VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 102011

Last change on this file since 102011 was 102010, checked in by vboxsync, 15 months ago

VMM/IEM: More on the subject of correctly flushing guest register shadow copies when making CIMPL calls. bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 284.7 KB
Line 
1/* $Id: IEMInternal.h 102010 2023-11-08 21:36:54Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
446#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
447/** @} */
448
449
450/**
451 * An IEM TLB.
452 *
453 * We've got two of these, one for data and one for instructions.
454 */
455typedef struct IEMTLB
456{
457 /** The TLB entries.
458 * We've choosen 256 because that way we can obtain the result directly from a
459 * 8-bit register without an additional AND instruction. */
460 IEMTLBENTRY aEntries[256];
461 /** The TLB revision.
462 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
463 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
464 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
465 * (The revision zero indicates an invalid TLB entry.)
466 *
467 * The initial value is choosen to cause an early wraparound. */
468 uint64_t uTlbRevision;
469 /** The TLB physical address revision - shadow of PGM variable.
470 *
471 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
472 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
473 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
474 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
475 *
476 * The initial value is choosen to cause an early wraparound. */
477 uint64_t volatile uTlbPhysRev;
478
479 /* Statistics: */
480
481 /** TLB hits (VBOX_WITH_STATISTICS only). */
482 uint64_t cTlbHits;
483 /** TLB misses. */
484 uint32_t cTlbMisses;
485 /** Slow read path. */
486 uint32_t cTlbSlowReadPath;
487 /** Safe read path. */
488 uint32_t cTlbSafeReadPath;
489 /** Safe write path. */
490 uint32_t cTlbSafeWritePath;
491#if 0
492 /** TLB misses because of tag mismatch. */
493 uint32_t cTlbMissesTag;
494 /** TLB misses because of virtual access violation. */
495 uint32_t cTlbMissesVirtAccess;
496 /** TLB misses because of dirty bit. */
497 uint32_t cTlbMissesDirty;
498 /** TLB misses because of MMIO */
499 uint32_t cTlbMissesMmio;
500 /** TLB misses because of write access handlers. */
501 uint32_t cTlbMissesWriteHandler;
502 /** TLB misses because no r3(/r0) mapping. */
503 uint32_t cTlbMissesMapping;
504#endif
505 /** Alignment padding. */
506 uint32_t au32Padding[6];
507} IEMTLB;
508AssertCompileSizeAlignment(IEMTLB, 64);
509/** IEMTLB::uTlbRevision increment. */
510#define IEMTLB_REVISION_INCR RT_BIT_64(36)
511/** IEMTLB::uTlbRevision mask. */
512#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
513/** IEMTLB::uTlbPhysRev increment.
514 * @sa IEMTLBE_F_PHYS_REV */
515#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
516/**
517 * Calculates the TLB tag for a virtual address.
518 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
519 * @param a_pTlb The TLB.
520 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
521 * the clearing of the top 16 bits won't work (if 32-bit
522 * we'll end up with mostly zeros).
523 */
524#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
525/**
526 * Calculates the TLB tag for a virtual address but without TLB revision.
527 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
528 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
529 * the clearing of the top 16 bits won't work (if 32-bit
530 * we'll end up with mostly zeros).
531 */
532#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
533/**
534 * Converts a TLB tag value into a TLB index.
535 * @returns Index into IEMTLB::aEntries.
536 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
537 */
538#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
539/**
540 * Converts a TLB tag value into a TLB index.
541 * @returns Index into IEMTLB::aEntries.
542 * @param a_pTlb The TLB.
543 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
544 */
545#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
546
547
548/** @name IEM_MC_F_XXX - MC block flags/clues.
549 * @todo Merge with IEM_CIMPL_F_XXX
550 * @{ */
551#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
552#define IEM_MC_F_MIN_186 RT_BIT_32(1)
553#define IEM_MC_F_MIN_286 RT_BIT_32(2)
554#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
555#define IEM_MC_F_MIN_386 RT_BIT_32(3)
556#define IEM_MC_F_MIN_486 RT_BIT_32(4)
557#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
558#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
559#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
560#define IEM_MC_F_64BIT RT_BIT_32(6)
561#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
562/** This is set by IEMAllN8vePython.py to indicate a variation without the
563 * flags-clearing-and-checking, when there is also a variation with that.
564 * @note Do not use this manully, it's only for python and for testing in
565 * the native recompiler! */
566#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
567/** @} */
568
569/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
570 *
571 * These clues are mainly for the recompiler, so that it can emit correct code.
572 *
573 * They are processed by the python script and which also automatically
574 * calculates flags for MC blocks based on the statements, extending the use of
575 * these flags to describe MC block behavior to the recompiler core. The python
576 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
577 * error checking purposes. The script emits the necessary fEndTb = true and
578 * similar statements as this reduces compile time a tiny bit.
579 *
580 * @{ */
581/** Flag set if direct branch, clear if absolute or indirect. */
582#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
583/** Flag set if indirect branch, clear if direct or relative.
584 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
585 * as well as for return instructions (RET, IRET, RETF). */
586#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
587/** Flag set if relative branch, clear if absolute or indirect. */
588#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
589/** Flag set if conditional branch, clear if unconditional. */
590#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
591/** Flag set if it's a far branch (changes CS). */
592#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
593/** Convenience: Testing any kind of branch. */
594#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
595
596/** Execution flags may change (IEMCPU::fExec). */
597#define IEM_CIMPL_F_MODE RT_BIT_32(5)
598/** May change significant portions of RFLAGS. */
599#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
600/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
601#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
602/** May trigger interrupt shadowing. */
603#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
604/** May enable interrupts, so recheck IRQ immediately afterwards executing
605 * the instruction. */
606#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
607/** May disable interrupts, so recheck IRQ immediately before executing the
608 * instruction. */
609#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
610/** Convenience: Check for IRQ both before and after an instruction. */
611#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
612/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
613#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
614/** May modify FPU state.
615 * @todo Not sure if this is useful yet. */
616#define IEM_CIMPL_F_FPU RT_BIT_32(12)
617/** REP prefixed instruction which may yield before updating PC.
618 * @todo Not sure if this is useful, REP functions now return non-zero
619 * status if they don't update the PC. */
620#define IEM_CIMPL_F_REP RT_BIT_32(13)
621/** I/O instruction.
622 * @todo Not sure if this is useful yet. */
623#define IEM_CIMPL_F_IO RT_BIT_32(14)
624/** Force end of TB after the instruction. */
625#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
626/** Flag set if a branch may also modify the stack (push/pop return address). */
627#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
628/** Flag set if a branch may also modify the stack (push/pop return address)
629 * and switch it (load/restore SS:RSP). */
630#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
631/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
632#define IEM_CIMPL_F_XCPT \
633 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
634 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
635
636/** The block calls a C-implementation instruction function with two implicit arguments.
637 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
638 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
639 * @note The python scripts will add this is missing. */
640#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
641/** The block calls an ASM-implementation instruction function.
642 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
643 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
644 * @note The python scripts will add this is missing. */
645#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
646/** The block calls an ASM-implementation instruction function with an implicit
647 * X86FXSTATE pointer argument.
648 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and IEM_CIMPL_F_CALLS_AIMPL.
649 * @note The python scripts will add this is missing. */
650#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
651/** @} */
652
653
654/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
655 *
656 * These flags are set when entering IEM and adjusted as code is executed, such
657 * that they will always contain the current values as instructions are
658 * finished.
659 *
660 * In recompiled execution mode, (most of) these flags are included in the
661 * translation block selection key and stored in IEMTB::fFlags alongside the
662 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
663 * in IEMCPU::fExec.
664 *
665 * @{ */
666/** Mode: The block target mode mask. */
667#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
668/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
669#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
670/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
671 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
672 * 32-bit mode (for simplifying most memory accesses). */
673#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
674/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
675#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
676/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
677#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
678
679/** X86 Mode: 16-bit on 386 or later. */
680#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
681/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
682#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
683/** X86 Mode: 16-bit protected mode on 386 or later. */
684#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
685/** X86 Mode: 16-bit protected mode on 386 or later. */
686#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
687/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
688#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
689
690/** X86 Mode: 32-bit on 386 or later. */
691#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
692/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
693#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
694/** X86 Mode: 32-bit protected mode. */
695#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
696/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
697#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
698
699/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
700#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
701
702
703/** Bypass access handlers when set. */
704#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
705/** Have pending hardware instruction breakpoints. */
706#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
707/** Have pending hardware data breakpoints. */
708#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
709
710/** X86: Have pending hardware I/O breakpoints. */
711#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
712/** X86: Disregard the lock prefix (implied or not) when set. */
713#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
714
715/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
716#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
717
718/** Caller configurable options. */
719#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
720
721/** X86: The current protection level (CPL) shift factor. */
722#define IEM_F_X86_CPL_SHIFT 8
723/** X86: The current protection level (CPL) mask. */
724#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
725/** X86: The current protection level (CPL) shifted mask. */
726#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
727
728/** X86 execution context.
729 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
730 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
731 * mode. */
732#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
733/** X86 context: Plain regular execution context. */
734#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
735/** X86 context: VT-x enabled. */
736#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
737/** X86 context: AMD-V enabled. */
738#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
739/** X86 context: In AMD-V or VT-x guest mode. */
740#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
741/** X86 context: System management mode (SMM). */
742#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
743
744/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
745 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
746 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
747 * alread). */
748
749/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
750 * iemRegFinishClearingRF() most for most situations
751 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
752 * the IEM_F_PENDING_BRK_XXX bits alread). */
753
754/** @} */
755
756
757/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
758 *
759 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
760 * translation block flags. The combined flag mask (subject to
761 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
762 *
763 * @{ */
764/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
765#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
766
767/** Type: The block type mask. */
768#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
769/** Type: Purly threaded recompiler (via tables). */
770#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
771/** Type: Native recompilation. */
772#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
773
774/** Set when we're starting the block in an "interrupt shadow".
775 * We don't need to distingish between the two types of this mask, thus the one.
776 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
777#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
778/** Set when we're currently inhibiting NMIs
779 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
780#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
781
782/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
783 * we're close the limit before starting a TB, as determined by
784 * iemGetTbFlagsForCurrentPc(). */
785#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
786
787/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
788 * @note We skip the CPL as we don't currently generate ring-specific code,
789 * that's all handled in CIMPL functions.
790 *
791 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
792 * exception of SMM (which we don't implement). */
793#define IEMTB_F_KEY_MASK ( (UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK | IEMTB_F_TYPE_MASK)) \
794 | IEM_F_X86_CTX_SMM)
795/** @} */
796
797AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
798AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
799AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
800AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
801AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
802AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
803AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
804AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
805AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
806AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
807AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
808AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
809AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
810AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
811AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
812AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
813AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
814AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
815AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
816
817AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
818AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
819AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
820AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
821AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
822AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
823AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
824AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
825AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
826AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
827AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
828AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
829
830AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
831AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
832AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
833
834/** Native instruction type for use with the native code generator.
835 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
836#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
837typedef uint8_t IEMNATIVEINSTR;
838#else
839typedef uint32_t IEMNATIVEINSTR;
840#endif
841/** Pointer to a native instruction unit. */
842typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
843/** Pointer to a const native instruction unit. */
844typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
845
846/**
847 * A call for the threaded call table.
848 */
849typedef struct IEMTHRDEDCALLENTRY
850{
851 /** The function to call (IEMTHREADEDFUNCS). */
852 uint16_t enmFunction;
853 /** Instruction number in the TB (for statistics). */
854 uint8_t idxInstr;
855 uint8_t uUnused0;
856
857 /** Offset into IEMTB::pabOpcodes. */
858 uint16_t offOpcode;
859 /** The opcode length. */
860 uint8_t cbOpcode;
861 /** Index in to IEMTB::aRanges. */
862 uint8_t idxRange;
863
864 /** Generic parameters. */
865 uint64_t auParams[3];
866} IEMTHRDEDCALLENTRY;
867AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
868/** Pointer to a threaded call entry. */
869typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
870/** Pointer to a const threaded call entry. */
871typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
872
873/**
874 * Native IEM TB 'function' typedef.
875 *
876 * This will throw/longjmp on occation.
877 *
878 * @note AMD64 doesn't have that many non-volatile registers and does sport
879 * 32-bit address displacments, so we don't need pCtx.
880 *
881 * On ARM64 pCtx allows us to directly address the whole register
882 * context without requiring a separate indexing register holding the
883 * offset. This saves an instruction loading the offset for each guest
884 * CPU context access, at the cost of a non-volatile register.
885 * Fortunately, ARM64 has quite a lot more registers.
886 */
887typedef
888#ifdef RT_ARCH_AMD64
889int FNIEMTBNATIVE(PVMCPUCC pVCpu)
890#else
891int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
892#endif
893#if RT_CPLUSPLUS_PREREQ(201700)
894 IEM_NOEXCEPT_MAY_LONGJMP
895#endif
896 ;
897/** Pointer to a native IEM TB entry point function.
898 * This will throw/longjmp on occation. */
899typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
900
901
902/**
903 * Translation block debug info entry type.
904 */
905typedef enum IEMTBDBGENTRYTYPE
906{
907 kIemTbDbgEntryType_Invalid = 0,
908 /** The entry is for marking a native code position.
909 * Entries following this all apply to this position. */
910 kIemTbDbgEntryType_NativeOffset,
911 /** The entry is for a new guest instruction. */
912 kIemTbDbgEntryType_GuestInstruction,
913 /** Marks the start of a threaded call. */
914 kIemTbDbgEntryType_ThreadedCall,
915 /** Marks the location of a label. */
916 kIemTbDbgEntryType_Label,
917 /** Info about a host register shadowing a guest register. */
918 kIemTbDbgEntryType_GuestRegShadowing,
919 kIemTbDbgEntryType_End
920} IEMTBDBGENTRYTYPE;
921
922/**
923 * Translation block debug info entry.
924 */
925typedef union IEMTBDBGENTRY
926{
927 /** Plain 32-bit view. */
928 uint32_t u;
929
930 /** Generic view for getting at the type field. */
931 struct
932 {
933 /** IEMTBDBGENTRYTYPE */
934 uint32_t uType : 4;
935 uint32_t uTypeSpecific : 28;
936 } Gen;
937
938 struct
939 {
940 /** kIemTbDbgEntryType_ThreadedCall1. */
941 uint32_t uType : 4;
942 /** Native code offset. */
943 uint32_t offNative : 28;
944 } NativeOffset;
945
946 struct
947 {
948 /** kIemTbDbgEntryType_GuestInstruction. */
949 uint32_t uType : 4;
950 uint32_t uUnused : 4;
951 /** The IEM_F_XXX flags. */
952 uint32_t fExec : 24;
953 } GuestInstruction;
954
955 struct
956 {
957 /* kIemTbDbgEntryType_ThreadedCall. */
958 uint32_t uType : 4;
959 /** Set if the call was recompiled to native code, clear if just calling
960 * threaded function. */
961 uint32_t fRecompiled : 1;
962 uint32_t uUnused : 11;
963 /** The threaded call number (IEMTHREADEDFUNCS). */
964 uint32_t enmCall : 16;
965 } ThreadedCall;
966
967 struct
968 {
969 /* kIemTbDbgEntryType_Label. */
970 uint32_t uType : 4;
971 uint32_t uUnused : 4;
972 /** The label type (IEMNATIVELABELTYPE). */
973 uint32_t enmLabel : 8;
974 /** The label data. */
975 uint32_t uData : 16;
976 } Label;
977
978 struct
979 {
980 /* kIemTbDbgEntryType_GuestRegShadowing. */
981 uint32_t uType : 4;
982 uint32_t uUnused : 4;
983 /** The guest register being shadowed (IEMNATIVEGSTREG). */
984 uint32_t idxGstReg : 8;
985 /** The host new register number, UINT8_MAX if dropped. */
986 uint32_t idxHstReg : 8;
987 /** The previous host register number, UINT8_MAX if new. */
988 uint32_t idxHstRegPrev : 8;
989 } GuestRegShadowing;
990} IEMTBDBGENTRY;
991AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
992/** Pointer to a debug info entry. */
993typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
994/** Pointer to a const debug info entry. */
995typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
996
997/**
998 * Translation block debug info.
999 */
1000typedef struct IEMTBDBG
1001{
1002 /** Number of entries in aEntries. */
1003 uint32_t cEntries;
1004 /** Debug info entries. */
1005 RT_FLEXIBLE_ARRAY_EXTENSION
1006 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1007} IEMTBDBG;
1008/** Pointer to TB debug info. */
1009typedef IEMTBDBG *PIEMTBDBG;
1010/** Pointer to const TB debug info. */
1011typedef IEMTBDBG const *PCIEMTBDBG;
1012
1013
1014/**
1015 * Translation block.
1016 *
1017 * The current plan is to just keep TBs and associated lookup hash table private
1018 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1019 * avoids using expensive atomic primitives for updating lists and stuff.
1020 */
1021#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1022typedef struct IEMTB
1023{
1024 /** Next block with the same hash table entry. */
1025 struct IEMTB *pNext;
1026 /** Usage counter. */
1027 uint32_t cUsed;
1028 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1029 uint32_t msLastUsed;
1030
1031 /** @name What uniquely identifies the block.
1032 * @{ */
1033 RTGCPHYS GCPhysPc;
1034 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1035 uint32_t fFlags;
1036 union
1037 {
1038 struct
1039 {
1040 /**< Relevant CS X86DESCATTR_XXX bits. */
1041 uint16_t fAttr;
1042 } x86;
1043 };
1044 /** @} */
1045
1046 /** Number of opcode ranges. */
1047 uint8_t cRanges;
1048 /** Statistics: Number of instructions in the block. */
1049 uint8_t cInstructions;
1050
1051 /** Type specific info. */
1052 union
1053 {
1054 struct
1055 {
1056 /** The call sequence table. */
1057 PIEMTHRDEDCALLENTRY paCalls;
1058 /** Number of calls in paCalls. */
1059 uint16_t cCalls;
1060 /** Number of calls allocated. */
1061 uint16_t cAllocated;
1062 } Thrd;
1063 struct
1064 {
1065 /** The native instructions (PFNIEMTBNATIVE). */
1066 PIEMNATIVEINSTR paInstructions;
1067 /** Number of instructions pointed to by paInstructions. */
1068 uint32_t cInstructions;
1069 } Native;
1070 /** Generic view for zeroing when freeing. */
1071 struct
1072 {
1073 uintptr_t uPtr;
1074 uint32_t uData;
1075 } Gen;
1076 };
1077
1078 /** The allocation chunk this TB belongs to. */
1079 uint8_t idxAllocChunk;
1080 uint8_t bUnused;
1081
1082 /** Number of bytes of opcodes stored in pabOpcodes.
1083 * @todo this field isn't really needed, aRanges keeps the actual info. */
1084 uint16_t cbOpcodes;
1085 /** Pointer to the opcode bytes this block was recompiled from. */
1086 uint8_t *pabOpcodes;
1087
1088 /** Debug info if enabled.
1089 * This is only generated by the native recompiler. */
1090 PIEMTBDBG pDbgInfo;
1091
1092 /* --- 64 byte cache line end --- */
1093
1094 /** Opcode ranges.
1095 *
1096 * The opcode checkers and maybe TLB loading functions will use this to figure
1097 * out what to do. The parameter will specify an entry and the opcode offset to
1098 * start at and the minimum number of bytes to verify (instruction length).
1099 *
1100 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1101 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1102 * code TLB (must have a valid entry for that address) and scan the ranges to
1103 * locate the corresponding opcodes. Probably.
1104 */
1105 struct IEMTBOPCODERANGE
1106 {
1107 /** Offset within pabOpcodes. */
1108 uint16_t offOpcodes;
1109 /** Number of bytes. */
1110 uint16_t cbOpcodes;
1111 /** The page offset. */
1112 RT_GCC_EXTENSION
1113 uint16_t offPhysPage : 12;
1114 /** Unused bits. */
1115 RT_GCC_EXTENSION
1116 uint16_t u2Unused : 2;
1117 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1118 RT_GCC_EXTENSION
1119 uint16_t idxPhysPage : 2;
1120 } aRanges[8];
1121
1122 /** Physical pages that this TB covers.
1123 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1124 RTGCPHYS aGCPhysPages[2];
1125} IEMTB;
1126#pragma pack()
1127AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1128AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1129AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1130AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1131AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1132AssertCompileMemberOffset(IEMTB, aRanges, 64);
1133AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1134#if 1
1135AssertCompileSize(IEMTB, 128);
1136# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1137#else
1138AssertCompileSize(IEMTB, 168);
1139# undef IEMTB_SIZE_IS_POWER_OF_TWO
1140#endif
1141
1142/** Pointer to a translation block. */
1143typedef IEMTB *PIEMTB;
1144/** Pointer to a const translation block. */
1145typedef IEMTB const *PCIEMTB;
1146
1147/**
1148 * A chunk of memory in the TB allocator.
1149 */
1150typedef struct IEMTBCHUNK
1151{
1152 /** Pointer to the translation blocks in this chunk. */
1153 PIEMTB paTbs;
1154#ifdef IN_RING0
1155 /** Allocation handle. */
1156 RTR0MEMOBJ hMemObj;
1157#endif
1158} IEMTBCHUNK;
1159
1160/**
1161 * A per-CPU translation block allocator.
1162 *
1163 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1164 * the length of the collision list, and of course also for cache line alignment
1165 * reasons, the TBs must be allocated with at least 64-byte alignment.
1166 * Memory is there therefore allocated using one of the page aligned allocators.
1167 *
1168 *
1169 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1170 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1171 * that enables us to quickly calculate the allocation bitmap position when
1172 * freeing the translation block.
1173 */
1174typedef struct IEMTBALLOCATOR
1175{
1176 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1177 uint32_t uMagic;
1178
1179#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1180 /** Mask corresponding to cTbsPerChunk - 1. */
1181 uint32_t fChunkMask;
1182 /** Shift count corresponding to cTbsPerChunk. */
1183 uint8_t cChunkShift;
1184#else
1185 uint32_t uUnused;
1186 uint8_t bUnused;
1187#endif
1188 /** Number of chunks we're allowed to allocate. */
1189 uint8_t cMaxChunks;
1190 /** Number of chunks currently populated. */
1191 uint16_t cAllocatedChunks;
1192 /** Number of translation blocks per chunk. */
1193 uint32_t cTbsPerChunk;
1194 /** Chunk size. */
1195 uint32_t cbPerChunk;
1196
1197 /** The maximum number of TBs. */
1198 uint32_t cMaxTbs;
1199 /** Total number of TBs in the populated chunks.
1200 * (cAllocatedChunks * cTbsPerChunk) */
1201 uint32_t cTotalTbs;
1202 /** The current number of TBs in use.
1203 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1204 uint32_t cInUseTbs;
1205 /** Statistics: Number of the cInUseTbs that are native ones. */
1206 uint32_t cNativeTbs;
1207 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1208 uint32_t cThreadedTbs;
1209
1210 /** Where to start pruning TBs from when we're out.
1211 * See iemTbAllocatorAllocSlow for details. */
1212 uint32_t iPruneFrom;
1213 /** Hint about which bit to start scanning the bitmap from. */
1214 uint32_t iStartHint;
1215
1216 /** Statistics: Number of TB allocation calls. */
1217 STAMCOUNTER StatAllocs;
1218 /** Statistics: Number of TB free calls. */
1219 STAMCOUNTER StatFrees;
1220 /** Statistics: Time spend pruning. */
1221 STAMPROFILE StatPrune;
1222
1223 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1224 PIEMTB pDelayedFreeHead;
1225
1226 /** Allocation chunks. */
1227 IEMTBCHUNK aChunks[256];
1228
1229 /** Allocation bitmap for all possible chunk chunks. */
1230 RT_FLEXIBLE_ARRAY_EXTENSION
1231 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1232} IEMTBALLOCATOR;
1233/** Pointer to a TB allocator. */
1234typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1235
1236/** Magic value for the TB allocator (Emmet Harley Cohen). */
1237#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1238
1239
1240/**
1241 * A per-CPU translation block cache (hash table).
1242 *
1243 * The hash table is allocated once during IEM initialization and size double
1244 * the max TB count, rounded up to the nearest power of two (so we can use and
1245 * AND mask rather than a rest division when hashing).
1246 */
1247typedef struct IEMTBCACHE
1248{
1249 /** Magic value (IEMTBCACHE_MAGIC). */
1250 uint32_t uMagic;
1251 /** Size of the hash table. This is a power of two. */
1252 uint32_t cHash;
1253 /** The mask corresponding to cHash. */
1254 uint32_t uHashMask;
1255 uint32_t uPadding;
1256
1257 /** @name Statistics
1258 * @{ */
1259 /** Number of collisions ever. */
1260 STAMCOUNTER cCollisions;
1261
1262 /** Statistics: Number of TB lookup misses. */
1263 STAMCOUNTER cLookupMisses;
1264 /** Statistics: Number of TB lookup hits (debug only). */
1265 STAMCOUNTER cLookupHits;
1266 STAMCOUNTER auPadding2[3];
1267 /** Statistics: Collision list length pruning. */
1268 STAMPROFILE StatPrune;
1269 /** @} */
1270
1271 /** The hash table itself.
1272 * @note The lower 6 bits of the pointer is used for keeping the collision
1273 * list length, so we can take action when it grows too long.
1274 * This works because TBs are allocated using a 64 byte (or
1275 * higher) alignment from page aligned chunks of memory, so the lower
1276 * 6 bits of the address will always be zero.
1277 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1278 */
1279 RT_FLEXIBLE_ARRAY_EXTENSION
1280 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1281} IEMTBCACHE;
1282/** Pointer to a per-CPU translation block cahce. */
1283typedef IEMTBCACHE *PIEMTBCACHE;
1284
1285/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1286#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1287
1288/** The collision count mask for IEMTBCACHE::apHash entries. */
1289#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1290/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1291#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1292/** Combine a TB pointer and a collision list length into a value for an
1293 * IEMTBCACHE::apHash entry. */
1294#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1295/** Combine a TB pointer and a collision list length into a value for an
1296 * IEMTBCACHE::apHash entry. */
1297#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1298/** Combine a TB pointer and a collision list length into a value for an
1299 * IEMTBCACHE::apHash entry. */
1300#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1301
1302/**
1303 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1304 */
1305#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1306 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1307
1308/**
1309 * Calculates the hash table slot for a TB from physical PC address and TB
1310 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1311 */
1312#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1313 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1314
1315
1316/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1317 *
1318 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1319 *
1320 * @{ */
1321/** Value if no branching happened recently. */
1322#define IEMBRANCHED_F_NO UINT8_C(0x00)
1323/** Flag set if direct branch, clear if absolute or indirect. */
1324#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1325/** Flag set if indirect branch, clear if direct or relative. */
1326#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1327/** Flag set if relative branch, clear if absolute or indirect. */
1328#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1329/** Flag set if conditional branch, clear if unconditional. */
1330#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1331/** Flag set if it's a far branch. */
1332#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1333/** Flag set if the stack pointer is modified. */
1334#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1335/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1336#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1337/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1338#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1339/** @} */
1340
1341
1342/**
1343 * The per-CPU IEM state.
1344 */
1345typedef struct IEMCPU
1346{
1347 /** Info status code that needs to be propagated to the IEM caller.
1348 * This cannot be passed internally, as it would complicate all success
1349 * checks within the interpreter making the code larger and almost impossible
1350 * to get right. Instead, we'll store status codes to pass on here. Each
1351 * source of these codes will perform appropriate sanity checks. */
1352 int32_t rcPassUp; /* 0x00 */
1353 /** Execution flag, IEM_F_XXX. */
1354 uint32_t fExec; /* 0x04 */
1355
1356 /** @name Decoder state.
1357 * @{ */
1358#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1359# ifdef IEM_WITH_CODE_TLB
1360 /** The offset of the next instruction byte. */
1361 uint32_t offInstrNextByte; /* 0x08 */
1362 /** The number of bytes available at pbInstrBuf for the current instruction.
1363 * This takes the max opcode length into account so that doesn't need to be
1364 * checked separately. */
1365 uint32_t cbInstrBuf; /* 0x0c */
1366 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1367 * This can be NULL if the page isn't mappable for some reason, in which
1368 * case we'll do fallback stuff.
1369 *
1370 * If we're executing an instruction from a user specified buffer,
1371 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1372 * aligned pointer but pointer to the user data.
1373 *
1374 * For instructions crossing pages, this will start on the first page and be
1375 * advanced to the next page by the time we've decoded the instruction. This
1376 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1377 */
1378 uint8_t const *pbInstrBuf; /* 0x10 */
1379# if ARCH_BITS == 32
1380 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1381# endif
1382 /** The program counter corresponding to pbInstrBuf.
1383 * This is set to a non-canonical address when we need to invalidate it. */
1384 uint64_t uInstrBufPc; /* 0x18 */
1385 /** The guest physical address corresponding to pbInstrBuf. */
1386 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1387 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1388 * This takes the CS segment limit into account. */
1389 uint16_t cbInstrBufTotal; /* 0x28 */
1390 /** Offset into pbInstrBuf of the first byte of the current instruction.
1391 * Can be negative to efficiently handle cross page instructions. */
1392 int16_t offCurInstrStart; /* 0x2a */
1393
1394 /** The prefix mask (IEM_OP_PRF_XXX). */
1395 uint32_t fPrefixes; /* 0x2c */
1396 /** The extra REX ModR/M register field bit (REX.R << 3). */
1397 uint8_t uRexReg; /* 0x30 */
1398 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1399 * (REX.B << 3). */
1400 uint8_t uRexB; /* 0x31 */
1401 /** The extra REX SIB index field bit (REX.X << 3). */
1402 uint8_t uRexIndex; /* 0x32 */
1403
1404 /** The effective segment register (X86_SREG_XXX). */
1405 uint8_t iEffSeg; /* 0x33 */
1406
1407 /** The offset of the ModR/M byte relative to the start of the instruction. */
1408 uint8_t offModRm; /* 0x34 */
1409
1410# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1411 /** The current offset into abOpcode. */
1412 uint8_t offOpcode; /* 0x35 */
1413# else
1414 uint8_t bUnused; /* 0x35 */
1415# endif
1416# else /* !IEM_WITH_CODE_TLB */
1417 /** The size of what has currently been fetched into abOpcode. */
1418 uint8_t cbOpcode; /* 0x08 */
1419 /** The current offset into abOpcode. */
1420 uint8_t offOpcode; /* 0x09 */
1421 /** The offset of the ModR/M byte relative to the start of the instruction. */
1422 uint8_t offModRm; /* 0x0a */
1423
1424 /** The effective segment register (X86_SREG_XXX). */
1425 uint8_t iEffSeg; /* 0x0b */
1426
1427 /** The prefix mask (IEM_OP_PRF_XXX). */
1428 uint32_t fPrefixes; /* 0x0c */
1429 /** The extra REX ModR/M register field bit (REX.R << 3). */
1430 uint8_t uRexReg; /* 0x10 */
1431 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1432 * (REX.B << 3). */
1433 uint8_t uRexB; /* 0x11 */
1434 /** The extra REX SIB index field bit (REX.X << 3). */
1435 uint8_t uRexIndex; /* 0x12 */
1436
1437# endif /* !IEM_WITH_CODE_TLB */
1438
1439 /** The effective operand mode. */
1440 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1441 /** The default addressing mode. */
1442 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1443 /** The effective addressing mode. */
1444 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1445 /** The default operand mode. */
1446 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1447
1448 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1449 uint8_t idxPrefix; /* 0x3a, 0x17 */
1450 /** 3rd VEX/EVEX/XOP register.
1451 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1452 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1453 /** The VEX/EVEX/XOP length field. */
1454 uint8_t uVexLength; /* 0x3c, 0x19 */
1455 /** Additional EVEX stuff. */
1456 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1457
1458# ifndef IEM_WITH_CODE_TLB
1459 /** Explicit alignment padding. */
1460 uint8_t abAlignment2a[1]; /* 0x1b */
1461# endif
1462 /** The FPU opcode (FOP). */
1463 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1464# ifndef IEM_WITH_CODE_TLB
1465 /** Explicit alignment padding. */
1466 uint8_t abAlignment2b[2]; /* 0x1e */
1467# endif
1468
1469 /** The opcode bytes. */
1470 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1471 /** Explicit alignment padding. */
1472# ifdef IEM_WITH_CODE_TLB
1473 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1474# else
1475 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1476# endif
1477#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1478 uint8_t abOpaqueDecoder[0x4f - 0x8];
1479#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1480 /** @} */
1481
1482
1483 /** The number of active guest memory mappings. */
1484 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1485
1486 /** Records for tracking guest memory mappings. */
1487 struct
1488 {
1489 /** The address of the mapped bytes. */
1490 R3R0PTRTYPE(void *) pv;
1491 /** The access flags (IEM_ACCESS_XXX).
1492 * IEM_ACCESS_INVALID if the entry is unused. */
1493 uint32_t fAccess;
1494#if HC_ARCH_BITS == 64
1495 uint32_t u32Alignment4; /**< Alignment padding. */
1496#endif
1497 } aMemMappings[3]; /* 0x50 LB 0x30 */
1498
1499 /** Locking records for the mapped memory. */
1500 union
1501 {
1502 PGMPAGEMAPLOCK Lock;
1503 uint64_t au64Padding[2];
1504 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1505
1506 /** Bounce buffer info.
1507 * This runs in parallel to aMemMappings. */
1508 struct
1509 {
1510 /** The physical address of the first byte. */
1511 RTGCPHYS GCPhysFirst;
1512 /** The physical address of the second page. */
1513 RTGCPHYS GCPhysSecond;
1514 /** The number of bytes in the first page. */
1515 uint16_t cbFirst;
1516 /** The number of bytes in the second page. */
1517 uint16_t cbSecond;
1518 /** Whether it's unassigned memory. */
1519 bool fUnassigned;
1520 /** Explicit alignment padding. */
1521 bool afAlignment5[3];
1522 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1523
1524 /** The flags of the current exception / interrupt. */
1525 uint32_t fCurXcpt; /* 0xf8 */
1526 /** The current exception / interrupt. */
1527 uint8_t uCurXcpt; /* 0xfc */
1528 /** Exception / interrupt recursion depth. */
1529 int8_t cXcptRecursions; /* 0xfb */
1530
1531 /** The next unused mapping index.
1532 * @todo try find room for this up with cActiveMappings. */
1533 uint8_t iNextMapping; /* 0xfd */
1534 uint8_t abAlignment7[1];
1535
1536 /** Bounce buffer storage.
1537 * This runs in parallel to aMemMappings and aMemBbMappings. */
1538 struct
1539 {
1540 uint8_t ab[512];
1541 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1542
1543
1544 /** Pointer set jump buffer - ring-3 context. */
1545 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1546 /** Pointer set jump buffer - ring-0 context. */
1547 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1548
1549 /** @todo Should move this near @a fCurXcpt later. */
1550 /** The CR2 for the current exception / interrupt. */
1551 uint64_t uCurXcptCr2;
1552 /** The error code for the current exception / interrupt. */
1553 uint32_t uCurXcptErr;
1554
1555 /** @name Statistics
1556 * @{ */
1557 /** The number of instructions we've executed. */
1558 uint32_t cInstructions;
1559 /** The number of potential exits. */
1560 uint32_t cPotentialExits;
1561 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1562 * This may contain uncommitted writes. */
1563 uint32_t cbWritten;
1564 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1565 uint32_t cRetInstrNotImplemented;
1566 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1567 uint32_t cRetAspectNotImplemented;
1568 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1569 uint32_t cRetInfStatuses;
1570 /** Counts other error statuses returned. */
1571 uint32_t cRetErrStatuses;
1572 /** Number of times rcPassUp has been used. */
1573 uint32_t cRetPassUpStatus;
1574 /** Number of times RZ left with instruction commit pending for ring-3. */
1575 uint32_t cPendingCommit;
1576 /** Number of long jumps. */
1577 uint32_t cLongJumps;
1578 /** @} */
1579
1580 /** @name Target CPU information.
1581 * @{ */
1582#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1583 /** The target CPU. */
1584 uint8_t uTargetCpu;
1585#else
1586 uint8_t bTargetCpuPadding;
1587#endif
1588 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1589 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1590 * native host support and the 2nd for when there is.
1591 *
1592 * The two values are typically indexed by a g_CpumHostFeatures bit.
1593 *
1594 * This is for instance used for the BSF & BSR instructions where AMD and
1595 * Intel CPUs produce different EFLAGS. */
1596 uint8_t aidxTargetCpuEflFlavour[2];
1597
1598 /** The CPU vendor. */
1599 CPUMCPUVENDOR enmCpuVendor;
1600 /** @} */
1601
1602 /** @name Host CPU information.
1603 * @{ */
1604 /** The CPU vendor. */
1605 CPUMCPUVENDOR enmHostCpuVendor;
1606 /** @} */
1607
1608 /** Counts RDMSR \#GP(0) LogRel(). */
1609 uint8_t cLogRelRdMsr;
1610 /** Counts WRMSR \#GP(0) LogRel(). */
1611 uint8_t cLogRelWrMsr;
1612 /** Alignment padding. */
1613 uint8_t abAlignment9[46];
1614
1615 /** @name Recompilation
1616 * @{ */
1617 /** Pointer to the current translation block.
1618 * This can either be one being executed or one being compiled. */
1619 R3PTRTYPE(PIEMTB) pCurTbR3;
1620 /** Fixed TB used for threaded recompilation.
1621 * This is allocated once with maxed-out sizes and re-used afterwards. */
1622 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1623 /** Pointer to the ring-3 TB cache for this EMT. */
1624 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1625 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1626 * The TBs are based on physical addresses, so this is needed to correleated
1627 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1628 uint64_t uCurTbStartPc;
1629 /** Number of threaded TBs executed. */
1630 uint64_t cTbExecThreaded;
1631 /** Number of native TBs executed. */
1632 uint64_t cTbExecNative;
1633 /** Whether we need to check the opcode bytes for the current instruction.
1634 * This is set by a previous instruction if it modified memory or similar. */
1635 bool fTbCheckOpcodes;
1636 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1637 uint8_t fTbBranched;
1638 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1639 bool fTbCrossedPage;
1640 /** Whether to end the current TB. */
1641 bool fEndTb;
1642 /** Number of instructions before we need emit an IRQ check call again.
1643 * This helps making sure we don't execute too long w/o checking for
1644 * interrupts and immediately following instructions that may enable
1645 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1646 * required to make sure we check following the next instruction as well, see
1647 * fTbCurInstrIsSti. */
1648 uint8_t cInstrTillIrqCheck;
1649 /** Indicates that the current instruction is an STI. This is set by the
1650 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1651 bool fTbCurInstrIsSti;
1652 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1653 uint16_t cbOpcodesAllocated;
1654 /** Spaced reserved for recompiler data / alignment. */
1655 bool afRecompilerStuff1[4];
1656 /** The virtual sync time at the last timer poll call. */
1657 uint32_t msRecompilerPollNow;
1658 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1659 uint32_t fTbCurInstr;
1660 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1661 uint32_t fTbPrevInstr;
1662 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1663 RTGCPHYS GCPhysInstrBufPrev;
1664 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1665 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1666 * whether a branch instruction jumps to a new page or stays within the
1667 * current one. */
1668 RTGCPHYS GCPhysTbBranchSrcBuf;
1669 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1670 uint64_t GCVirtTbBranchSrcBuf;
1671 /** Pointer to the ring-3 TB allocator for this EMT. */
1672 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1673 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1674 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1675 /** Pointer to the native recompiler state for ring-3. */
1676 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1677 /** Alignment padding. */
1678 uint64_t auAlignment10[4];
1679 /** Statistics: Times TB execution was broken off before reaching the end. */
1680 STAMCOUNTER StatTbExecBreaks;
1681 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1682 STAMCOUNTER StatCheckIrqBreaks;
1683 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1684 STAMCOUNTER StatCheckModeBreaks;
1685 /** Statistics: Times a post jump target check missed and had to find new TB. */
1686 STAMCOUNTER StatCheckBranchMisses;
1687 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1688 STAMCOUNTER StatCheckNeedCsLimChecking;
1689 /** Threaded TB statistics: Number of instructions per TB. */
1690 STAMPROFILE StatTbThreadedInstr;
1691 /** Threaded TB statistics: Number of calls per TB. */
1692 STAMPROFILE StatTbThreadedCalls;
1693 /** Native TB statistics: Native code size per TB. */
1694 STAMPROFILE StatTbNativeCode;
1695 /** Native TB statistics: Profiling native recompilation. */
1696 STAMPROFILE StatNativeRecompilation;
1697 /** @} */
1698
1699 /** Data TLB.
1700 * @remarks Must be 64-byte aligned. */
1701 IEMTLB DataTlb;
1702 /** Instruction TLB.
1703 * @remarks Must be 64-byte aligned. */
1704 IEMTLB CodeTlb;
1705
1706 /** Exception statistics. */
1707 STAMCOUNTER aStatXcpts[32];
1708 /** Interrupt statistics. */
1709 uint32_t aStatInts[256];
1710
1711#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1712 /** Instruction statistics for ring-0/raw-mode. */
1713 IEMINSTRSTATS StatsRZ;
1714 /** Instruction statistics for ring-3. */
1715 IEMINSTRSTATS StatsR3;
1716#endif
1717} IEMCPU;
1718AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1719AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1720AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1721AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1722AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1723AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1724
1725/** Pointer to the per-CPU IEM state. */
1726typedef IEMCPU *PIEMCPU;
1727/** Pointer to the const per-CPU IEM state. */
1728typedef IEMCPU const *PCIEMCPU;
1729
1730
1731/** @def IEM_GET_CTX
1732 * Gets the guest CPU context for the calling EMT.
1733 * @returns PCPUMCTX
1734 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1735 */
1736#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1737
1738/** @def IEM_CTX_ASSERT
1739 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1740 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1741 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1742 */
1743#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1744 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1745 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1746 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1747
1748/** @def IEM_CTX_IMPORT_RET
1749 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1750 *
1751 * Will call the keep to import the bits as needed.
1752 *
1753 * Returns on import failure.
1754 *
1755 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1756 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1757 */
1758#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1759 do { \
1760 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1761 { /* likely */ } \
1762 else \
1763 { \
1764 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1765 AssertRCReturn(rcCtxImport, rcCtxImport); \
1766 } \
1767 } while (0)
1768
1769/** @def IEM_CTX_IMPORT_NORET
1770 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1771 *
1772 * Will call the keep to import the bits as needed.
1773 *
1774 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1775 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1776 */
1777#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1778 do { \
1779 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1780 { /* likely */ } \
1781 else \
1782 { \
1783 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1784 AssertLogRelRC(rcCtxImport); \
1785 } \
1786 } while (0)
1787
1788/** @def IEM_CTX_IMPORT_JMP
1789 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1790 *
1791 * Will call the keep to import the bits as needed.
1792 *
1793 * Jumps on import failure.
1794 *
1795 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1796 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1797 */
1798#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1799 do { \
1800 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1801 { /* likely */ } \
1802 else \
1803 { \
1804 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1805 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1806 } \
1807 } while (0)
1808
1809
1810
1811/** @def IEM_GET_TARGET_CPU
1812 * Gets the current IEMTARGETCPU value.
1813 * @returns IEMTARGETCPU value.
1814 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1815 */
1816#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1817# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1818#else
1819# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1820#endif
1821
1822/** @def IEM_GET_INSTR_LEN
1823 * Gets the instruction length. */
1824#ifdef IEM_WITH_CODE_TLB
1825# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1826#else
1827# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1828#endif
1829
1830/** @def IEM_TRY_SETJMP
1831 * Wrapper around setjmp / try, hiding all the ugly differences.
1832 *
1833 * @note Use with extreme care as this is a fragile macro.
1834 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1835 * @param a_rcTarget The variable that should receive the status code in case
1836 * of a longjmp/throw.
1837 */
1838/** @def IEM_TRY_SETJMP_AGAIN
1839 * For when setjmp / try is used again in the same variable scope as a previous
1840 * IEM_TRY_SETJMP invocation.
1841 */
1842/** @def IEM_CATCH_LONGJMP_BEGIN
1843 * Start wrapper for catch / setjmp-else.
1844 *
1845 * This will set up a scope.
1846 *
1847 * @note Use with extreme care as this is a fragile macro.
1848 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1849 * @param a_rcTarget The variable that should receive the status code in case
1850 * of a longjmp/throw.
1851 */
1852/** @def IEM_CATCH_LONGJMP_END
1853 * End wrapper for catch / setjmp-else.
1854 *
1855 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1856 * state.
1857 *
1858 * @note Use with extreme care as this is a fragile macro.
1859 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1860 */
1861#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1862# ifdef IEM_WITH_THROW_CATCH
1863# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1864 a_rcTarget = VINF_SUCCESS; \
1865 try
1866# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1867 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1868# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1869 catch (int rcThrown) \
1870 { \
1871 a_rcTarget = rcThrown
1872# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1873 } \
1874 ((void)0)
1875# else /* !IEM_WITH_THROW_CATCH */
1876# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1877 jmp_buf JmpBuf; \
1878 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
1879 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1880 if ((rcStrict = setjmp(JmpBuf)) == 0)
1881# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1882 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
1883 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1884 if ((rcStrict = setjmp(JmpBuf)) == 0)
1885# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1886 else \
1887 { \
1888 ((void)0)
1889# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1890 } \
1891 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1892# endif /* !IEM_WITH_THROW_CATCH */
1893#endif /* IEM_WITH_SETJMP */
1894
1895
1896/**
1897 * Shared per-VM IEM data.
1898 */
1899typedef struct IEM
1900{
1901 /** The VMX APIC-access page handler type. */
1902 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1903#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1904 /** Set if the CPUID host call functionality is enabled. */
1905 bool fCpuIdHostCall;
1906#endif
1907} IEM;
1908
1909
1910
1911/** @name IEM_ACCESS_XXX - Access details.
1912 * @{ */
1913#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1914#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1915#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1916#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1917#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1918#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1919#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1920#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1921#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1922#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1923/** The writes are partial, so if initialize the bounce buffer with the
1924 * orignal RAM content. */
1925#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1926/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1927#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1928/** Bounce buffer with ring-3 write pending, first page. */
1929#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1930/** Bounce buffer with ring-3 write pending, second page. */
1931#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1932/** Not locked, accessed via the TLB. */
1933#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1934/** Valid bit mask. */
1935#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1936/** Shift count for the TLB flags (upper word). */
1937#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1938
1939/** Read+write data alias. */
1940#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1941/** Write data alias. */
1942#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1943/** Read data alias. */
1944#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1945/** Instruction fetch alias. */
1946#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1947/** Stack write alias. */
1948#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1949/** Stack read alias. */
1950#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1951/** Stack read+write alias. */
1952#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1953/** Read system table alias. */
1954#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1955/** Read+write system table alias. */
1956#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1957/** @} */
1958
1959/** @name Prefix constants (IEMCPU::fPrefixes)
1960 * @{ */
1961#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1962#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1963#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1964#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1965#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1966#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1967#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1968
1969#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1970#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1971#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1972
1973#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1974#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1975#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1976
1977#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1978#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1979#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1980#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1981/** Mask with all the REX prefix flags.
1982 * This is generally for use when needing to undo the REX prefixes when they
1983 * are followed legacy prefixes and therefore does not immediately preceed
1984 * the first opcode byte.
1985 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1986#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1987
1988#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1989#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1990#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1991/** @} */
1992
1993/** @name IEMOPFORM_XXX - Opcode forms
1994 * @note These are ORed together with IEMOPHINT_XXX.
1995 * @{ */
1996/** ModR/M: reg, r/m */
1997#define IEMOPFORM_RM 0
1998/** ModR/M: reg, r/m (register) */
1999#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2000/** ModR/M: reg, r/m (memory) */
2001#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2002/** ModR/M: reg, r/m */
2003#define IEMOPFORM_RMI 1
2004/** ModR/M: reg, r/m (register) */
2005#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2006/** ModR/M: reg, r/m (memory) */
2007#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2008/** ModR/M: r/m, reg */
2009#define IEMOPFORM_MR 2
2010/** ModR/M: r/m (register), reg */
2011#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2012/** ModR/M: r/m (memory), reg */
2013#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2014/** ModR/M: r/m, reg */
2015#define IEMOPFORM_MRI 3
2016/** ModR/M: r/m (register), reg */
2017#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2018/** ModR/M: r/m (memory), reg */
2019#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2020/** ModR/M: r/m only */
2021#define IEMOPFORM_M 4
2022/** ModR/M: r/m only (register). */
2023#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2024/** ModR/M: r/m only (memory). */
2025#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2026/** ModR/M: reg only */
2027#define IEMOPFORM_R 5
2028
2029/** VEX+ModR/M: reg, r/m */
2030#define IEMOPFORM_VEX_RM 8
2031/** VEX+ModR/M: reg, r/m (register) */
2032#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2033/** VEX+ModR/M: reg, r/m (memory) */
2034#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2035/** VEX+ModR/M: r/m, reg */
2036#define IEMOPFORM_VEX_MR 9
2037/** VEX+ModR/M: r/m (register), reg */
2038#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2039/** VEX+ModR/M: r/m (memory), reg */
2040#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2041/** VEX+ModR/M: r/m only */
2042#define IEMOPFORM_VEX_M 10
2043/** VEX+ModR/M: r/m only (register). */
2044#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2045/** VEX+ModR/M: r/m only (memory). */
2046#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2047/** VEX+ModR/M: reg only */
2048#define IEMOPFORM_VEX_R 11
2049/** VEX+ModR/M: reg, vvvv, r/m */
2050#define IEMOPFORM_VEX_RVM 12
2051/** VEX+ModR/M: reg, vvvv, r/m (register). */
2052#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2053/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2054#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2055/** VEX+ModR/M: reg, r/m, vvvv */
2056#define IEMOPFORM_VEX_RMV 13
2057/** VEX+ModR/M: reg, r/m, vvvv (register). */
2058#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2059/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2060#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2061/** VEX+ModR/M: reg, r/m, imm8 */
2062#define IEMOPFORM_VEX_RMI 14
2063/** VEX+ModR/M: reg, r/m, imm8 (register). */
2064#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2065/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2066#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2067/** VEX+ModR/M: r/m, vvvv, reg */
2068#define IEMOPFORM_VEX_MVR 15
2069/** VEX+ModR/M: r/m, vvvv, reg (register) */
2070#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2071/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2072#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2073/** VEX+ModR/M+/n: vvvv, r/m */
2074#define IEMOPFORM_VEX_VM 16
2075/** VEX+ModR/M+/n: vvvv, r/m (register) */
2076#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2077/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2078#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2079
2080/** Fixed register instruction, no R/M. */
2081#define IEMOPFORM_FIXED 32
2082
2083/** The r/m is a register. */
2084#define IEMOPFORM_MOD3 RT_BIT_32(8)
2085/** The r/m is a memory access. */
2086#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2087/** @} */
2088
2089/** @name IEMOPHINT_XXX - Additional Opcode Hints
2090 * @note These are ORed together with IEMOPFORM_XXX.
2091 * @{ */
2092/** Ignores the operand size prefix (66h). */
2093#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2094/** Ignores REX.W (aka WIG). */
2095#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2096/** Both the operand size prefixes (66h + REX.W) are ignored. */
2097#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2098/** Allowed with the lock prefix. */
2099#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2100/** The VEX.L value is ignored (aka LIG). */
2101#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2102/** The VEX.L value must be zero (i.e. 128-bit width only). */
2103#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2104/** The VEX.V value must be zero. */
2105#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
2106
2107/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2108#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2109/** @} */
2110
2111/**
2112 * Possible hardware task switch sources.
2113 */
2114typedef enum IEMTASKSWITCH
2115{
2116 /** Task switch caused by an interrupt/exception. */
2117 IEMTASKSWITCH_INT_XCPT = 1,
2118 /** Task switch caused by a far CALL. */
2119 IEMTASKSWITCH_CALL,
2120 /** Task switch caused by a far JMP. */
2121 IEMTASKSWITCH_JUMP,
2122 /** Task switch caused by an IRET. */
2123 IEMTASKSWITCH_IRET
2124} IEMTASKSWITCH;
2125AssertCompileSize(IEMTASKSWITCH, 4);
2126
2127/**
2128 * Possible CrX load (write) sources.
2129 */
2130typedef enum IEMACCESSCRX
2131{
2132 /** CrX access caused by 'mov crX' instruction. */
2133 IEMACCESSCRX_MOV_CRX,
2134 /** CrX (CR0) write caused by 'lmsw' instruction. */
2135 IEMACCESSCRX_LMSW,
2136 /** CrX (CR0) write caused by 'clts' instruction. */
2137 IEMACCESSCRX_CLTS,
2138 /** CrX (CR0) read caused by 'smsw' instruction. */
2139 IEMACCESSCRX_SMSW
2140} IEMACCESSCRX;
2141
2142#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2143/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2144 *
2145 * These flags provide further context to SLAT page-walk failures that could not be
2146 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2147 *
2148 * @{
2149 */
2150/** Translating a nested-guest linear address failed accessing a nested-guest
2151 * physical address. */
2152# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2153/** Translating a nested-guest linear address failed accessing a
2154 * paging-structure entry or updating accessed/dirty bits. */
2155# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2156/** @} */
2157
2158DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2159# ifndef IN_RING3
2160DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2161# endif
2162#endif
2163
2164/**
2165 * Indicates to the verifier that the given flag set is undefined.
2166 *
2167 * Can be invoked again to add more flags.
2168 *
2169 * This is a NOOP if the verifier isn't compiled in.
2170 *
2171 * @note We're temporarily keeping this until code is converted to new
2172 * disassembler style opcode handling.
2173 */
2174#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2175
2176
2177/** @def IEM_DECL_IMPL_TYPE
2178 * For typedef'ing an instruction implementation function.
2179 *
2180 * @param a_RetType The return type.
2181 * @param a_Name The name of the type.
2182 * @param a_ArgList The argument list enclosed in parentheses.
2183 */
2184
2185/** @def IEM_DECL_IMPL_DEF
2186 * For defining an instruction implementation function.
2187 *
2188 * @param a_RetType The return type.
2189 * @param a_Name The name of the type.
2190 * @param a_ArgList The argument list enclosed in parentheses.
2191 */
2192
2193#if defined(__GNUC__) && defined(RT_ARCH_X86)
2194# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2195 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2196# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2197 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2198# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2199 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2200
2201#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2202# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2203 a_RetType (__fastcall a_Name) a_ArgList
2204# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2205 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2206# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2207 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2208
2209#elif __cplusplus >= 201700 /* P0012R1 support */
2210# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2211 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2212# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2213 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2214# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2215 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2216
2217#else
2218# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2219 a_RetType (VBOXCALL a_Name) a_ArgList
2220# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2221 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2222# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2223 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2224
2225#endif
2226
2227/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2228RT_C_DECLS_BEGIN
2229extern uint8_t const g_afParity[256];
2230RT_C_DECLS_END
2231
2232
2233/** @name Arithmetic assignment operations on bytes (binary).
2234 * @{ */
2235typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2236typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2237FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2238FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2239FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2240FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2241FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2242FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2243FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2244/** @} */
2245
2246/** @name Arithmetic assignment operations on words (binary).
2247 * @{ */
2248typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2249typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2250FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2251FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2252FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2253FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2254FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2255FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2256FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2257/** @} */
2258
2259/** @name Arithmetic assignment operations on double words (binary).
2260 * @{ */
2261typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2262typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2263FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2264FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2265FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2266FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2267FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2268FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2269FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2270FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2271FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2272FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2273/** @} */
2274
2275/** @name Arithmetic assignment operations on quad words (binary).
2276 * @{ */
2277typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2278typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2279FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2280FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2281FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2282FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2283FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2284FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2285FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2286FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2287FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2288FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2289/** @} */
2290
2291typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2292typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2293typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2294typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2295typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2296typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2297typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2298typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2299
2300/** @name Compare operations (thrown in with the binary ops).
2301 * @{ */
2302FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2303FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2304FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2305FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2306/** @} */
2307
2308/** @name Test operations (thrown in with the binary ops).
2309 * @{ */
2310FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2311FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2312FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2313FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2314/** @} */
2315
2316/** @name Bit operations operations (thrown in with the binary ops).
2317 * @{ */
2318FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2319FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2320FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2321FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2322FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2323FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2324FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2325FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2326FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2327FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2328FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2329FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2330/** @} */
2331
2332/** @name Arithmetic three operand operations on double words (binary).
2333 * @{ */
2334typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2335typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2336FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2337FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2338FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2339/** @} */
2340
2341/** @name Arithmetic three operand operations on quad words (binary).
2342 * @{ */
2343typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2344typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2345FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2346FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2347FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2348/** @} */
2349
2350/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2351 * @{ */
2352typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2353typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2354FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2355FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2356FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2357FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2358FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2359FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2360/** @} */
2361
2362/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2363 * @{ */
2364typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2365typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2366FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2367FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2368FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2369FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2370FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2371FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2372/** @} */
2373
2374/** @name MULX 32-bit and 64-bit.
2375 * @{ */
2376typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2377typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2378FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2379
2380typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2381typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2382FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2383/** @} */
2384
2385
2386/** @name Exchange memory with register operations.
2387 * @{ */
2388IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2389IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2390IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2391IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2392IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2393IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2394IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2395IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2396/** @} */
2397
2398/** @name Exchange and add operations.
2399 * @{ */
2400IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2401IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2402IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2403IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2404IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2405IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2406IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2407IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2408/** @} */
2409
2410/** @name Compare and exchange.
2411 * @{ */
2412IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2413IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2414IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2415IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2416IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2417IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2418#if ARCH_BITS == 32
2419IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2420IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2421#else
2422IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2423IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2424#endif
2425IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2426 uint32_t *pEFlags));
2427IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2428 uint32_t *pEFlags));
2429IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2430 uint32_t *pEFlags));
2431IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2432 uint32_t *pEFlags));
2433#ifndef RT_ARCH_ARM64
2434IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2435 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2436#endif
2437/** @} */
2438
2439/** @name Memory ordering
2440 * @{ */
2441typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2442typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2443IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2444IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2445IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2446#ifndef RT_ARCH_ARM64
2447IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2448#endif
2449/** @} */
2450
2451/** @name Double precision shifts
2452 * @{ */
2453typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2454typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2455typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2456typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2457typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2458typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2459FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2460FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2461FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2462FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2463FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2464FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2465/** @} */
2466
2467
2468/** @name Bit search operations (thrown in with the binary ops).
2469 * @{ */
2470FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2471FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2472FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2473FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2474FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2475FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2476FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2477FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2478FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2479FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2480FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2481FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2482FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2483FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2484FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2485/** @} */
2486
2487/** @name Signed multiplication operations (thrown in with the binary ops).
2488 * @{ */
2489FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2490FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2491FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2492/** @} */
2493
2494/** @name Arithmetic assignment operations on bytes (unary).
2495 * @{ */
2496typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2497typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2498FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2499FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2500FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2501FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2502/** @} */
2503
2504/** @name Arithmetic assignment operations on words (unary).
2505 * @{ */
2506typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2507typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2508FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2509FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2510FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2511FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2512/** @} */
2513
2514/** @name Arithmetic assignment operations on double words (unary).
2515 * @{ */
2516typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2517typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2518FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2519FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2520FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2521FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2522/** @} */
2523
2524/** @name Arithmetic assignment operations on quad words (unary).
2525 * @{ */
2526typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2527typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2528FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2529FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2530FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2531FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2532/** @} */
2533
2534
2535/** @name Shift operations on bytes (Group 2).
2536 * @{ */
2537typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2538typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2539FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2540FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2541FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2542FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2543FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2544FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2545FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2546/** @} */
2547
2548/** @name Shift operations on words (Group 2).
2549 * @{ */
2550typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2551typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2552FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2553FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2554FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2555FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2556FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2557FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2558FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2559/** @} */
2560
2561/** @name Shift operations on double words (Group 2).
2562 * @{ */
2563typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2564typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2565FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2566FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2567FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2568FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2569FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2570FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2571FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2572/** @} */
2573
2574/** @name Shift operations on words (Group 2).
2575 * @{ */
2576typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2577typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2578FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2579FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2580FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2581FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2582FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2583FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2584FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2585/** @} */
2586
2587/** @name Multiplication and division operations.
2588 * @{ */
2589typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2590typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2591FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2592FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2593FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2594FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2595
2596typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2597typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2598FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2599FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2600FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2601FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2602
2603typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2604typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2605FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2606FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2607FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2608FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2609
2610typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2611typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2612FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2613FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2614FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2615FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2616/** @} */
2617
2618/** @name Byte Swap.
2619 * @{ */
2620IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2621IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2622IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2623/** @} */
2624
2625/** @name Misc.
2626 * @{ */
2627FNIEMAIMPLBINU16 iemAImpl_arpl;
2628/** @} */
2629
2630/** @name RDRAND and RDSEED
2631 * @{ */
2632typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2633typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2634typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2635typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2636typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2637typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2638
2639FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2640FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2641FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2642FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2643FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2644FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2645/** @} */
2646
2647/** @name ADOX and ADCX
2648 * @{ */
2649typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2650typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2651typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2652typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2653
2654FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2655FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2656FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2657FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2658/** @} */
2659
2660/** @name FPU operations taking a 32-bit float argument
2661 * @{ */
2662typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2663 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2664typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2665
2666typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2667 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2668typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2669
2670FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2671FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2672FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2673FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2674FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2675FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2676FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2677
2678IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2679IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2680 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2681/** @} */
2682
2683/** @name FPU operations taking a 64-bit float argument
2684 * @{ */
2685typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2686 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2687typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2688
2689typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2690 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2691typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2692
2693FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2694FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2695FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2696FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2697FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2698FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2699FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2700
2701IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2702IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2703 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2704/** @} */
2705
2706/** @name FPU operations taking a 80-bit float argument
2707 * @{ */
2708typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2709 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2710typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2711FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2712FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2713FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2714FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2715FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2716FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2717FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2718FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2719FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2720
2721FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2722FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2723FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2724
2725typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2726 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2727typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2728FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2729FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2730
2731typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2732 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2733typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2734FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2735FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2736
2737typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2738typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2739FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2740FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2741FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2742FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2743FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2744FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2745FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2746
2747typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2748typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2749FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2750FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2751
2752typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2753typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2754FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2755FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2756FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2757FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2758FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2759FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2760FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2761
2762typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2763 PCRTFLOAT80U pr80Val));
2764typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2765FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2766FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2767FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2768
2769IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2770IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2771 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2772
2773IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2774IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2775 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2776
2777/** @} */
2778
2779/** @name FPU operations taking a 16-bit signed integer argument
2780 * @{ */
2781typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2782 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2783typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2784typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2785 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2786typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2787
2788FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2789FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2790FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2791FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2792FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2793FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2794
2795typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2796 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2797typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2798FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2799
2800IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2801FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2802FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2803/** @} */
2804
2805/** @name FPU operations taking a 32-bit signed integer argument
2806 * @{ */
2807typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2808 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2809typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2810typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2811 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2812typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2813
2814FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2815FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2816FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2817FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2818FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2819FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2820
2821typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2822 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2823typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2824FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2825
2826IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2827FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2828FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2829/** @} */
2830
2831/** @name FPU operations taking a 64-bit signed integer argument
2832 * @{ */
2833typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2834 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2835typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2836
2837IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2838FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2839FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2840/** @} */
2841
2842
2843/** Temporary type representing a 256-bit vector register. */
2844typedef struct { uint64_t au64[4]; } IEMVMM256;
2845/** Temporary type pointing to a 256-bit vector register. */
2846typedef IEMVMM256 *PIEMVMM256;
2847/** Temporary type pointing to a const 256-bit vector register. */
2848typedef IEMVMM256 *PCIEMVMM256;
2849
2850
2851/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2852 * @{ */
2853typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2854typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2855typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2856typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2857typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2858typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2859typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2860typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2861typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2862typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2863typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2864typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2865typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2866typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2867typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2868typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2869typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2870typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2871FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2872FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2873FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2874FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2875FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2876FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2877FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2878FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2879FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2880FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2881FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2882FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2883FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2884FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2885FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2886FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2887FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2888FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2889FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2890FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2891FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2892FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2893FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2894FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2895FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2896FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2897FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2898FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2899FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2900FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2901FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2902FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2903FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2904FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2905FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2906FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2907FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2908FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2909FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2910
2911FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2912FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2913FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2914FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2915FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2916FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2917FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2918FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2919FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2920FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2921FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2922FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2923FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2924FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2925FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2926FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2927FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2928FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2929FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2930FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2931FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2932FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2933FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2934FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2935FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2936FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2937FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2938FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2939FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2940FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2941FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2942FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2943FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2944FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2945FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2946FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2947FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2948FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2949FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2950FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2951FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2952FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2953FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2954FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2955FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2956FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2957FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2958FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2959FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2960FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2961FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2962FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2963FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2964FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2965FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2966FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2967FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2968
2969FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2970FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2971FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2972FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2973FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2974FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2975FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2976FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2977FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2978FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2979FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2980FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2981FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2982FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2983FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2984FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2985FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2986FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2987FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2988FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2989FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2990FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2991FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2992FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2993FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2994FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2995FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2996FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2997FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2998FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2999FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3000FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3001FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3002FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3003FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3004FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3005FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3006FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3007FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3008FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3009FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3010FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3011FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3012FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3013FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3014FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3015FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3016FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3017FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3018FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3019FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3020FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3021FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3022FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3023FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3024FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3025FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3026FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3027FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3028FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3029FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3030FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3031FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3032FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3033FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3034
3035FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3036FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3037FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3038FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3039
3040FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3041FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3042FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3043FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3044FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3045FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3046FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3047FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3048FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3049FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3050FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3051FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3052FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3053FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3054FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3055FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3056FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3057FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3058FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3059FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3060FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3061FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3062FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3063FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3064FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3065FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3066FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3067FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3068FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3069FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3070FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3071FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3072FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3073FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3074FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3075FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3076FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3077FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3078FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3079FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3080FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3081FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3082FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3083FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3084FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3085FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3086FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3087FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3088FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3089FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3090FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3091FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3092FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3093FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3094FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3095FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3096FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3097FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3098FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3099FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3100FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3101FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3102FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3103FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3104FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3105
3106FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3107FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3108FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3109/** @} */
3110
3111/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3112 * @{ */
3113FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3114FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3115FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3116 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3117 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3118 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3119 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3120 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3121 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3122 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3123
3124FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3125 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3126 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3127 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3128 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3129 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3130 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3131 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3132/** @} */
3133
3134/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3135 * @{ */
3136FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3137FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3138FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3139 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3140 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3141 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3142FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3143 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3144 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3145 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3146/** @} */
3147
3148/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3149 * @{ */
3150typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3151typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3152typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3153typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3154IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3155FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3156#ifndef IEM_WITHOUT_ASSEMBLY
3157FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3158#endif
3159FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3160/** @} */
3161
3162/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3163 * @{ */
3164typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3165typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3166typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3167typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3168typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3169typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3170FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3171FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3172FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3173FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3174FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3175FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3176FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3177/** @} */
3178
3179/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3180 * @{ */
3181IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3182IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3183#ifndef IEM_WITHOUT_ASSEMBLY
3184IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3185#endif
3186IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3187/** @} */
3188
3189/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3190 * @{ */
3191typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3192typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3193typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3194typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3195typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3196typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3197
3198FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3199FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3200FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3201FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3202FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3203FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3204
3205FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3206FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3207FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3208FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3209FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3210FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3211
3212FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3213FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3214FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3215FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3216FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3217FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3218/** @} */
3219
3220
3221/** @name Media (SSE/MMX/AVX) operation: Sort this later
3222 * @{ */
3223IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3224IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3225IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3226IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3227IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3228IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3229
3230IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3231IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3232IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3233IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3234IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3235
3236IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3237IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3238IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3239IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3240IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3241
3242IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3243IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3244IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3245IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3246IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3247
3248IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3249IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3250IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3251IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3252IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3253
3254IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3255IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3256IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3257IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3258IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3259
3260IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3261IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3262IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3263IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3264IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3265
3266IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3267IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3268IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3269IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3270IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3271
3272IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3273IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3274IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3275IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3276IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3277
3278IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3279IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3280IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3281IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3282IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3283
3284IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3285IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3286IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3287IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3288IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3289
3290IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3291IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3292IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3293IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3294IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3295
3296IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3297IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3298IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3299IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3300IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3301
3302IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3303IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3304IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3305IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3306IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3307
3308IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3309IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3310IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3311IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3312IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3313
3314IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3315IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3316
3317IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3318IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3319IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3320IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3321
3322IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3323IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3324IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3325IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3326
3327IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3328IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3329IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3330IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3331IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3332
3333IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3334IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3335IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3336IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3337IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3338
3339
3340typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3341typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3342typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3343typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3344typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3345typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3346
3347FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3348FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3349FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3350FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3351
3352FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3353FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3354FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3355FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3356
3357FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3358FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3359FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3360FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3361FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3362FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3363
3364FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3365FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3366FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3367FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3368FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3369
3370FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3371FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3372FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3373FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3374FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3375
3376FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3377
3378FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3379
3380FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3381FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3382FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3383FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3384FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3385FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3386IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3387IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3388
3389typedef struct IEMPCMPISTRXSRC
3390{
3391 RTUINT128U uSrc1;
3392 RTUINT128U uSrc2;
3393} IEMPCMPISTRXSRC;
3394typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3395typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3396
3397typedef struct IEMPCMPESTRXSRC
3398{
3399 RTUINT128U uSrc1;
3400 RTUINT128U uSrc2;
3401 uint64_t u64Rax;
3402 uint64_t u64Rdx;
3403} IEMPCMPESTRXSRC;
3404typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3405typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3406
3407typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3408typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3409typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3410typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3411
3412typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3413typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3414typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3415typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3416
3417FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3418FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3419FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3420FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3421
3422FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3423FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3424
3425FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3426FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3427FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3428/** @} */
3429
3430/** @name Media Odds and Ends
3431 * @{ */
3432typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3433typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3434typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3435typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3436FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3437FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3438FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3439FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3440
3441typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3442typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3443FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3444FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3445
3446typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3447typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3448typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3449typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3450typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3451typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3452typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3453typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3454
3455FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3456FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3457
3458FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3459FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3460
3461FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3462FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3463
3464FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3465FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3466
3467typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3468typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3469typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3470typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3471
3472FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3473FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3474
3475typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3476typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3477typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3478typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3479
3480FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3481FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3482
3483
3484typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3485typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3486
3487FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3488FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3489
3490FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3491FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3492
3493FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3494FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3495
3496FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3497FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3498
3499
3500typedef struct IEMMEDIAF2XMMSRC
3501{
3502 X86XMMREG uSrc1;
3503 X86XMMREG uSrc2;
3504} IEMMEDIAF2XMMSRC;
3505typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3506typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3507
3508typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3509typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3510
3511FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3512FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3513FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3514FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3515FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3516FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3517
3518FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3519FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3520
3521FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3522FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3523
3524typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3525typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3526
3527FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3528FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3529
3530typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3531typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3532
3533FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3534FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3535
3536typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3537typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3538
3539FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3540FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3541
3542/** @} */
3543
3544
3545/** @name Function tables.
3546 * @{
3547 */
3548
3549/**
3550 * Function table for a binary operator providing implementation based on
3551 * operand size.
3552 */
3553typedef struct IEMOPBINSIZES
3554{
3555 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3556 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3557 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3558 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3559} IEMOPBINSIZES;
3560/** Pointer to a binary operator function table. */
3561typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3562
3563
3564/**
3565 * Function table for a unary operator providing implementation based on
3566 * operand size.
3567 */
3568typedef struct IEMOPUNARYSIZES
3569{
3570 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3571 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3572 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3573 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3574} IEMOPUNARYSIZES;
3575/** Pointer to a unary operator function table. */
3576typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3577
3578
3579/**
3580 * Function table for a shift operator providing implementation based on
3581 * operand size.
3582 */
3583typedef struct IEMOPSHIFTSIZES
3584{
3585 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3586 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3587 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3588 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3589} IEMOPSHIFTSIZES;
3590/** Pointer to a shift operator function table. */
3591typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3592
3593
3594/**
3595 * Function table for a multiplication or division operation.
3596 */
3597typedef struct IEMOPMULDIVSIZES
3598{
3599 PFNIEMAIMPLMULDIVU8 pfnU8;
3600 PFNIEMAIMPLMULDIVU16 pfnU16;
3601 PFNIEMAIMPLMULDIVU32 pfnU32;
3602 PFNIEMAIMPLMULDIVU64 pfnU64;
3603} IEMOPMULDIVSIZES;
3604/** Pointer to a multiplication or division operation function table. */
3605typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3606
3607
3608/**
3609 * Function table for a double precision shift operator providing implementation
3610 * based on operand size.
3611 */
3612typedef struct IEMOPSHIFTDBLSIZES
3613{
3614 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3615 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3616 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3617} IEMOPSHIFTDBLSIZES;
3618/** Pointer to a double precision shift function table. */
3619typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3620
3621
3622/**
3623 * Function table for media instruction taking two full sized media source
3624 * registers and one full sized destination register (AVX).
3625 */
3626typedef struct IEMOPMEDIAF3
3627{
3628 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3629 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3630} IEMOPMEDIAF3;
3631/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3632typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3633
3634/** @def IEMOPMEDIAF3_INIT_VARS_EX
3635 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3636 * given functions as initializers. For use in AVX functions where a pair of
3637 * functions are only used once and the function table need not be public. */
3638#ifndef TST_IEM_CHECK_MC
3639# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3640# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3641 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3642 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3643# else
3644# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3645 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3646# endif
3647#else
3648# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3649#endif
3650/** @def IEMOPMEDIAF3_INIT_VARS
3651 * Generate AVX function tables for the @a a_InstrNm instruction.
3652 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3653#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3654 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3655 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3656
3657/**
3658 * Function table for media instruction taking two full sized media source
3659 * registers and one full sized destination register, but no additional state
3660 * (AVX).
3661 */
3662typedef struct IEMOPMEDIAOPTF3
3663{
3664 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3665 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3666} IEMOPMEDIAOPTF3;
3667/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3668typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3669
3670/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3671 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3672 * given functions as initializers. For use in AVX functions where a pair of
3673 * functions are only used once and the function table need not be public. */
3674#ifndef TST_IEM_CHECK_MC
3675# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3676# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3677 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3678 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3679# else
3680# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3681 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3682# endif
3683#else
3684# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3685#endif
3686/** @def IEMOPMEDIAOPTF3_INIT_VARS
3687 * Generate AVX function tables for the @a a_InstrNm instruction.
3688 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3689#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3690 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3691 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3692
3693/**
3694 * Function table for media instruction taking one full sized media source
3695 * registers and one full sized destination register, but no additional state
3696 * (AVX).
3697 */
3698typedef struct IEMOPMEDIAOPTF2
3699{
3700 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3701 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3702} IEMOPMEDIAOPTF2;
3703/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3704typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3705
3706/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3707 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3708 * given functions as initializers. For use in AVX functions where a pair of
3709 * functions are only used once and the function table need not be public. */
3710#ifndef TST_IEM_CHECK_MC
3711# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3712# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3713 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3714 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3715# else
3716# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3717 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3718# endif
3719#else
3720# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3721#endif
3722/** @def IEMOPMEDIAOPTF2_INIT_VARS
3723 * Generate AVX function tables for the @a a_InstrNm instruction.
3724 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3725#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3726 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3727 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3728
3729/**
3730 * Function table for media instruction taking two full sized media source
3731 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3732 * (AVX).
3733 */
3734typedef struct IEMOPMEDIAOPTF3IMM8
3735{
3736 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3737 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3738} IEMOPMEDIAOPTF3IMM8;
3739/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3740typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3741
3742/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3743 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3744 * given functions as initializers. For use in AVX functions where a pair of
3745 * functions are only used once and the function table need not be public. */
3746#ifndef TST_IEM_CHECK_MC
3747# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3748# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3749 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3750 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3751# else
3752# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3753 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3754# endif
3755#else
3756# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3757#endif
3758/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3759 * Generate AVX function tables for the @a a_InstrNm instruction.
3760 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3761#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3762 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3763 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3764/** @} */
3765
3766
3767/**
3768 * Function table for blend type instruction taking three full sized media source
3769 * registers and one full sized destination register, but no additional state
3770 * (AVX).
3771 */
3772typedef struct IEMOPBLENDOP
3773{
3774 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3775 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3776} IEMOPBLENDOP;
3777/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3778typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3779
3780/** @def IEMOPBLENDOP_INIT_VARS_EX
3781 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3782 * given functions as initializers. For use in AVX functions where a pair of
3783 * functions are only used once and the function table need not be public. */
3784#ifndef TST_IEM_CHECK_MC
3785# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3786# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3787 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3788 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3789# else
3790# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3791 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3792# endif
3793#else
3794# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3795#endif
3796/** @def IEMOPBLENDOP_INIT_VARS
3797 * Generate AVX function tables for the @a a_InstrNm instruction.
3798 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3799#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3800 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3801 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3802
3803
3804/** @name SSE/AVX single/double precision floating point operations.
3805 * @{ */
3806/**
3807 * A SSE result.
3808 */
3809typedef struct IEMSSERESULT
3810{
3811 /** The output value. */
3812 X86XMMREG uResult;
3813 /** The output status. */
3814 uint32_t MXCSR;
3815} IEMSSERESULT;
3816AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3817/** Pointer to a SSE result. */
3818typedef IEMSSERESULT *PIEMSSERESULT;
3819/** Pointer to a const SSE result. */
3820typedef IEMSSERESULT const *PCIEMSSERESULT;
3821
3822
3823/**
3824 * A AVX128 result.
3825 */
3826typedef struct IEMAVX128RESULT
3827{
3828 /** The output value. */
3829 X86XMMREG uResult;
3830 /** The output status. */
3831 uint32_t MXCSR;
3832} IEMAVX128RESULT;
3833AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3834/** Pointer to a AVX128 result. */
3835typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3836/** Pointer to a const AVX128 result. */
3837typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3838
3839
3840/**
3841 * A AVX256 result.
3842 */
3843typedef struct IEMAVX256RESULT
3844{
3845 /** The output value. */
3846 X86YMMREG uResult;
3847 /** The output status. */
3848 uint32_t MXCSR;
3849} IEMAVX256RESULT;
3850AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3851/** Pointer to a AVX256 result. */
3852typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3853/** Pointer to a const AVX256 result. */
3854typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3855
3856
3857typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3858typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3859typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3860typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3861typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3862typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3863
3864typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3865typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3866typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3867typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3868typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3869typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3870
3871typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3872typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3873
3874FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3875FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3876FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3877FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3878FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3879FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3880FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3881FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3882FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3883FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3884FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3885FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3886FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3887FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3888FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3889FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3890FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3891FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3892FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3893FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3894FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3895FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3896FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3897
3898FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3899FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3900FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3901FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3902FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3903FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3904
3905FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3906FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3907FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3908FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3909FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3910FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3911FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3912FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3913FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3914FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3915FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3916FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3917FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3918FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3919FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3920FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3921FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3922
3923FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3924FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3925FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3926FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3927FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3928FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3929FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3930FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3931FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3932FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3933FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3934FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3935FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3936FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3937FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3938FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3939FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3940FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3941FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3942FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3943FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3944FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3945
3946FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3947FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3948FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3949FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3950FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3951FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3952FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3953FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3954FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3955FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3956FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3957FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3958FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3959FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3960
3961FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3962FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3963FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3964FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3965FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3966FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3967FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3968FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3969FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3970FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3971FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3972FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3973FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3974FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3975FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3976FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3977FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3978FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3979FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3980FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3981/** @} */
3982
3983/** @name C instruction implementations for anything slightly complicated.
3984 * @{ */
3985
3986/**
3987 * For typedef'ing or declaring a C instruction implementation function taking
3988 * no extra arguments.
3989 *
3990 * @param a_Name The name of the type.
3991 */
3992# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3993 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3994/**
3995 * For defining a C instruction implementation function taking no extra
3996 * arguments.
3997 *
3998 * @param a_Name The name of the function
3999 */
4000# define IEM_CIMPL_DEF_0(a_Name) \
4001 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4002/**
4003 * Prototype version of IEM_CIMPL_DEF_0.
4004 */
4005# define IEM_CIMPL_PROTO_0(a_Name) \
4006 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4007/**
4008 * For calling a C instruction implementation function taking no extra
4009 * arguments.
4010 *
4011 * This special call macro adds default arguments to the call and allow us to
4012 * change these later.
4013 *
4014 * @param a_fn The name of the function.
4015 */
4016# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4017
4018/** Type for a C instruction implementation function taking no extra
4019 * arguments. */
4020typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4021/** Function pointer type for a C instruction implementation function taking
4022 * no extra arguments. */
4023typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4024
4025/**
4026 * For typedef'ing or declaring a C instruction implementation function taking
4027 * one extra argument.
4028 *
4029 * @param a_Name The name of the type.
4030 * @param a_Type0 The argument type.
4031 * @param a_Arg0 The argument name.
4032 */
4033# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4034 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4035/**
4036 * For defining a C instruction implementation function taking one extra
4037 * argument.
4038 *
4039 * @param a_Name The name of the function
4040 * @param a_Type0 The argument type.
4041 * @param a_Arg0 The argument name.
4042 */
4043# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4044 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4045/**
4046 * Prototype version of IEM_CIMPL_DEF_1.
4047 */
4048# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4049 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4050/**
4051 * For calling a C instruction implementation function taking one extra
4052 * argument.
4053 *
4054 * This special call macro adds default arguments to the call and allow us to
4055 * change these later.
4056 *
4057 * @param a_fn The name of the function.
4058 * @param a0 The name of the 1st argument.
4059 */
4060# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4061
4062/**
4063 * For typedef'ing or declaring a C instruction implementation function taking
4064 * two extra arguments.
4065 *
4066 * @param a_Name The name of the type.
4067 * @param a_Type0 The type of the 1st argument
4068 * @param a_Arg0 The name of the 1st argument.
4069 * @param a_Type1 The type of the 2nd argument.
4070 * @param a_Arg1 The name of the 2nd argument.
4071 */
4072# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4073 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4074/**
4075 * For defining a C instruction implementation function taking two extra
4076 * arguments.
4077 *
4078 * @param a_Name The name of the function.
4079 * @param a_Type0 The type of the 1st argument
4080 * @param a_Arg0 The name of the 1st argument.
4081 * @param a_Type1 The type of the 2nd argument.
4082 * @param a_Arg1 The name of the 2nd argument.
4083 */
4084# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4085 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4086/**
4087 * Prototype version of IEM_CIMPL_DEF_2.
4088 */
4089# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4090 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4091/**
4092 * For calling a C instruction implementation function taking two extra
4093 * arguments.
4094 *
4095 * This special call macro adds default arguments to the call and allow us to
4096 * change these later.
4097 *
4098 * @param a_fn The name of the function.
4099 * @param a0 The name of the 1st argument.
4100 * @param a1 The name of the 2nd argument.
4101 */
4102# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4103
4104/**
4105 * For typedef'ing or declaring a C instruction implementation function taking
4106 * three extra arguments.
4107 *
4108 * @param a_Name The name of the type.
4109 * @param a_Type0 The type of the 1st argument
4110 * @param a_Arg0 The name of the 1st argument.
4111 * @param a_Type1 The type of the 2nd argument.
4112 * @param a_Arg1 The name of the 2nd argument.
4113 * @param a_Type2 The type of the 3rd argument.
4114 * @param a_Arg2 The name of the 3rd argument.
4115 */
4116# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4117 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4118/**
4119 * For defining a C instruction implementation function taking three extra
4120 * arguments.
4121 *
4122 * @param a_Name The name of the function.
4123 * @param a_Type0 The type of the 1st argument
4124 * @param a_Arg0 The name of the 1st argument.
4125 * @param a_Type1 The type of the 2nd argument.
4126 * @param a_Arg1 The name of the 2nd argument.
4127 * @param a_Type2 The type of the 3rd argument.
4128 * @param a_Arg2 The name of the 3rd argument.
4129 */
4130# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4131 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4132/**
4133 * Prototype version of IEM_CIMPL_DEF_3.
4134 */
4135# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4136 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4137/**
4138 * For calling a C instruction implementation function taking three extra
4139 * arguments.
4140 *
4141 * This special call macro adds default arguments to the call and allow us to
4142 * change these later.
4143 *
4144 * @param a_fn The name of the function.
4145 * @param a0 The name of the 1st argument.
4146 * @param a1 The name of the 2nd argument.
4147 * @param a2 The name of the 3rd argument.
4148 */
4149# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4150
4151
4152/**
4153 * For typedef'ing or declaring a C instruction implementation function taking
4154 * four extra arguments.
4155 *
4156 * @param a_Name The name of the type.
4157 * @param a_Type0 The type of the 1st argument
4158 * @param a_Arg0 The name of the 1st argument.
4159 * @param a_Type1 The type of the 2nd argument.
4160 * @param a_Arg1 The name of the 2nd argument.
4161 * @param a_Type2 The type of the 3rd argument.
4162 * @param a_Arg2 The name of the 3rd argument.
4163 * @param a_Type3 The type of the 4th argument.
4164 * @param a_Arg3 The name of the 4th argument.
4165 */
4166# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4167 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4168/**
4169 * For defining a C instruction implementation function taking four extra
4170 * arguments.
4171 *
4172 * @param a_Name The name of the function.
4173 * @param a_Type0 The type of the 1st argument
4174 * @param a_Arg0 The name of the 1st argument.
4175 * @param a_Type1 The type of the 2nd argument.
4176 * @param a_Arg1 The name of the 2nd argument.
4177 * @param a_Type2 The type of the 3rd argument.
4178 * @param a_Arg2 The name of the 3rd argument.
4179 * @param a_Type3 The type of the 4th argument.
4180 * @param a_Arg3 The name of the 4th argument.
4181 */
4182# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4183 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4184 a_Type2 a_Arg2, a_Type3 a_Arg3))
4185/**
4186 * Prototype version of IEM_CIMPL_DEF_4.
4187 */
4188# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4189 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4190 a_Type2 a_Arg2, a_Type3 a_Arg3))
4191/**
4192 * For calling a C instruction implementation function taking four extra
4193 * arguments.
4194 *
4195 * This special call macro adds default arguments to the call and allow us to
4196 * change these later.
4197 *
4198 * @param a_fn The name of the function.
4199 * @param a0 The name of the 1st argument.
4200 * @param a1 The name of the 2nd argument.
4201 * @param a2 The name of the 3rd argument.
4202 * @param a3 The name of the 4th argument.
4203 */
4204# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4205
4206
4207/**
4208 * For typedef'ing or declaring a C instruction implementation function taking
4209 * five extra arguments.
4210 *
4211 * @param a_Name The name of the type.
4212 * @param a_Type0 The type of the 1st argument
4213 * @param a_Arg0 The name of the 1st argument.
4214 * @param a_Type1 The type of the 2nd argument.
4215 * @param a_Arg1 The name of the 2nd argument.
4216 * @param a_Type2 The type of the 3rd argument.
4217 * @param a_Arg2 The name of the 3rd argument.
4218 * @param a_Type3 The type of the 4th argument.
4219 * @param a_Arg3 The name of the 4th argument.
4220 * @param a_Type4 The type of the 5th argument.
4221 * @param a_Arg4 The name of the 5th argument.
4222 */
4223# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4224 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4225 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4226 a_Type3 a_Arg3, a_Type4 a_Arg4))
4227/**
4228 * For defining a C instruction implementation function taking five extra
4229 * arguments.
4230 *
4231 * @param a_Name The name of the function.
4232 * @param a_Type0 The type of the 1st argument
4233 * @param a_Arg0 The name of the 1st argument.
4234 * @param a_Type1 The type of the 2nd argument.
4235 * @param a_Arg1 The name of the 2nd argument.
4236 * @param a_Type2 The type of the 3rd argument.
4237 * @param a_Arg2 The name of the 3rd argument.
4238 * @param a_Type3 The type of the 4th argument.
4239 * @param a_Arg3 The name of the 4th argument.
4240 * @param a_Type4 The type of the 5th argument.
4241 * @param a_Arg4 The name of the 5th argument.
4242 */
4243# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4244 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4245 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4246/**
4247 * Prototype version of IEM_CIMPL_DEF_5.
4248 */
4249# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4250 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4251 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4252/**
4253 * For calling a C instruction implementation function taking five extra
4254 * arguments.
4255 *
4256 * This special call macro adds default arguments to the call and allow us to
4257 * change these later.
4258 *
4259 * @param a_fn The name of the function.
4260 * @param a0 The name of the 1st argument.
4261 * @param a1 The name of the 2nd argument.
4262 * @param a2 The name of the 3rd argument.
4263 * @param a3 The name of the 4th argument.
4264 * @param a4 The name of the 5th argument.
4265 */
4266# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4267
4268/** @} */
4269
4270
4271/** @name Opcode Decoder Function Types.
4272 * @{ */
4273
4274/** @typedef PFNIEMOP
4275 * Pointer to an opcode decoder function.
4276 */
4277
4278/** @def FNIEMOP_DEF
4279 * Define an opcode decoder function.
4280 *
4281 * We're using macors for this so that adding and removing parameters as well as
4282 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4283 *
4284 * @param a_Name The function name.
4285 */
4286
4287/** @typedef PFNIEMOPRM
4288 * Pointer to an opcode decoder function with RM byte.
4289 */
4290
4291/** @def FNIEMOPRM_DEF
4292 * Define an opcode decoder function with RM byte.
4293 *
4294 * We're using macors for this so that adding and removing parameters as well as
4295 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4296 *
4297 * @param a_Name The function name.
4298 */
4299
4300#if defined(__GNUC__) && defined(RT_ARCH_X86)
4301typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4302typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4303# define FNIEMOP_DEF(a_Name) \
4304 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4305# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4306 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4307# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4308 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4309
4310#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4311typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4312typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4313# define FNIEMOP_DEF(a_Name) \
4314 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4315# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4316 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4317# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4318 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4319
4320#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4321typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4322typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4323# define FNIEMOP_DEF(a_Name) \
4324 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4325# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4326 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4327# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4328 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4329
4330#else
4331typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4332typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4333# define FNIEMOP_DEF(a_Name) \
4334 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4335# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4336 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4337# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4338 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4339
4340#endif
4341#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4342
4343/**
4344 * Call an opcode decoder function.
4345 *
4346 * We're using macors for this so that adding and removing parameters can be
4347 * done as we please. See FNIEMOP_DEF.
4348 */
4349#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4350
4351/**
4352 * Call a common opcode decoder function taking one extra argument.
4353 *
4354 * We're using macors for this so that adding and removing parameters can be
4355 * done as we please. See FNIEMOP_DEF_1.
4356 */
4357#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4358
4359/**
4360 * Call a common opcode decoder function taking one extra argument.
4361 *
4362 * We're using macors for this so that adding and removing parameters can be
4363 * done as we please. See FNIEMOP_DEF_1.
4364 */
4365#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4366/** @} */
4367
4368
4369/** @name Misc Helpers
4370 * @{ */
4371
4372/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4373 * due to GCC lacking knowledge about the value range of a switch. */
4374#if RT_CPLUSPLUS_PREREQ(202000)
4375# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4376#else
4377# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4378#endif
4379
4380/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4381#if RT_CPLUSPLUS_PREREQ(202000)
4382# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4383#else
4384# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4385#endif
4386
4387/**
4388 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4389 * occation.
4390 */
4391#ifdef LOG_ENABLED
4392# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4393 do { \
4394 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4395 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4396 } while (0)
4397#else
4398# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4399 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4400#endif
4401
4402/**
4403 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4404 * occation using the supplied logger statement.
4405 *
4406 * @param a_LoggerArgs What to log on failure.
4407 */
4408#ifdef LOG_ENABLED
4409# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4410 do { \
4411 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4412 /*LogFunc(a_LoggerArgs);*/ \
4413 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4414 } while (0)
4415#else
4416# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4417 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4418#endif
4419
4420/**
4421 * Gets the CPU mode (from fExec) as a IEMMODE value.
4422 *
4423 * @returns IEMMODE
4424 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4425 */
4426#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4427
4428/**
4429 * Check if we're currently executing in real or virtual 8086 mode.
4430 *
4431 * @returns @c true if it is, @c false if not.
4432 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4433 */
4434#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4435 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4436
4437/**
4438 * Check if we're currently executing in virtual 8086 mode.
4439 *
4440 * @returns @c true if it is, @c false if not.
4441 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4442 */
4443#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4444
4445/**
4446 * Check if we're currently executing in long mode.
4447 *
4448 * @returns @c true if it is, @c false if not.
4449 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4450 */
4451#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4452
4453/**
4454 * Check if we're currently executing in a 16-bit code segment.
4455 *
4456 * @returns @c true if it is, @c false if not.
4457 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4458 */
4459#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4460
4461/**
4462 * Check if we're currently executing in a 32-bit code segment.
4463 *
4464 * @returns @c true if it is, @c false if not.
4465 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4466 */
4467#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4468
4469/**
4470 * Check if we're currently executing in a 64-bit code segment.
4471 *
4472 * @returns @c true if it is, @c false if not.
4473 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4474 */
4475#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4476
4477/**
4478 * Check if we're currently executing in real mode.
4479 *
4480 * @returns @c true if it is, @c false if not.
4481 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4482 */
4483#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4484
4485/**
4486 * Gets the current protection level (CPL).
4487 *
4488 * @returns 0..3
4489 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4490 */
4491#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4492
4493/**
4494 * Sets the current protection level (CPL).
4495 *
4496 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4497 */
4498#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4499 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4500
4501/**
4502 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4503 * @returns PCCPUMFEATURES
4504 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4505 */
4506#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4507
4508/**
4509 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4510 * @returns PCCPUMFEATURES
4511 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4512 */
4513#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4514
4515/**
4516 * Evaluates to true if we're presenting an Intel CPU to the guest.
4517 */
4518#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4519
4520/**
4521 * Evaluates to true if we're presenting an AMD CPU to the guest.
4522 */
4523#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4524
4525/**
4526 * Check if the address is canonical.
4527 */
4528#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4529
4530/** Checks if the ModR/M byte is in register mode or not. */
4531#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4532/** Checks if the ModR/M byte is in memory mode or not. */
4533#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4534
4535/**
4536 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4537 *
4538 * For use during decoding.
4539 */
4540#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4541/**
4542 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4543 *
4544 * For use during decoding.
4545 */
4546#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4547
4548/**
4549 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4550 *
4551 * For use during decoding.
4552 */
4553#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4554/**
4555 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4556 *
4557 * For use during decoding.
4558 */
4559#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4560
4561/**
4562 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4563 * register index, with REX.R added in.
4564 *
4565 * For use during decoding.
4566 *
4567 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4568 */
4569#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4570 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4571 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4572 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4573/**
4574 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4575 * with REX.B added in.
4576 *
4577 * For use during decoding.
4578 *
4579 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4580 */
4581#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4582 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4583 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4584 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4585
4586/**
4587 * Combines the prefix REX and ModR/M byte for passing to
4588 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4589 *
4590 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4591 * The two bits are part of the REG sub-field, which isn't needed in
4592 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4593 *
4594 * For use during decoding/recompiling.
4595 */
4596#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4597 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4598 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4599AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4600AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4601
4602/**
4603 * Gets the effective VEX.VVVV value.
4604 *
4605 * The 4th bit is ignored if not 64-bit code.
4606 * @returns effective V-register value.
4607 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4608 */
4609#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4610 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4611
4612
4613/**
4614 * Checks if we're executing inside an AMD-V or VT-x guest.
4615 */
4616#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4617# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4618#else
4619# define IEM_IS_IN_GUEST(a_pVCpu) false
4620#endif
4621
4622
4623#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4624
4625/**
4626 * Check if the guest has entered VMX root operation.
4627 */
4628# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4629
4630/**
4631 * Check if the guest has entered VMX non-root operation.
4632 */
4633# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4634 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4635
4636/**
4637 * Check if the nested-guest has the given Pin-based VM-execution control set.
4638 */
4639# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4640
4641/**
4642 * Check if the nested-guest has the given Processor-based VM-execution control set.
4643 */
4644# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4645
4646/**
4647 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4648 * control set.
4649 */
4650# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4651
4652/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4653# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4654
4655/** Whether a shadow VMCS is present for the given VCPU. */
4656# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4657
4658/** Gets the VMXON region pointer. */
4659# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4660
4661/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4662# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4663
4664/** Whether a current VMCS is present for the given VCPU. */
4665# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4666
4667/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4668# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4669 do \
4670 { \
4671 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4672 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4673 } while (0)
4674
4675/** Clears any current VMCS for the given VCPU. */
4676# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4677 do \
4678 { \
4679 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4680 } while (0)
4681
4682/**
4683 * Invokes the VMX VM-exit handler for an instruction intercept.
4684 */
4685# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4686 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4687
4688/**
4689 * Invokes the VMX VM-exit handler for an instruction intercept where the
4690 * instruction provides additional VM-exit information.
4691 */
4692# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4693 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4694
4695/**
4696 * Invokes the VMX VM-exit handler for a task switch.
4697 */
4698# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4699 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4700
4701/**
4702 * Invokes the VMX VM-exit handler for MWAIT.
4703 */
4704# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4705 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4706
4707/**
4708 * Invokes the VMX VM-exit handler for EPT faults.
4709 */
4710# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4711 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4712
4713/**
4714 * Invokes the VMX VM-exit handler.
4715 */
4716# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4717 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4718
4719#else
4720# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4721# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4722# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4723# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4724# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4725# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4726# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4727# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4728# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4729# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4730# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4731
4732#endif
4733
4734#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4735/**
4736 * Checks if we're executing a guest using AMD-V.
4737 */
4738# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4739 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4740/**
4741 * Check if an SVM control/instruction intercept is set.
4742 */
4743# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4744 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4745
4746/**
4747 * Check if an SVM read CRx intercept is set.
4748 */
4749# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4750 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4751
4752/**
4753 * Check if an SVM write CRx intercept is set.
4754 */
4755# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4756 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4757
4758/**
4759 * Check if an SVM read DRx intercept is set.
4760 */
4761# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4762 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4763
4764/**
4765 * Check if an SVM write DRx intercept is set.
4766 */
4767# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4768 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4769
4770/**
4771 * Check if an SVM exception intercept is set.
4772 */
4773# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4774 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4775
4776/**
4777 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4778 */
4779# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4780 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4781
4782/**
4783 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4784 * corresponding decode assist information.
4785 */
4786# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4787 do \
4788 { \
4789 uint64_t uExitInfo1; \
4790 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4791 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4792 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4793 else \
4794 uExitInfo1 = 0; \
4795 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4796 } while (0)
4797
4798/** Check and handles SVM nested-guest instruction intercept and updates
4799 * NRIP if needed.
4800 */
4801# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4802 do \
4803 { \
4804 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4805 { \
4806 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4807 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4808 } \
4809 } while (0)
4810
4811/** Checks and handles SVM nested-guest CR0 read intercept. */
4812# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4813 do \
4814 { \
4815 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4816 { /* probably likely */ } \
4817 else \
4818 { \
4819 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4820 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4821 } \
4822 } while (0)
4823
4824/**
4825 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4826 */
4827# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4828 do { \
4829 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4830 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4831 } while (0)
4832
4833#else
4834# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4835# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4836# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4837# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4838# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4839# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4840# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4841# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4842# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4843 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4844# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4845# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4846
4847#endif
4848
4849/** @} */
4850
4851uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4852VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4853
4854
4855/**
4856 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4857 */
4858typedef union IEMSELDESC
4859{
4860 /** The legacy view. */
4861 X86DESC Legacy;
4862 /** The long mode view. */
4863 X86DESC64 Long;
4864} IEMSELDESC;
4865/** Pointer to a selector descriptor table entry. */
4866typedef IEMSELDESC *PIEMSELDESC;
4867
4868/** @name Raising Exceptions.
4869 * @{ */
4870VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4871 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4872
4873VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4874 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4875#ifdef IEM_WITH_SETJMP
4876DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4877 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4878#endif
4879VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4880VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4881VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4882VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4883VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4884VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4885VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4886VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4887VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4888/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4889VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4890VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4891VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4892VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4893VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4894VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4895#ifdef IEM_WITH_SETJMP
4896DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4897#endif
4898VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4899VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4900VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4901#ifdef IEM_WITH_SETJMP
4902DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4903#endif
4904VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4905#ifdef IEM_WITH_SETJMP
4906DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4907#endif
4908VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4909#ifdef IEM_WITH_SETJMP
4910DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4911#endif
4912VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4913#ifdef IEM_WITH_SETJMP
4914DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4915#endif
4916VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4917VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4918#ifdef IEM_WITH_SETJMP
4919DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4920#endif
4921VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4922
4923void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4924
4925IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4926IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4927IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4928
4929/**
4930 * Macro for calling iemCImplRaiseDivideError().
4931 *
4932 * This is for things that will _always_ decode to an \#DE, taking the
4933 * recompiler into consideration and everything.
4934 *
4935 * @return Strict VBox status code.
4936 */
4937#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
4938
4939/**
4940 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4941 *
4942 * This is for things that will _always_ decode to an \#UD, taking the
4943 * recompiler into consideration and everything.
4944 *
4945 * @return Strict VBox status code.
4946 */
4947#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
4948
4949/**
4950 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4951 *
4952 * This is for things that will _always_ decode to an \#UD, taking the
4953 * recompiler into consideration and everything.
4954 *
4955 * @return Strict VBox status code.
4956 */
4957#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
4958
4959/**
4960 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4961 *
4962 * Using this macro means you've got _buggy_ _code_ and are doing things that
4963 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4964 *
4965 * @return Strict VBox status code.
4966 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4967 */
4968#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
4969
4970/** @} */
4971
4972/** @name Register Access.
4973 * @{ */
4974VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4975 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4976VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4977VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4978 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4979VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4980VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4981VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4982/** @} */
4983
4984/** @name FPU access and helpers.
4985 * @{ */
4986void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4987void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4988void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4989void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4990void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4991void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4992 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4993void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4994 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4995void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4996void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4997void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4998void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4999void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5000void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5001void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5002void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5003void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5004void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5005void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5006void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5007void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5008void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5009void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5010/** @} */
5011
5012/** @name SSE+AVX SIMD access and helpers.
5013 * @{ */
5014void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
5015void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5016/** @} */
5017
5018/** @name Memory access.
5019 * @{ */
5020
5021/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5022#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5023/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5024 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5025#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5026/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5027 * Users include FXSAVE & FXRSTOR. */
5028#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5029
5030VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5031 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5032VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
5033#ifndef IN_RING3
5034VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
5035#endif
5036void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5037VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5038VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5039VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5040
5041void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5042void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5043#ifdef IEM_WITH_CODE_TLB
5044void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5045#else
5046VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5047#endif
5048#ifdef IEM_WITH_SETJMP
5049uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5050uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5051uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5052uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5053#else
5054VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5055VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5056VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5057VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5058VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5059VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5060VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5061VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5062VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5063VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5064VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5065#endif
5066
5067VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5068VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5069VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5070VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5071VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5072VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5073VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5074VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5075VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5076VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5077VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5078VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5079VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5080 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5081#ifdef IEM_WITH_SETJMP
5082uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5083uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5084uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5085uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5086uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5087uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5088void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5089void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5090void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5091void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5092void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5093void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5094# if 0 /* these are inlined now */
5095uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5096uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5097uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5098uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5099uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5100uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5101# endif
5102void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5103void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5104void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5105void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5106void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5107void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5108#endif
5109
5110VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5111VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5112VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5113VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5114VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5115
5116VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5117VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5118VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5119VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5120VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5121VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5122VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5123VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5124VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5125#ifdef IEM_WITH_SETJMP
5126void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5127void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5128void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5129void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5130void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5131void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5132void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5133void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5134#if 0
5135void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5136void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5137void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5138void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5139#endif
5140void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5141void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5142void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5143void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5144#endif
5145
5146#ifdef IEM_WITH_SETJMP
5147uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5148uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5149uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5150uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5151uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5152uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5153uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5154uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5155uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5156uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5157uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5158uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5159
5160void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5161void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5162void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5163#endif
5164
5165VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5166 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5167VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
5168VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5169VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5170VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5171VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5172VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5173VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5174VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5175VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5176 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5177VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5178 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
5179VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
5180VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5181VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5182VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5183VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5184VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5185VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5186
5187#ifdef IEM_WITH_SETJMP
5188void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5189void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5190void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5191void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5192uint16_t iemMemStackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5193uint32_t iemMemStackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5194uint64_t iemMemStackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5195
5196void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5197void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5198void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5199uint16_t iemMemFlat32StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5200uint32_t iemMemFlat32StackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5201
5202void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5203void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5204uint16_t iemMemFlat64StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5205uint64_t iemMemFlat64StackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5206#endif
5207
5208/** @} */
5209
5210/** @name IEMAllCImpl.cpp
5211 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5212 * @{ */
5213IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5214IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5215IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5216IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5217IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5218IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5219IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5220IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5221IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5222IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5223IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5224IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5225IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5226IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5227IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5228IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5229IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5230typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5231typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5232IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5233IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5234IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5235IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5236IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5237IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5238IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5239IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5240IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5241IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5242IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5243IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5244IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5245IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5246IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5247IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5248IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5249IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5250IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5251IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5252IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5253IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5254IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5255IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5256IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5257IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5258IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5259IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5260IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5261IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5262IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5263IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5264IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5265IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5266IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5267IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5268IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5269IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5270IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5271IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5272IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5273IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5274IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5275IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5276IEM_CIMPL_PROTO_0(iemCImpl_clts);
5277IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5278IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5279IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5280IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5281IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5282IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5283IEM_CIMPL_PROTO_0(iemCImpl_invd);
5284IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5285IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5286IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5287IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5288IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5289IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5290IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5291IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5292IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5293IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5294IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5295IEM_CIMPL_PROTO_0(iemCImpl_cli);
5296IEM_CIMPL_PROTO_0(iemCImpl_sti);
5297IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5298IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5299IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5300IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5301IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5302IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5303IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5304IEM_CIMPL_PROTO_0(iemCImpl_daa);
5305IEM_CIMPL_PROTO_0(iemCImpl_das);
5306IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5307IEM_CIMPL_PROTO_0(iemCImpl_aas);
5308IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5309IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5310IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5311IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5312IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5313 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
5314IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5315IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5316IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5317IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5318IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5319IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5320IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5321IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5322IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5323IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5324IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5325IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5326IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5327IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5328IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5329IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5330IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5331IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5332/** @} */
5333
5334/** @name IEMAllCImplStrInstr.cpp.h
5335 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5336 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5337 * @{ */
5338IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5339IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5340IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5341IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5342IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5343IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5344IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5345IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5346IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5347IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5348IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5349
5350IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5351IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5352IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5353IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5354IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5355IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5356IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5357IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5358IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5359IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5360IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5361
5362IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5363IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5364IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5365IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5366IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5367IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5368IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5369IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5370IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5371IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5372IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5373
5374
5375IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5376IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5377IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5378IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5379IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5380IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5381IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5382IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5383IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5384IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5385IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5386
5387IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5388IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5389IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5390IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5391IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5392IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5393IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5394IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5395IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5396IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5397IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5398
5399IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5400IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5401IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5402IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5403IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5404IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5405IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5406IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5407IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5408IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5409IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5410
5411IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5412IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5413IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5414IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5415IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5416IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5417IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5418IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5419IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5420IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5421IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5422
5423
5424IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5425IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5426IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5427IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5428IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5429IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5430IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5431IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5432IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5433IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5434IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5435
5436IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5437IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5438IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5439IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5440IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5441IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5442IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5443IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5444IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5445IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5446IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5447
5448IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5449IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5450IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5451IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5452IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5453IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5454IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5455IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5456IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5457IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5458IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5459
5460IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5461IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5462IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5463IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5464IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5465IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5466IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5467IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5468IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5469IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5470IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5471/** @} */
5472
5473#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5474VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5475VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5476VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5477VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5478VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5479VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5480VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5481VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5482VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5483VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5484 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5485VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5486 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5487VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5488VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5489VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5490VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5491VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5492VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5493VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5494VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5495 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5496VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5497VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5498VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5499uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5500void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5501VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5502 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5503bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5504IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5505IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5506IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5507IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5508IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5509IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5510IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5511IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5512IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5513IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5514IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5515IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5516IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5517IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5518IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5519IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5520#endif
5521
5522#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5523VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5524VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5525VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5526 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5527VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5528IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5529IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5530IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5531IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5532IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5533IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5534IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5535IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5536#endif
5537
5538IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5539IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5540IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5541
5542extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5543extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5544extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5545extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5546extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5547extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5548extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5549
5550/*
5551 * Recompiler related stuff.
5552 */
5553extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5554extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5555extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5556extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5557extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5558extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5559extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5560
5561DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5562 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5563void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5564void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator);
5565
5566
5567/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5568#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5569typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5570typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5571# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5572 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5573# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5574 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5575
5576#else
5577typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5578typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5579# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5580 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5581# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5582 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5583#endif
5584
5585
5586IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5587
5588IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5589IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5590IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5591IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5592
5593IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5594IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5595IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5596
5597/* Branching: */
5598IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5599IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5600IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5601
5602IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5603IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5604IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5605
5606/* Natural page crossing: */
5607IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5608IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5609IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5610
5611IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5612IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5613IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5614
5615IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5616IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5617IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5618
5619bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5620bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5621
5622/* Native recompiler public bits: */
5623DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
5624int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
5625void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
5626
5627
5628/** @} */
5629
5630RT_C_DECLS_END
5631
5632#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5633
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette