VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 101984

Last change on this file since 101984 was 101984, checked in by vboxsync, 16 months ago

VMM/IEM: Added a flush mask for guest register shadows to the IEM_MC_DEFER_TO_CIMPL_X_RET macros to better manage register optimizations when recompiling to native code. bugref:10371

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 284.4 KB
Line 
1/* $Id: IEMInternal.h 101984 2023-11-08 15:56:18Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#include <VBox/vmm/cpum.h>
35#include <VBox/vmm/iem.h>
36#include <VBox/vmm/pgm.h>
37#include <VBox/vmm/stam.h>
38#include <VBox/param.h>
39
40#include <iprt/setjmp-without-sigmask.h>
41#include <iprt/list.h>
42
43
44RT_C_DECLS_BEGIN
45
46
47/** @defgroup grp_iem_int Internals
48 * @ingroup grp_iem
49 * @internal
50 * @{
51 */
52
53/** For expanding symbol in slickedit and other products tagging and
54 * crossreferencing IEM symbols. */
55#ifndef IEM_STATIC
56# define IEM_STATIC static
57#endif
58
59/** @def IEM_WITH_SETJMP
60 * Enables alternative status code handling using setjmps.
61 *
62 * This adds a bit of expense via the setjmp() call since it saves all the
63 * non-volatile registers. However, it eliminates return code checks and allows
64 * for more optimal return value passing (return regs instead of stack buffer).
65 */
66#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
67# define IEM_WITH_SETJMP
68#endif
69
70/** @def IEM_WITH_THROW_CATCH
71 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
72 * mode code when IEM_WITH_SETJMP is in effect.
73 *
74 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
75 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
76 * result value improving by more than 1%. (Best out of three.)
77 *
78 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
79 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
80 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
81 * Linux, but it should be quite a bit faster for normal code.
82 */
83#if (defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER))) \
84 || defined(DOXYGEN_RUNNING)
85# define IEM_WITH_THROW_CATCH
86#endif
87
88/** @def IEM_DO_LONGJMP
89 *
90 * Wrapper around longjmp / throw.
91 *
92 * @param a_pVCpu The CPU handle.
93 * @param a_rc The status code jump back with / throw.
94 */
95#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
96# ifdef IEM_WITH_THROW_CATCH
97# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
98# else
99# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
100# endif
101#endif
102
103/** For use with IEM function that may do a longjmp (when enabled).
104 *
105 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
106 * attribute. So, we indicate that function that may be part of a longjmp may
107 * throw "exceptions" and that the compiler should definitely not generate and
108 * std::terminate calling unwind code.
109 *
110 * Here is one example of this ending in std::terminate:
111 * @code{.txt}
11200 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
11301 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
11402 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
11503 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
11604 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
11705 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
11806 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
11907 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
12008 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
12109 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1220a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1230b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1240c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1250d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1260e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
1270f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
12810 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
129 @endcode
130 *
131 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
132 */
133#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
134# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
135#else
136# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
137#endif
138
139#define IEM_IMPLEMENTS_TASKSWITCH
140
141/** @def IEM_WITH_3DNOW
142 * Includes the 3DNow decoding. */
143#if (!defined(IEM_WITH_3DNOW) && !defined(IEM_WITHOUT_3DNOW)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
144# define IEM_WITH_3DNOW
145#endif
146
147/** @def IEM_WITH_THREE_0F_38
148 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
149#if (!defined(IEM_WITH_THREE_0F_38) && !defined(IEM_WITHOUT_THREE_0F_38)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
150# define IEM_WITH_THREE_0F_38
151#endif
152
153/** @def IEM_WITH_THREE_0F_3A
154 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
155#if (!defined(IEM_WITH_THREE_0F_3A) && !defined(IEM_WITHOUT_THREE_0F_3A)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
156# define IEM_WITH_THREE_0F_3A
157#endif
158
159/** @def IEM_WITH_VEX
160 * Includes the VEX decoding. */
161#if (!defined(IEM_WITH_VEX) && !defined(IEM_WITHOUT_VEX)) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
162# define IEM_WITH_VEX
163#endif
164
165/** @def IEM_CFG_TARGET_CPU
166 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
167 *
168 * By default we allow this to be configured by the user via the
169 * CPUM/GuestCpuName config string, but this comes at a slight cost during
170 * decoding. So, for applications of this code where there is no need to
171 * be dynamic wrt target CPU, just modify this define.
172 */
173#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
174# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
175#endif
176
177//#define IEM_WITH_CODE_TLB // - work in progress
178//#define IEM_WITH_DATA_TLB // - work in progress
179
180
181/** @def IEM_USE_UNALIGNED_DATA_ACCESS
182 * Use unaligned accesses instead of elaborate byte assembly. */
183#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING)
184# define IEM_USE_UNALIGNED_DATA_ACCESS
185#endif
186
187//#define IEM_LOG_MEMORY_WRITES
188
189#if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
190/** Instruction statistics. */
191typedef struct IEMINSTRSTATS
192{
193# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
194# include "IEMInstructionStatisticsTmpl.h"
195# undef IEM_DO_INSTR_STAT
196} IEMINSTRSTATS;
197#else
198struct IEMINSTRSTATS;
199typedef struct IEMINSTRSTATS IEMINSTRSTATS;
200#endif
201/** Pointer to IEM instruction statistics. */
202typedef IEMINSTRSTATS *PIEMINSTRSTATS;
203
204
205/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
206 * @{ */
207#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
208#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
209#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
210#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
211#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
212/** Selects the right variant from a_aArray.
213 * pVCpu is implicit in the caller context. */
214#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
215 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
216/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
217 * be used because the host CPU does not support the operation. */
218#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
219 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
220/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
221 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
222 * into the two.
223 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
224#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
225# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
226 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
227#else
228# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
229 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
230#endif
231/** @} */
232
233/**
234 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
235 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
236 *
237 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
238 * indicator.
239 *
240 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
241 */
242#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
243# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
244 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
245#else
246# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
247#endif
248
249
250/**
251 * Extended operand mode that includes a representation of 8-bit.
252 *
253 * This is used for packing down modes when invoking some C instruction
254 * implementations.
255 */
256typedef enum IEMMODEX
257{
258 IEMMODEX_16BIT = IEMMODE_16BIT,
259 IEMMODEX_32BIT = IEMMODE_32BIT,
260 IEMMODEX_64BIT = IEMMODE_64BIT,
261 IEMMODEX_8BIT
262} IEMMODEX;
263AssertCompileSize(IEMMODEX, 4);
264
265
266/**
267 * Branch types.
268 */
269typedef enum IEMBRANCH
270{
271 IEMBRANCH_JUMP = 1,
272 IEMBRANCH_CALL,
273 IEMBRANCH_TRAP,
274 IEMBRANCH_SOFTWARE_INT,
275 IEMBRANCH_HARDWARE_INT
276} IEMBRANCH;
277AssertCompileSize(IEMBRANCH, 4);
278
279
280/**
281 * INT instruction types.
282 */
283typedef enum IEMINT
284{
285 /** INT n instruction (opcode 0xcd imm). */
286 IEMINT_INTN = 0,
287 /** Single byte INT3 instruction (opcode 0xcc). */
288 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
289 /** Single byte INTO instruction (opcode 0xce). */
290 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
291 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
292 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
293} IEMINT;
294AssertCompileSize(IEMINT, 4);
295
296
297/**
298 * A FPU result.
299 */
300typedef struct IEMFPURESULT
301{
302 /** The output value. */
303 RTFLOAT80U r80Result;
304 /** The output status. */
305 uint16_t FSW;
306} IEMFPURESULT;
307AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
308/** Pointer to a FPU result. */
309typedef IEMFPURESULT *PIEMFPURESULT;
310/** Pointer to a const FPU result. */
311typedef IEMFPURESULT const *PCIEMFPURESULT;
312
313
314/**
315 * A FPU result consisting of two output values and FSW.
316 */
317typedef struct IEMFPURESULTTWO
318{
319 /** The first output value. */
320 RTFLOAT80U r80Result1;
321 /** The output status. */
322 uint16_t FSW;
323 /** The second output value. */
324 RTFLOAT80U r80Result2;
325} IEMFPURESULTTWO;
326AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
327AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
328/** Pointer to a FPU result consisting of two output values and FSW. */
329typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
330/** Pointer to a const FPU result consisting of two output values and FSW. */
331typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
332
333
334/**
335 * IEM TLB entry.
336 *
337 * Lookup assembly:
338 * @code{.asm}
339 ; Calculate tag.
340 mov rax, [VA]
341 shl rax, 16
342 shr rax, 16 + X86_PAGE_SHIFT
343 or rax, [uTlbRevision]
344
345 ; Do indexing.
346 movzx ecx, al
347 lea rcx, [pTlbEntries + rcx]
348
349 ; Check tag.
350 cmp [rcx + IEMTLBENTRY.uTag], rax
351 jne .TlbMiss
352
353 ; Check access.
354 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
355 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
356 cmp rax, [uTlbPhysRev]
357 jne .TlbMiss
358
359 ; Calc address and we're done.
360 mov eax, X86_PAGE_OFFSET_MASK
361 and eax, [VA]
362 or rax, [rcx + IEMTLBENTRY.pMappingR3]
363 %ifdef VBOX_WITH_STATISTICS
364 inc qword [cTlbHits]
365 %endif
366 jmp .Done
367
368 .TlbMiss:
369 mov r8d, ACCESS_FLAGS
370 mov rdx, [VA]
371 mov rcx, [pVCpu]
372 call iemTlbTypeMiss
373 .Done:
374
375 @endcode
376 *
377 */
378typedef struct IEMTLBENTRY
379{
380 /** The TLB entry tag.
381 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
382 * is ASSUMING a virtual address width of 48 bits.
383 *
384 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
385 *
386 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
387 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
388 * revision wraps around though, the tags needs to be zeroed.
389 *
390 * @note Try use SHRD instruction? After seeing
391 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
392 *
393 * @todo This will need to be reorganized for 57-bit wide virtual address and
394 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
395 * have to move the TLB entry versioning entirely to the
396 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
397 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
398 * consumed by PCID and ASID (12 + 6 = 18).
399 */
400 uint64_t uTag;
401 /** Access flags and physical TLB revision.
402 *
403 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
404 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
405 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
406 * - Bit 3 - pgm phys/virt - not directly writable.
407 * - Bit 4 - pgm phys page - not directly readable.
408 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
409 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
410 * - Bit 7 - tlb entry - pMappingR3 member not valid.
411 * - Bits 63 thru 8 are used for the physical TLB revision number.
412 *
413 * We're using complemented bit meanings here because it makes it easy to check
414 * whether special action is required. For instance a user mode write access
415 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
416 * non-zero result would mean special handling needed because either it wasn't
417 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
418 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
419 * need to check any PTE flag.
420 */
421 uint64_t fFlagsAndPhysRev;
422 /** The guest physical page address. */
423 uint64_t GCPhys;
424 /** Pointer to the ring-3 mapping. */
425 R3PTRTYPE(uint8_t *) pbMappingR3;
426#if HC_ARCH_BITS == 32
427 uint32_t u32Padding1;
428#endif
429} IEMTLBENTRY;
430AssertCompileSize(IEMTLBENTRY, 32);
431/** Pointer to an IEM TLB entry. */
432typedef IEMTLBENTRY *PIEMTLBENTRY;
433
434/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
435 * @{ */
436#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
437#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
438#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
439#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
440#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
441#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
442#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
443#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
444#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
445#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
446#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
447/** @} */
448
449
450/**
451 * An IEM TLB.
452 *
453 * We've got two of these, one for data and one for instructions.
454 */
455typedef struct IEMTLB
456{
457 /** The TLB entries.
458 * We've choosen 256 because that way we can obtain the result directly from a
459 * 8-bit register without an additional AND instruction. */
460 IEMTLBENTRY aEntries[256];
461 /** The TLB revision.
462 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
463 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
464 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
465 * (The revision zero indicates an invalid TLB entry.)
466 *
467 * The initial value is choosen to cause an early wraparound. */
468 uint64_t uTlbRevision;
469 /** The TLB physical address revision - shadow of PGM variable.
470 *
471 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
472 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
473 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
474 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
475 *
476 * The initial value is choosen to cause an early wraparound. */
477 uint64_t volatile uTlbPhysRev;
478
479 /* Statistics: */
480
481 /** TLB hits (VBOX_WITH_STATISTICS only). */
482 uint64_t cTlbHits;
483 /** TLB misses. */
484 uint32_t cTlbMisses;
485 /** Slow read path. */
486 uint32_t cTlbSlowReadPath;
487 /** Safe read path. */
488 uint32_t cTlbSafeReadPath;
489 /** Safe write path. */
490 uint32_t cTlbSafeWritePath;
491#if 0
492 /** TLB misses because of tag mismatch. */
493 uint32_t cTlbMissesTag;
494 /** TLB misses because of virtual access violation. */
495 uint32_t cTlbMissesVirtAccess;
496 /** TLB misses because of dirty bit. */
497 uint32_t cTlbMissesDirty;
498 /** TLB misses because of MMIO */
499 uint32_t cTlbMissesMmio;
500 /** TLB misses because of write access handlers. */
501 uint32_t cTlbMissesWriteHandler;
502 /** TLB misses because no r3(/r0) mapping. */
503 uint32_t cTlbMissesMapping;
504#endif
505 /** Alignment padding. */
506 uint32_t au32Padding[6];
507} IEMTLB;
508AssertCompileSizeAlignment(IEMTLB, 64);
509/** IEMTLB::uTlbRevision increment. */
510#define IEMTLB_REVISION_INCR RT_BIT_64(36)
511/** IEMTLB::uTlbRevision mask. */
512#define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
513/** IEMTLB::uTlbPhysRev increment.
514 * @sa IEMTLBE_F_PHYS_REV */
515#define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
516/**
517 * Calculates the TLB tag for a virtual address.
518 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
519 * @param a_pTlb The TLB.
520 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
521 * the clearing of the top 16 bits won't work (if 32-bit
522 * we'll end up with mostly zeros).
523 */
524#define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
525/**
526 * Calculates the TLB tag for a virtual address but without TLB revision.
527 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
528 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
529 * the clearing of the top 16 bits won't work (if 32-bit
530 * we'll end up with mostly zeros).
531 */
532#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
533/**
534 * Converts a TLB tag value into a TLB index.
535 * @returns Index into IEMTLB::aEntries.
536 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
537 */
538#define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
539/**
540 * Converts a TLB tag value into a TLB index.
541 * @returns Index into IEMTLB::aEntries.
542 * @param a_pTlb The TLB.
543 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
544 */
545#define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
546
547
548/** @name IEM_MC_F_XXX - MC block flags/clues.
549 * @todo Merge with IEM_CIMPL_F_XXX
550 * @{ */
551#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
552#define IEM_MC_F_MIN_186 RT_BIT_32(1)
553#define IEM_MC_F_MIN_286 RT_BIT_32(2)
554#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
555#define IEM_MC_F_MIN_386 RT_BIT_32(3)
556#define IEM_MC_F_MIN_486 RT_BIT_32(4)
557#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
558#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
559#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
560#define IEM_MC_F_64BIT RT_BIT_32(6)
561#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
562/** @} */
563
564/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
565 *
566 * These clues are mainly for the recompiler, so that it can emit correct code.
567 *
568 * They are processed by the python script and which also automatically
569 * calculates flags for MC blocks based on the statements, extending the use of
570 * these flags to describe MC block behavior to the recompiler core. The python
571 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
572 * error checking purposes. The script emits the necessary fEndTb = true and
573 * similar statements as this reduces compile time a tiny bit.
574 *
575 * @{ */
576/** Flag set if direct branch, clear if absolute or indirect. */
577#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
578/** Flag set if indirect branch, clear if direct or relative.
579 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
580 * as well as for return instructions (RET, IRET, RETF). */
581#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
582/** Flag set if relative branch, clear if absolute or indirect. */
583#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
584/** Flag set if conditional branch, clear if unconditional. */
585#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
586/** Flag set if it's a far branch (changes CS). */
587#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
588/** Convenience: Testing any kind of branch. */
589#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
590
591/** Execution flags may change (IEMCPU::fExec). */
592#define IEM_CIMPL_F_MODE RT_BIT_32(5)
593/** May change significant portions of RFLAGS. */
594#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
595/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
596#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
597/** May trigger interrupt shadowing. */
598#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
599/** May enable interrupts, so recheck IRQ immediately afterwards executing
600 * the instruction. */
601#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
602/** May disable interrupts, so recheck IRQ immediately before executing the
603 * instruction. */
604#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
605/** Convenience: Check for IRQ both before and after an instruction. */
606#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
607/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
608#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
609/** May modify FPU state.
610 * @todo Not sure if this is useful yet. */
611#define IEM_CIMPL_F_FPU RT_BIT_32(12)
612/** REP prefixed instruction which may yield before updating PC.
613 * @todo Not sure if this is useful, REP functions now return non-zero
614 * status if they don't update the PC. */
615#define IEM_CIMPL_F_REP RT_BIT_32(13)
616/** I/O instruction.
617 * @todo Not sure if this is useful yet. */
618#define IEM_CIMPL_F_IO RT_BIT_32(14)
619/** Force end of TB after the instruction. */
620#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
621/** Flag set if a branch may also modify the stack (push/pop return address). */
622#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
623/** Flag set if a branch may also modify the stack (push/pop return address)
624 * and switch it (load/restore SS:RSP). */
625#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
626/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
627#define IEM_CIMPL_F_XCPT \
628 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
629 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
630
631/** The block calls a C-implementation instruction function with two implicit arguments.
632 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
633 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
634 * @note The python scripts will add this is missing. */
635#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
636/** The block calls an ASM-implementation instruction function.
637 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
638 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
639 * @note The python scripts will add this is missing. */
640#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
641/** The block calls an ASM-implementation instruction function with an implicit
642 * X86FXSTATE pointer argument.
643 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and IEM_CIMPL_F_CALLS_AIMPL.
644 * @note The python scripts will add this is missing. */
645#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
646/** @} */
647
648
649/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
650 *
651 * These flags are set when entering IEM and adjusted as code is executed, such
652 * that they will always contain the current values as instructions are
653 * finished.
654 *
655 * In recompiled execution mode, (most of) these flags are included in the
656 * translation block selection key and stored in IEMTB::fFlags alongside the
657 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
658 * in IEMCPU::fExec.
659 *
660 * @{ */
661/** Mode: The block target mode mask. */
662#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
663/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
664#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
665/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
666 * conditional in EIP/IP updating), and flat wide open CS, SS DS, and ES in
667 * 32-bit mode (for simplifying most memory accesses). */
668#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
669/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
670#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
671/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
672#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
673
674/** X86 Mode: 16-bit on 386 or later. */
675#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
676/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
677#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
678/** X86 Mode: 16-bit protected mode on 386 or later. */
679#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
680/** X86 Mode: 16-bit protected mode on 386 or later. */
681#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
682/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
683#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
684
685/** X86 Mode: 32-bit on 386 or later. */
686#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
687/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
688#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
689/** X86 Mode: 32-bit protected mode. */
690#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
691/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
692#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
693
694/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
695#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
696
697
698/** Bypass access handlers when set. */
699#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
700/** Have pending hardware instruction breakpoints. */
701#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
702/** Have pending hardware data breakpoints. */
703#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
704
705/** X86: Have pending hardware I/O breakpoints. */
706#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
707/** X86: Disregard the lock prefix (implied or not) when set. */
708#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
709
710/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
711#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
712
713/** Caller configurable options. */
714#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
715
716/** X86: The current protection level (CPL) shift factor. */
717#define IEM_F_X86_CPL_SHIFT 8
718/** X86: The current protection level (CPL) mask. */
719#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
720/** X86: The current protection level (CPL) shifted mask. */
721#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
722
723/** X86 execution context.
724 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
725 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
726 * mode. */
727#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
728/** X86 context: Plain regular execution context. */
729#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
730/** X86 context: VT-x enabled. */
731#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
732/** X86 context: AMD-V enabled. */
733#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
734/** X86 context: In AMD-V or VT-x guest mode. */
735#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
736/** X86 context: System management mode (SMM). */
737#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
738
739/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
740 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
741 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
742 * alread). */
743
744/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
745 * iemRegFinishClearingRF() most for most situations
746 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
747 * the IEM_F_PENDING_BRK_XXX bits alread). */
748
749/** @} */
750
751
752/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
753 *
754 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
755 * translation block flags. The combined flag mask (subject to
756 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
757 *
758 * @{ */
759/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
760#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
761
762/** Type: The block type mask. */
763#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
764/** Type: Purly threaded recompiler (via tables). */
765#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
766/** Type: Native recompilation. */
767#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
768
769/** Set when we're starting the block in an "interrupt shadow".
770 * We don't need to distingish between the two types of this mask, thus the one.
771 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
772#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
773/** Set when we're currently inhibiting NMIs
774 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
775#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
776
777/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
778 * we're close the limit before starting a TB, as determined by
779 * iemGetTbFlagsForCurrentPc(). */
780#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
781
782/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
783 * @note We skip the CPL as we don't currently generate ring-specific code,
784 * that's all handled in CIMPL functions.
785 *
786 * For the same reasons, we skip all of IEM_F_X86_CTX_MASK, with the
787 * exception of SMM (which we don't implement). */
788#define IEMTB_F_KEY_MASK ( (UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEM_F_X86_CPL_MASK | IEMTB_F_TYPE_MASK)) \
789 | IEM_F_X86_CTX_SMM)
790/** @} */
791
792AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
793AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
794AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
795AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
796AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
797AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
798AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
799AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
800AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
801AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
802AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
803AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
804AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
805AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
806AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
807AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
808AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
809AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
810AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
811
812AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
813AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
814AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
815AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
816AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
817AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
818AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
819AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
820AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
821AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
822AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
823AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
824
825AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
826AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
827AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
828
829/** Native instruction type for use with the native code generator.
830 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
831#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
832typedef uint8_t IEMNATIVEINSTR;
833#else
834typedef uint32_t IEMNATIVEINSTR;
835#endif
836/** Pointer to a native instruction unit. */
837typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
838/** Pointer to a const native instruction unit. */
839typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
840
841/**
842 * A call for the threaded call table.
843 */
844typedef struct IEMTHRDEDCALLENTRY
845{
846 /** The function to call (IEMTHREADEDFUNCS). */
847 uint16_t enmFunction;
848 /** Instruction number in the TB (for statistics). */
849 uint8_t idxInstr;
850 uint8_t uUnused0;
851
852 /** Offset into IEMTB::pabOpcodes. */
853 uint16_t offOpcode;
854 /** The opcode length. */
855 uint8_t cbOpcode;
856 /** Index in to IEMTB::aRanges. */
857 uint8_t idxRange;
858
859 /** Generic parameters. */
860 uint64_t auParams[3];
861} IEMTHRDEDCALLENTRY;
862AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
863/** Pointer to a threaded call entry. */
864typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
865/** Pointer to a const threaded call entry. */
866typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
867
868/**
869 * Native IEM TB 'function' typedef.
870 *
871 * This will throw/longjmp on occation.
872 *
873 * @note AMD64 doesn't have that many non-volatile registers and does sport
874 * 32-bit address displacments, so we don't need pCtx.
875 *
876 * On ARM64 pCtx allows us to directly address the whole register
877 * context without requiring a separate indexing register holding the
878 * offset. This saves an instruction loading the offset for each guest
879 * CPU context access, at the cost of a non-volatile register.
880 * Fortunately, ARM64 has quite a lot more registers.
881 */
882typedef
883#ifdef RT_ARCH_AMD64
884int FNIEMTBNATIVE(PVMCPUCC pVCpu)
885#else
886int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
887#endif
888#if RT_CPLUSPLUS_PREREQ(201700)
889 IEM_NOEXCEPT_MAY_LONGJMP
890#endif
891 ;
892/** Pointer to a native IEM TB entry point function.
893 * This will throw/longjmp on occation. */
894typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
895
896
897/**
898 * Translation block debug info entry type.
899 */
900typedef enum IEMTBDBGENTRYTYPE
901{
902 kIemTbDbgEntryType_Invalid = 0,
903 /** The entry is for marking a native code position.
904 * Entries following this all apply to this position. */
905 kIemTbDbgEntryType_NativeOffset,
906 /** The entry is for a new guest instruction. */
907 kIemTbDbgEntryType_GuestInstruction,
908 /** Marks the start of a threaded call. */
909 kIemTbDbgEntryType_ThreadedCall,
910 /** Marks the location of a label. */
911 kIemTbDbgEntryType_Label,
912 /** Info about a host register shadowing a guest register. */
913 kIemTbDbgEntryType_GuestRegShadowing,
914 kIemTbDbgEntryType_End
915} IEMTBDBGENTRYTYPE;
916
917/**
918 * Translation block debug info entry.
919 */
920typedef union IEMTBDBGENTRY
921{
922 /** Plain 32-bit view. */
923 uint32_t u;
924
925 /** Generic view for getting at the type field. */
926 struct
927 {
928 /** IEMTBDBGENTRYTYPE */
929 uint32_t uType : 4;
930 uint32_t uTypeSpecific : 28;
931 } Gen;
932
933 struct
934 {
935 /** kIemTbDbgEntryType_ThreadedCall1. */
936 uint32_t uType : 4;
937 /** Native code offset. */
938 uint32_t offNative : 28;
939 } NativeOffset;
940
941 struct
942 {
943 /** kIemTbDbgEntryType_GuestInstruction. */
944 uint32_t uType : 4;
945 uint32_t uUnused : 4;
946 /** The IEM_F_XXX flags. */
947 uint32_t fExec : 24;
948 } GuestInstruction;
949
950 struct
951 {
952 /* kIemTbDbgEntryType_ThreadedCall. */
953 uint32_t uType : 4;
954 /** Set if the call was recompiled to native code, clear if just calling
955 * threaded function. */
956 uint32_t fRecompiled : 1;
957 uint32_t uUnused : 11;
958 /** The threaded call number (IEMTHREADEDFUNCS). */
959 uint32_t enmCall : 16;
960 } ThreadedCall;
961
962 struct
963 {
964 /* kIemTbDbgEntryType_Label. */
965 uint32_t uType : 4;
966 uint32_t uUnused : 4;
967 /** The label type (IEMNATIVELABELTYPE). */
968 uint32_t enmLabel : 8;
969 /** The label data. */
970 uint32_t uData : 16;
971 } Label;
972
973 struct
974 {
975 /* kIemTbDbgEntryType_GuestRegShadowing. */
976 uint32_t uType : 4;
977 uint32_t uUnused : 4;
978 /** The guest register being shadowed (IEMNATIVEGSTREG). */
979 uint32_t idxGstReg : 8;
980 /** The host new register number, UINT8_MAX if dropped. */
981 uint32_t idxHstReg : 8;
982 /** The previous host register number, UINT8_MAX if new. */
983 uint32_t idxHstRegPrev : 8;
984 } GuestRegShadowing;
985} IEMTBDBGENTRY;
986AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
987/** Pointer to a debug info entry. */
988typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
989/** Pointer to a const debug info entry. */
990typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
991
992/**
993 * Translation block debug info.
994 */
995typedef struct IEMTBDBG
996{
997 /** Number of entries in aEntries. */
998 uint32_t cEntries;
999 /** Debug info entries. */
1000 RT_FLEXIBLE_ARRAY_EXTENSION
1001 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1002} IEMTBDBG;
1003/** Pointer to TB debug info. */
1004typedef IEMTBDBG *PIEMTBDBG;
1005/** Pointer to const TB debug info. */
1006typedef IEMTBDBG const *PCIEMTBDBG;
1007
1008
1009/**
1010 * Translation block.
1011 *
1012 * The current plan is to just keep TBs and associated lookup hash table private
1013 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1014 * avoids using expensive atomic primitives for updating lists and stuff.
1015 */
1016#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1017typedef struct IEMTB
1018{
1019 /** Next block with the same hash table entry. */
1020 struct IEMTB *pNext;
1021 /** Usage counter. */
1022 uint32_t cUsed;
1023 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1024 uint32_t msLastUsed;
1025
1026 /** @name What uniquely identifies the block.
1027 * @{ */
1028 RTGCPHYS GCPhysPc;
1029 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1030 uint32_t fFlags;
1031 union
1032 {
1033 struct
1034 {
1035 /**< Relevant CS X86DESCATTR_XXX bits. */
1036 uint16_t fAttr;
1037 } x86;
1038 };
1039 /** @} */
1040
1041 /** Number of opcode ranges. */
1042 uint8_t cRanges;
1043 /** Statistics: Number of instructions in the block. */
1044 uint8_t cInstructions;
1045
1046 /** Type specific info. */
1047 union
1048 {
1049 struct
1050 {
1051 /** The call sequence table. */
1052 PIEMTHRDEDCALLENTRY paCalls;
1053 /** Number of calls in paCalls. */
1054 uint16_t cCalls;
1055 /** Number of calls allocated. */
1056 uint16_t cAllocated;
1057 } Thrd;
1058 struct
1059 {
1060 /** The native instructions (PFNIEMTBNATIVE). */
1061 PIEMNATIVEINSTR paInstructions;
1062 /** Number of instructions pointed to by paInstructions. */
1063 uint32_t cInstructions;
1064 } Native;
1065 /** Generic view for zeroing when freeing. */
1066 struct
1067 {
1068 uintptr_t uPtr;
1069 uint32_t uData;
1070 } Gen;
1071 };
1072
1073 /** The allocation chunk this TB belongs to. */
1074 uint8_t idxAllocChunk;
1075 uint8_t bUnused;
1076
1077 /** Number of bytes of opcodes stored in pabOpcodes.
1078 * @todo this field isn't really needed, aRanges keeps the actual info. */
1079 uint16_t cbOpcodes;
1080 /** Pointer to the opcode bytes this block was recompiled from. */
1081 uint8_t *pabOpcodes;
1082
1083 /** Debug info if enabled.
1084 * This is only generated by the native recompiler. */
1085 PIEMTBDBG pDbgInfo;
1086
1087 /* --- 64 byte cache line end --- */
1088
1089 /** Opcode ranges.
1090 *
1091 * The opcode checkers and maybe TLB loading functions will use this to figure
1092 * out what to do. The parameter will specify an entry and the opcode offset to
1093 * start at and the minimum number of bytes to verify (instruction length).
1094 *
1095 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1096 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1097 * code TLB (must have a valid entry for that address) and scan the ranges to
1098 * locate the corresponding opcodes. Probably.
1099 */
1100 struct IEMTBOPCODERANGE
1101 {
1102 /** Offset within pabOpcodes. */
1103 uint16_t offOpcodes;
1104 /** Number of bytes. */
1105 uint16_t cbOpcodes;
1106 /** The page offset. */
1107 RT_GCC_EXTENSION
1108 uint16_t offPhysPage : 12;
1109 /** Unused bits. */
1110 RT_GCC_EXTENSION
1111 uint16_t u2Unused : 2;
1112 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1113 RT_GCC_EXTENSION
1114 uint16_t idxPhysPage : 2;
1115 } aRanges[8];
1116
1117 /** Physical pages that this TB covers.
1118 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1119 RTGCPHYS aGCPhysPages[2];
1120} IEMTB;
1121#pragma pack()
1122AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1123AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1124AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1125AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1126AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1127AssertCompileMemberOffset(IEMTB, aRanges, 64);
1128AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1129#if 1
1130AssertCompileSize(IEMTB, 128);
1131# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1132#else
1133AssertCompileSize(IEMTB, 168);
1134# undef IEMTB_SIZE_IS_POWER_OF_TWO
1135#endif
1136
1137/** Pointer to a translation block. */
1138typedef IEMTB *PIEMTB;
1139/** Pointer to a const translation block. */
1140typedef IEMTB const *PCIEMTB;
1141
1142/**
1143 * A chunk of memory in the TB allocator.
1144 */
1145typedef struct IEMTBCHUNK
1146{
1147 /** Pointer to the translation blocks in this chunk. */
1148 PIEMTB paTbs;
1149#ifdef IN_RING0
1150 /** Allocation handle. */
1151 RTR0MEMOBJ hMemObj;
1152#endif
1153} IEMTBCHUNK;
1154
1155/**
1156 * A per-CPU translation block allocator.
1157 *
1158 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1159 * the length of the collision list, and of course also for cache line alignment
1160 * reasons, the TBs must be allocated with at least 64-byte alignment.
1161 * Memory is there therefore allocated using one of the page aligned allocators.
1162 *
1163 *
1164 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1165 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1166 * that enables us to quickly calculate the allocation bitmap position when
1167 * freeing the translation block.
1168 */
1169typedef struct IEMTBALLOCATOR
1170{
1171 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1172 uint32_t uMagic;
1173
1174#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1175 /** Mask corresponding to cTbsPerChunk - 1. */
1176 uint32_t fChunkMask;
1177 /** Shift count corresponding to cTbsPerChunk. */
1178 uint8_t cChunkShift;
1179#else
1180 uint32_t uUnused;
1181 uint8_t bUnused;
1182#endif
1183 /** Number of chunks we're allowed to allocate. */
1184 uint8_t cMaxChunks;
1185 /** Number of chunks currently populated. */
1186 uint16_t cAllocatedChunks;
1187 /** Number of translation blocks per chunk. */
1188 uint32_t cTbsPerChunk;
1189 /** Chunk size. */
1190 uint32_t cbPerChunk;
1191
1192 /** The maximum number of TBs. */
1193 uint32_t cMaxTbs;
1194 /** Total number of TBs in the populated chunks.
1195 * (cAllocatedChunks * cTbsPerChunk) */
1196 uint32_t cTotalTbs;
1197 /** The current number of TBs in use.
1198 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1199 uint32_t cInUseTbs;
1200 /** Statistics: Number of the cInUseTbs that are native ones. */
1201 uint32_t cNativeTbs;
1202 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1203 uint32_t cThreadedTbs;
1204
1205 /** Where to start pruning TBs from when we're out.
1206 * See iemTbAllocatorAllocSlow for details. */
1207 uint32_t iPruneFrom;
1208 /** Hint about which bit to start scanning the bitmap from. */
1209 uint32_t iStartHint;
1210
1211 /** Statistics: Number of TB allocation calls. */
1212 STAMCOUNTER StatAllocs;
1213 /** Statistics: Number of TB free calls. */
1214 STAMCOUNTER StatFrees;
1215 /** Statistics: Time spend pruning. */
1216 STAMPROFILE StatPrune;
1217
1218 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1219 PIEMTB pDelayedFreeHead;
1220
1221 /** Allocation chunks. */
1222 IEMTBCHUNK aChunks[256];
1223
1224 /** Allocation bitmap for all possible chunk chunks. */
1225 RT_FLEXIBLE_ARRAY_EXTENSION
1226 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1227} IEMTBALLOCATOR;
1228/** Pointer to a TB allocator. */
1229typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1230
1231/** Magic value for the TB allocator (Emmet Harley Cohen). */
1232#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1233
1234
1235/**
1236 * A per-CPU translation block cache (hash table).
1237 *
1238 * The hash table is allocated once during IEM initialization and size double
1239 * the max TB count, rounded up to the nearest power of two (so we can use and
1240 * AND mask rather than a rest division when hashing).
1241 */
1242typedef struct IEMTBCACHE
1243{
1244 /** Magic value (IEMTBCACHE_MAGIC). */
1245 uint32_t uMagic;
1246 /** Size of the hash table. This is a power of two. */
1247 uint32_t cHash;
1248 /** The mask corresponding to cHash. */
1249 uint32_t uHashMask;
1250 uint32_t uPadding;
1251
1252 /** @name Statistics
1253 * @{ */
1254 /** Number of collisions ever. */
1255 STAMCOUNTER cCollisions;
1256
1257 /** Statistics: Number of TB lookup misses. */
1258 STAMCOUNTER cLookupMisses;
1259 /** Statistics: Number of TB lookup hits (debug only). */
1260 STAMCOUNTER cLookupHits;
1261 STAMCOUNTER auPadding2[3];
1262 /** Statistics: Collision list length pruning. */
1263 STAMPROFILE StatPrune;
1264 /** @} */
1265
1266 /** The hash table itself.
1267 * @note The lower 6 bits of the pointer is used for keeping the collision
1268 * list length, so we can take action when it grows too long.
1269 * This works because TBs are allocated using a 64 byte (or
1270 * higher) alignment from page aligned chunks of memory, so the lower
1271 * 6 bits of the address will always be zero.
1272 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1273 */
1274 RT_FLEXIBLE_ARRAY_EXTENSION
1275 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1276} IEMTBCACHE;
1277/** Pointer to a per-CPU translation block cahce. */
1278typedef IEMTBCACHE *PIEMTBCACHE;
1279
1280/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1281#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1282
1283/** The collision count mask for IEMTBCACHE::apHash entries. */
1284#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1285/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1286#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1287/** Combine a TB pointer and a collision list length into a value for an
1288 * IEMTBCACHE::apHash entry. */
1289#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1290/** Combine a TB pointer and a collision list length into a value for an
1291 * IEMTBCACHE::apHash entry. */
1292#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1293/** Combine a TB pointer and a collision list length into a value for an
1294 * IEMTBCACHE::apHash entry. */
1295#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1296
1297/**
1298 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1299 */
1300#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1301 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1302
1303/**
1304 * Calculates the hash table slot for a TB from physical PC address and TB
1305 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1306 */
1307#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1308 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1309
1310
1311/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1312 *
1313 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1314 *
1315 * @{ */
1316/** Value if no branching happened recently. */
1317#define IEMBRANCHED_F_NO UINT8_C(0x00)
1318/** Flag set if direct branch, clear if absolute or indirect. */
1319#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1320/** Flag set if indirect branch, clear if direct or relative. */
1321#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1322/** Flag set if relative branch, clear if absolute or indirect. */
1323#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1324/** Flag set if conditional branch, clear if unconditional. */
1325#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1326/** Flag set if it's a far branch. */
1327#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1328/** Flag set if the stack pointer is modified. */
1329#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1330/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1331#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1332/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1333#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1334/** @} */
1335
1336
1337/**
1338 * The per-CPU IEM state.
1339 */
1340typedef struct IEMCPU
1341{
1342 /** Info status code that needs to be propagated to the IEM caller.
1343 * This cannot be passed internally, as it would complicate all success
1344 * checks within the interpreter making the code larger and almost impossible
1345 * to get right. Instead, we'll store status codes to pass on here. Each
1346 * source of these codes will perform appropriate sanity checks. */
1347 int32_t rcPassUp; /* 0x00 */
1348 /** Execution flag, IEM_F_XXX. */
1349 uint32_t fExec; /* 0x04 */
1350
1351 /** @name Decoder state.
1352 * @{ */
1353#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1354# ifdef IEM_WITH_CODE_TLB
1355 /** The offset of the next instruction byte. */
1356 uint32_t offInstrNextByte; /* 0x08 */
1357 /** The number of bytes available at pbInstrBuf for the current instruction.
1358 * This takes the max opcode length into account so that doesn't need to be
1359 * checked separately. */
1360 uint32_t cbInstrBuf; /* 0x0c */
1361 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1362 * This can be NULL if the page isn't mappable for some reason, in which
1363 * case we'll do fallback stuff.
1364 *
1365 * If we're executing an instruction from a user specified buffer,
1366 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1367 * aligned pointer but pointer to the user data.
1368 *
1369 * For instructions crossing pages, this will start on the first page and be
1370 * advanced to the next page by the time we've decoded the instruction. This
1371 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1372 */
1373 uint8_t const *pbInstrBuf; /* 0x10 */
1374# if ARCH_BITS == 32
1375 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1376# endif
1377 /** The program counter corresponding to pbInstrBuf.
1378 * This is set to a non-canonical address when we need to invalidate it. */
1379 uint64_t uInstrBufPc; /* 0x18 */
1380 /** The guest physical address corresponding to pbInstrBuf. */
1381 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1382 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1383 * This takes the CS segment limit into account. */
1384 uint16_t cbInstrBufTotal; /* 0x28 */
1385 /** Offset into pbInstrBuf of the first byte of the current instruction.
1386 * Can be negative to efficiently handle cross page instructions. */
1387 int16_t offCurInstrStart; /* 0x2a */
1388
1389 /** The prefix mask (IEM_OP_PRF_XXX). */
1390 uint32_t fPrefixes; /* 0x2c */
1391 /** The extra REX ModR/M register field bit (REX.R << 3). */
1392 uint8_t uRexReg; /* 0x30 */
1393 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1394 * (REX.B << 3). */
1395 uint8_t uRexB; /* 0x31 */
1396 /** The extra REX SIB index field bit (REX.X << 3). */
1397 uint8_t uRexIndex; /* 0x32 */
1398
1399 /** The effective segment register (X86_SREG_XXX). */
1400 uint8_t iEffSeg; /* 0x33 */
1401
1402 /** The offset of the ModR/M byte relative to the start of the instruction. */
1403 uint8_t offModRm; /* 0x34 */
1404
1405# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1406 /** The current offset into abOpcode. */
1407 uint8_t offOpcode; /* 0x35 */
1408# else
1409 uint8_t bUnused; /* 0x35 */
1410# endif
1411# else /* !IEM_WITH_CODE_TLB */
1412 /** The size of what has currently been fetched into abOpcode. */
1413 uint8_t cbOpcode; /* 0x08 */
1414 /** The current offset into abOpcode. */
1415 uint8_t offOpcode; /* 0x09 */
1416 /** The offset of the ModR/M byte relative to the start of the instruction. */
1417 uint8_t offModRm; /* 0x0a */
1418
1419 /** The effective segment register (X86_SREG_XXX). */
1420 uint8_t iEffSeg; /* 0x0b */
1421
1422 /** The prefix mask (IEM_OP_PRF_XXX). */
1423 uint32_t fPrefixes; /* 0x0c */
1424 /** The extra REX ModR/M register field bit (REX.R << 3). */
1425 uint8_t uRexReg; /* 0x10 */
1426 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1427 * (REX.B << 3). */
1428 uint8_t uRexB; /* 0x11 */
1429 /** The extra REX SIB index field bit (REX.X << 3). */
1430 uint8_t uRexIndex; /* 0x12 */
1431
1432# endif /* !IEM_WITH_CODE_TLB */
1433
1434 /** The effective operand mode. */
1435 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1436 /** The default addressing mode. */
1437 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1438 /** The effective addressing mode. */
1439 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1440 /** The default operand mode. */
1441 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1442
1443 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1444 uint8_t idxPrefix; /* 0x3a, 0x17 */
1445 /** 3rd VEX/EVEX/XOP register.
1446 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1447 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1448 /** The VEX/EVEX/XOP length field. */
1449 uint8_t uVexLength; /* 0x3c, 0x19 */
1450 /** Additional EVEX stuff. */
1451 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1452
1453# ifndef IEM_WITH_CODE_TLB
1454 /** Explicit alignment padding. */
1455 uint8_t abAlignment2a[1]; /* 0x1b */
1456# endif
1457 /** The FPU opcode (FOP). */
1458 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1459# ifndef IEM_WITH_CODE_TLB
1460 /** Explicit alignment padding. */
1461 uint8_t abAlignment2b[2]; /* 0x1e */
1462# endif
1463
1464 /** The opcode bytes. */
1465 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1466 /** Explicit alignment padding. */
1467# ifdef IEM_WITH_CODE_TLB
1468 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1469# else
1470 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1471# endif
1472#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1473 uint8_t abOpaqueDecoder[0x4f - 0x8];
1474#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1475 /** @} */
1476
1477
1478 /** The number of active guest memory mappings. */
1479 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1480
1481 /** Records for tracking guest memory mappings. */
1482 struct
1483 {
1484 /** The address of the mapped bytes. */
1485 R3R0PTRTYPE(void *) pv;
1486 /** The access flags (IEM_ACCESS_XXX).
1487 * IEM_ACCESS_INVALID if the entry is unused. */
1488 uint32_t fAccess;
1489#if HC_ARCH_BITS == 64
1490 uint32_t u32Alignment4; /**< Alignment padding. */
1491#endif
1492 } aMemMappings[3]; /* 0x50 LB 0x30 */
1493
1494 /** Locking records for the mapped memory. */
1495 union
1496 {
1497 PGMPAGEMAPLOCK Lock;
1498 uint64_t au64Padding[2];
1499 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1500
1501 /** Bounce buffer info.
1502 * This runs in parallel to aMemMappings. */
1503 struct
1504 {
1505 /** The physical address of the first byte. */
1506 RTGCPHYS GCPhysFirst;
1507 /** The physical address of the second page. */
1508 RTGCPHYS GCPhysSecond;
1509 /** The number of bytes in the first page. */
1510 uint16_t cbFirst;
1511 /** The number of bytes in the second page. */
1512 uint16_t cbSecond;
1513 /** Whether it's unassigned memory. */
1514 bool fUnassigned;
1515 /** Explicit alignment padding. */
1516 bool afAlignment5[3];
1517 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1518
1519 /** The flags of the current exception / interrupt. */
1520 uint32_t fCurXcpt; /* 0xf8 */
1521 /** The current exception / interrupt. */
1522 uint8_t uCurXcpt; /* 0xfc */
1523 /** Exception / interrupt recursion depth. */
1524 int8_t cXcptRecursions; /* 0xfb */
1525
1526 /** The next unused mapping index.
1527 * @todo try find room for this up with cActiveMappings. */
1528 uint8_t iNextMapping; /* 0xfd */
1529 uint8_t abAlignment7[1];
1530
1531 /** Bounce buffer storage.
1532 * This runs in parallel to aMemMappings and aMemBbMappings. */
1533 struct
1534 {
1535 uint8_t ab[512];
1536 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1537
1538
1539 /** Pointer set jump buffer - ring-3 context. */
1540 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1541 /** Pointer set jump buffer - ring-0 context. */
1542 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1543
1544 /** @todo Should move this near @a fCurXcpt later. */
1545 /** The CR2 for the current exception / interrupt. */
1546 uint64_t uCurXcptCr2;
1547 /** The error code for the current exception / interrupt. */
1548 uint32_t uCurXcptErr;
1549
1550 /** @name Statistics
1551 * @{ */
1552 /** The number of instructions we've executed. */
1553 uint32_t cInstructions;
1554 /** The number of potential exits. */
1555 uint32_t cPotentialExits;
1556 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1557 * This may contain uncommitted writes. */
1558 uint32_t cbWritten;
1559 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1560 uint32_t cRetInstrNotImplemented;
1561 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1562 uint32_t cRetAspectNotImplemented;
1563 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1564 uint32_t cRetInfStatuses;
1565 /** Counts other error statuses returned. */
1566 uint32_t cRetErrStatuses;
1567 /** Number of times rcPassUp has been used. */
1568 uint32_t cRetPassUpStatus;
1569 /** Number of times RZ left with instruction commit pending for ring-3. */
1570 uint32_t cPendingCommit;
1571 /** Number of long jumps. */
1572 uint32_t cLongJumps;
1573 /** @} */
1574
1575 /** @name Target CPU information.
1576 * @{ */
1577#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1578 /** The target CPU. */
1579 uint8_t uTargetCpu;
1580#else
1581 uint8_t bTargetCpuPadding;
1582#endif
1583 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1584 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1585 * native host support and the 2nd for when there is.
1586 *
1587 * The two values are typically indexed by a g_CpumHostFeatures bit.
1588 *
1589 * This is for instance used for the BSF & BSR instructions where AMD and
1590 * Intel CPUs produce different EFLAGS. */
1591 uint8_t aidxTargetCpuEflFlavour[2];
1592
1593 /** The CPU vendor. */
1594 CPUMCPUVENDOR enmCpuVendor;
1595 /** @} */
1596
1597 /** @name Host CPU information.
1598 * @{ */
1599 /** The CPU vendor. */
1600 CPUMCPUVENDOR enmHostCpuVendor;
1601 /** @} */
1602
1603 /** Counts RDMSR \#GP(0) LogRel(). */
1604 uint8_t cLogRelRdMsr;
1605 /** Counts WRMSR \#GP(0) LogRel(). */
1606 uint8_t cLogRelWrMsr;
1607 /** Alignment padding. */
1608 uint8_t abAlignment9[46];
1609
1610 /** @name Recompilation
1611 * @{ */
1612 /** Pointer to the current translation block.
1613 * This can either be one being executed or one being compiled. */
1614 R3PTRTYPE(PIEMTB) pCurTbR3;
1615 /** Fixed TB used for threaded recompilation.
1616 * This is allocated once with maxed-out sizes and re-used afterwards. */
1617 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1618 /** Pointer to the ring-3 TB cache for this EMT. */
1619 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1620 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1621 * The TBs are based on physical addresses, so this is needed to correleated
1622 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1623 uint64_t uCurTbStartPc;
1624 /** Number of threaded TBs executed. */
1625 uint64_t cTbExecThreaded;
1626 /** Number of native TBs executed. */
1627 uint64_t cTbExecNative;
1628 /** Whether we need to check the opcode bytes for the current instruction.
1629 * This is set by a previous instruction if it modified memory or similar. */
1630 bool fTbCheckOpcodes;
1631 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1632 uint8_t fTbBranched;
1633 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1634 bool fTbCrossedPage;
1635 /** Whether to end the current TB. */
1636 bool fEndTb;
1637 /** Number of instructions before we need emit an IRQ check call again.
1638 * This helps making sure we don't execute too long w/o checking for
1639 * interrupts and immediately following instructions that may enable
1640 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1641 * required to make sure we check following the next instruction as well, see
1642 * fTbCurInstrIsSti. */
1643 uint8_t cInstrTillIrqCheck;
1644 /** Indicates that the current instruction is an STI. This is set by the
1645 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1646 bool fTbCurInstrIsSti;
1647 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1648 uint16_t cbOpcodesAllocated;
1649 /** Spaced reserved for recompiler data / alignment. */
1650 bool afRecompilerStuff1[4];
1651 /** The virtual sync time at the last timer poll call. */
1652 uint32_t msRecompilerPollNow;
1653 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1654 uint32_t fTbCurInstr;
1655 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1656 uint32_t fTbPrevInstr;
1657 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1658 RTGCPHYS GCPhysInstrBufPrev;
1659 /** Copy of IEMCPU::GCPhysInstrBuf after decoding a branch instruction.
1660 * This is used together with fTbBranched and GCVirtTbBranchSrcBuf to determin
1661 * whether a branch instruction jumps to a new page or stays within the
1662 * current one. */
1663 RTGCPHYS GCPhysTbBranchSrcBuf;
1664 /** Copy of IEMCPU::uInstrBufPc after decoding a branch instruction. */
1665 uint64_t GCVirtTbBranchSrcBuf;
1666 /** Pointer to the ring-3 TB allocator for this EMT. */
1667 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1668 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1669 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1670 /** Pointer to the native recompiler state for ring-3. */
1671 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1672 /** Alignment padding. */
1673 uint64_t auAlignment10[4];
1674 /** Statistics: Times TB execution was broken off before reaching the end. */
1675 STAMCOUNTER StatTbExecBreaks;
1676 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1677 STAMCOUNTER StatCheckIrqBreaks;
1678 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1679 STAMCOUNTER StatCheckModeBreaks;
1680 /** Statistics: Times a post jump target check missed and had to find new TB. */
1681 STAMCOUNTER StatCheckBranchMisses;
1682 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1683 STAMCOUNTER StatCheckNeedCsLimChecking;
1684 /** Threaded TB statistics: Number of instructions per TB. */
1685 STAMPROFILE StatTbThreadedInstr;
1686 /** Threaded TB statistics: Number of calls per TB. */
1687 STAMPROFILE StatTbThreadedCalls;
1688 /** Native TB statistics: Native code size per TB. */
1689 STAMPROFILE StatTbNativeCode;
1690 /** Native TB statistics: Profiling native recompilation. */
1691 STAMPROFILE StatNativeRecompilation;
1692 /** @} */
1693
1694 /** Data TLB.
1695 * @remarks Must be 64-byte aligned. */
1696 IEMTLB DataTlb;
1697 /** Instruction TLB.
1698 * @remarks Must be 64-byte aligned. */
1699 IEMTLB CodeTlb;
1700
1701 /** Exception statistics. */
1702 STAMCOUNTER aStatXcpts[32];
1703 /** Interrupt statistics. */
1704 uint32_t aStatInts[256];
1705
1706#if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
1707 /** Instruction statistics for ring-0/raw-mode. */
1708 IEMINSTRSTATS StatsRZ;
1709 /** Instruction statistics for ring-3. */
1710 IEMINSTRSTATS StatsR3;
1711#endif
1712} IEMCPU;
1713AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
1714AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
1715AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
1716AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
1717AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
1718AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
1719
1720/** Pointer to the per-CPU IEM state. */
1721typedef IEMCPU *PIEMCPU;
1722/** Pointer to the const per-CPU IEM state. */
1723typedef IEMCPU const *PCIEMCPU;
1724
1725
1726/** @def IEM_GET_CTX
1727 * Gets the guest CPU context for the calling EMT.
1728 * @returns PCPUMCTX
1729 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1730 */
1731#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
1732
1733/** @def IEM_CTX_ASSERT
1734 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
1735 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1736 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
1737 */
1738#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
1739 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
1740 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
1741 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
1742
1743/** @def IEM_CTX_IMPORT_RET
1744 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1745 *
1746 * Will call the keep to import the bits as needed.
1747 *
1748 * Returns on import failure.
1749 *
1750 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1751 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1752 */
1753#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
1754 do { \
1755 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1756 { /* likely */ } \
1757 else \
1758 { \
1759 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1760 AssertRCReturn(rcCtxImport, rcCtxImport); \
1761 } \
1762 } while (0)
1763
1764/** @def IEM_CTX_IMPORT_NORET
1765 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1766 *
1767 * Will call the keep to import the bits as needed.
1768 *
1769 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1770 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1771 */
1772#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
1773 do { \
1774 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1775 { /* likely */ } \
1776 else \
1777 { \
1778 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1779 AssertLogRelRC(rcCtxImport); \
1780 } \
1781 } while (0)
1782
1783/** @def IEM_CTX_IMPORT_JMP
1784 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
1785 *
1786 * Will call the keep to import the bits as needed.
1787 *
1788 * Jumps on import failure.
1789 *
1790 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1791 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
1792 */
1793#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
1794 do { \
1795 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
1796 { /* likely */ } \
1797 else \
1798 { \
1799 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
1800 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
1801 } \
1802 } while (0)
1803
1804
1805
1806/** @def IEM_GET_TARGET_CPU
1807 * Gets the current IEMTARGETCPU value.
1808 * @returns IEMTARGETCPU value.
1809 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
1810 */
1811#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
1812# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
1813#else
1814# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
1815#endif
1816
1817/** @def IEM_GET_INSTR_LEN
1818 * Gets the instruction length. */
1819#ifdef IEM_WITH_CODE_TLB
1820# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
1821#else
1822# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
1823#endif
1824
1825/** @def IEM_TRY_SETJMP
1826 * Wrapper around setjmp / try, hiding all the ugly differences.
1827 *
1828 * @note Use with extreme care as this is a fragile macro.
1829 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1830 * @param a_rcTarget The variable that should receive the status code in case
1831 * of a longjmp/throw.
1832 */
1833/** @def IEM_TRY_SETJMP_AGAIN
1834 * For when setjmp / try is used again in the same variable scope as a previous
1835 * IEM_TRY_SETJMP invocation.
1836 */
1837/** @def IEM_CATCH_LONGJMP_BEGIN
1838 * Start wrapper for catch / setjmp-else.
1839 *
1840 * This will set up a scope.
1841 *
1842 * @note Use with extreme care as this is a fragile macro.
1843 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1844 * @param a_rcTarget The variable that should receive the status code in case
1845 * of a longjmp/throw.
1846 */
1847/** @def IEM_CATCH_LONGJMP_END
1848 * End wrapper for catch / setjmp-else.
1849 *
1850 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
1851 * state.
1852 *
1853 * @note Use with extreme care as this is a fragile macro.
1854 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
1855 */
1856#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
1857# ifdef IEM_WITH_THROW_CATCH
1858# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1859 a_rcTarget = VINF_SUCCESS; \
1860 try
1861# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1862 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
1863# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1864 catch (int rcThrown) \
1865 { \
1866 a_rcTarget = rcThrown
1867# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1868 } \
1869 ((void)0)
1870# else /* !IEM_WITH_THROW_CATCH */
1871# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
1872 jmp_buf JmpBuf; \
1873 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
1874 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1875 if ((rcStrict = setjmp(JmpBuf)) == 0)
1876# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
1877 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
1878 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
1879 if ((rcStrict = setjmp(JmpBuf)) == 0)
1880# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
1881 else \
1882 { \
1883 ((void)0)
1884# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
1885 } \
1886 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
1887# endif /* !IEM_WITH_THROW_CATCH */
1888#endif /* IEM_WITH_SETJMP */
1889
1890
1891/**
1892 * Shared per-VM IEM data.
1893 */
1894typedef struct IEM
1895{
1896 /** The VMX APIC-access page handler type. */
1897 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
1898#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
1899 /** Set if the CPUID host call functionality is enabled. */
1900 bool fCpuIdHostCall;
1901#endif
1902} IEM;
1903
1904
1905
1906/** @name IEM_ACCESS_XXX - Access details.
1907 * @{ */
1908#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
1909#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
1910#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
1911#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
1912#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
1913#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
1914#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
1915#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
1916#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
1917#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
1918/** The writes are partial, so if initialize the bounce buffer with the
1919 * orignal RAM content. */
1920#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
1921/** Used in aMemMappings to indicate that the entry is bounce buffered. */
1922#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
1923/** Bounce buffer with ring-3 write pending, first page. */
1924#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
1925/** Bounce buffer with ring-3 write pending, second page. */
1926#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
1927/** Not locked, accessed via the TLB. */
1928#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
1929/** Valid bit mask. */
1930#define IEM_ACCESS_VALID_MASK UINT32_C(0x00001fff)
1931/** Shift count for the TLB flags (upper word). */
1932#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
1933
1934/** Read+write data alias. */
1935#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1936/** Write data alias. */
1937#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
1938/** Read data alias. */
1939#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
1940/** Instruction fetch alias. */
1941#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
1942/** Stack write alias. */
1943#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1944/** Stack read alias. */
1945#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
1946/** Stack read+write alias. */
1947#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
1948/** Read system table alias. */
1949#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
1950/** Read+write system table alias. */
1951#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
1952/** @} */
1953
1954/** @name Prefix constants (IEMCPU::fPrefixes)
1955 * @{ */
1956#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
1957#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
1958#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
1959#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
1960#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
1961#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
1962#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
1963
1964#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
1965#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
1966#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
1967
1968#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
1969#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
1970#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
1971
1972#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
1973#define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
1974#define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
1975#define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
1976/** Mask with all the REX prefix flags.
1977 * This is generally for use when needing to undo the REX prefixes when they
1978 * are followed legacy prefixes and therefore does not immediately preceed
1979 * the first opcode byte.
1980 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
1981#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
1982
1983#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
1984#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
1985#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
1986/** @} */
1987
1988/** @name IEMOPFORM_XXX - Opcode forms
1989 * @note These are ORed together with IEMOPHINT_XXX.
1990 * @{ */
1991/** ModR/M: reg, r/m */
1992#define IEMOPFORM_RM 0
1993/** ModR/M: reg, r/m (register) */
1994#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
1995/** ModR/M: reg, r/m (memory) */
1996#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
1997/** ModR/M: reg, r/m */
1998#define IEMOPFORM_RMI 1
1999/** ModR/M: reg, r/m (register) */
2000#define IEMOPFORM_RMI_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2001/** ModR/M: reg, r/m (memory) */
2002#define IEMOPFORM_RMI_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2003/** ModR/M: r/m, reg */
2004#define IEMOPFORM_MR 2
2005/** ModR/M: r/m (register), reg */
2006#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2007/** ModR/M: r/m (memory), reg */
2008#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2009/** ModR/M: r/m, reg */
2010#define IEMOPFORM_MRI 3
2011/** ModR/M: r/m (register), reg */
2012#define IEMOPFORM_MRI_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2013/** ModR/M: r/m (memory), reg */
2014#define IEMOPFORM_MRI_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2015/** ModR/M: r/m only */
2016#define IEMOPFORM_M 4
2017/** ModR/M: r/m only (register). */
2018#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2019/** ModR/M: r/m only (memory). */
2020#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2021/** ModR/M: reg only */
2022#define IEMOPFORM_R 5
2023
2024/** VEX+ModR/M: reg, r/m */
2025#define IEMOPFORM_VEX_RM 8
2026/** VEX+ModR/M: reg, r/m (register) */
2027#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2028/** VEX+ModR/M: reg, r/m (memory) */
2029#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2030/** VEX+ModR/M: r/m, reg */
2031#define IEMOPFORM_VEX_MR 9
2032/** VEX+ModR/M: r/m (register), reg */
2033#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2034/** VEX+ModR/M: r/m (memory), reg */
2035#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2036/** VEX+ModR/M: r/m only */
2037#define IEMOPFORM_VEX_M 10
2038/** VEX+ModR/M: r/m only (register). */
2039#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2040/** VEX+ModR/M: r/m only (memory). */
2041#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2042/** VEX+ModR/M: reg only */
2043#define IEMOPFORM_VEX_R 11
2044/** VEX+ModR/M: reg, vvvv, r/m */
2045#define IEMOPFORM_VEX_RVM 12
2046/** VEX+ModR/M: reg, vvvv, r/m (register). */
2047#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2048/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2049#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2050/** VEX+ModR/M: reg, r/m, vvvv */
2051#define IEMOPFORM_VEX_RMV 13
2052/** VEX+ModR/M: reg, r/m, vvvv (register). */
2053#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2054/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2055#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2056/** VEX+ModR/M: reg, r/m, imm8 */
2057#define IEMOPFORM_VEX_RMI 14
2058/** VEX+ModR/M: reg, r/m, imm8 (register). */
2059#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2060/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2061#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2062/** VEX+ModR/M: r/m, vvvv, reg */
2063#define IEMOPFORM_VEX_MVR 15
2064/** VEX+ModR/M: r/m, vvvv, reg (register) */
2065#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2066/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2067#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2068/** VEX+ModR/M+/n: vvvv, r/m */
2069#define IEMOPFORM_VEX_VM 16
2070/** VEX+ModR/M+/n: vvvv, r/m (register) */
2071#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2072/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2073#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2074
2075/** Fixed register instruction, no R/M. */
2076#define IEMOPFORM_FIXED 32
2077
2078/** The r/m is a register. */
2079#define IEMOPFORM_MOD3 RT_BIT_32(8)
2080/** The r/m is a memory access. */
2081#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2082/** @} */
2083
2084/** @name IEMOPHINT_XXX - Additional Opcode Hints
2085 * @note These are ORed together with IEMOPFORM_XXX.
2086 * @{ */
2087/** Ignores the operand size prefix (66h). */
2088#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2089/** Ignores REX.W (aka WIG). */
2090#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2091/** Both the operand size prefixes (66h + REX.W) are ignored. */
2092#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2093/** Allowed with the lock prefix. */
2094#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2095/** The VEX.L value is ignored (aka LIG). */
2096#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2097/** The VEX.L value must be zero (i.e. 128-bit width only). */
2098#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2099/** The VEX.V value must be zero. */
2100#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(14)
2101
2102/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2103#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2104/** @} */
2105
2106/**
2107 * Possible hardware task switch sources.
2108 */
2109typedef enum IEMTASKSWITCH
2110{
2111 /** Task switch caused by an interrupt/exception. */
2112 IEMTASKSWITCH_INT_XCPT = 1,
2113 /** Task switch caused by a far CALL. */
2114 IEMTASKSWITCH_CALL,
2115 /** Task switch caused by a far JMP. */
2116 IEMTASKSWITCH_JUMP,
2117 /** Task switch caused by an IRET. */
2118 IEMTASKSWITCH_IRET
2119} IEMTASKSWITCH;
2120AssertCompileSize(IEMTASKSWITCH, 4);
2121
2122/**
2123 * Possible CrX load (write) sources.
2124 */
2125typedef enum IEMACCESSCRX
2126{
2127 /** CrX access caused by 'mov crX' instruction. */
2128 IEMACCESSCRX_MOV_CRX,
2129 /** CrX (CR0) write caused by 'lmsw' instruction. */
2130 IEMACCESSCRX_LMSW,
2131 /** CrX (CR0) write caused by 'clts' instruction. */
2132 IEMACCESSCRX_CLTS,
2133 /** CrX (CR0) read caused by 'smsw' instruction. */
2134 IEMACCESSCRX_SMSW
2135} IEMACCESSCRX;
2136
2137#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2138/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2139 *
2140 * These flags provide further context to SLAT page-walk failures that could not be
2141 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2142 *
2143 * @{
2144 */
2145/** Translating a nested-guest linear address failed accessing a nested-guest
2146 * physical address. */
2147# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2148/** Translating a nested-guest linear address failed accessing a
2149 * paging-structure entry or updating accessed/dirty bits. */
2150# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2151/** @} */
2152
2153DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2154# ifndef IN_RING3
2155DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2156# endif
2157#endif
2158
2159/**
2160 * Indicates to the verifier that the given flag set is undefined.
2161 *
2162 * Can be invoked again to add more flags.
2163 *
2164 * This is a NOOP if the verifier isn't compiled in.
2165 *
2166 * @note We're temporarily keeping this until code is converted to new
2167 * disassembler style opcode handling.
2168 */
2169#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2170
2171
2172/** @def IEM_DECL_IMPL_TYPE
2173 * For typedef'ing an instruction implementation function.
2174 *
2175 * @param a_RetType The return type.
2176 * @param a_Name The name of the type.
2177 * @param a_ArgList The argument list enclosed in parentheses.
2178 */
2179
2180/** @def IEM_DECL_IMPL_DEF
2181 * For defining an instruction implementation function.
2182 *
2183 * @param a_RetType The return type.
2184 * @param a_Name The name of the type.
2185 * @param a_ArgList The argument list enclosed in parentheses.
2186 */
2187
2188#if defined(__GNUC__) && defined(RT_ARCH_X86)
2189# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2190 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2191# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2192 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2193# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2194 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2195
2196#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2197# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2198 a_RetType (__fastcall a_Name) a_ArgList
2199# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2200 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2201# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2202 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2203
2204#elif __cplusplus >= 201700 /* P0012R1 support */
2205# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2206 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2207# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2208 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2209# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2210 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2211
2212#else
2213# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2214 a_RetType (VBOXCALL a_Name) a_ArgList
2215# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2216 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2217# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2218 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2219
2220#endif
2221
2222/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2223RT_C_DECLS_BEGIN
2224extern uint8_t const g_afParity[256];
2225RT_C_DECLS_END
2226
2227
2228/** @name Arithmetic assignment operations on bytes (binary).
2229 * @{ */
2230typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2231typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2232FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2233FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2234FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2235FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2236FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2237FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2238FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2239/** @} */
2240
2241/** @name Arithmetic assignment operations on words (binary).
2242 * @{ */
2243typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2244typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2245FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2246FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2247FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2248FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2249FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2250FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2251FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2252/** @} */
2253
2254/** @name Arithmetic assignment operations on double words (binary).
2255 * @{ */
2256typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2257typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2258FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2259FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2260FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2261FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2262FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2263FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2264FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2265FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2266FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2267FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2268/** @} */
2269
2270/** @name Arithmetic assignment operations on quad words (binary).
2271 * @{ */
2272typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2273typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2274FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2275FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2276FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2277FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2278FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2279FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2280FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2281FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2282FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2283FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2284/** @} */
2285
2286typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU8,(uint8_t const *pu8Dst, uint8_t u8Src, uint32_t *pEFlags));
2287typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2288typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU16,(uint16_t const *pu16Dst, uint16_t u16Src, uint32_t *pEFlags));
2289typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2290typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU32,(uint32_t const *pu32Dst, uint32_t u32Src, uint32_t *pEFlags));
2291typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2292typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINROU64,(uint64_t const *pu64Dst, uint64_t u64Src, uint32_t *pEFlags));
2293typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2294
2295/** @name Compare operations (thrown in with the binary ops).
2296 * @{ */
2297FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2298FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2299FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2300FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2301/** @} */
2302
2303/** @name Test operations (thrown in with the binary ops).
2304 * @{ */
2305FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2306FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2307FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2308FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2309/** @} */
2310
2311/** @name Bit operations operations (thrown in with the binary ops).
2312 * @{ */
2313FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2314FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2315FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2316FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2317FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2318FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2319FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2320FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2321FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2322FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2323FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2324FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2325/** @} */
2326
2327/** @name Arithmetic three operand operations on double words (binary).
2328 * @{ */
2329typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2330typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2331FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2332FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2333FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2334/** @} */
2335
2336/** @name Arithmetic three operand operations on quad words (binary).
2337 * @{ */
2338typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2339typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2340FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2341FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2342FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2343/** @} */
2344
2345/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2346 * @{ */
2347typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2348typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2349FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2350FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2351FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2352FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2353FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2354FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2355/** @} */
2356
2357/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2358 * @{ */
2359typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2360typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2361FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2362FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2363FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2364FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2365FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2366FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2367/** @} */
2368
2369/** @name MULX 32-bit and 64-bit.
2370 * @{ */
2371typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2372typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2373FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2374
2375typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2376typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2377FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2378/** @} */
2379
2380
2381/** @name Exchange memory with register operations.
2382 * @{ */
2383IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2384IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2385IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2386IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2387IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2388IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2389IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2390IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2391/** @} */
2392
2393/** @name Exchange and add operations.
2394 * @{ */
2395IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2396IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2397IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2398IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2399IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2400IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2401IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2402IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2403/** @} */
2404
2405/** @name Compare and exchange.
2406 * @{ */
2407IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2408IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2409IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2410IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2411IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2412IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2413#if ARCH_BITS == 32
2414IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2415IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2416#else
2417IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2418IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2419#endif
2420IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2421 uint32_t *pEFlags));
2422IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2423 uint32_t *pEFlags));
2424IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2425 uint32_t *pEFlags));
2426IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2427 uint32_t *pEFlags));
2428#ifndef RT_ARCH_ARM64
2429IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2430 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2431#endif
2432/** @} */
2433
2434/** @name Memory ordering
2435 * @{ */
2436typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2437typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2438IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2439IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2440IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2441#ifndef RT_ARCH_ARM64
2442IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2443#endif
2444/** @} */
2445
2446/** @name Double precision shifts
2447 * @{ */
2448typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2449typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2450typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2451typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2452typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2453typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2454FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2455FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2456FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2457FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2458FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2459FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2460/** @} */
2461
2462
2463/** @name Bit search operations (thrown in with the binary ops).
2464 * @{ */
2465FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2466FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2467FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2468FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2469FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2470FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2471FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2472FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2473FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2474FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2475FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2476FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2477FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2478FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2479FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2480/** @} */
2481
2482/** @name Signed multiplication operations (thrown in with the binary ops).
2483 * @{ */
2484FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2485FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2486FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2487/** @} */
2488
2489/** @name Arithmetic assignment operations on bytes (unary).
2490 * @{ */
2491typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2492typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2493FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2494FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2495FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2496FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2497/** @} */
2498
2499/** @name Arithmetic assignment operations on words (unary).
2500 * @{ */
2501typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2502typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2503FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2504FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2505FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2506FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2507/** @} */
2508
2509/** @name Arithmetic assignment operations on double words (unary).
2510 * @{ */
2511typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2512typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2513FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2514FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2515FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2516FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2517/** @} */
2518
2519/** @name Arithmetic assignment operations on quad words (unary).
2520 * @{ */
2521typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2522typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2523FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2524FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2525FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2526FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2527/** @} */
2528
2529
2530/** @name Shift operations on bytes (Group 2).
2531 * @{ */
2532typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags));
2533typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2534FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
2535FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
2536FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
2537FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
2538FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
2539FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
2540FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
2541/** @} */
2542
2543/** @name Shift operations on words (Group 2).
2544 * @{ */
2545typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags));
2546typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
2547FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
2548FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
2549FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
2550FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
2551FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
2552FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
2553FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
2554/** @} */
2555
2556/** @name Shift operations on double words (Group 2).
2557 * @{ */
2558typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags));
2559typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
2560FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
2561FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
2562FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
2563FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
2564FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
2565FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
2566FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
2567/** @} */
2568
2569/** @name Shift operations on words (Group 2).
2570 * @{ */
2571typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags));
2572typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
2573FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
2574FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
2575FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
2576FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
2577FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
2578FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
2579FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
2580/** @} */
2581
2582/** @name Multiplication and division operations.
2583 * @{ */
2584typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
2585typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
2586FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
2587FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
2588FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
2589FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
2590
2591typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
2592typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
2593FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
2594FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
2595FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
2596FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
2597
2598typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
2599typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
2600FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
2601FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
2602FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
2603FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
2604
2605typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
2606typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
2607FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
2608FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
2609FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
2610FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
2611/** @} */
2612
2613/** @name Byte Swap.
2614 * @{ */
2615IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
2616IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
2617IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
2618/** @} */
2619
2620/** @name Misc.
2621 * @{ */
2622FNIEMAIMPLBINU16 iemAImpl_arpl;
2623/** @} */
2624
2625/** @name RDRAND and RDSEED
2626 * @{ */
2627typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
2628typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
2629typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
2630typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
2631typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
2632typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
2633
2634FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
2635FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
2636FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
2637FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
2638FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
2639FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
2640/** @} */
2641
2642/** @name ADOX and ADCX
2643 * @{ */
2644typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU32,(uint32_t *puDst, uint32_t *pfEFlags, uint32_t uSrc));
2645typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLADXU64,(uint64_t *puDst, uint32_t *pfEFlags, uint64_t uSrc));
2646typedef FNIEMAIMPLADXU32 *PFNIEMAIMPLADXU32;
2647typedef FNIEMAIMPLADXU64 *PFNIEMAIMPLADXU64;
2648
2649FNIEMAIMPLADXU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
2650FNIEMAIMPLADXU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
2651FNIEMAIMPLADXU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
2652FNIEMAIMPLADXU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
2653/** @} */
2654
2655/** @name FPU operations taking a 32-bit float argument
2656 * @{ */
2657typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2658 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2659typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
2660
2661typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2662 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
2663typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
2664
2665FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
2666FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
2667FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
2668FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
2669FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
2670FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
2671FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
2672
2673IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
2674IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2675 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
2676/** @} */
2677
2678/** @name FPU operations taking a 64-bit float argument
2679 * @{ */
2680typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2681 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2682typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
2683
2684typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2685 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
2686typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
2687
2688FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
2689FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
2690FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
2691FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
2692FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
2693FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
2694FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
2695
2696IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
2697IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2698 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
2699/** @} */
2700
2701/** @name FPU operations taking a 80-bit float argument
2702 * @{ */
2703typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2704 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2705typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
2706FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
2707FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
2708FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
2709FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
2710FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
2711FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
2712FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
2713FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
2714FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
2715
2716FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
2717FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
2718FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
2719
2720typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2721 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2722typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
2723FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
2724FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
2725
2726typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
2727 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
2728typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
2729FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
2730FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
2731
2732typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2733typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
2734FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
2735FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
2736FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
2737FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
2738FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
2739FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
2740FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
2741
2742typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
2743typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
2744FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
2745FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
2746
2747typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
2748typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
2749FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
2750FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
2751FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
2752FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
2753FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
2754FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
2755FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
2756
2757typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
2758 PCRTFLOAT80U pr80Val));
2759typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
2760FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
2761FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
2762FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
2763
2764IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
2765IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2766 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
2767
2768IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
2769IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
2770 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
2771
2772/** @} */
2773
2774/** @name FPU operations taking a 16-bit signed integer argument
2775 * @{ */
2776typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2777 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2778typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
2779typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2780 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
2781typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
2782
2783FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
2784FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
2785FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
2786FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
2787FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
2788FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
2789
2790typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2791 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
2792typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
2793FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
2794
2795IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
2796FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
2797FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
2798/** @} */
2799
2800/** @name FPU operations taking a 32-bit signed integer argument
2801 * @{ */
2802typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
2803 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2804typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
2805typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2806 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
2807typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
2808
2809FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
2810FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
2811FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
2812FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
2813FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
2814FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
2815
2816typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
2817 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
2818typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
2819FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
2820
2821IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
2822FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
2823FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
2824/** @} */
2825
2826/** @name FPU operations taking a 64-bit signed integer argument
2827 * @{ */
2828typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
2829 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
2830typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
2831
2832IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
2833FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
2834FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
2835/** @} */
2836
2837
2838/** Temporary type representing a 256-bit vector register. */
2839typedef struct { uint64_t au64[4]; } IEMVMM256;
2840/** Temporary type pointing to a 256-bit vector register. */
2841typedef IEMVMM256 *PIEMVMM256;
2842/** Temporary type pointing to a const 256-bit vector register. */
2843typedef IEMVMM256 *PCIEMVMM256;
2844
2845
2846/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
2847 * @{ */
2848typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
2849typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
2850typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
2851typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
2852typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2853typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
2854typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2855typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
2856typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
2857typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
2858typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
2859typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
2860typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
2861typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
2862typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
2863typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
2864typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
2865typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
2866FNIEMAIMPLMEDIAF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
2867FNIEMAIMPLMEDIAF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
2868FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
2869FNIEMAIMPLMEDIAF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
2870FNIEMAIMPLMEDIAF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
2871FNIEMAIMPLMEDIAF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
2872FNIEMAIMPLMEDIAF2U64 iemAImpl_paddd_u64;
2873FNIEMAIMPLMEDIAF2U64 iemAImpl_paddq_u64;
2874FNIEMAIMPLMEDIAF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
2875FNIEMAIMPLMEDIAF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
2876FNIEMAIMPLMEDIAF2U64 iemAImpl_psubd_u64;
2877FNIEMAIMPLMEDIAF2U64 iemAImpl_psubq_u64;
2878FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddwd_u64;
2879FNIEMAIMPLMEDIAF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
2880FNIEMAIMPLMEDIAF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
2881FNIEMAIMPLMEDIAF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
2882FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
2883FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
2884FNIEMAIMPLMEDIAF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
2885FNIEMAIMPLMEDIAF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
2886FNIEMAIMPLMEDIAF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
2887FNIEMAIMPLMEDIAF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
2888FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
2889FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
2890FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
2891FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
2892FNIEMAIMPLMEDIAF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
2893FNIEMAIMPLMEDIAF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
2894FNIEMAIMPLMEDIAF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
2895FNIEMAIMPLMEDIAF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
2896FNIEMAIMPLMEDIAF2U64 iemAImpl_pmuludq_u64;
2897FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
2898FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
2899FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
2900FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
2901FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
2902FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
2903FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
2904FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
2905
2906FNIEMAIMPLMEDIAF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
2907FNIEMAIMPLMEDIAF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
2908FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
2909FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
2910FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
2911FNIEMAIMPLMEDIAF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
2912FNIEMAIMPLMEDIAF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
2913FNIEMAIMPLMEDIAF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
2914FNIEMAIMPLMEDIAF2U128 iemAImpl_paddd_u128;
2915FNIEMAIMPLMEDIAF2U128 iemAImpl_paddq_u128;
2916FNIEMAIMPLMEDIAF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
2917FNIEMAIMPLMEDIAF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
2918FNIEMAIMPLMEDIAF2U128 iemAImpl_psubd_u128;
2919FNIEMAIMPLMEDIAF2U128 iemAImpl_psubq_u128;
2920FNIEMAIMPLMEDIAF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
2921FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhw_u128;
2922FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
2923FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddwd_u128;
2924FNIEMAIMPLMEDIAF2U128 iemAImpl_pminub_u128;
2925FNIEMAIMPLMEDIAF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
2926FNIEMAIMPLMEDIAF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
2927FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
2928FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
2929FNIEMAIMPLMEDIAF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
2930FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxub_u128;
2931FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
2932FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
2933FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
2934FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsw_u128;
2935FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
2936FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
2937FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
2938FNIEMAIMPLMEDIAF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
2939FNIEMAIMPLMEDIAF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
2940FNIEMAIMPLMEDIAF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
2941FNIEMAIMPLMEDIAF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
2942FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
2943FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
2944FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
2945FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
2946FNIEMAIMPLMEDIAF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
2947FNIEMAIMPLMEDIAF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
2948FNIEMAIMPLMEDIAF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
2949FNIEMAIMPLMEDIAF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
2950FNIEMAIMPLMEDIAF2U128 iemAImpl_pmuludq_u128;
2951FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
2952FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
2953FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
2954FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
2955FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
2956FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
2957FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
2958FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
2959FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
2960FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
2961FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
2962FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
2963
2964FNIEMAIMPLMEDIAF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
2965FNIEMAIMPLMEDIAF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
2966FNIEMAIMPLMEDIAF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
2967FNIEMAIMPLMEDIAF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
2968FNIEMAIMPLMEDIAF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
2969FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
2970FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
2971FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
2972FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
2973FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
2974FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
2975FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
2976FNIEMAIMPLMEDIAF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
2977FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
2978FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
2979FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
2980FNIEMAIMPLMEDIAF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
2981FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
2982FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
2983FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
2984FNIEMAIMPLMEDIAF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
2985FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
2986FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
2987FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
2988FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
2989FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
2990FNIEMAIMPLMEDIAF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
2991FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
2992FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
2993FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
2994FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
2995FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
2996FNIEMAIMPLMEDIAF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
2997FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
2998FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
2999FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3000FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3001FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3002FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3003FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3004FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3005FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3006FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3007FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3008FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3009FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3010FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3011FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3012FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3013FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3014FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3015FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3016FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3017FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3018FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3019FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3020FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3021FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3022FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3023FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3024FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3025FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3026FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3027FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3028FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3029
3030FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3031FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3032FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3033FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3034
3035FNIEMAIMPLMEDIAF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3036FNIEMAIMPLMEDIAF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3037FNIEMAIMPLMEDIAF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3038FNIEMAIMPLMEDIAF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3039FNIEMAIMPLMEDIAF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3040FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3041FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3042FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3043FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3044FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3045FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3046FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3047FNIEMAIMPLMEDIAF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3048FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3049FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3050FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3051FNIEMAIMPLMEDIAF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3052FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3053FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3054FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3055FNIEMAIMPLMEDIAF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3056FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3057FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3058FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3059FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3060FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3061FNIEMAIMPLMEDIAF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3062FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3063FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3064FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3065FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3066FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3067FNIEMAIMPLMEDIAF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3068FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3069FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3070FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3071FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3072FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3073FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3074FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3075FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3076FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3077FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3078FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3079FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3080FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3081FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3082FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3083FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3084FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3085FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3086FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3087FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3088FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3089FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3090FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3091FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3092FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3093FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3094FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3095FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3096FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3097FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3098FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3099FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3100
3101FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3102FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3103FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3104/** @} */
3105
3106/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3107 * @{ */
3108FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3109FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3110FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3111 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3112 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3113 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3114 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3115 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3116 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3117 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3118
3119FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3120 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3121 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3122 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3123 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3124 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3125 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3126 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3127/** @} */
3128
3129/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3130 * @{ */
3131FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3132FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3133FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3134 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3135 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3136 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3137FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3138 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3139 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3140 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3141/** @} */
3142
3143/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3144 * @{ */
3145typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3146typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3147typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3148typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3149IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3150FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3151#ifndef IEM_WITHOUT_ASSEMBLY
3152FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3153#endif
3154FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3155/** @} */
3156
3157/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3158 * @{ */
3159typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3160typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3161typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3162typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3163typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3164typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3165FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3166FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3167FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3168FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3169FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3170FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3171FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3172/** @} */
3173
3174/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3175 * @{ */
3176IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3177IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3178#ifndef IEM_WITHOUT_ASSEMBLY
3179IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3180#endif
3181IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3182/** @} */
3183
3184/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3185 * @{ */
3186typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3187typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3188typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3189typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3190typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3191typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3192
3193FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3194FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3195FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3196FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3197FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3198FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3199
3200FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3201FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3202FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3203FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3204FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3205FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3206
3207FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3208FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3209FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3210FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3211FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3212FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3213/** @} */
3214
3215
3216/** @name Media (SSE/MMX/AVX) operation: Sort this later
3217 * @{ */
3218IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3219IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3220IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3221IEM_DECL_IMPL_DEF(void, iemAImpl_vmovshdup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3222IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc));
3223IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc));
3224
3225IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3226IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3227IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3228IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3229IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3230
3231IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3232IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3233IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3234IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3235IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3236
3237IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3238IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3239IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3240IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3241IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3242
3243IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3244IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3245IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3246IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3247IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3248
3249IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3250IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3251IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3252IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3253IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3254
3255IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3256IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3257IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3258IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3259IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3260
3261IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3262IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3263IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3264IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3265IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3266
3267IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3268IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3269IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3270IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3271IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3272
3273IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3274IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3275IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3276IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3277IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3278
3279IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3280IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3281IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3282IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3283IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3284
3285IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3286IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3287IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3288IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3289IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3290
3291IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3292IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3293IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3294IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3295IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3296
3297IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3298IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3299IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3300IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3301IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3302
3303IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3304IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3305IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3306IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3307IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3308
3309IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3310IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3311
3312IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u64,(uint64_t *pu64Dst, uint16_t u16Src, uint8_t bEvil));
3313IEM_DECL_IMPL_DEF(void, iemAImpl_pinsrw_u128,(PRTUINT128U puDst, uint16_t u16Src, uint8_t bEvil));
3314IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3315IEM_DECL_IMPL_DEF(void, iemAImpl_vpinsrw_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint16_t u16Src, uint8_t bEvil));
3316
3317IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u64,(uint16_t *pu16Dst, uint64_t u64Src, uint8_t bEvil));
3318IEM_DECL_IMPL_DEF(void, iemAImpl_pextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3319IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3320IEM_DECL_IMPL_DEF(void, iemAImpl_vpextrw_u128_fallback,(uint16_t *pu16Dst, PCRTUINT128U puSrc, uint8_t bEvil));
3321
3322IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3323IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3324IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3325IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3326IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3327
3328IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3329IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3330IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3331IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3332IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3333
3334
3335typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3336typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3337typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3338typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3339typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3340typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3341
3342FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3343FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3344FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3345FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3346
3347FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3348FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3349FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3350FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3351
3352FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3353FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3354FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3355FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3356FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3357FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3358
3359FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3360FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3361FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3362FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3363FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3364
3365FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3366FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3367FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3368FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3369FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3370
3371FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3372
3373FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3374
3375FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3376FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3377FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3378FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3379FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3380FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3381IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3382IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3383
3384typedef struct IEMPCMPISTRXSRC
3385{
3386 RTUINT128U uSrc1;
3387 RTUINT128U uSrc2;
3388} IEMPCMPISTRXSRC;
3389typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3390typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3391
3392typedef struct IEMPCMPESTRXSRC
3393{
3394 RTUINT128U uSrc1;
3395 RTUINT128U uSrc2;
3396 uint64_t u64Rax;
3397 uint64_t u64Rdx;
3398} IEMPCMPESTRXSRC;
3399typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3400typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3401
3402typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3403typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3404typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3405typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3406
3407typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3408typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3409typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3410typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3411
3412FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3413FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3414FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3415FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3416
3417FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3418FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3419
3420FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3421FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3422FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3423/** @} */
3424
3425/** @name Media Odds and Ends
3426 * @{ */
3427typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3428typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3429typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3430typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3431FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3432FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3433FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3434FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3435
3436typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3437typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3438FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3439FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3440
3441typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3442typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3443typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3444typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3445typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I32U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3446typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3447typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2I64U32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3448typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3449
3450FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3451FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3452
3453FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3454FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3455
3456FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3457FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3458
3459FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3460FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3461
3462typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3463typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3464typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R32I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3465typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3466
3467FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3468FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3469
3470typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I32,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3471typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3472typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSSEF2R64I64,(PCX86FXSTATE pFpuState, uint32_t *pfMxcsr, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3473typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3474
3475FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3476FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
3477
3478
3479typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFLMXCSR128,(uint32_t *pfMxcsr, uint32_t *pfEFlags, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3480typedef FNIEMAIMPLF2EFLMXCSR128 *PFNIEMAIMPLF2EFLMXCSR128;
3481
3482FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomiss_u128;
3483FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
3484
3485FNIEMAIMPLF2EFLMXCSR128 iemAImpl_ucomisd_u128;
3486FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
3487
3488FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comiss_u128;
3489FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
3490
3491FNIEMAIMPLF2EFLMXCSR128 iemAImpl_comisd_u128;
3492FNIEMAIMPLF2EFLMXCSR128 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
3493
3494
3495typedef struct IEMMEDIAF2XMMSRC
3496{
3497 X86XMMREG uSrc1;
3498 X86XMMREG uSrc2;
3499} IEMMEDIAF2XMMSRC;
3500typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
3501typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
3502
3503typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t *pfMxcsr, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
3504typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
3505
3506FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
3507FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
3508FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
3509FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
3510FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
3511FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
3512
3513FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
3514FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
3515
3516FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
3517FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
3518
3519typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U128,(uint32_t *pfMxcsr, uint64_t *pu64Dst, PCX86XMMREG pSrc));
3520typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
3521
3522FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
3523FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
3524
3525typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU128U64,(uint32_t *pfMxcsr, PX86XMMREG pDst, uint64_t u64Src));
3526typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
3527
3528FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
3529FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
3530
3531typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMXCSRU64U64,(uint32_t *pfMxcsr, uint64_t *pu64Dst, uint64_t u64Src));
3532typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
3533
3534FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
3535FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
3536
3537/** @} */
3538
3539
3540/** @name Function tables.
3541 * @{
3542 */
3543
3544/**
3545 * Function table for a binary operator providing implementation based on
3546 * operand size.
3547 */
3548typedef struct IEMOPBINSIZES
3549{
3550 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
3551 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
3552 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
3553 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
3554} IEMOPBINSIZES;
3555/** Pointer to a binary operator function table. */
3556typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
3557
3558
3559/**
3560 * Function table for a unary operator providing implementation based on
3561 * operand size.
3562 */
3563typedef struct IEMOPUNARYSIZES
3564{
3565 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
3566 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
3567 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
3568 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
3569} IEMOPUNARYSIZES;
3570/** Pointer to a unary operator function table. */
3571typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
3572
3573
3574/**
3575 * Function table for a shift operator providing implementation based on
3576 * operand size.
3577 */
3578typedef struct IEMOPSHIFTSIZES
3579{
3580 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
3581 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
3582 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
3583 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
3584} IEMOPSHIFTSIZES;
3585/** Pointer to a shift operator function table. */
3586typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
3587
3588
3589/**
3590 * Function table for a multiplication or division operation.
3591 */
3592typedef struct IEMOPMULDIVSIZES
3593{
3594 PFNIEMAIMPLMULDIVU8 pfnU8;
3595 PFNIEMAIMPLMULDIVU16 pfnU16;
3596 PFNIEMAIMPLMULDIVU32 pfnU32;
3597 PFNIEMAIMPLMULDIVU64 pfnU64;
3598} IEMOPMULDIVSIZES;
3599/** Pointer to a multiplication or division operation function table. */
3600typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
3601
3602
3603/**
3604 * Function table for a double precision shift operator providing implementation
3605 * based on operand size.
3606 */
3607typedef struct IEMOPSHIFTDBLSIZES
3608{
3609 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
3610 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
3611 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
3612} IEMOPSHIFTDBLSIZES;
3613/** Pointer to a double precision shift function table. */
3614typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
3615
3616
3617/**
3618 * Function table for media instruction taking two full sized media source
3619 * registers and one full sized destination register (AVX).
3620 */
3621typedef struct IEMOPMEDIAF3
3622{
3623 PFNIEMAIMPLMEDIAF3U128 pfnU128;
3624 PFNIEMAIMPLMEDIAF3U256 pfnU256;
3625} IEMOPMEDIAF3;
3626/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3627typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
3628
3629/** @def IEMOPMEDIAF3_INIT_VARS_EX
3630 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3631 * given functions as initializers. For use in AVX functions where a pair of
3632 * functions are only used once and the function table need not be public. */
3633#ifndef TST_IEM_CHECK_MC
3634# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3635# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3636 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3637 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3638# else
3639# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3640 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3641# endif
3642#else
3643# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3644#endif
3645/** @def IEMOPMEDIAF3_INIT_VARS
3646 * Generate AVX function tables for the @a a_InstrNm instruction.
3647 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
3648#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
3649 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3650 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3651
3652/**
3653 * Function table for media instruction taking two full sized media source
3654 * registers and one full sized destination register, but no additional state
3655 * (AVX).
3656 */
3657typedef struct IEMOPMEDIAOPTF3
3658{
3659 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
3660 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
3661} IEMOPMEDIAOPTF3;
3662/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3663typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
3664
3665/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
3666 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3667 * given functions as initializers. For use in AVX functions where a pair of
3668 * functions are only used once and the function table need not be public. */
3669#ifndef TST_IEM_CHECK_MC
3670# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3671# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3672 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3673 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3674# else
3675# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3676 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3677# endif
3678#else
3679# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3680#endif
3681/** @def IEMOPMEDIAOPTF3_INIT_VARS
3682 * Generate AVX function tables for the @a a_InstrNm instruction.
3683 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
3684#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
3685 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3686 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3687
3688/**
3689 * Function table for media instruction taking one full sized media source
3690 * registers and one full sized destination register, but no additional state
3691 * (AVX).
3692 */
3693typedef struct IEMOPMEDIAOPTF2
3694{
3695 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
3696 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
3697} IEMOPMEDIAOPTF2;
3698/** Pointer to a media operation function table for 2 full sized ops (AVX). */
3699typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
3700
3701/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
3702 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3703 * given functions as initializers. For use in AVX functions where a pair of
3704 * functions are only used once and the function table need not be public. */
3705#ifndef TST_IEM_CHECK_MC
3706# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3707# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3708 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3709 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3710# else
3711# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3712 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3713# endif
3714#else
3715# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3716#endif
3717/** @def IEMOPMEDIAOPTF2_INIT_VARS
3718 * Generate AVX function tables for the @a a_InstrNm instruction.
3719 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
3720#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
3721 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3722 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3723
3724/**
3725 * Function table for media instruction taking two full sized media source
3726 * registers and one full sized destination register and an 8-bit immediate, but no additional state
3727 * (AVX).
3728 */
3729typedef struct IEMOPMEDIAOPTF3IMM8
3730{
3731 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
3732 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
3733} IEMOPMEDIAOPTF3IMM8;
3734/** Pointer to a media operation function table for 3 full sized ops (AVX). */
3735typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
3736
3737/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
3738 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3739 * given functions as initializers. For use in AVX functions where a pair of
3740 * functions are only used once and the function table need not be public. */
3741#ifndef TST_IEM_CHECK_MC
3742# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3743# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3744 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3745 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3746# else
3747# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3748 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3749# endif
3750#else
3751# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3752#endif
3753/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
3754 * Generate AVX function tables for the @a a_InstrNm instruction.
3755 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
3756#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
3757 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3758 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3759/** @} */
3760
3761
3762/**
3763 * Function table for blend type instruction taking three full sized media source
3764 * registers and one full sized destination register, but no additional state
3765 * (AVX).
3766 */
3767typedef struct IEMOPBLENDOP
3768{
3769 PFNIEMAIMPLAVXBLENDU128 pfnU128;
3770 PFNIEMAIMPLAVXBLENDU256 pfnU256;
3771} IEMOPBLENDOP;
3772/** Pointer to a media operation function table for 4 full sized ops (AVX). */
3773typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
3774
3775/** @def IEMOPBLENDOP_INIT_VARS_EX
3776 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
3777 * given functions as initializers. For use in AVX functions where a pair of
3778 * functions are only used once and the function table need not be public. */
3779#ifndef TST_IEM_CHECK_MC
3780# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
3781# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3782 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
3783 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3784# else
3785# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
3786 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
3787# endif
3788#else
3789# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
3790#endif
3791/** @def IEMOPBLENDOP_INIT_VARS
3792 * Generate AVX function tables for the @a a_InstrNm instruction.
3793 * @sa IEMOPBLENDOP_INIT_VARS_EX */
3794#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
3795 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
3796 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
3797
3798
3799/** @name SSE/AVX single/double precision floating point operations.
3800 * @{ */
3801/**
3802 * A SSE result.
3803 */
3804typedef struct IEMSSERESULT
3805{
3806 /** The output value. */
3807 X86XMMREG uResult;
3808 /** The output status. */
3809 uint32_t MXCSR;
3810} IEMSSERESULT;
3811AssertCompileMemberOffset(IEMSSERESULT, MXCSR, 128 / 8);
3812/** Pointer to a SSE result. */
3813typedef IEMSSERESULT *PIEMSSERESULT;
3814/** Pointer to a const SSE result. */
3815typedef IEMSSERESULT const *PCIEMSSERESULT;
3816
3817
3818/**
3819 * A AVX128 result.
3820 */
3821typedef struct IEMAVX128RESULT
3822{
3823 /** The output value. */
3824 X86XMMREG uResult;
3825 /** The output status. */
3826 uint32_t MXCSR;
3827} IEMAVX128RESULT;
3828AssertCompileMemberOffset(IEMAVX128RESULT, MXCSR, 128 / 8);
3829/** Pointer to a AVX128 result. */
3830typedef IEMAVX128RESULT *PIEMAVX128RESULT;
3831/** Pointer to a const AVX128 result. */
3832typedef IEMAVX128RESULT const *PCIEMAVX128RESULT;
3833
3834
3835/**
3836 * A AVX256 result.
3837 */
3838typedef struct IEMAVX256RESULT
3839{
3840 /** The output value. */
3841 X86YMMREG uResult;
3842 /** The output status. */
3843 uint32_t MXCSR;
3844} IEMAVX256RESULT;
3845AssertCompileMemberOffset(IEMAVX256RESULT, MXCSR, 256 / 8);
3846/** Pointer to a AVX256 result. */
3847typedef IEMAVX256RESULT *PIEMAVX256RESULT;
3848/** Pointer to a const AVX256 result. */
3849typedef IEMAVX256RESULT const *PCIEMAVX256RESULT;
3850
3851
3852typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3853typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
3854typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R32,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3855typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
3856typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPSSEF2U128R64,(PX86FXSTATE pFpuState, PIEMSSERESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3857typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
3858
3859typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3860typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
3861typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R32,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
3862typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
3863typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U128R64,(PX86XSAVEAREA pExtState, PIEMAVX128RESULT pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
3864typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
3865
3866typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPAVXF3U256,(PX86XSAVEAREA pExtState, PIEMAVX256RESULT pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3867typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
3868
3869FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
3870FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
3871FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
3872FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
3873FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
3874FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
3875FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
3876FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
3877FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
3878FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
3879FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
3880FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
3881FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
3882FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
3883FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
3884FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
3885FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
3886FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
3887FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
3888FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
3889FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
3890FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
3891FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
3892
3893FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
3894FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
3895FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
3896FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
3897FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
3898FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
3899
3900FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
3901FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
3902FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
3903FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
3904FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
3905FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
3906FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
3907FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
3908FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
3909FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
3910FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
3911FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
3912FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
3913FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
3914FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
3915FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
3916FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
3917
3918FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
3919FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
3920FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
3921FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
3922FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
3923FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
3924FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
3925FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
3926FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
3927FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
3928FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
3929FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
3930FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
3931FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
3932FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
3933FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
3934FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
3935FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
3936FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
3937FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
3938FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
3939FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
3940
3941FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
3942FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
3943FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
3944FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
3945FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
3946FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
3947FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
3948FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
3949FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
3950FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
3951FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
3952FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
3953FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
3954FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
3955
3956FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
3957FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
3958FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
3959FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
3960FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
3961FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
3962FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
3963FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
3964FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
3965FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
3966FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
3967FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
3968FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
3969FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
3970FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
3971FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
3972FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
3973FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
3974FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
3975FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
3976/** @} */
3977
3978/** @name C instruction implementations for anything slightly complicated.
3979 * @{ */
3980
3981/**
3982 * For typedef'ing or declaring a C instruction implementation function taking
3983 * no extra arguments.
3984 *
3985 * @param a_Name The name of the type.
3986 */
3987# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
3988 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3989/**
3990 * For defining a C instruction implementation function taking no extra
3991 * arguments.
3992 *
3993 * @param a_Name The name of the function
3994 */
3995# define IEM_CIMPL_DEF_0(a_Name) \
3996 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
3997/**
3998 * Prototype version of IEM_CIMPL_DEF_0.
3999 */
4000# define IEM_CIMPL_PROTO_0(a_Name) \
4001 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4002/**
4003 * For calling a C instruction implementation function taking no extra
4004 * arguments.
4005 *
4006 * This special call macro adds default arguments to the call and allow us to
4007 * change these later.
4008 *
4009 * @param a_fn The name of the function.
4010 */
4011# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4012
4013/** Type for a C instruction implementation function taking no extra
4014 * arguments. */
4015typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4016/** Function pointer type for a C instruction implementation function taking
4017 * no extra arguments. */
4018typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4019
4020/**
4021 * For typedef'ing or declaring a C instruction implementation function taking
4022 * one extra argument.
4023 *
4024 * @param a_Name The name of the type.
4025 * @param a_Type0 The argument type.
4026 * @param a_Arg0 The argument name.
4027 */
4028# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4029 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4030/**
4031 * For defining a C instruction implementation function taking one extra
4032 * argument.
4033 *
4034 * @param a_Name The name of the function
4035 * @param a_Type0 The argument type.
4036 * @param a_Arg0 The argument name.
4037 */
4038# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4039 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4040/**
4041 * Prototype version of IEM_CIMPL_DEF_1.
4042 */
4043# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4044 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4045/**
4046 * For calling a C instruction implementation function taking one extra
4047 * argument.
4048 *
4049 * This special call macro adds default arguments to the call and allow us to
4050 * change these later.
4051 *
4052 * @param a_fn The name of the function.
4053 * @param a0 The name of the 1st argument.
4054 */
4055# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4056
4057/**
4058 * For typedef'ing or declaring a C instruction implementation function taking
4059 * two extra arguments.
4060 *
4061 * @param a_Name The name of the type.
4062 * @param a_Type0 The type of the 1st argument
4063 * @param a_Arg0 The name of the 1st argument.
4064 * @param a_Type1 The type of the 2nd argument.
4065 * @param a_Arg1 The name of the 2nd argument.
4066 */
4067# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4068 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4069/**
4070 * For defining a C instruction implementation function taking two extra
4071 * arguments.
4072 *
4073 * @param a_Name The name of the function.
4074 * @param a_Type0 The type of the 1st argument
4075 * @param a_Arg0 The name of the 1st argument.
4076 * @param a_Type1 The type of the 2nd argument.
4077 * @param a_Arg1 The name of the 2nd argument.
4078 */
4079# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4080 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4081/**
4082 * Prototype version of IEM_CIMPL_DEF_2.
4083 */
4084# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4085 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4086/**
4087 * For calling a C instruction implementation function taking two extra
4088 * arguments.
4089 *
4090 * This special call macro adds default arguments to the call and allow us to
4091 * change these later.
4092 *
4093 * @param a_fn The name of the function.
4094 * @param a0 The name of the 1st argument.
4095 * @param a1 The name of the 2nd argument.
4096 */
4097# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4098
4099/**
4100 * For typedef'ing or declaring a C instruction implementation function taking
4101 * three extra arguments.
4102 *
4103 * @param a_Name The name of the type.
4104 * @param a_Type0 The type of the 1st argument
4105 * @param a_Arg0 The name of the 1st argument.
4106 * @param a_Type1 The type of the 2nd argument.
4107 * @param a_Arg1 The name of the 2nd argument.
4108 * @param a_Type2 The type of the 3rd argument.
4109 * @param a_Arg2 The name of the 3rd argument.
4110 */
4111# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4112 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4113/**
4114 * For defining a C instruction implementation function taking three extra
4115 * arguments.
4116 *
4117 * @param a_Name The name of the function.
4118 * @param a_Type0 The type of the 1st argument
4119 * @param a_Arg0 The name of the 1st argument.
4120 * @param a_Type1 The type of the 2nd argument.
4121 * @param a_Arg1 The name of the 2nd argument.
4122 * @param a_Type2 The type of the 3rd argument.
4123 * @param a_Arg2 The name of the 3rd argument.
4124 */
4125# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4126 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4127/**
4128 * Prototype version of IEM_CIMPL_DEF_3.
4129 */
4130# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4131 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4132/**
4133 * For calling a C instruction implementation function taking three extra
4134 * arguments.
4135 *
4136 * This special call macro adds default arguments to the call and allow us to
4137 * change these later.
4138 *
4139 * @param a_fn The name of the function.
4140 * @param a0 The name of the 1st argument.
4141 * @param a1 The name of the 2nd argument.
4142 * @param a2 The name of the 3rd argument.
4143 */
4144# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4145
4146
4147/**
4148 * For typedef'ing or declaring a C instruction implementation function taking
4149 * four extra arguments.
4150 *
4151 * @param a_Name The name of the type.
4152 * @param a_Type0 The type of the 1st argument
4153 * @param a_Arg0 The name of the 1st argument.
4154 * @param a_Type1 The type of the 2nd argument.
4155 * @param a_Arg1 The name of the 2nd argument.
4156 * @param a_Type2 The type of the 3rd argument.
4157 * @param a_Arg2 The name of the 3rd argument.
4158 * @param a_Type3 The type of the 4th argument.
4159 * @param a_Arg3 The name of the 4th argument.
4160 */
4161# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4162 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4163/**
4164 * For defining a C instruction implementation function taking four extra
4165 * arguments.
4166 *
4167 * @param a_Name The name of the function.
4168 * @param a_Type0 The type of the 1st argument
4169 * @param a_Arg0 The name of the 1st argument.
4170 * @param a_Type1 The type of the 2nd argument.
4171 * @param a_Arg1 The name of the 2nd argument.
4172 * @param a_Type2 The type of the 3rd argument.
4173 * @param a_Arg2 The name of the 3rd argument.
4174 * @param a_Type3 The type of the 4th argument.
4175 * @param a_Arg3 The name of the 4th argument.
4176 */
4177# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4178 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4179 a_Type2 a_Arg2, a_Type3 a_Arg3))
4180/**
4181 * Prototype version of IEM_CIMPL_DEF_4.
4182 */
4183# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4184 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4185 a_Type2 a_Arg2, a_Type3 a_Arg3))
4186/**
4187 * For calling a C instruction implementation function taking four extra
4188 * arguments.
4189 *
4190 * This special call macro adds default arguments to the call and allow us to
4191 * change these later.
4192 *
4193 * @param a_fn The name of the function.
4194 * @param a0 The name of the 1st argument.
4195 * @param a1 The name of the 2nd argument.
4196 * @param a2 The name of the 3rd argument.
4197 * @param a3 The name of the 4th argument.
4198 */
4199# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4200
4201
4202/**
4203 * For typedef'ing or declaring a C instruction implementation function taking
4204 * five extra arguments.
4205 *
4206 * @param a_Name The name of the type.
4207 * @param a_Type0 The type of the 1st argument
4208 * @param a_Arg0 The name of the 1st argument.
4209 * @param a_Type1 The type of the 2nd argument.
4210 * @param a_Arg1 The name of the 2nd argument.
4211 * @param a_Type2 The type of the 3rd argument.
4212 * @param a_Arg2 The name of the 3rd argument.
4213 * @param a_Type3 The type of the 4th argument.
4214 * @param a_Arg3 The name of the 4th argument.
4215 * @param a_Type4 The type of the 5th argument.
4216 * @param a_Arg4 The name of the 5th argument.
4217 */
4218# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4219 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4220 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4221 a_Type3 a_Arg3, a_Type4 a_Arg4))
4222/**
4223 * For defining a C instruction implementation function taking five extra
4224 * arguments.
4225 *
4226 * @param a_Name The name of the function.
4227 * @param a_Type0 The type of the 1st argument
4228 * @param a_Arg0 The name of the 1st argument.
4229 * @param a_Type1 The type of the 2nd argument.
4230 * @param a_Arg1 The name of the 2nd argument.
4231 * @param a_Type2 The type of the 3rd argument.
4232 * @param a_Arg2 The name of the 3rd argument.
4233 * @param a_Type3 The type of the 4th argument.
4234 * @param a_Arg3 The name of the 4th argument.
4235 * @param a_Type4 The type of the 5th argument.
4236 * @param a_Arg4 The name of the 5th argument.
4237 */
4238# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4239 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4240 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4241/**
4242 * Prototype version of IEM_CIMPL_DEF_5.
4243 */
4244# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4245 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4246 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4247/**
4248 * For calling a C instruction implementation function taking five extra
4249 * arguments.
4250 *
4251 * This special call macro adds default arguments to the call and allow us to
4252 * change these later.
4253 *
4254 * @param a_fn The name of the function.
4255 * @param a0 The name of the 1st argument.
4256 * @param a1 The name of the 2nd argument.
4257 * @param a2 The name of the 3rd argument.
4258 * @param a3 The name of the 4th argument.
4259 * @param a4 The name of the 5th argument.
4260 */
4261# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4262
4263/** @} */
4264
4265
4266/** @name Opcode Decoder Function Types.
4267 * @{ */
4268
4269/** @typedef PFNIEMOP
4270 * Pointer to an opcode decoder function.
4271 */
4272
4273/** @def FNIEMOP_DEF
4274 * Define an opcode decoder function.
4275 *
4276 * We're using macors for this so that adding and removing parameters as well as
4277 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4278 *
4279 * @param a_Name The function name.
4280 */
4281
4282/** @typedef PFNIEMOPRM
4283 * Pointer to an opcode decoder function with RM byte.
4284 */
4285
4286/** @def FNIEMOPRM_DEF
4287 * Define an opcode decoder function with RM byte.
4288 *
4289 * We're using macors for this so that adding and removing parameters as well as
4290 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4291 *
4292 * @param a_Name The function name.
4293 */
4294
4295#if defined(__GNUC__) && defined(RT_ARCH_X86)
4296typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4297typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4298# define FNIEMOP_DEF(a_Name) \
4299 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4300# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4301 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4302# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4303 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4304
4305#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4306typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4307typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4308# define FNIEMOP_DEF(a_Name) \
4309 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4310# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4311 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4312# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4313 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4314
4315#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4316typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4317typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4318# define FNIEMOP_DEF(a_Name) \
4319 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4320# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4321 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4322# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4323 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4324
4325#else
4326typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4327typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4328# define FNIEMOP_DEF(a_Name) \
4329 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4330# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4331 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4332# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4333 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4334
4335#endif
4336#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4337
4338/**
4339 * Call an opcode decoder function.
4340 *
4341 * We're using macors for this so that adding and removing parameters can be
4342 * done as we please. See FNIEMOP_DEF.
4343 */
4344#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4345
4346/**
4347 * Call a common opcode decoder function taking one extra argument.
4348 *
4349 * We're using macors for this so that adding and removing parameters can be
4350 * done as we please. See FNIEMOP_DEF_1.
4351 */
4352#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4353
4354/**
4355 * Call a common opcode decoder function taking one extra argument.
4356 *
4357 * We're using macors for this so that adding and removing parameters can be
4358 * done as we please. See FNIEMOP_DEF_1.
4359 */
4360#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4361/** @} */
4362
4363
4364/** @name Misc Helpers
4365 * @{ */
4366
4367/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4368 * due to GCC lacking knowledge about the value range of a switch. */
4369#if RT_CPLUSPLUS_PREREQ(202000)
4370# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4371#else
4372# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4373#endif
4374
4375/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4376#if RT_CPLUSPLUS_PREREQ(202000)
4377# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4378#else
4379# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4380#endif
4381
4382/**
4383 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4384 * occation.
4385 */
4386#ifdef LOG_ENABLED
4387# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4388 do { \
4389 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4390 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4391 } while (0)
4392#else
4393# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4394 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4395#endif
4396
4397/**
4398 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4399 * occation using the supplied logger statement.
4400 *
4401 * @param a_LoggerArgs What to log on failure.
4402 */
4403#ifdef LOG_ENABLED
4404# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4405 do { \
4406 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4407 /*LogFunc(a_LoggerArgs);*/ \
4408 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4409 } while (0)
4410#else
4411# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4412 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4413#endif
4414
4415/**
4416 * Gets the CPU mode (from fExec) as a IEMMODE value.
4417 *
4418 * @returns IEMMODE
4419 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4420 */
4421#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4422
4423/**
4424 * Check if we're currently executing in real or virtual 8086 mode.
4425 *
4426 * @returns @c true if it is, @c false if not.
4427 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4428 */
4429#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4430 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4431
4432/**
4433 * Check if we're currently executing in virtual 8086 mode.
4434 *
4435 * @returns @c true if it is, @c false if not.
4436 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4437 */
4438#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4439
4440/**
4441 * Check if we're currently executing in long mode.
4442 *
4443 * @returns @c true if it is, @c false if not.
4444 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4445 */
4446#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4447
4448/**
4449 * Check if we're currently executing in a 16-bit code segment.
4450 *
4451 * @returns @c true if it is, @c false if not.
4452 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4453 */
4454#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4455
4456/**
4457 * Check if we're currently executing in a 32-bit code segment.
4458 *
4459 * @returns @c true if it is, @c false if not.
4460 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4461 */
4462#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4463
4464/**
4465 * Check if we're currently executing in a 64-bit code segment.
4466 *
4467 * @returns @c true if it is, @c false if not.
4468 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4469 */
4470#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4471
4472/**
4473 * Check if we're currently executing in real mode.
4474 *
4475 * @returns @c true if it is, @c false if not.
4476 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4477 */
4478#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4479
4480/**
4481 * Gets the current protection level (CPL).
4482 *
4483 * @returns 0..3
4484 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4485 */
4486#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
4487
4488/**
4489 * Sets the current protection level (CPL).
4490 *
4491 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4492 */
4493#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
4494 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
4495
4496/**
4497 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
4498 * @returns PCCPUMFEATURES
4499 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4500 */
4501#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
4502
4503/**
4504 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
4505 * @returns PCCPUMFEATURES
4506 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4507 */
4508#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
4509
4510/**
4511 * Evaluates to true if we're presenting an Intel CPU to the guest.
4512 */
4513#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
4514
4515/**
4516 * Evaluates to true if we're presenting an AMD CPU to the guest.
4517 */
4518#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
4519
4520/**
4521 * Check if the address is canonical.
4522 */
4523#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
4524
4525/** Checks if the ModR/M byte is in register mode or not. */
4526#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
4527/** Checks if the ModR/M byte is in memory mode or not. */
4528#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
4529
4530/**
4531 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
4532 *
4533 * For use during decoding.
4534 */
4535#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
4536/**
4537 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
4538 *
4539 * For use during decoding.
4540 */
4541#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
4542
4543/**
4544 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
4545 *
4546 * For use during decoding.
4547 */
4548#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
4549/**
4550 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
4551 *
4552 * For use during decoding.
4553 */
4554#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
4555
4556/**
4557 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
4558 * register index, with REX.R added in.
4559 *
4560 * For use during decoding.
4561 *
4562 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4563 */
4564#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
4565 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4566 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
4567 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
4568/**
4569 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
4570 * with REX.B added in.
4571 *
4572 * For use during decoding.
4573 *
4574 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
4575 */
4576#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
4577 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
4578 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
4579 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
4580
4581/**
4582 * Combines the prefix REX and ModR/M byte for passing to
4583 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4584 *
4585 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
4586 * The two bits are part of the REG sub-field, which isn't needed in
4587 * iemOpHlpCalcRmEffAddrThreadedAddr64().
4588 *
4589 * For use during decoding/recompiling.
4590 */
4591#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
4592 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
4593 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (26 - 3) ) )
4594AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(26));
4595AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(27));
4596
4597/**
4598 * Gets the effective VEX.VVVV value.
4599 *
4600 * The 4th bit is ignored if not 64-bit code.
4601 * @returns effective V-register value.
4602 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4603 */
4604#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
4605 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
4606
4607
4608/**
4609 * Checks if we're executing inside an AMD-V or VT-x guest.
4610 */
4611#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
4612# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
4613#else
4614# define IEM_IS_IN_GUEST(a_pVCpu) false
4615#endif
4616
4617
4618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4619
4620/**
4621 * Check if the guest has entered VMX root operation.
4622 */
4623# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
4624
4625/**
4626 * Check if the guest has entered VMX non-root operation.
4627 */
4628# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
4629 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
4630
4631/**
4632 * Check if the nested-guest has the given Pin-based VM-execution control set.
4633 */
4634# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
4635
4636/**
4637 * Check if the nested-guest has the given Processor-based VM-execution control set.
4638 */
4639# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
4640
4641/**
4642 * Check if the nested-guest has the given Secondary Processor-based VM-execution
4643 * control set.
4644 */
4645# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
4646
4647/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
4648# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
4649
4650/** Whether a shadow VMCS is present for the given VCPU. */
4651# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4652
4653/** Gets the VMXON region pointer. */
4654# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
4655
4656/** Gets the guest-physical address of the current VMCS for the given VCPU. */
4657# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
4658
4659/** Whether a current VMCS is present for the given VCPU. */
4660# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
4661
4662/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
4663# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
4664 do \
4665 { \
4666 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
4667 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
4668 } while (0)
4669
4670/** Clears any current VMCS for the given VCPU. */
4671# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
4672 do \
4673 { \
4674 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
4675 } while (0)
4676
4677/**
4678 * Invokes the VMX VM-exit handler for an instruction intercept.
4679 */
4680# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
4681 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
4682
4683/**
4684 * Invokes the VMX VM-exit handler for an instruction intercept where the
4685 * instruction provides additional VM-exit information.
4686 */
4687# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
4688 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
4689
4690/**
4691 * Invokes the VMX VM-exit handler for a task switch.
4692 */
4693# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
4694 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
4695
4696/**
4697 * Invokes the VMX VM-exit handler for MWAIT.
4698 */
4699# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
4700 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
4701
4702/**
4703 * Invokes the VMX VM-exit handler for EPT faults.
4704 */
4705# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
4706 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
4707
4708/**
4709 * Invokes the VMX VM-exit handler.
4710 */
4711# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
4712 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
4713
4714#else
4715# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
4716# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
4717# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
4718# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
4719# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
4720# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4721# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4722# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4723# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4724# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
4725# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
4726
4727#endif
4728
4729#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
4730/**
4731 * Checks if we're executing a guest using AMD-V.
4732 */
4733# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
4734 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
4735/**
4736 * Check if an SVM control/instruction intercept is set.
4737 */
4738# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
4739 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
4740
4741/**
4742 * Check if an SVM read CRx intercept is set.
4743 */
4744# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4745 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4746
4747/**
4748 * Check if an SVM write CRx intercept is set.
4749 */
4750# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
4751 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
4752
4753/**
4754 * Check if an SVM read DRx intercept is set.
4755 */
4756# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4757 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4758
4759/**
4760 * Check if an SVM write DRx intercept is set.
4761 */
4762# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
4763 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
4764
4765/**
4766 * Check if an SVM exception intercept is set.
4767 */
4768# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
4769 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
4770
4771/**
4772 * Invokes the SVM \#VMEXIT handler for the nested-guest.
4773 */
4774# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
4775 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
4776
4777/**
4778 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
4779 * corresponding decode assist information.
4780 */
4781# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
4782 do \
4783 { \
4784 uint64_t uExitInfo1; \
4785 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
4786 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
4787 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
4788 else \
4789 uExitInfo1 = 0; \
4790 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
4791 } while (0)
4792
4793/** Check and handles SVM nested-guest instruction intercept and updates
4794 * NRIP if needed.
4795 */
4796# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4797 do \
4798 { \
4799 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
4800 { \
4801 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4802 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
4803 } \
4804 } while (0)
4805
4806/** Checks and handles SVM nested-guest CR0 read intercept. */
4807# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
4808 do \
4809 { \
4810 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
4811 { /* probably likely */ } \
4812 else \
4813 { \
4814 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
4815 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
4816 } \
4817 } while (0)
4818
4819/**
4820 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
4821 */
4822# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
4823 do { \
4824 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
4825 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
4826 } while (0)
4827
4828#else
4829# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
4830# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4831# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
4832# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4833# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
4834# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
4835# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
4836# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
4837# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
4838 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4839# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
4840# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
4841
4842#endif
4843
4844/** @} */
4845
4846uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
4847VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
4848
4849
4850/**
4851 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
4852 */
4853typedef union IEMSELDESC
4854{
4855 /** The legacy view. */
4856 X86DESC Legacy;
4857 /** The long mode view. */
4858 X86DESC64 Long;
4859} IEMSELDESC;
4860/** Pointer to a selector descriptor table entry. */
4861typedef IEMSELDESC *PIEMSELDESC;
4862
4863/** @name Raising Exceptions.
4864 * @{ */
4865VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
4866 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
4867
4868VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
4869 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
4870#ifdef IEM_WITH_SETJMP
4871DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
4872 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
4873#endif
4874VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
4875VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4876VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
4877VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
4878VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
4879VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4880VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
4881VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4882VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4883/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
4884VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4885VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4886VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
4887VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4888VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
4889VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
4890#ifdef IEM_WITH_SETJMP
4891DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4892#endif
4893VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4894VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
4895VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4896#ifdef IEM_WITH_SETJMP
4897DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4898#endif
4899VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
4900#ifdef IEM_WITH_SETJMP
4901DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
4902#endif
4903VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
4904#ifdef IEM_WITH_SETJMP
4905DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
4906#endif
4907VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
4908#ifdef IEM_WITH_SETJMP
4909DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
4910#endif
4911VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
4912VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4913#ifdef IEM_WITH_SETJMP
4914DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
4915#endif
4916VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
4917
4918void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
4919
4920IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
4921IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
4922IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
4923
4924/**
4925 * Macro for calling iemCImplRaiseDivideError().
4926 *
4927 * This is for things that will _always_ decode to an \#DE, taking the
4928 * recompiler into consideration and everything.
4929 *
4930 * @return Strict VBox status code.
4931 */
4932#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
4933
4934/**
4935 * Macro for calling iemCImplRaiseInvalidLockPrefix().
4936 *
4937 * This is for things that will _always_ decode to an \#UD, taking the
4938 * recompiler into consideration and everything.
4939 *
4940 * @return Strict VBox status code.
4941 */
4942#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
4943
4944/**
4945 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
4946 *
4947 * This is for things that will _always_ decode to an \#UD, taking the
4948 * recompiler into consideration and everything.
4949 *
4950 * @return Strict VBox status code.
4951 */
4952#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
4953
4954/**
4955 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
4956 *
4957 * Using this macro means you've got _buggy_ _code_ and are doing things that
4958 * belongs exclusively in IEMAllCImpl.cpp during decoding.
4959 *
4960 * @return Strict VBox status code.
4961 * @see IEMOP_RAISE_INVALID_OPCODE_RET
4962 */
4963#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
4964
4965/** @} */
4966
4967/** @name Register Access.
4968 * @{ */
4969VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
4970 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4971VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
4972VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
4973 IEMMODE enmEffOpSize) RT_NOEXCEPT;
4974VBOXSTRICTRC iemRegRipJumpU16AndFinishClearningRF(PVMCPUCC pVCpu, uint16_t uNewRip) RT_NOEXCEPT;
4975VBOXSTRICTRC iemRegRipJumpU32AndFinishClearningRF(PVMCPUCC pVCpu, uint32_t uNewRip) RT_NOEXCEPT;
4976VBOXSTRICTRC iemRegRipJumpU64AndFinishClearningRF(PVMCPUCC pVCpu, uint64_t uNewRip) RT_NOEXCEPT;
4977/** @} */
4978
4979/** @name FPU access and helpers.
4980 * @{ */
4981void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4982void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4983void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
4984void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4985void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4986void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4987 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4988void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
4989 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4990void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
4991void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4992void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4993void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4994void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
4995void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4996void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4997void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
4998void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
4999void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5000void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5001void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5002void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5003void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5004void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5005/** @} */
5006
5007/** @name SSE+AVX SIMD access and helpers.
5008 * @{ */
5009void iemSseStoreResult(PVMCPUCC pVCpu, PCIEMSSERESULT pResult, uint8_t iXmmReg) RT_NOEXCEPT;
5010void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5011/** @} */
5012
5013/** @name Memory access.
5014 * @{ */
5015
5016/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5017#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5018/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5019 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5020#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5021/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5022 * Users include FXSAVE & FXRSTOR. */
5023#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5024
5025VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5026 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5027VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
5028#ifndef IN_RING3
5029VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, void *pvMem, uint32_t fAccess) RT_NOEXCEPT;
5030#endif
5031void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5032VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5033VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5034VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5035
5036void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5037void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5038#ifdef IEM_WITH_CODE_TLB
5039void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5040#else
5041VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5042#endif
5043#ifdef IEM_WITH_SETJMP
5044uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5045uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5046uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5047uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5048#else
5049VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5050VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5051VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5052VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5053VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5054VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5055VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5056VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5057VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5058VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5059VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5060#endif
5061
5062VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5063VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5064VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5065VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5066VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5067VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5068VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5069VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5070VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5071VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5072VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5073VBOXSTRICTRC iemMemFetchDataU256AlignedSse(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5074VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5075 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5076#ifdef IEM_WITH_SETJMP
5077uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5078uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5079uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5080uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5081uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5082uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5083void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5084void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5085void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5086void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5087void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5088void iemMemFetchDataU256AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5089# if 0 /* these are inlined now */
5090uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5091uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5092uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5093uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5094uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5095uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5096# endif
5097void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5098void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5099void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5100void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5101void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5102void iemMemFetchDataU256AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5103#endif
5104
5105VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5106VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5107VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5108VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5109VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5110
5111VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5112VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5113VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5114VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5115VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5116VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5117VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5118VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5119VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5120#ifdef IEM_WITH_SETJMP
5121void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5122void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5123void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5124void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5125void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5126void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5127void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5128void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5129#if 0
5130void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5131void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5132void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5133void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5134#endif
5135void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5136void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5137void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5138void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5139#endif
5140
5141#ifdef IEM_WITH_SETJMP
5142uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5143uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5144uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5145uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5146uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5147uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5148uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5149uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5150uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5151uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5152uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5153uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5154
5155void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5156void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5157void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, const void *pvMem, uint8_t bMapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5158#endif
5159
5160VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5161 void **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5162VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, void *pvMem, uint64_t uNewRsp) RT_NOEXCEPT;
5163VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5164VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5165VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5166VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5167VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5168VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5169VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5170VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5171 void const **ppvMem, uint64_t *puNewRsp) RT_NOEXCEPT;
5172VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5173 void const **ppvMem, uint64_t uCurNewRsp) RT_NOEXCEPT;
5174VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, void const *pvMem) RT_NOEXCEPT;
5175VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5176VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5177VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5178VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5179VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5180VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5181
5182#ifdef IEM_WITH_SETJMP
5183void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5184void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5185void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5186void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5187uint16_t iemMemStackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5188uint32_t iemMemStackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5189uint64_t iemMemStackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5190
5191void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5192void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5193void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5194uint16_t iemMemFlat32StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5195uint32_t iemMemFlat32StackPopU32SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5196
5197void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5198void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5199uint16_t iemMemFlat64StackPopU16SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5200uint64_t iemMemFlat64StackPopU64SafeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5201#endif
5202
5203/** @} */
5204
5205/** @name IEMAllCImpl.cpp
5206 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5207 * @{ */
5208IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5209IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5210IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5211IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5212IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5213IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5214IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5215IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5216IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5217IEM_CIMPL_PROTO_1(iemCImpl_call_16, uint16_t, uNewPC);
5218IEM_CIMPL_PROTO_1(iemCImpl_call_rel_16, int16_t, offDisp);
5219IEM_CIMPL_PROTO_1(iemCImpl_call_32, uint32_t, uNewPC);
5220IEM_CIMPL_PROTO_1(iemCImpl_call_rel_32, int32_t, offDisp);
5221IEM_CIMPL_PROTO_1(iemCImpl_call_64, uint64_t, uNewPC);
5222IEM_CIMPL_PROTO_1(iemCImpl_call_rel_64, int64_t, offDisp);
5223IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5224IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5225typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5226typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5227IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5228IEM_CIMPL_PROTO_0(iemCImpl_retn_16);
5229IEM_CIMPL_PROTO_0(iemCImpl_retn_32);
5230IEM_CIMPL_PROTO_0(iemCImpl_retn_64);
5231IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_16, uint16_t, cbPop);
5232IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_32, uint16_t, cbPop);
5233IEM_CIMPL_PROTO_1(iemCImpl_retn_iw_64, uint16_t, cbPop);
5234IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5235IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5236IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5237IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5238IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5239IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5240IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5241IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5242IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5243IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5244IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5245IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5246IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5247IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5248IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5249IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5250IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5251IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5252IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5253IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5254IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5255IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5256IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5257IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5258IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5259IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5260IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5261IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5262IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5263IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5264IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5265IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5266IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5267IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5268IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5269IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5270IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5271IEM_CIMPL_PROTO_0(iemCImpl_clts);
5272IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5273IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5274IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5275IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5276IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5277IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5278IEM_CIMPL_PROTO_0(iemCImpl_invd);
5279IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5280IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5281IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5282IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5283IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5284IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5285IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5286IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5287IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5288IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5289IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5290IEM_CIMPL_PROTO_0(iemCImpl_cli);
5291IEM_CIMPL_PROTO_0(iemCImpl_sti);
5292IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5293IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5294IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5295IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5296IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5297IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5298IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5299IEM_CIMPL_PROTO_0(iemCImpl_daa);
5300IEM_CIMPL_PROTO_0(iemCImpl_das);
5301IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5302IEM_CIMPL_PROTO_0(iemCImpl_aas);
5303IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5304IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5305IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5306IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5307IEM_CIMPL_PROTO_4(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5308 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags);
5309IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5310IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5311IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5312IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5313IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5314IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5315IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5316IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5317IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5318IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5319IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5320IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5321IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5322IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5323IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5324IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5325IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5326IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5327/** @} */
5328
5329/** @name IEMAllCImplStrInstr.cpp.h
5330 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5331 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5332 * @{ */
5333IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5334IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5335IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5336IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5337IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5338IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5339IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5340IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5341IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5342IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5343IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5344
5345IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5346IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5347IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5348IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5349IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5350IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5351IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5352IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5353IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5354IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5355IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5356
5357IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5358IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5359IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5360IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5361IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5362IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5363IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5364IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5365IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5366IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5367IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5368
5369
5370IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5371IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5372IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5373IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5374IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5375IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5376IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5377IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5378IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5379IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5380IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5381
5382IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5383IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5384IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5385IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5386IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5387IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5388IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5389IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5390IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5391IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5392IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5393
5394IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5395IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5396IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5397IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5398IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5399IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5400IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5401IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5402IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5403IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5404IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5405
5406IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5407IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5408IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5409IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5410IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5411IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5412IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5413IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5414IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5415IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5416IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5417
5418
5419IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5420IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5421IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5422IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5423IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5424IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5425IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5426IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5427IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5428IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5429IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5430
5431IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5432IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5433IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5434IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5435IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
5436IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
5437IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
5438IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
5439IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
5440IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5441IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5442
5443IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
5444IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
5445IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
5446IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
5447IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
5448IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
5449IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
5450IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
5451IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
5452IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5453IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5454
5455IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
5456IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
5457IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
5458IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
5459IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
5460IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
5461IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
5462IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
5463IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
5464IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5465IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5466/** @} */
5467
5468#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5469VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
5470VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
5471VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
5472VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
5473VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
5474VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5475VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
5476VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
5477VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
5478VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
5479 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
5480VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
5481 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
5482VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5483VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5484VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5485VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5486VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5487VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
5488VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
5489VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
5490 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
5491VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
5492VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
5493VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
5494uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
5495void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
5496VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
5497 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
5498bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
5499IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
5500IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
5501IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
5502IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
5503IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5504IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5505IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
5506IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
5507IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
5508IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
5509IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
5510IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
5511IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
5512IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
5513IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
5514IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
5515#endif
5516
5517#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5518VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
5519VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5520VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
5521 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
5522VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
5523IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
5524IEM_CIMPL_PROTO_0(iemCImpl_vmload);
5525IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
5526IEM_CIMPL_PROTO_0(iemCImpl_clgi);
5527IEM_CIMPL_PROTO_0(iemCImpl_stgi);
5528IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
5529IEM_CIMPL_PROTO_0(iemCImpl_skinit);
5530IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
5531#endif
5532
5533IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
5534IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
5535IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
5536
5537extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
5538extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
5539extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
5540extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
5541extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
5542extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
5543extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
5544
5545/*
5546 * Recompiler related stuff.
5547 */
5548extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
5549extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
5550extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
5551extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
5552extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
5553extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
5554extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
5555
5556DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
5557 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
5558void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
5559void iemTbAllocatorProcessDelayedFrees(PVMCPU pVCpu, PIEMTBALLOCATOR pTbAllocator);
5560
5561
5562/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
5563#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5564typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5565typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5566# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5567 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5568# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5569 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
5570
5571#else
5572typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
5573typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
5574# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
5575 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5576# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
5577 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
5578#endif
5579
5580
5581IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
5582
5583IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
5584IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
5585IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
5586IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
5587
5588IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
5589IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
5590IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
5591
5592/* Branching: */
5593IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
5594IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
5595IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
5596
5597IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
5598IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
5599IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
5600
5601/* Natural page crossing: */
5602IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
5603IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
5604IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
5605
5606IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
5607IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
5608IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
5609
5610IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
5611IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
5612IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
5613
5614bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
5615bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
5616
5617/* Native recompiler public bits: */
5618DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
5619int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk);
5620void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb);
5621
5622
5623/** @} */
5624
5625RT_C_DECLS_END
5626
5627#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
5628
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette