowed guest registers in
2424 * iemNativeSimdRegAllocFindFree. */
2425 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2426 /** Native recompiler: Liveness info helped with the allocation in
2427 * iemNativeSimdRegAllocFindFree. */
2428 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2429
2430 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2431 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2432 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2433 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2434 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2435 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2436 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2437 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2438
2439 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2440 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2441 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2442 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2443 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2444 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2445 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2446 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2447//#endif
2448
2449 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2450 * Not availabe in release builds. */
2451 STAMCOUNTER StatNativeTbFinished;
2452 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2453 STAMCOUNTER StatNativeTbExitReturnBreak;
2454 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2455 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2456 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2457 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2458 /** Native recompiler: The TB finished executing with other non-zero status. */
2459 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2460 /** Native recompiler: The TB finished executing via throw / long jump. */
2461 STAMCOUNTER StatNativeTbExitLongJump;
2462 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2463 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2464 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2465 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2466 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2467 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2468 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2469 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2470 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2471 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2472 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2473 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2474
2475 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2476 STAMCOUNTER StatNativeTbExitRaiseDe;
2477 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2478 STAMCOUNTER StatNativeTbExitRaiseUd;
2479 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2480 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2481 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2482 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2483 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2484 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2485 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2486 STAMCOUNTER StatNativeTbExitRaiseNm;
2487 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2488 STAMCOUNTER StatNativeTbExitRaiseGp0;
2489 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2490 STAMCOUNTER StatNativeTbExitRaiseMf;
2491 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2492 STAMCOUNTER StatNativeTbExitRaiseXf;
2493 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2494 STAMCOUNTER StatNativeTbExitObsoleteTb;
2495
2496 /** Native recompiler: Number of full TB loops (jumps from end to start). */
2497 STAMCOUNTER StatNativeTbExitLoopFullTb;
2498
2499 /** Native recompiler: Failure situations with direct linking scenario \#1.
2500 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2501 * @{ */
2502 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2503 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2504 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2505 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2506 /** @} */
2507
2508 /** Native recompiler: Failure situations with direct linking scenario \#2.
2509 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2510 * @{ */
2511 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2512 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2513 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2514 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2515 /** @} */
2516
2517 /** iemMemMap and iemMemMapJmp statistics.
2518 * @{ */
2519 STAMCOUNTER StatMemMapJmp;
2520 STAMCOUNTER StatMemMapNoJmp;
2521 STAMCOUNTER StatMemBounceBufferCrossPage;
2522 STAMCOUNTER StatMemBounceBufferMapPhys;
2523 /** @} */
2524
2525 /** Timer polling statistics (debug only).
2526 * @{ */
2527 STAMPROFILE StatTimerPoll;
2528 STAMPROFILE StatTimerPollPoll;
2529 STAMPROFILE StatTimerPollRun;
2530 STAMCOUNTER StatTimerPollUnchanged;
2531 STAMCOUNTER StatTimerPollTiny;
2532 STAMCOUNTER StatTimerPollDefaultCalc;
2533 STAMCOUNTER StatTimerPollMax;
2534 STAMPROFILE StatTimerPollFactorDivision;
2535 STAMPROFILE StatTimerPollFactorMultiplication;
2536 /** @} */
2537
2538#ifdef IEM_WITH_TLB_TRACE
2539 uint64_t au64Padding[4];
2540#else
2541 uint64_t au64Padding[6];
2542#endif
2543
2544#ifdef IEM_WITH_TLB_TRACE
2545 /** The end (next) trace entry. */
2546 uint32_t idxTlbTraceEntry;
2547 /** Number of trace entries allocated expressed as a power of two. */
2548 uint32_t cTlbTraceEntriesShift;
2549 /** The trace entries. */
2550 PIEMTLBTRACEENTRY paTlbTraceEntries;
2551#endif
2552
2553 /** Data TLB.
2554 * @remarks Must be 64-byte aligned. */
2555 IEMTLB DataTlb;
2556 /** Instruction TLB.
2557 * @remarks Must be 64-byte aligned. */
2558 IEMTLB CodeTlb;
2559
2560 /** Exception statistics. */
2561 STAMCOUNTER aStatXcpts[32];
2562 /** Interrupt statistics. */
2563 uint32_t aStatInts[256];
2564
2565#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2566 /** Instruction statistics for ring-0/raw-mode. */
2567 IEMINSTRSTATS StatsRZ;
2568 /** Instruction statistics for ring-3. */
2569 IEMINSTRSTATS StatsR3;
2570# ifdef VBOX_WITH_IEM_RECOMPILER
2571 /** Statistics per threaded function call.
2572 * Updated by both the threaded and native recompilers. */
2573 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2574# endif
2575#endif
2576} IEMCPU;
2577AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2578AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2579AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2580AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2581AssertCompileMemberAlignment(IEMCPU, pCurTbR3, 64);
2582AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2583AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2584
2585/** Pointer to the per-CPU IEM state. */
2586typedef IEMCPU *PIEMCPU;
2587/** Pointer to the const per-CPU IEM state. */
2588typedef IEMCPU const *PCIEMCPU;
2589
2590/** @def IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED
2591 * Value indicating the TB didn't modified the floating point control register.
2592 * @note Neither FPCR nor MXCSR accept this as a valid value (MXCSR is not fully populated,
2593 * FPCR has the upper 32-bit reserved), so this is safe. */
2594#if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) || defined(DOXYGEN_RUNNING)
2595# ifdef RT_ARCH_AMD64
2596# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT32_MAX
2597# elif defined(RT_ARCH_ARM64)
2598# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT64_MAX
2599# else
2600# error "Port me"
2601# endif
2602#endif
2603
2604/** @def IEM_GET_CTX
2605 * Gets the guest CPU context for the calling EMT.
2606 * @returns PCPUMCTX
2607 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2608 */
2609#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2610
2611/** @def IEM_CTX_ASSERT
2612 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2613 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2614 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2615 */
2616#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2617 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2618 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2619 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2620
2621/** @def IEM_CTX_IMPORT_RET
2622 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2623 *
2624 * Will call the keep to import the bits as needed.
2625 *
2626 * Returns on import failure.
2627 *
2628 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2629 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2630 */
2631#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2632 do { \
2633 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2634 { /* likely */ } \
2635 else \
2636 { \
2637 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2638 AssertRCReturn(rcCtxImport, rcCtxImport); \
2639 } \
2640 } while (0)
2641
2642/** @def IEM_CTX_IMPORT_NORET
2643 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2644 *
2645 * Will call the keep to import the bits as needed.
2646 *
2647 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2648 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2649 */
2650#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2651 do { \
2652 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2653 { /* likely */ } \
2654 else \
2655 { \
2656 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2657 AssertLogRelRC(rcCtxImport); \
2658 } \
2659 } while (0)
2660
2661/** @def IEM_CTX_IMPORT_JMP
2662 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2663 *
2664 * Will call the keep to import the bits as needed.
2665 *
2666 * Jumps on import failure.
2667 *
2668 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2669 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2670 */
2671#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2672 do { \
2673 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2674 { /* likely */ } \
2675 else \
2676 { \
2677 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2678 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2679 } \
2680 } while (0)
2681
2682
2683
2684/** @def IEM_GET_TARGET_CPU
2685 * Gets the current IEMTARGETCPU value.
2686 * @returns IEMTARGETCPU value.
2687 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2688 */
2689#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2690# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2691#else
2692# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2693#endif
2694
2695/** @def IEM_GET_INSTR_LEN
2696 * Gets the instruction length. */
2697#ifdef IEM_WITH_CODE_TLB
2698# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2699#else
2700# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2701#endif
2702
2703/** @def IEM_TRY_SETJMP
2704 * Wrapper around setjmp / try, hiding all the ugly differences.
2705 *
2706 * @note Use with extreme care as this is a fragile macro.
2707 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2708 * @param a_rcTarget The variable that should receive the status code in case
2709 * of a longjmp/throw.
2710 */
2711/** @def IEM_TRY_SETJMP_AGAIN
2712 * For when setjmp / try is used again in the same variable scope as a previous
2713 * IEM_TRY_SETJMP invocation.
2714 */
2715/** @def IEM_CATCH_LONGJMP_BEGIN
2716 * Start wrapper for catch / setjmp-else.
2717 *
2718 * This will set up a scope.
2719 *
2720 * @note Use with extreme care as this is a fragile macro.
2721 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2722 * @param a_rcTarget The variable that should receive the status code in case
2723 * of a longjmp/throw.
2724 */
2725/** @def IEM_CATCH_LONGJMP_END
2726 * End wrapper for catch / setjmp-else.
2727 *
2728 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2729 * state.
2730 *
2731 * @note Use with extreme care as this is a fragile macro.
2732 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2733 */
2734#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2735# ifdef IEM_WITH_THROW_CATCH
2736# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2737 a_rcTarget = VINF_SUCCESS; \
2738 try
2739# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2740 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2741# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2742 catch (int rcThrown) \
2743 { \
2744 a_rcTarget = rcThrown
2745# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2746 } \
2747 ((void)0)
2748# else /* !IEM_WITH_THROW_CATCH */
2749# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2750 jmp_buf JmpBuf; \
2751 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2752 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2753 if ((rcStrict = setjmp(JmpBuf)) == 0)
2754# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2755 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2756 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2757 if ((rcStrict = setjmp(JmpBuf)) == 0)
2758# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2759 else \
2760 { \
2761 ((void)0)
2762# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2763 } \
2764 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2765# endif /* !IEM_WITH_THROW_CATCH */
2766#endif /* IEM_WITH_SETJMP */
2767
2768
2769/**
2770 * Shared per-VM IEM data.
2771 */
2772typedef struct IEM
2773{
2774 /** The VMX APIC-access page handler type. */
2775 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2776#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2777 /** Set if the CPUID host call functionality is enabled. */
2778 bool fCpuIdHostCall;
2779#endif
2780} IEM;
2781
2782
2783
2784/** @name IEM_ACCESS_XXX - Access details.
2785 * @{ */
2786#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2787#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2788#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2789#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2790#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2791#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2792#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2793#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2794#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2795#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2796/** The writes are partial, so if initialize the bounce buffer with the
2797 * orignal RAM content. */
2798#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2799/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2800#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2801/** Bounce buffer with ring-3 write pending, first page. */
2802#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2803/** Bounce buffer with ring-3 write pending, second page. */
2804#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2805/** Not locked, accessed via the TLB. */
2806#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2807/** Atomic access.
2808 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2809 * fallback for misaligned stuff. See @bugref{10547}. */
2810#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2811/** Valid bit mask. */
2812#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2813/** Shift count for the TLB flags (upper word). */
2814#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2815
2816/** Atomic read+write data alias. */
2817#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2818/** Read+write data alias. */
2819#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2820/** Write data alias. */
2821#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2822/** Read data alias. */
2823#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2824/** Instruction fetch alias. */
2825#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2826/** Stack write alias. */
2827#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2828/** Stack read alias. */
2829#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2830/** Stack read+write alias. */
2831#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2832/** Read system table alias. */
2833#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2834/** Read+write system table alias. */
2835#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2836/** @} */
2837
2838/** @name Prefix constants (IEMCPU::fPrefixes)
2839 * @{ */
2840#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2841#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2842#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2843#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2844#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2845#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2846#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2847
2848#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2849#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2850#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2851
2852#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2853#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2854#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2855
2856#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2857#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2858#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2859#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2860/** Mask with all the REX prefix flags.
2861 * This is generally for use when needing to undo the REX prefixes when they
2862 * are followed legacy prefixes and therefore does not immediately preceed
2863 * the first opcode byte.
2864 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2865#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2866
2867#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2868#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2869#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2870/** @} */
2871
2872/** @name IEMOPFORM_XXX - Opcode forms
2873 * @note These are ORed together with IEMOPHINT_XXX.
2874 * @{ */
2875/** ModR/M: reg, r/m */
2876#define IEMOPFORM_RM 0
2877/** ModR/M: reg, r/m (register) */
2878#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2879/** ModR/M: reg, r/m (memory) */
2880#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2881/** ModR/M: reg, r/m, imm */
2882#define IEMOPFORM_RMI 1
2883/** ModR/M: reg, r/m (register), imm */
2884#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2885/** ModR/M: reg, r/m (memory), imm */
2886#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2887/** ModR/M: reg, r/m, xmm0 */
2888#define IEMOPFORM_RM0 2
2889/** ModR/M: reg, r/m (register), xmm0 */
2890#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2891/** ModR/M: reg, r/m (memory), xmm0 */
2892#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2893/** ModR/M: r/m, reg */
2894#define IEMOPFORM_MR 3
2895/** ModR/M: r/m (register), reg */
2896#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2897/** ModR/M: r/m (memory), reg */
2898#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2899/** ModR/M: r/m, reg, imm */
2900#define IEMOPFORM_MRI 4
2901/** ModR/M: r/m (register), reg, imm */
2902#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2903/** ModR/M: r/m (memory), reg, imm */
2904#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2905/** ModR/M: r/m only */
2906#define IEMOPFORM_M 5
2907/** ModR/M: r/m only (register). */
2908#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2909/** ModR/M: r/m only (memory). */
2910#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2911/** ModR/M: r/m, imm */
2912#define IEMOPFORM_MI 6
2913/** ModR/M: r/m (register), imm */
2914#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2915/** ModR/M: r/m (memory), imm */
2916#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2917/** ModR/M: r/m, 1 (shift and rotate instructions) */
2918#define IEMOPFORM_M1 7
2919/** ModR/M: r/m (register), 1. */
2920#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2921/** ModR/M: r/m (memory), 1. */
2922#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2923/** ModR/M: r/m, CL (shift and rotate instructions)
2924 * @todo This should just've been a generic fixed register. But the python
2925 * code doesn't needs more convincing. */
2926#define IEMOPFORM_M_CL 8
2927/** ModR/M: r/m (register), CL. */
2928#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2929/** ModR/M: r/m (memory), CL. */
2930#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2931/** ModR/M: reg only */
2932#define IEMOPFORM_R 9
2933
2934/** VEX+ModR/M: reg, r/m */
2935#define IEMOPFORM_VEX_RM 16
2936/** VEX+ModR/M: reg, r/m (register) */
2937#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2938/** VEX+ModR/M: reg, r/m (memory) */
2939#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2940/** VEX+ModR/M: r/m, reg */
2941#define IEMOPFORM_VEX_MR 17
2942/** VEX+ModR/M: r/m (register), reg */
2943#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2944/** VEX+ModR/M: r/m (memory), reg */
2945#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2946/** VEX+ModR/M: r/m, reg, imm8 */
2947#define IEMOPFORM_VEX_MRI 18
2948/** VEX+ModR/M: r/m (register), reg, imm8 */
2949#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2950/** VEX+ModR/M: r/m (memory), reg, imm8 */
2951#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2952/** VEX+ModR/M: r/m only */
2953#define IEMOPFORM_VEX_M 19
2954/** VEX+ModR/M: r/m only (register). */
2955#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2956/** VEX+ModR/M: r/m only (memory). */
2957#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2958/** VEX+ModR/M: reg only */
2959#define IEMOPFORM_VEX_R 20
2960/** VEX+ModR/M: reg, vvvv, r/m */
2961#define IEMOPFORM_VEX_RVM 21
2962/** VEX+ModR/M: reg, vvvv, r/m (register). */
2963#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2964/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2965#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2966/** VEX+ModR/M: reg, vvvv, r/m, imm */
2967#define IEMOPFORM_VEX_RVMI 22
2968/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2969#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2970/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2971#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2972/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2973#define IEMOPFORM_VEX_RVMR 23
2974/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2975#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2976/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2977#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2978/** VEX+ModR/M: reg, r/m, vvvv */
2979#define IEMOPFORM_VEX_RMV 24
2980/** VEX+ModR/M: reg, r/m, vvvv (register). */
2981#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2982/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2983#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2984/** VEX+ModR/M: reg, r/m, imm8 */
2985#define IEMOPFORM_VEX_RMI 25
2986/** VEX+ModR/M: reg, r/m, imm8 (register). */
2987#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2988/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2989#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2990/** VEX+ModR/M: r/m, vvvv, reg */
2991#define IEMOPFORM_VEX_MVR 26
2992/** VEX+ModR/M: r/m, vvvv, reg (register) */
2993#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2994/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2995#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2996/** VEX+ModR/M+/n: vvvv, r/m */
2997#define IEMOPFORM_VEX_VM 27
2998/** VEX+ModR/M+/n: vvvv, r/m (register) */
2999#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
3000/** VEX+ModR/M+/n: vvvv, r/m (memory) */
3001#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
3002/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
3003#define IEMOPFORM_VEX_VMI 28
3004/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
3005#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
3006/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
3007#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
3008
3009/** Fixed register instruction, no R/M. */
3010#define IEMOPFORM_FIXED 32
3011
3012/** The r/m is a register. */
3013#define IEMOPFORM_MOD3 RT_BIT_32(8)
3014/** The r/m is a memory access. */
3015#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
3016/** @} */
3017
3018/** @name IEMOPHINT_XXX - Additional Opcode Hints
3019 * @note These are ORed together with IEMOPFORM_XXX.
3020 * @{ */
3021/** Ignores the operand size prefix (66h). */
3022#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
3023/** Ignores REX.W (aka WIG). */
3024#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
3025/** Both the operand size prefixes (66h + REX.W) are ignored. */
3026#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
3027/** Allowed with the lock prefix. */
3028#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
3029/** The VEX.L value is ignored (aka LIG). */
3030#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
3031/** The VEX.L value must be zero (i.e. 128-bit width only). */
3032#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
3033/** The VEX.L value must be one (i.e. 256-bit width only). */
3034#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
3035/** The VEX.V value must be zero. */
3036#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
3037/** The REX.W/VEX.V value must be zero. */
3038#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
3039#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
3040/** The REX.W/VEX.V value must be one. */
3041#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
3042#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
3043
3044/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
3045#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
3046/** @} */
3047
3048/**
3049 * Possible hardware task switch sources.
3050 */
3051typedef enum IEMTASKSWITCH
3052{
3053 /** Task switch caused by an interrupt/exception. */
3054 IEMTASKSWITCH_INT_XCPT = 1,
3055 /** Task switch caused by a far CALL. */
3056 IEMTASKSWITCH_CALL,
3057 /** Task switch caused by a far JMP. */
3058 IEMTASKSWITCH_JUMP,
3059 /** Task switch caused by an IRET. */
3060 IEMTASKSWITCH_IRET
3061} IEMTASKSWITCH;
3062AssertCompileSize(IEMTASKSWITCH, 4);
3063
3064/**
3065 * Possible CrX load (write) sources.
3066 */
3067typedef enum IEMACCESSCRX
3068{
3069 /** CrX access caused by 'mov crX' instruction. */
3070 IEMACCESSCRX_MOV_CRX,
3071 /** CrX (CR0) write caused by 'lmsw' instruction. */
3072 IEMACCESSCRX_LMSW,
3073 /** CrX (CR0) write caused by 'clts' instruction. */
3074 IEMACCESSCRX_CLTS,
3075 /** CrX (CR0) read caused by 'smsw' instruction. */
3076 IEMACCESSCRX_SMSW
3077} IEMACCESSCRX;
3078
3079#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3080/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
3081 *
3082 * These flags provide further context to SLAT page-walk failures that could not be
3083 * determined by PGM (e.g, PGM is not privy to memory access permissions).
3084 *
3085 * @{
3086 */
3087/** Translating a nested-guest linear address failed accessing a nested-guest
3088 * physical address. */
3089# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
3090/** Translating a nested-guest linear address failed accessing a
3091 * paging-structure entry or updating accessed/dirty bits. */
3092# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
3093/** @} */
3094
3095DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
3096# ifndef IN_RING3
3097DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
3098# endif
3099#endif
3100
3101/**
3102 * Indicates to the verifier that the given flag set is undefined.
3103 *
3104 * Can be invoked again to add more flags.
3105 *
3106 * This is a NOOP if the verifier isn't compiled in.
3107 *
3108 * @note We're temporarily keeping this until code is converted to new
3109 * disassembler style opcode handling.
3110 */
3111#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
3112
3113
3114/** @def IEM_DECL_IMPL_TYPE
3115 * For typedef'ing an instruction implementation function.
3116 *
3117 * @param a_RetType The return type.
3118 * @param a_Name The name of the type.
3119 * @param a_ArgList The argument list enclosed in parentheses.
3120 */
3121
3122/** @def IEM_DECL_IMPL_DEF
3123 * For defining an instruction implementation function.
3124 *
3125 * @param a_RetType The return type.
3126 * @param a_Name The name of the type.
3127 * @param a_ArgList The argument list enclosed in parentheses.
3128 */
3129
3130#if defined(__GNUC__) && defined(RT_ARCH_X86)
3131# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3132 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
3133# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3134 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3135# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3136 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3137
3138#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
3139# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3140 a_RetType (__fastcall a_Name) a_ArgList
3141# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3142 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3143# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3144 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3145
3146#elif __cplusplus >= 201700 /* P0012R1 support */
3147# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3148 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
3149# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3150 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3151# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3152 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3153
3154#else
3155# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3156 a_RetType (VBOXCALL a_Name) a_ArgList
3157# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3158 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3159# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3160 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3161
3162#endif
3163
3164/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
3165RT_C_DECLS_BEGIN
3166extern uint8_t const g_afParity[256];
3167RT_C_DECLS_END
3168
3169
3170/** @name Arithmetic assignment operations on bytes (binary).
3171 * @{ */
3172typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
3173typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
3174FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
3175FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
3176FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
3177FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
3178FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
3179FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
3180FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
3181/** @} */
3182
3183/** @name Arithmetic assignment operations on words (binary).
3184 * @{ */
3185typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
3186typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
3187FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
3188FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
3189FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
3190FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
3191FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
3192FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
3193FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
3194/** @} */
3195
3196
3197/** @name Arithmetic assignment operations on double words (binary).
3198 * @{ */
3199typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
3200typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
3201FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
3202FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
3203FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
3204FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
3205FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
3206FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
3207FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
3208FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
3209FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
3210FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
3211/** @} */
3212
3213/** @name Arithmetic assignment operations on quad words (binary).
3214 * @{ */
3215typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
3216typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
3217FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
3218FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
3219FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
3220FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
3221FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
3222FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
3223FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
3224FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
3225FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
3226FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
3227/** @} */
3228
3229typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
3230typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
3231typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
3232typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
3233typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
3234typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
3235typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
3236typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
3237
3238/** @name Compare operations (thrown in with the binary ops).
3239 * @{ */
3240FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
3241FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
3242FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
3243FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
3244/** @} */
3245
3246/** @name Test operations (thrown in with the binary ops).
3247 * @{ */
3248FNIEMAIMPLBINROU8 iemAImpl_test_u8;
3249FNIEMAIMPLBINROU16 iemAImpl_test_u16;
3250FNIEMAIMPLBINROU32 iemAImpl_test_u32;
3251FNIEMAIMPLBINROU64 iemAImpl_test_u64;
3252/** @} */
3253
3254/** @name Bit operations operations (thrown in with the binary ops).
3255 * @{ */
3256FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
3257FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
3258FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
3259FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
3260FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
3261FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
3262FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
3263FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
3264FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
3265FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
3266FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
3267FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
3268/** @} */
3269
3270/** @name Arithmetic three operand operations on double words (binary).
3271 * @{ */
3272typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
3273typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
3274FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
3275FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
3276FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
3277/** @} */
3278
3279/** @name Arithmetic three operand operations on quad words (binary).
3280 * @{ */
3281typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
3282typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
3283FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
3284FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
3285FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
3286/** @} */
3287
3288/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
3289 * @{ */
3290typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
3291typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
3292FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
3293FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
3294FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
3295FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
3296FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
3297FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
3298/** @} */
3299
3300/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
3301 * @{ */
3302typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
3303typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
3304FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
3305FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
3306FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
3307FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
3308FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
3309FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
3310/** @} */
3311
3312/** @name MULX 32-bit and 64-bit.
3313 * @{ */
3314typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
3315typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
3316FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
3317
3318typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
3319typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
3320FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
3321/** @} */
3322
3323
3324/** @name Exchange memory with register operations.
3325 * @{ */
3326IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3327IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3328IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3329IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3330IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3331IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3332IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3333IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3334/** @} */
3335
3336/** @name Exchange and add operations.
3337 * @{ */
3338IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3339IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3340IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3341IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3342IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3343IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3344IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3345IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3346/** @} */
3347
3348/** @name Compare and exchange.
3349 * @{ */
3350IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3351IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3352IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3353IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3354IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3355IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3356#if ARCH_BITS == 32
3357IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3358IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3359#else
3360IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3361IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3362#endif
3363IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3364 uint32_t *pEFlags));
3365IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3366 uint32_t *pEFlags));
3367IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3368 uint32_t *pEFlags));
3369IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3370 uint32_t *pEFlags));
3371#ifndef RT_ARCH_ARM64
3372IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3373 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3374#endif
3375/** @} */
3376
3377/** @name Memory ordering
3378 * @{ */
3379typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3380typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3381IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3382IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3383IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3384#ifndef RT_ARCH_ARM64
3385IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3386#endif
3387/** @} */
3388
3389/** @name Double precision shifts
3390 * @{ */
3391typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3392typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3393typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3394typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3395typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3396typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3397FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3398FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3399FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3400FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3401FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3402FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3403/** @} */
3404
3405
3406/** @name Bit search operations (thrown in with the binary ops).
3407 * @{ */
3408FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3409FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3410FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3411FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3412FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3413FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3414FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3415FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3416FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3417FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3418FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3419FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3420FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3421FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3422FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3423/** @} */
3424
3425/** @name Signed multiplication operations (thrown in with the binary ops).
3426 * @{ */
3427FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3428FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3429FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3430/** @} */
3431
3432/** @name Arithmetic assignment operations on bytes (unary).
3433 * @{ */
3434typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3435typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3436FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3437FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3438FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3439FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3440/** @} */
3441
3442/** @name Arithmetic assignment operations on words (unary).
3443 * @{ */
3444typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3445typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3446FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3447FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3448FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3449FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3450/** @} */
3451
3452/** @name Arithmetic assignment operations on double words (unary).
3453 * @{ */
3454typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3455typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3456FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3457FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3458FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3459FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3460/** @} */
3461
3462/** @name Arithmetic assignment operations on quad words (unary).
3463 * @{ */
3464typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3465typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3466FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3467FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3468FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3469FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3470/** @} */
3471
3472
3473/** @name Shift operations on bytes (Group 2).
3474 * @{ */
3475typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3476typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3477FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3478FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3479FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3480FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3481FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3482FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3483FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3484/** @} */
3485
3486/** @name Shift operations on words (Group 2).
3487 * @{ */
3488typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3489typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3490FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3491FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3492FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3493FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3494FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3495FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3496FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3497/** @} */
3498
3499/** @name Shift operations on double words (Group 2).
3500 * @{ */
3501typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3502typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3503FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3504FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3505FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3506FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3507FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3508FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3509FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3510/** @} */
3511
3512/** @name Shift operations on words (Group 2).
3513 * @{ */
3514typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3515typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3516FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3517FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3518FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3519FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3520FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3521FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3522FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3523/** @} */
3524
3525/** @name Multiplication and division operations.
3526 * @{ */
3527typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3528typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3529FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3530FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3531FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3532FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3533
3534typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3535typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3536FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3537FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3538FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3539FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3540
3541typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3542typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3543FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3544FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3545FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3546FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3547
3548typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3549typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3550FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3551FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3552FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3553FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3554/** @} */
3555
3556/** @name Byte Swap.
3557 * @{ */
3558IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3559IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3560IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3561/** @} */
3562
3563/** @name Misc.
3564 * @{ */
3565FNIEMAIMPLBINU16 iemAImpl_arpl;
3566/** @} */
3567
3568/** @name RDRAND and RDSEED
3569 * @{ */
3570typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3571typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3572typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3573typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3574typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3575typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3576
3577FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3578FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3579FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3580FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3581FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3582FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3583/** @} */
3584
3585/** @name ADOX and ADCX
3586 * @{ */
3587FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3588FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3589FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3590FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3591/** @} */
3592
3593/** @name FPU operations taking a 32-bit float argument
3594 * @{ */
3595typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3596 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3597typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3598
3599typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3600 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3601typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3602
3603FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3604FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3605FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3606FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3607FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3608FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3609FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3610
3611IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3612IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3613 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3614/** @} */
3615
3616/** @name FPU operations taking a 64-bit float argument
3617 * @{ */
3618typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3619 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3620typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3621
3622typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3623 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3624typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3625
3626FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3627FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3628FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3629FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3630FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3631FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3632FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3633
3634IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3635IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3636 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3637/** @} */
3638
3639/** @name FPU operations taking a 80-bit float argument
3640 * @{ */
3641typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3642 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3643typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3644FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3645FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3646FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3647FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3648FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3649FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3650FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3651FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3652FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3653
3654FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3655FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3656FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3657
3658typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3659 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3660typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3661FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3662FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3663
3664typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3665 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3666typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3667FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3668FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3669
3670typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3671typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3672FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3673FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3674FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3675FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3676FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3677FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3678FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3679
3680typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3681typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3682FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3683FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3684
3685typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3686typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3687FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3688FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3689FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3690FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3691FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3692FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3693FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3694
3695typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3696 PCRTFLOAT80U pr80Val));
3697typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3698FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3699FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3700FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3701
3702IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3703IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3704 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3705
3706IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3707IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3708 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3709
3710/** @} */
3711
3712/** @name FPU operations taking a 16-bit signed integer argument
3713 * @{ */
3714typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3715 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3716typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3717typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3718 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3719typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3720
3721FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3722FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3723FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3724FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3725FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3726FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3727
3728typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3729 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3730typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3731FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3732
3733IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3734FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3735FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3736/** @} */
3737
3738/** @name FPU operations taking a 32-bit signed integer argument
3739 * @{ */
3740typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3741 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3742typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3743typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3744 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3745typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3746
3747FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3748FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3749FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3750FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3751FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3752FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3753
3754typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3755 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3756typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3757FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3758
3759IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3760FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3761FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3762/** @} */
3763
3764/** @name FPU operations taking a 64-bit signed integer argument
3765 * @{ */
3766typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3767 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3768typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3769
3770IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3771FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3772FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3773/** @} */
3774
3775
3776/** Temporary type representing a 256-bit vector register. */
3777typedef struct { uint64_t au64[4]; } IEMVMM256;
3778/** Temporary type pointing to a 256-bit vector register. */
3779typedef IEMVMM256 *PIEMVMM256;
3780/** Temporary type pointing to a const 256-bit vector register. */
3781typedef IEMVMM256 *PCIEMVMM256;
3782
3783
3784/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3785 * @{ */
3786typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3787typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3788typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
3789typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3790typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc));
3791typedef FNIEMAIMPLMEDIAF2U256 *PFNIEMAIMPLMEDIAF2U256;
3792typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3793typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3794typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3795typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3796typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3797typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3798typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3799typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3800typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3801typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3802typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3803typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3804typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3805typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3806FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3807FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3808FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3809FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3810FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3811FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3812FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3813FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3814FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3815FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3816FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3817FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3818FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3819FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3820FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3821FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3822FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3823FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3824FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3825FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3826FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3827FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3828FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3829FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3830FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3831FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3832FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3833FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3834FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3835FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3836FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3837FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3838FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3839FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3840FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3841FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3842FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3843FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3844FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3845
3846FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3847FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3848FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3849FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3850FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3851FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3852FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3853FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3854FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3855FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3856FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3857FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3858FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3859FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3860FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3861FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3862FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3863FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3864FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3865FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3866FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3867FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3868FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3869FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3870FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3871FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3872FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3873FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3874FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3875FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3876FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3877FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3878FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3879FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3880FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3881FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3882FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3883FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3884FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3885FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3886FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3887FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3888FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3889FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3890FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3891FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3892FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3893FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3894FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3895FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3896FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3897FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3898FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3899FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3900FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3901FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3902FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3903FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3904
3905FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3906FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3907FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3908FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3909FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3910FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3911FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3912FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3913FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3914FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3915FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3916FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3917FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3918FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3919FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3920FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3921FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3922FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3923FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3924FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3925FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3926FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3927FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3928FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3929FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3930FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3931FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3932FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3933FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3934FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3935FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3936FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3937FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3938FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3939FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3940FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3941FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3942FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3943FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3944FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3945FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3946FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3947FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3948FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3949FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3950FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3951FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3952FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3953FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3954FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3955FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3956FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3957FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3958FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3959FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3960FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3961FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3962FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3963FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3964FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3965FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3966FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3967FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3968FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3969FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3970FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3971FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3972FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3973FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3974FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3975FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3976FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3977FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3978FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3979
3980FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3981FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3982FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3983FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3984
3985FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3986FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3987FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3988FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3989FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3990FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3991FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3992FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3993FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3994FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3995FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3996FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3997FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3998FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3999FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
4000FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
4001FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
4002FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
4003FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
4004FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
4005FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
4006FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
4007FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
4008FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
4009FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
4010FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
4011FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
4012FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
4013FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
4014FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
4015FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
4016FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
4017FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
4018FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
4019FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
4020FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
4021FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
4022FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
4023FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
4024FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
4025FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
4026FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
4027FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
4028FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
4029FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
4030FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
4031FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
4032FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
4033FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
4034FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
4035FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
4036FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
4037FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
4038FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
4039FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
4040FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
4041FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
4042FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
4043FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
4044FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
4045FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
4046FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
4047FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
4048FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
4049FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
4050FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
4051FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
4052FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
4053FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
4054FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
4055FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
4056FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
4057FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
4058FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
4059FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermps_u256, iemAImpl_vpermps_u256_fallback;
4060FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermd_u256, iemAImpl_vpermd_u256_fallback;
4061
4062FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
4063FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
4064FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
4065/** @} */
4066
4067/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
4068 * @{ */
4069FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
4070FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
4071FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
4072 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
4073 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
4074 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
4075 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
4076 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
4077 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
4078 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
4079
4080FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
4081 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
4082 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
4083 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
4084 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
4085 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
4086 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
4087 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
4088/** @} */
4089
4090/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
4091 * @{ */
4092FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
4093FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
4094FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
4095 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
4096 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
4097 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
4098FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
4099 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
4100 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
4101 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
4102/** @} */
4103
4104/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
4105 * @{ */
4106typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4107typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
4108typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4109typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
4110IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
4111FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
4112#ifndef IEM_WITHOUT_ASSEMBLY
4113FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
4114#endif
4115FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
4116/** @} */
4117
4118/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
4119 * @{ */
4120typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
4121typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
4122typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
4123typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
4124typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
4125typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
4126FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
4127FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
4128FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
4129FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
4130FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
4131FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
4132FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
4133/** @} */
4134
4135/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
4136 * @{ */
4137IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
4138IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
4139IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
4140IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
4141#ifndef IEM_WITHOUT_ASSEMBLY
4142IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4143#endif
4144IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4145/** @} */
4146
4147/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
4148 * @{ */
4149typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
4150typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
4151typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
4152typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
4153typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
4154typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
4155
4156FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
4157FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
4158FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
4159FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
4160FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
4161FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
4162
4163FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
4164FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
4165FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
4166FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
4167FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
4168FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
4169
4170FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
4171FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
4172FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
4173FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
4174FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
4175FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
4176/** @} */
4177
4178
4179/** @name Media (SSE/MMX/AVX) operation: Sort this later
4180 * @{ */
4181IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4182IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4183IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4184IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4185IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4186
4187IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4188IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4189IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4190IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4191IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4192
4193IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4194IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4195IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4196IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4197IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4198
4199IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4200IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4201IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4202IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4203IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4204
4205IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4206IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4207IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4208IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4209IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4210
4211IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4212IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4213IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4214IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4215IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4216
4217IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4218IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4219IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4220IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4221IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4222
4223IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4224IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4225IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4226IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4227IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4228
4229IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4230IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4231IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4232IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4233IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4234
4235IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4236IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4237IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4238IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4239IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4240
4241IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4242IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4243IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4244IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4245IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4246
4247IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4248IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4249IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4250IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4251IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4252
4253IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4254IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4255IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4256IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4257IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4258
4259IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4260IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4261IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4262IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4263IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4264
4265IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4266IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4267
4268IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4269IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4270IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4271IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4272IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4273
4274IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4275IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4276IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4277IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4278IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4279
4280
4281typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4282typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
4283typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4284typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
4285typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4286typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
4287typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4288typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
4289
4290FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
4291FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
4292FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
4293FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
4294
4295FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
4296FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
4297FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
4298FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
4299FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
4300
4301FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
4302FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
4303FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
4304FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
4305FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
4306FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
4307FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
4308
4309FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
4310FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
4311FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
4312FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
4313FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
4314
4315FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
4316FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
4317FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
4318FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
4319FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
4320
4321FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
4322
4323FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
4324
4325FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
4326FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
4327FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
4328FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
4329FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
4330FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
4331IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4332IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4333
4334FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermq_u256, iemAImpl_vpermq_u256_fallback;
4335FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermpd_u256, iemAImpl_vpermpd_u256_fallback;
4336
4337typedef struct IEMPCMPISTRXSRC
4338{
4339 RTUINT128U uSrc1;
4340 RTUINT128U uSrc2;
4341} IEMPCMPISTRXSRC;
4342typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
4343typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
4344
4345typedef struct IEMPCMPESTRXSRC
4346{
4347 RTUINT128U uSrc1;
4348 RTUINT128U uSrc2;
4349 uint64_t u64Rax;
4350 uint64_t u64Rdx;
4351} IEMPCMPESTRXSRC;
4352typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
4353typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
4354
4355typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
4356typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
4357typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4358typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4359
4360typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4361typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4362typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4363typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4364
4365FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4366FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4367FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4368FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4369FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_vpcmpistri_u128, iemAImpl_vpcmpistri_u128_fallback;
4370FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_vpcmpestri_u128, iemAImpl_vpcmpestri_u128_fallback;
4371FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_vpcmpistrm_u128, iemAImpl_vpcmpistrm_u128_fallback;
4372FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_vpcmpestrm_u128, iemAImpl_vpcmpestrm_u128_fallback;
4373
4374
4375FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4376FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4377
4378FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4379FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4380FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4381
4382FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4383FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4384FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4385FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4386FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4387FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4388IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4389IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4390IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4391IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4392
4393FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4394FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4395FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4396FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4397
4398FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4399FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4400FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4401FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4402FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4403FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4404IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4405IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4406IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4407IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4408
4409FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4410FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4411FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4412FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4413
4414FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4415FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4416FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4417FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4418
4419FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4420FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4421FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4422FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4423FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4424FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4425FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4426FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4427FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4428FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4429/** @} */
4430
4431/** @name Media Odds and Ends
4432 * @{ */
4433typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4434typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4435typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4436typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4437FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4438FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4439FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4440FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4441
4442typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4443typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4444typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4445typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4446FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4447FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4448FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4449FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4450FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4451FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4452
4453typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4454typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4455typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4456typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4457typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4458typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4459typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4460typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4461typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R32,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT32U pr32Src));
4462typedef FNIEMAIMPLSSEF2I32R32 *PFNIEMAIMPLSSEF2I32R32;
4463typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R32,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT32U pr32Src));
4464typedef FNIEMAIMPLSSEF2I64R32 *PFNIEMAIMPLSSEF2I64R32;
4465typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R64,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT64U pr64Src));
4466typedef FNIEMAIMPLSSEF2I32R64 *PFNIEMAIMPLSSEF2I32R64;
4467typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R64,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT64U pr64Src));
4468typedef FNIEMAIMPLSSEF2I64R64 *PFNIEMAIMPLSSEF2I64R64;
4469
4470FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4471FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4472
4473FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4474FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4475
4476FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4477FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4478
4479FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4480FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4481
4482FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttss2si_i32_r32, iemAImpl_vcvttss2si_i32_r32_fallback;
4483FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttss2si_i64_r32, iemAImpl_vcvttss2si_i64_r32_fallback;
4484FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtss2si_i32_r32, iemAImpl_vcvtss2si_i32_r32_fallback;
4485FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtss2si_i64_r32, iemAImpl_vcvtss2si_i64_r32_fallback;
4486
4487FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttss2si_i32_r64, iemAImpl_vcvttss2si_i32_r64_fallback;
4488FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttss2si_i64_r64, iemAImpl_vcvttss2si_i64_r64_fallback;
4489FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtss2si_i32_r64, iemAImpl_vcvtss2si_i32_r64_fallback;
4490FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtss2si_i64_r64, iemAImpl_vcvtss2si_i64_r64_fallback;
4491
4492FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttsd2si_i32_r32, iemAImpl_vcvttsd2si_i32_r32_fallback;
4493FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttsd2si_i64_r32, iemAImpl_vcvttsd2si_i64_r32_fallback;
4494FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtsd2si_i32_r32, iemAImpl_vcvtsd2si_i32_r32_fallback;
4495FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtsd2si_i64_r32, iemAImpl_vcvtsd2si_i64_r32_fallback;
4496
4497FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttsd2si_i32_r64, iemAImpl_vcvttsd2si_i32_r64_fallback;
4498FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttsd2si_i64_r64, iemAImpl_vcvttsd2si_i64_r64_fallback;
4499FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtsd2si_i32_r64, iemAImpl_vcvtsd2si_i32_r64_fallback;
4500FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtsd2si_i64_r64, iemAImpl_vcvtsd2si_i64_r64_fallback;
4501
4502typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4503typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4504typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4505typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4506
4507FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4508FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4509
4510typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI32,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int32_t *pi32Src));
4511typedef FNIEMAIMPLAVXF3XMMI32 *PFNIEMAIMPLAVXF3XMMI32;
4512typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI64,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int64_t *pi64Src));
4513typedef FNIEMAIMPLAVXF3XMMI64 *PFNIEMAIMPLAVXF3XMMI64;
4514
4515FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2ss_u128_i32, iemAImpl_vcvtsi2ss_u128_i32_fallback;
4516FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2ss_u128_i64, iemAImpl_vcvtsi2ss_u128_i64_fallback;
4517
4518
4519typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4520typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4521typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4522typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4523
4524FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4525FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4526
4527FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2sd_u128_i32, iemAImpl_vcvtsi2sd_u128_i32_fallback;
4528FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2sd_u128_i64, iemAImpl_vcvtsi2sd_u128_i64_fallback;
4529
4530IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4531IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4532IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4533IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4534
4535
4536IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4537IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4538IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4539IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4540
4541
4542typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4543typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4544
4545typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4546typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4547
4548FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4549FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4550
4551FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4552FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4553
4554FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4555FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4556
4557FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4558FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4559
4560
4561typedef struct IEMMEDIAF2XMMSRC
4562{
4563 X86XMMREG uSrc1;
4564 X86XMMREG uSrc2;
4565} IEMMEDIAF2XMMSRC;
4566typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4567typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4568
4569
4570typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4571typedef FNIEMAIMPLMEDIAF3XMMIMM8 *PFNIEMAIMPLMEDIAF3XMMIMM8;
4572
4573
4574typedef struct IEMMEDIAF2YMMSRC
4575{
4576 X86YMMREG uSrc1;
4577 X86YMMREG uSrc2;
4578} IEMMEDIAF2YMMSRC;
4579typedef IEMMEDIAF2YMMSRC *PIEMMEDIAF2YMMSRC;
4580typedef const IEMMEDIAF2YMMSRC *PCIEMMEDIAF2YMMSRC;
4581
4582
4583typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3YMMIMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCIEMMEDIAF2YMMSRC puSrc, uint8_t bEvil));
4584typedef FNIEMAIMPLMEDIAF3YMMIMM8 *PFNIEMAIMPLMEDIAF3YMMIMM8;
4585
4586
4587FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpps_u128;
4588FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmppd_u128;
4589FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpss_u128;
4590FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpsd_u128;
4591
4592FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpps_u128, iemAImpl_vcmpps_u128_fallback;
4593FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmppd_u128, iemAImpl_vcmppd_u128_fallback;
4594FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpss_u128, iemAImpl_vcmpss_u128_fallback;
4595FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpsd_u128, iemAImpl_vcmpsd_u128_fallback;
4596
4597FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmpps_u256, iemAImpl_vcmpps_u256_fallback;
4598FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmppd_u256, iemAImpl_vcmppd_u256_fallback;
4599
4600FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundss_u128;
4601FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundsd_u128;
4602
4603FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4604FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4605
4606
4607typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128IMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, uint8_t bEvil));
4608typedef FNIEMAIMPLMEDIAF2U128IMM8 *PFNIEMAIMPLMEDIAF2U128IMM8;
4609
4610
4611typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256IMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc, uint8_t bEvil));
4612typedef FNIEMAIMPLMEDIAF2U256IMM8 *PFNIEMAIMPLMEDIAF2U256IMM8;
4613
4614
4615FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4616FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4617
4618FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundps_u128, iemAImpl_vroundps_u128_fallback;
4619FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundpd_u128, iemAImpl_vroundpd_u128_fallback;
4620
4621FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundps_u256, iemAImpl_vroundps_u256_fallback;
4622FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundpd_u256, iemAImpl_vroundpd_u256_fallback;
4623
4624FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundss_u128, iemAImpl_vroundss_u128_fallback;
4625FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundsd_u128, iemAImpl_vroundsd_u128_fallback;
4626
4627FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdpps_u128, iemAImpl_vdpps_u128_fallback;
4628FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdppd_u128, iemAImpl_vdppd_u128_fallback;
4629
4630FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vdpps_u256, iemAImpl_vdpps_u256_fallback;
4631
4632
4633typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4634typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4635
4636FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4637FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4638
4639typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4640typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4641
4642FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4643FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4644
4645typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4646typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4647
4648FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4649FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4650
4651/** @} */
4652
4653
4654/** @name Function tables.
4655 * @{
4656 */
4657
4658/**
4659 * Function table for a binary operator providing implementation based on
4660 * operand size.
4661 */
4662typedef struct IEMOPBINSIZES
4663{
4664 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4665 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4666 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4667 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4668} IEMOPBINSIZES;
4669/** Pointer to a binary operator function table. */
4670typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4671
4672
4673/**
4674 * Function table for a unary operator providing implementation based on
4675 * operand size.
4676 */
4677typedef struct IEMOPUNARYSIZES
4678{
4679 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4680 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4681 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4682 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4683} IEMOPUNARYSIZES;
4684/** Pointer to a unary operator function table. */
4685typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4686
4687
4688/**
4689 * Function table for a shift operator providing implementation based on
4690 * operand size.
4691 */
4692typedef struct IEMOPSHIFTSIZES
4693{
4694 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4695 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4696 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4697 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4698} IEMOPSHIFTSIZES;
4699/** Pointer to a shift operator function table. */
4700typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4701
4702
4703/**
4704 * Function table for a multiplication or division operation.
4705 */
4706typedef struct IEMOPMULDIVSIZES
4707{
4708 PFNIEMAIMPLMULDIVU8 pfnU8;
4709 PFNIEMAIMPLMULDIVU16 pfnU16;
4710 PFNIEMAIMPLMULDIVU32 pfnU32;
4711 PFNIEMAIMPLMULDIVU64 pfnU64;
4712} IEMOPMULDIVSIZES;
4713/** Pointer to a multiplication or division operation function table. */
4714typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4715
4716
4717/**
4718 * Function table for a double precision shift operator providing implementation
4719 * based on operand size.
4720 */
4721typedef struct IEMOPSHIFTDBLSIZES
4722{
4723 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4724 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4725 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4726} IEMOPSHIFTDBLSIZES;
4727/** Pointer to a double precision shift function table. */
4728typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4729
4730
4731/**
4732 * Function table for media instruction taking two full sized media source
4733 * registers and one full sized destination register (AVX).
4734 */
4735typedef struct IEMOPMEDIAF3
4736{
4737 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4738 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4739} IEMOPMEDIAF3;
4740/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4741typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4742
4743/** @def IEMOPMEDIAF3_INIT_VARS_EX
4744 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4745 * given functions as initializers. For use in AVX functions where a pair of
4746 * functions are only used once and the function table need not be public. */
4747#ifndef TST_IEM_CHECK_MC
4748# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4749# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4750 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4751 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4752# else
4753# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4754 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4755# endif
4756#else
4757# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4758#endif
4759/** @def IEMOPMEDIAF3_INIT_VARS
4760 * Generate AVX function tables for the @a a_InstrNm instruction.
4761 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4762#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4763 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4764 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4765
4766
4767/**
4768 * Function table for media instruction taking one full sized media source
4769 * registers and one full sized destination register (AVX).
4770 */
4771typedef struct IEMOPMEDIAF2
4772{
4773 PFNIEMAIMPLMEDIAF2U128 pfnU128;
4774 PFNIEMAIMPLMEDIAF2U256 pfnU256;
4775} IEMOPMEDIAF2;
4776/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4777typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
4778
4779/** @def IEMOPMEDIAF2_INIT_VARS_EX
4780 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4781 * given functions as initializers. For use in AVX functions where a pair of
4782 * functions are only used once and the function table need not be public. */
4783#ifndef TST_IEM_CHECK_MC
4784# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4785# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4786 static IEMOPMEDIAF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4787 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4788# else
4789# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4790 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4791# endif
4792#else
4793# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4794#endif
4795/** @def IEMOPMEDIAF2_INIT_VARS
4796 * Generate AVX function tables for the @a a_InstrNm instruction.
4797 * @sa IEMOPMEDIAF2_INIT_VARS_EX */
4798#define IEMOPMEDIAF2_INIT_VARS(a_InstrNm) \
4799 IEMOPMEDIAF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4800 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4801
4802
4803/**
4804 * Function table for media instruction taking two full sized media source
4805 * registers and one full sized destination register, but no additional state
4806 * (AVX).
4807 */
4808typedef struct IEMOPMEDIAOPTF3
4809{
4810 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4811 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4812} IEMOPMEDIAOPTF3;
4813/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4814typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4815
4816/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4817 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4818 * given functions as initializers. For use in AVX functions where a pair of
4819 * functions are only used once and the function table need not be public. */
4820#ifndef TST_IEM_CHECK_MC
4821# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4822# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4823 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4824 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4825# else
4826# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4827 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4828# endif
4829#else
4830# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4831#endif
4832/** @def IEMOPMEDIAOPTF3_INIT_VARS
4833 * Generate AVX function tables for the @a a_InstrNm instruction.
4834 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4835#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4836 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4837 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4838
4839/**
4840 * Function table for media instruction taking one full sized media source
4841 * registers and one full sized destination register, but no additional state
4842 * (AVX).
4843 */
4844typedef struct IEMOPMEDIAOPTF2
4845{
4846 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4847 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4848} IEMOPMEDIAOPTF2;
4849/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4850typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4851
4852/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4853 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4854 * given functions as initializers. For use in AVX functions where a pair of
4855 * functions are only used once and the function table need not be public. */
4856#ifndef TST_IEM_CHECK_MC
4857# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4858# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4859 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4860 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4861# else
4862# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4863 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4864# endif
4865#else
4866# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4867#endif
4868/** @def IEMOPMEDIAOPTF2_INIT_VARS
4869 * Generate AVX function tables for the @a a_InstrNm instruction.
4870 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4871#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4872 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4873 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4874
4875
4876/**
4877 * Function table for media instruction taking one full sized media source
4878 * register and one full sized destination register and an 8-bit immediate (AVX).
4879 */
4880typedef struct IEMOPMEDIAF2IMM8
4881{
4882 PFNIEMAIMPLMEDIAF2U128IMM8 pfnU128;
4883 PFNIEMAIMPLMEDIAF2U256IMM8 pfnU256;
4884} IEMOPMEDIAF2IMM8;
4885/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4886typedef IEMOPMEDIAF2IMM8 const *PCIEMOPMEDIAF2IMM8;
4887
4888/** @def IEMOPMEDIAF2IMM8_INIT_VARS_EX
4889 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4890 * given functions as initializers. For use in AVX functions where a pair of
4891 * functions are only used once and the function table need not be public. */
4892#ifndef TST_IEM_CHECK_MC
4893# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4894# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4895 static IEMOPMEDIAF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4896 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4897# else
4898# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4899 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4900# endif
4901#else
4902# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4903#endif
4904/** @def IEMOPMEDIAF2IMM8_INIT_VARS
4905 * Generate AVX function tables for the @a a_InstrNm instruction.
4906 * @sa IEMOPMEDIAF2IMM8_INIT_VARS_EX */
4907#define IEMOPMEDIAF2IMM8_INIT_VARS(a_InstrNm) \
4908 IEMOPMEDIAF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4909 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4910
4911
4912/**
4913 * Function table for media instruction taking one full sized media source
4914 * register and one full sized destination register and an 8-bit immediate, but no additional state
4915 * (AVX).
4916 */
4917typedef struct IEMOPMEDIAOPTF2IMM8
4918{
4919 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4920 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4921} IEMOPMEDIAOPTF2IMM8;
4922/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4923typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4924
4925/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4926 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4927 * given functions as initializers. For use in AVX functions where a pair of
4928 * functions are only used once and the function table need not be public. */
4929#ifndef TST_IEM_CHECK_MC
4930# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4931# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4932 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4933 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4934# else
4935# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4936 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4937# endif
4938#else
4939# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4940#endif
4941/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4942 * Generate AVX function tables for the @a a_InstrNm instruction.
4943 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4944#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4945 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4946 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4947
4948/**
4949 * Function table for media instruction taking two full sized media source
4950 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4951 * (AVX).
4952 */
4953typedef struct IEMOPMEDIAOPTF3IMM8
4954{
4955 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4956 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4957} IEMOPMEDIAOPTF3IMM8;
4958/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4959typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4960
4961/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4962 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4963 * given functions as initializers. For use in AVX functions where a pair of
4964 * functions are only used once and the function table need not be public. */
4965#ifndef TST_IEM_CHECK_MC
4966# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4967# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4968 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4969 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4970# else
4971# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4972 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4973# endif
4974#else
4975# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4976#endif
4977/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4978 * Generate AVX function tables for the @a a_InstrNm instruction.
4979 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4980#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4981 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4982 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4983/** @} */
4984
4985
4986/**
4987 * Function table for blend type instruction taking three full sized media source
4988 * registers and one full sized destination register, but no additional state
4989 * (AVX).
4990 */
4991typedef struct IEMOPBLENDOP
4992{
4993 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4994 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4995} IEMOPBLENDOP;
4996/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4997typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4998
4999/** @def IEMOPBLENDOP_INIT_VARS_EX
5000 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
5001 * given functions as initializers. For use in AVX functions where a pair of
5002 * functions are only used once and the function table need not be public. */
5003#ifndef TST_IEM_CHECK_MC
5004# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
5005# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
5006 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
5007 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
5008# else
5009# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
5010 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
5011# endif
5012#else
5013# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
5014#endif
5015/** @def IEMOPBLENDOP_INIT_VARS
5016 * Generate AVX function tables for the @a a_InstrNm instruction.
5017 * @sa IEMOPBLENDOP_INIT_VARS_EX */
5018#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
5019 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
5020 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
5021
5022
5023/** @name SSE/AVX single/double precision floating point operations.
5024 * @{ */
5025typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
5026typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
5027typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
5028typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
5029typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
5030typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
5031
5032typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
5033typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
5034typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
5035typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
5036typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
5037typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
5038
5039typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
5040typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
5041
5042FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
5043FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
5044FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
5045FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
5046FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
5047FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
5048FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
5049FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
5050FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
5051FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
5052FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
5053FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
5054FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
5055FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
5056FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
5057FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
5058FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
5059FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
5060FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
5061FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
5062FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
5063FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
5064
5065FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
5066IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
5067
5068FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
5069FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
5070FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
5071FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
5072FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
5073FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
5074
5075FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
5076FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
5077FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
5078FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
5079FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
5080FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
5081FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
5082FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
5083FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
5084FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
5085FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
5086FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
5087FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
5088FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
5089FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
5090FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
5091FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
5092FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
5093
5094FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
5095FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
5096FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
5097FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
5098FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
5099FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
5100FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
5101FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
5102FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
5103FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
5104FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
5105FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
5106FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
5107FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
5108FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
5109FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
5110FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
5111FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
5112FNIEMAIMPLMEDIAF2U128 iemAImpl_vrsqrtps_u128, iemAImpl_vrsqrtps_u128_fallback;
5113FNIEMAIMPLMEDIAF2U128 iemAImpl_vrcpps_u128, iemAImpl_vrcpps_u128_fallback;
5114FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
5115FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
5116FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtdq2ps_u128, iemAImpl_vcvtdq2ps_u128_fallback;
5117FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtps2dq_u128, iemAImpl_vcvtps2dq_u128_fallback;
5118FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvttps2dq_u128, iemAImpl_vcvttps2dq_u128_fallback;
5119IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5120IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5121IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5122IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5123IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5124IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5125
5126
5127FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
5128FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
5129FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
5130FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
5131FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
5132FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
5133FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
5134FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
5135FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
5136FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
5137FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
5138FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
5139FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
5140FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
5141FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrsqrtss_u128_r32, iemAImpl_vrsqrtss_u128_r32_fallback;
5142FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrcpss_u128_r32, iemAImpl_vrcpss_u128_r32_fallback;
5143FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vcvtss2sd_u128_r32, iemAImpl_vcvtss2sd_u128_r32_fallback;
5144FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vcvtsd2ss_u128_r64, iemAImpl_vcvtsd2ss_u128_r64_fallback;
5145
5146
5147FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
5148FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
5149FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
5150FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
5151FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
5152FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
5153FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
5154FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
5155FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
5156FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
5157FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
5158FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
5159FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
5160FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
5161FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
5162FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
5163FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubps_u256, iemAImpl_vaddsubps_u256_fallback;
5164FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubpd_u256, iemAImpl_vaddsubpd_u256_fallback;
5165FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtps_u256, iemAImpl_vsqrtps_u256_fallback;
5166FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtpd_u256, iemAImpl_vsqrtpd_u256_fallback;
5167FNIEMAIMPLMEDIAF2U256 iemAImpl_vrsqrtps_u256, iemAImpl_vrsqrtps_u256_fallback;
5168FNIEMAIMPLMEDIAF2U256 iemAImpl_vrcpps_u256, iemAImpl_vrcpps_u256_fallback;
5169FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtdq2ps_u256, iemAImpl_vcvtdq2ps_u256_fallback;
5170FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtps2dq_u256, iemAImpl_vcvtps2dq_u256_fallback;
5171FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvttps2dq_u256, iemAImpl_vcvttps2dq_u256_fallback;
5172IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5173IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5174IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5175IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5176IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5177IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5178/** @} */
5179
5180/** @name C instruction implementations for anything slightly complicated.
5181 * @{ */
5182
5183/**
5184 * For typedef'ing or declaring a C instruction implementation function taking
5185 * no extra arguments.
5186 *
5187 * @param a_Name The name of the type.
5188 */
5189# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
5190 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5191/**
5192 * For defining a C instruction implementation function taking no extra
5193 * arguments.
5194 *
5195 * @param a_Name The name of the function
5196 */
5197# define IEM_CIMPL_DEF_0(a_Name) \
5198 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5199/**
5200 * Prototype version of IEM_CIMPL_DEF_0.
5201 */
5202# define IEM_CIMPL_PROTO_0(a_Name) \
5203 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5204/**
5205 * For calling a C instruction implementation function taking no extra
5206 * arguments.
5207 *
5208 * This special call macro adds default arguments to the call and allow us to
5209 * change these later.
5210 *
5211 * @param a_fn The name of the function.
5212 */
5213# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
5214
5215/** Type for a C instruction implementation function taking no extra
5216 * arguments. */
5217typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
5218/** Function pointer type for a C instruction implementation function taking
5219 * no extra arguments. */
5220typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
5221
5222/**
5223 * For typedef'ing or declaring a C instruction implementation function taking
5224 * one extra argument.
5225 *
5226 * @param a_Name The name of the type.
5227 * @param a_Type0 The argument type.
5228 * @param a_Arg0 The argument name.
5229 */
5230# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
5231 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5232/**
5233 * For defining a C instruction implementation function taking one extra
5234 * argument.
5235 *
5236 * @param a_Name The name of the function
5237 * @param a_Type0 The argument type.
5238 * @param a_Arg0 The argument name.
5239 */
5240# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
5241 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5242/**
5243 * Prototype version of IEM_CIMPL_DEF_1.
5244 */
5245# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
5246 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5247/**
5248 * For calling a C instruction implementation function taking one extra
5249 * argument.
5250 *
5251 * This special call macro adds default arguments to the call and allow us to
5252 * change these later.
5253 *
5254 * @param a_fn The name of the function.
5255 * @param a0 The name of the 1st argument.
5256 */
5257# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
5258
5259/**
5260 * For typedef'ing or declaring a C instruction implementation function taking
5261 * two extra arguments.
5262 *
5263 * @param a_Name The name of the type.
5264 * @param a_Type0 The type of the 1st argument
5265 * @param a_Arg0 The name of the 1st argument.
5266 * @param a_Type1 The type of the 2nd argument.
5267 * @param a_Arg1 The name of the 2nd argument.
5268 */
5269# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5270 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5271/**
5272 * For defining a C instruction implementation function taking two extra
5273 * arguments.
5274 *
5275 * @param a_Name The name of the function.
5276 * @param a_Type0 The type of the 1st argument
5277 * @param a_Arg0 The name of the 1st argument.
5278 * @param a_Type1 The type of the 2nd argument.
5279 * @param a_Arg1 The name of the 2nd argument.
5280 */
5281# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5282 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5283/**
5284 * Prototype version of IEM_CIMPL_DEF_2.
5285 */
5286# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5287 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5288/**
5289 * For calling a C instruction implementation function taking two extra
5290 * arguments.
5291 *
5292 * This special call macro adds default arguments to the call and allow us to
5293 * change these later.
5294 *
5295 * @param a_fn The name of the function.
5296 * @param a0 The name of the 1st argument.
5297 * @param a1 The name of the 2nd argument.
5298 */
5299# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
5300
5301/**
5302 * For typedef'ing or declaring a C instruction implementation function taking
5303 * three extra arguments.
5304 *
5305 * @param a_Name The name of the type.
5306 * @param a_Type0 The type of the 1st argument
5307 * @param a_Arg0 The name of the 1st argument.
5308 * @param a_Type1 The type of the 2nd argument.
5309 * @param a_Arg1 The name of the 2nd argument.
5310 * @param a_Type2 The type of the 3rd argument.
5311 * @param a_Arg2 The name of the 3rd argument.
5312 */
5313# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5314 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5315/**
5316 * For defining a C instruction implementation function taking three extra
5317 * arguments.
5318 *
5319 * @param a_Name The name of the function.
5320 * @param a_Type0 The type of the 1st argument
5321 * @param a_Arg0 The name of the 1st argument.
5322 * @param a_Type1 The type of the 2nd argument.
5323 * @param a_Arg1 The name of the 2nd argument.
5324 * @param a_Type2 The type of the 3rd argument.
5325 * @param a_Arg2 The name of the 3rd argument.
5326 */
5327# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5328 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5329/**
5330 * Prototype version of IEM_CIMPL_DEF_3.
5331 */
5332# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5333 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5334/**
5335 * For calling a C instruction implementation function taking three extra
5336 * arguments.
5337 *
5338 * This special call macro adds default arguments to the call and allow us to
5339 * change these later.
5340 *
5341 * @param a_fn The name of the function.
5342 * @param a0 The name of the 1st argument.
5343 * @param a1 The name of the 2nd argument.
5344 * @param a2 The name of the 3rd argument.
5345 */
5346# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
5347
5348
5349/**
5350 * For typedef'ing or declaring a C instruction implementation function taking
5351 * four extra arguments.
5352 *
5353 * @param a_Name The name of the type.
5354 * @param a_Type0 The type of the 1st argument
5355 * @param a_Arg0 The name of the 1st argument.
5356 * @param a_Type1 The type of the 2nd argument.
5357 * @param a_Arg1 The name of the 2nd argument.
5358 * @param a_Type2 The type of the 3rd argument.
5359 * @param a_Arg2 The name of the 3rd argument.
5360 * @param a_Type3 The type of the 4th argument.
5361 * @param a_Arg3 The name of the 4th argument.
5362 */
5363# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5364 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
5365/**
5366 * For defining a C instruction implementation function taking four extra
5367 * arguments.
5368 *
5369 * @param a_Name The name of the function.
5370 * @param a_Type0 The type of the 1st argument
5371 * @param a_Arg0 The name of the 1st argument.
5372 * @param a_Type1 The type of the 2nd argument.
5373 * @param a_Arg1 The name of the 2nd argument.
5374 * @param a_Type2 The type of the 3rd argument.
5375 * @param a_Arg2 The name of the 3rd argument.
5376 * @param a_Type3 The type of the 4th argument.
5377 * @param a_Arg3 The name of the 4th argument.
5378 */
5379# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5380 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5381 a_Type2 a_Arg2, a_Type3 a_Arg3))
5382/**
5383 * Prototype version of IEM_CIMPL_DEF_4.
5384 */
5385# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5386 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5387 a_Type2 a_Arg2, a_Type3 a_Arg3))
5388/**
5389 * For calling a C instruction implementation function taking four extra
5390 * arguments.
5391 *
5392 * This special call macro adds default arguments to the call and allow us to
5393 * change these later.
5394 *
5395 * @param a_fn The name of the function.
5396 * @param a0 The name of the 1st argument.
5397 * @param a1 The name of the 2nd argument.
5398 * @param a2 The name of the 3rd argument.
5399 * @param a3 The name of the 4th argument.
5400 */
5401# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
5402
5403
5404/**
5405 * For typedef'ing or declaring a C instruction implementation function taking
5406 * five extra arguments.
5407 *
5408 * @param a_Name The name of the type.
5409 * @param a_Type0 The type of the 1st argument
5410 * @param a_Arg0 The name of the 1st argument.
5411 * @param a_Type1 The type of the 2nd argument.
5412 * @param a_Arg1 The name of the 2nd argument.
5413 * @param a_Type2 The type of the 3rd argument.
5414 * @param a_Arg2 The name of the 3rd argument.
5415 * @param a_Type3 The type of the 4th argument.
5416 * @param a_Arg3 The name of the 4th argument.
5417 * @param a_Type4 The type of the 5th argument.
5418 * @param a_Arg4 The name of the 5th argument.
5419 */
5420# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5421 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
5422 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
5423 a_Type3 a_Arg3, a_Type4 a_Arg4))
5424/**
5425 * For defining a C instruction implementation function taking five extra
5426 * arguments.
5427 *
5428 * @param a_Name The name of the function.
5429 * @param a_Type0 The type of the 1st argument
5430 * @param a_Arg0 The name of the 1st argument.
5431 * @param a_Type1 The type of the 2nd argument.
5432 * @param a_Arg1 The name of the 2nd argument.
5433 * @param a_Type2 The type of the 3rd argument.
5434 * @param a_Arg2 The name of the 3rd argument.
5435 * @param a_Type3 The type of the 4th argument.
5436 * @param a_Arg3 The name of the 4th argument.
5437 * @param a_Type4 The type of the 5th argument.
5438 * @param a_Arg4 The name of the 5th argument.
5439 */
5440# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5441 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5442 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5443/**
5444 * Prototype version of IEM_CIMPL_DEF_5.
5445 */
5446# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5447 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5448 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5449/**
5450 * For calling a C instruction implementation function taking five extra
5451 * arguments.
5452 *
5453 * This special call macro adds default arguments to the call and allow us to
5454 * change these later.
5455 *
5456 * @param a_fn The name of the function.
5457 * @param a0 The name of the 1st argument.
5458 * @param a1 The name of the 2nd argument.
5459 * @param a2 The name of the 3rd argument.
5460 * @param a3 The name of the 4th argument.
5461 * @param a4 The name of the 5th argument.
5462 */
5463# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
5464
5465/** @} */
5466
5467
5468/** @name Opcode Decoder Function Types.
5469 * @{ */
5470
5471/** @typedef PFNIEMOP
5472 * Pointer to an opcode decoder function.
5473 */
5474
5475/** @def FNIEMOP_DEF
5476 * Define an opcode decoder function.
5477 *
5478 * We're using macors for this so that adding and removing parameters as well as
5479 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
5480 *
5481 * @param a_Name The function name.
5482 */
5483
5484/** @typedef PFNIEMOPRM
5485 * Pointer to an opcode decoder function with RM byte.
5486 */
5487
5488/** @def FNIEMOPRM_DEF
5489 * Define an opcode decoder function with RM byte.
5490 *
5491 * We're using macors for this so that adding and removing parameters as well as
5492 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
5493 *
5494 * @param a_Name The function name.
5495 */
5496
5497#if defined(__GNUC__) && defined(RT_ARCH_X86)
5498typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
5499typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5500# define FNIEMOP_DEF(a_Name) \
5501 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
5502# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5503 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5504# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5505 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5506
5507#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
5508typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
5509typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5510# define FNIEMOP_DEF(a_Name) \
5511 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5512# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5513 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5514# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5515 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5516
5517#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5518typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5519typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5520# define FNIEMOP_DEF(a_Name) \
5521 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
5522# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5523 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5524# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5525 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5526
5527#else
5528typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5529typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5530# define FNIEMOP_DEF(a_Name) \
5531 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5532# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5533 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5534# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5535 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5536
5537#endif
5538#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
5539
5540/**
5541 * Call an opcode decoder function.
5542 *
5543 * We're using macors for this so that adding and removing parameters can be
5544 * done as we please. See FNIEMOP_DEF.
5545 */
5546#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
5547
5548/**
5549 * Call a common opcode decoder function taking one extra argument.
5550 *
5551 * We're using macors for this so that adding and removing parameters can be
5552 * done as we please. See FNIEMOP_DEF_1.
5553 */
5554#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
5555
5556/**
5557 * Call a common opcode decoder function taking one extra argument.
5558 *
5559 * We're using macors for this so that adding and removing parameters can be
5560 * done as we please. See FNIEMOP_DEF_1.
5561 */
5562#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5563/** @} */
5564
5565
5566/** @name Misc Helpers
5567 * @{ */
5568
5569/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5570 * due to GCC lacking knowledge about the value range of a switch. */
5571#if RT_CPLUSPLUS_PREREQ(202000)
5572# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5573#else
5574# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5575#endif
5576
5577/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5578#if RT_CPLUSPLUS_PREREQ(202000)
5579# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5580#else
5581# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5582#endif
5583
5584/**
5585 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5586 * occation.
5587 */
5588#ifdef LOG_ENABLED
5589# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5590 do { \
5591 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5592 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5593 } while (0)
5594#else
5595# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5596 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5597#endif
5598
5599/**
5600 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5601 * occation using the supplied logger statement.
5602 *
5603 * @param a_LoggerArgs What to log on failure.
5604 */
5605#ifdef LOG_ENABLED
5606# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5607 do { \
5608 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5609 /*LogFunc(a_LoggerArgs);*/ \
5610 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5611 } while (0)
5612#else
5613# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5614 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5615#endif
5616
5617/**
5618 * Gets the CPU mode (from fExec) as a IEMMODE value.
5619 *
5620 * @returns IEMMODE
5621 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5622 */
5623#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5624
5625/**
5626 * Check if we're currently executing in real or virtual 8086 mode.
5627 *
5628 * @returns @c true if it is, @c false if not.
5629 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5630 */
5631#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5632 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5633
5634/**
5635 * Check if we're currently executing in virtual 8086 mode.
5636 *
5637 * @returns @c true if it is, @c false if not.
5638 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5639 */
5640#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5641
5642/**
5643 * Check if we're currently executing in long mode.
5644 *
5645 * @returns @c true if it is, @c false if not.
5646 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5647 */
5648#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5649
5650/**
5651 * Check if we're currently executing in a 16-bit code segment.
5652 *
5653 * @returns @c true if it is, @c false if not.
5654 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5655 */
5656#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5657
5658/**
5659 * Check if we're currently executing in a 32-bit code segment.
5660 *
5661 * @returns @c true if it is, @c false if not.
5662 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5663 */
5664#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5665
5666/**
5667 * Check if we're currently executing in a 64-bit code segment.
5668 *
5669 * @returns @c true if it is, @c false if not.
5670 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5671 */
5672#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5673
5674/**
5675 * Check if we're currently executing in real mode.
5676 *
5677 * @returns @c true if it is, @c false if not.
5678 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5679 */
5680#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5681
5682/**
5683 * Gets the current protection level (CPL).
5684 *
5685 * @returns 0..3
5686 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5687 */
5688#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5689
5690/**
5691 * Sets the current protection level (CPL).
5692 *
5693 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5694 */
5695#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5696 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5697
5698/**
5699 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5700 * @returns PCCPUMFEATURES
5701 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5702 */
5703#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5704
5705/**
5706 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5707 * @returns PCCPUMFEATURES
5708 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5709 */
5710#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5711
5712/**
5713 * Evaluates to true if we're presenting an Intel CPU to the guest.
5714 */
5715#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5716
5717/**
5718 * Evaluates to true if we're presenting an AMD CPU to the guest.
5719 */
5720#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5721
5722/**
5723 * Check if the address is canonical.
5724 */
5725#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5726
5727/** Checks if the ModR/M byte is in register mode or not. */
5728#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5729/** Checks if the ModR/M byte is in memory mode or not. */
5730#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5731
5732/**
5733 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5734 *
5735 * For use during decoding.
5736 */
5737#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5738/**
5739 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5740 *
5741 * For use during decoding.
5742 */
5743#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5744
5745/**
5746 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5747 *
5748 * For use during decoding.
5749 */
5750#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5751/**
5752 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5753 *
5754 * For use during decoding.
5755 */
5756#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5757
5758/**
5759 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5760 * register index, with REX.R added in.
5761 *
5762 * For use during decoding.
5763 *
5764 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5765 */
5766#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5767 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5768 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5769 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5770/**
5771 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5772 * with REX.B added in.
5773 *
5774 * For use during decoding.
5775 *
5776 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5777 */
5778#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5779 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5780 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5781 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5782
5783/**
5784 * Combines the prefix REX and ModR/M byte for passing to
5785 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5786 *
5787 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5788 * The two bits are part of the REG sub-field, which isn't needed in
5789 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5790 *
5791 * For use during decoding/recompiling.
5792 */
5793#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5794 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5795 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5796AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5797AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5798
5799/**
5800 * Gets the effective VEX.VVVV value.
5801 *
5802 * The 4th bit is ignored if not 64-bit code.
5803 * @returns effective V-register value.
5804 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5805 */
5806#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5807 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5808
5809
5810/**
5811 * Gets the register (reg) part of a the special 4th register byte used by
5812 * vblendvps and vblendvpd.
5813 *
5814 * For use during decoding.
5815 */
5816#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5817 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5818
5819
5820/**
5821 * Checks if we're executing inside an AMD-V or VT-x guest.
5822 */
5823#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5824# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5825#else
5826# define IEM_IS_IN_GUEST(a_pVCpu) false
5827#endif
5828
5829
5830#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5831
5832/**
5833 * Check if the guest has entered VMX root operation.
5834 */
5835# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5836
5837/**
5838 * Check if the guest has entered VMX non-root operation.
5839 */
5840# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5841 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5842
5843/**
5844 * Check if the nested-guest has the given Pin-based VM-execution control set.
5845 */
5846# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5847
5848/**
5849 * Check if the nested-guest has the given Processor-based VM-execution control set.
5850 */
5851# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5852
5853/**
5854 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5855 * control set.
5856 */
5857# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5858
5859/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5860# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5861
5862/** Whether a shadow VMCS is present for the given VCPU. */
5863# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5864
5865/** Gets the VMXON region pointer. */
5866# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5867
5868/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5869# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5870
5871/** Whether a current VMCS is present for the given VCPU. */
5872# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5873
5874/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5875# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5876 do \
5877 { \
5878 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5879 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5880 } while (0)
5881
5882/** Clears any current VMCS for the given VCPU. */
5883# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5884 do \
5885 { \
5886 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5887 } while (0)
5888
5889/**
5890 * Invokes the VMX VM-exit handler for an instruction intercept.
5891 */
5892# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5893 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5894
5895/**
5896 * Invokes the VMX VM-exit handler for an instruction intercept where the
5897 * instruction provides additional VM-exit information.
5898 */
5899# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5900 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5901
5902/**
5903 * Invokes the VMX VM-exit handler for a task switch.
5904 */
5905# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5906 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5907
5908/**
5909 * Invokes the VMX VM-exit handler for MWAIT.
5910 */
5911# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5912 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5913
5914/**
5915 * Invokes the VMX VM-exit handler for EPT faults.
5916 */
5917# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5918 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5919
5920/**
5921 * Invokes the VMX VM-exit handler.
5922 */
5923# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5924 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5925
5926#else
5927# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5928# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5929# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5930# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5931# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5932# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5933# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5934# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5935# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5936# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5937# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5938
5939#endif
5940
5941#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5942/**
5943 * Checks if we're executing a guest using AMD-V.
5944 */
5945# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5946 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5947/**
5948 * Check if an SVM control/instruction intercept is set.
5949 */
5950# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5951 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5952
5953/**
5954 * Check if an SVM read CRx intercept is set.
5955 */
5956# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5957 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5958
5959/**
5960 * Check if an SVM write CRx intercept is set.
5961 */
5962# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5963 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5964
5965/**
5966 * Check if an SVM read DRx intercept is set.
5967 */
5968# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5969 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5970
5971/**
5972 * Check if an SVM write DRx intercept is set.
5973 */
5974# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5975 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5976
5977/**
5978 * Check if an SVM exception intercept is set.
5979 */
5980# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5981 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5982
5983/**
5984 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5985 */
5986# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5987 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5988
5989/**
5990 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5991 * corresponding decode assist information.
5992 */
5993# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5994 do \
5995 { \
5996 uint64_t uExitInfo1; \
5997 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5998 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5999 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
6000 else \
6001 uExitInfo1 = 0; \
6002 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
6003 } while (0)
6004
6005/** Check and handles SVM nested-guest instruction intercept and updates
6006 * NRIP if needed.
6007 */
6008# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
6009 do \
6010 { \
6011 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
6012 { \
6013 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
6014 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
6015 } \
6016 } while (0)
6017
6018/** Checks and handles SVM nested-guest CR0 read intercept. */
6019# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
6020 do \
6021 { \
6022 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
6023 { /* probably likely */ } \
6024 else \
6025 { \
6026 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
6027 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
6028 } \
6029 } while (0)
6030
6031/**
6032 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
6033 */
6034# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
6035 do { \
6036 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
6037 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
6038 } while (0)
6039
6040#else
6041# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
6042# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
6043# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
6044# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
6045# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
6046# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
6047# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
6048# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
6049# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
6050 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
6051# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
6052# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
6053
6054#endif
6055
6056/** @} */
6057
6058uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
6059VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
6060
6061
6062/**
6063 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
6064 */
6065typedef union IEMSELDESC
6066{
6067 /** The legacy view. */
6068 X86DESC Legacy;
6069 /** The long mode view. */
6070 X86DESC64 Long;
6071} IEMSELDESC;
6072/** Pointer to a selector descriptor table entry. */
6073typedef IEMSELDESC *PIEMSELDESC;
6074
6075/** @name Raising Exceptions.
6076 * @{ */
6077VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
6078 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
6079
6080VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
6081 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6082#ifdef IEM_WITH_SETJMP
6083DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
6084 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
6085#endif
6086VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
6087#ifdef IEM_WITH_SETJMP
6088DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6089#endif
6090VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6091VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
6092VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
6093#ifdef IEM_WITH_SETJMP
6094DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6095#endif
6096VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
6097#ifdef IEM_WITH_SETJMP
6098DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6099#endif
6100VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
6101VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
6102VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
6103VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6104/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
6105VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
6106VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6107VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6108VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
6109VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
6110VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
6111#ifdef IEM_WITH_SETJMP
6112DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6113#endif
6114VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
6115VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
6116VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
6117#ifdef IEM_WITH_SETJMP
6118DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
6119#endif
6120VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
6121#ifdef IEM_WITH_SETJMP
6122DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
6123#endif
6124VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
6125#ifdef IEM_WITH_SETJMP
6126DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
6127#endif
6128VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
6129#ifdef IEM_WITH_SETJMP
6130DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
6131#endif
6132VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6133#ifdef IEM_WITH_SETJMP
6134DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6135#endif
6136VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6137#ifdef IEM_WITH_SETJMP
6138DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6139#endif
6140VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6141#ifdef IEM_WITH_SETJMP
6142DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6143#endif
6144
6145void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6146void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6147
6148IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
6149IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
6150IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
6151
6152/**
6153 * Macro for calling iemCImplRaiseDivideError().
6154 *
6155 * This is for things that will _always_ decode to an \#DE, taking the
6156 * recompiler into consideration and everything.
6157 *
6158 * @return Strict VBox status code.
6159 */
6160#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
6161
6162/**
6163 * Macro for calling iemCImplRaiseInvalidLockPrefix().
6164 *
6165 * This is for things that will _always_ decode to an \#UD, taking the
6166 * recompiler into consideration and everything.
6167 *
6168 * @return Strict VBox status code.
6169 */
6170#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
6171
6172/**
6173 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
6174 *
6175 * This is for things that will _always_ decode to an \#UD, taking the
6176 * recompiler into consideration and everything.
6177 *
6178 * @return Strict VBox status code.
6179 */
6180#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6181
6182/**
6183 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
6184 *
6185 * Using this macro means you've got _buggy_ _code_ and are doing things that
6186 * belongs exclusively in IEMAllCImpl.cpp during decoding.
6187 *
6188 * @return Strict VBox status code.
6189 * @see IEMOP_RAISE_INVALID_OPCODE_RET
6190 */
6191#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6192
6193/** @} */
6194
6195/** @name Register Access.
6196 * @{ */
6197VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
6198 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6199VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
6200VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
6201 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6202/** @} */
6203
6204/** @name FPU access and helpers.
6205 * @{ */
6206void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6207void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6208void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6209void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6210void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6211void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6212 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6213void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6214 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6215void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6216void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6217void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6218void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6219void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6220void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6221void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6222void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6223void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6224void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6225void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6226void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6227void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6228void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6229void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6230/** @} */
6231
6232/** @name SSE+AVX SIMD access and helpers.
6233 * @{ */
6234void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
6235/** @} */
6236
6237/** @name Memory access.
6238 * @{ */
6239
6240/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
6241#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
6242/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
6243 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
6244#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
6245/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
6246 * Users include FXSAVE & FXRSTOR. */
6247#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
6248
6249VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
6250 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
6251VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6252#ifndef IN_RING3
6253VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6254#endif
6255void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6256void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
6257VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
6258VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6259VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
6260
6261void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
6262void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
6263#ifdef IEM_WITH_CODE_TLB
6264void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
6265#else
6266VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
6267#endif
6268#ifdef IEM_WITH_SETJMP
6269uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6270uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6271uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6272uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6273#else
6274VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
6275VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6276VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6277VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6278VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6279VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6280VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6281VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6282VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6283VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6284VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6285#endif
6286
6287VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6288VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6289VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6290VBOXSTRICTRC iemMemFetchDataU32NoAc(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6291VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6292VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6293VBOXSTRICTRC iemMemFetchDataU64NoAc(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6294VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6295VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6296VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6297VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6298VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6299VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6300VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6301VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6302VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6303VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
6304 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
6305#ifdef IEM_WITH_SETJMP
6306uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6307uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6308uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6309uint32_t iemMemFetchDataU32NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6310uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6311uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6312uint64_t iemMemFetchDataU64NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6313uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6314void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6315void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6316void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6317void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6318void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6319void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6320void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6321void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6322# if 0 /* these are inlined now */
6323uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6324uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6325uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6326uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6327uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6328uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6329void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6330void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6331void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6332void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6333void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6334void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6335void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6336# endif
6337void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6338#endif
6339
6340VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6341VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6342VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6343VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6344VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
6345
6346VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
6347VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
6348VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
6349VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
6350VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6351VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6352VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6353VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6354VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6355VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6356VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6357#ifdef IEM_WITH_SETJMP
6358void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6359void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6360void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6361void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6362void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6363void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6364void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6365void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6366void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6367void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6368void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6369void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6370#if 0
6371void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6372void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6373void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6374void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6375void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6376void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6377void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6378void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6379#endif
6380void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6381void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6382#endif
6383
6384#ifdef IEM_WITH_SETJMP
6385uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6386uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6387uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6388uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6389uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6390uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6391uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6392uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6393uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6394uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6395uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6396uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6397uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6398uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6399uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6400uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6401PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6402PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6403PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6404PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6405PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6406PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6407PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6408PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6409PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6410PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6411
6412void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6413void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6414void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6415void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6416void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6417void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6418#endif
6419
6420VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6421 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6422VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
6423VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
6424VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6425VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
6426VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6427VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6428VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6429VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6430VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6431 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6432VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
6433 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
6434VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6435VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
6436VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
6437VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
6438VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6439VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6440VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6441
6442#ifdef IEM_WITH_SETJMP
6443void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6444void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6445void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6446void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6447void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6448void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6449void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6450
6451void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6452void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6453void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6454void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6455void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6456
6457void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6458void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6459void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6460void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6461
6462void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6463void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6464void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6465void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6466
6467uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6468uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6469uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6470
6471#endif
6472
6473/** @} */
6474
6475/** @name IEMAllCImpl.cpp
6476 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
6477 * @{ */
6478IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6479IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6480IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6481IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
6482IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
6483IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
6484IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
6485IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
6486IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
6487IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6488IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6489typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6490typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
6491IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
6492IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
6493IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
6494IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
6495IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
6496IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
6497IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
6498IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
6499IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
6500IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
6501IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
6502IEM_CIMPL_PROTO_0(iemCImpl_syscall);
6503IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
6504IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
6505IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
6506IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
6507IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
6508IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
6509IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
6510IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
6511IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
6512IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
6513IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6514IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6515IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6516IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6517IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
6518IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6519IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6520IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
6521IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6522IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6523IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
6524IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6525IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6526IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
6527IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
6528IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
6529IEM_CIMPL_PROTO_0(iemCImpl_clts);
6530IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
6531IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
6532IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
6533IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
6534IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
6535IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
6536IEM_CIMPL_PROTO_0(iemCImpl_invd);
6537IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
6538IEM_CIMPL_PROTO_0(iemCImpl_rsm);
6539IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
6540IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
6541IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
6542IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
6543IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
6544IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6545IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6546IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6547IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6548IEM_CIMPL_PROTO_0(iemCImpl_cli);
6549IEM_CIMPL_PROTO_0(iemCImpl_sti);
6550IEM_CIMPL_PROTO_0(iemCImpl_hlt);
6551IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
6552IEM_CIMPL_PROTO_0(iemCImpl_mwait);
6553IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
6554IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
6555IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
6556IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
6557IEM_CIMPL_PROTO_0(iemCImpl_daa);
6558IEM_CIMPL_PROTO_0(iemCImpl_das);
6559IEM_CIMPL_PROTO_0(iemCImpl_aaa);
6560IEM_CIMPL_PROTO_0(iemCImpl_aas);
6561IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
6562IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
6563IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
6564IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
6565IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
6566 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6567IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6568IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6569IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6570IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6571IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6572IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6573IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6574IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6575IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6576IEM_CIMPL_PROTO_2(iemCImpl_vldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6577IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6578IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6579IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6580IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6581IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6582IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6583IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6584IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6585IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6586IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6587IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6588IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6589IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6590IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6591IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6592IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6593IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6594IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6595IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6596IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6597IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6598IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6599IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6600IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6601IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6602IEM_CIMPL_PROTO_2(iemCImpl_vpgather_worker_xx, uint32_t, u32PackedArgs, uint32_t, u32Disp);
6603
6604/** @} */
6605
6606/** @name IEMAllCImplStrInstr.cpp.h
6607 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6608 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6609 * @{ */
6610IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6611IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6612IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6613IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6614IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6615IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6616IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6617IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6618IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6619IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6620IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6621
6622IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6623IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6624IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6625IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6626IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6627IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6628IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6629IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6630IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6631IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6632IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6633
6634IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6635IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6636IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6637IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6638IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6639IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6640IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6641IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6642IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6643IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6644IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6645
6646
6647IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6648IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6649IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6650IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6651IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6652IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6653IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6654IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6655IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6656IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6657IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6658
6659IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6660IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6661IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6662IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6663IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6664IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6665IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6666IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6667IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6668IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6669IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6670
6671IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6672IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6673IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6674IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6675IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6676IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6677IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6678IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6679IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6680IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6681IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6682
6683IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6684IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6685IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6686IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6687IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6688IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6689IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6690IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6691IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6692IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6693IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6694
6695
6696IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6697IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6698IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6699IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6700IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6701IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6702IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6703IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6704IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6705IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6706IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6707
6708IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6709IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6710IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6711IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6712IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6713IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6714IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6715IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6716IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6717IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6718IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6719
6720IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6721IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6722IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6723IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6724IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6725IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6726IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6727IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6728IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6729IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6730IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6731
6732IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6733IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6734IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6735IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6736IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6737IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6738IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6739IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6740IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6741IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6742IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6743/** @} */
6744
6745#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6746VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6747VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6748VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6749VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6750VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6751VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6752VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6753VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6754VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6755VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6756 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6757VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6758 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6759VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6760VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6761VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6762VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6763VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6764VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6765VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6766VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6767 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6768VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6769VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6770VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6771uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6772void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6773VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6774 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6775bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6776IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6777IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6778IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6779IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6780IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6781IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6782IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6783IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6784IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6785IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6786IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6787IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6788IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6789IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6790IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6791IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6792#endif
6793
6794#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6795VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6796VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6797VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6798 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6799VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6800IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6801IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6802IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6803IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6804IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6805IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6806IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6807IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6808#endif
6809
6810IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6811IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6812IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6813
6814extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6815extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6816extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6817extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6818extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6819extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6820extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6821
6822/*
6823 * Recompiler related stuff.
6824 */
6825extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6826extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6827extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6828extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6829extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6830extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6831extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6832
6833DECLHIDDEN(int) iemPollTimers(PVMCC pVM, PVMCPUCC pVCpu) RT_NOEXCEPT;
6834
6835DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6836 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6837void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6838DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6839void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6840void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6841DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6842DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6843
6844
6845/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6846#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6847typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6848typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6849# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6850 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6851# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6852 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6853
6854#else
6855typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6856typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6857# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6858 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6859# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6860 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6861#endif
6862
6863
6864IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6865IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6866
6867IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6868
6869IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6870IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimers);
6871IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckTimersAndIrq);
6872IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6873IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6874IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6875
6876IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6877IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6878IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6879
6880/* Branching: */
6881IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6882IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6883IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6884
6885IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6886IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6887IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6888
6889/* Natural page crossing: */
6890IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6891IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6892IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6893
6894IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6895IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6896IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6897
6898IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6899IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6900IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6901
6902IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Jump);
6903
6904bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6905bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6906#ifdef IEM_WITH_INTRA_TB_JUMPS
6907DECLHIDDEN(int) iemThreadedCompileBackAtFirstInstruction(PVMCPU pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6908#endif
6909
6910/* Native recompiler public bits: */
6911
6912DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6913DECLHIDDEN(void) iemNativeDisassembleTb(PVMCPU pVCpu, PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6914int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6915DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, PIEMNATIVEINSTR *ppaExec,
6916 struct IEMNATIVEPERCHUNKCTX const **ppChunkCtx) RT_NOEXCEPT;
6917DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAllocFromChunk(PVMCPU pVCpu, uint32_t idxChunk, uint32_t cbReq,
6918 PIEMNATIVEINSTR *ppaExec);
6919DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6920void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6921DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6922DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemExecMemGetTbChunkCtx(PVMCPU pVCpu, PCIEMTB pTb);
6923DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemNativeRecompileAttachExecMemChunkCtx(PVMCPU pVCpu, uint32_t idxChunk);
6924
6925/** Packed 32-bit argument for iemCImpl_vpgather_worker_xx. */
6926typedef union IEMGATHERARGS
6927{
6928 /** Integer view. */
6929 uint32_t u;
6930 /** Bitfield view. */
6931 struct
6932 {
6933 uint32_t iYRegDst : 4; /**< 0 - XMM or YMM register number (destination) */
6934 uint32_t iYRegIdc : 4; /**< 4 - XMM or YMM register number (indices) */
6935 uint32_t iYRegMsk : 4; /**< 8 - XMM or YMM register number (mask) */
6936 uint32_t iGRegBase : 4; /**< 12 - general register number (base ptr) */
6937 uint32_t iScale : 2; /**< 16 - scale factor (1/2/4/8) */
6938 uint32_t enmEffOpSize : 2; /**< 18 - operand size (16/32/64/--) */
6939 uint32_t enmEffAddrMode : 2; /**< 20 - addressing mode (16/32/64/--) */
6940 uint32_t iEffSeg : 3; /**< 22 - effective segment (ES/CS/SS/DS/FS/GS) */
6941 uint32_t fVex256 : 1; /**< 25 - overall instruction width (128/256 bits) */
6942 uint32_t fIdxQword : 1; /**< 26 - individual index width (4/8 bytes) */
6943 uint32_t fValQword : 1; /**< 27 - individual value width (4/8 bytes) */
6944 } s;
6945} IEMGATHERARGS;
6946AssertCompileSize(IEMGATHERARGS, sizeof(uint32_t));
6947
6948#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6949
6950
6951/** @} */
6952
6953RT_C_DECLS_END
6954
6955/* ASM-INC: %include "IEMInternalStruct.mac" */
6956
6957#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6958
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette