/* $Id: IEMInternal.h 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * IEM - Internal header file. */ /* * Copyright (C) 2011-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ #ifndef VMM_INCLUDED_SRC_include_IEMInternal_h #define VMM_INCLUDED_SRC_include_IEMInternal_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif #include #include #include #include #include #include RT_C_DECLS_BEGIN /** @defgroup grp_iem_int Internals * @ingroup grp_iem * @internal * @{ */ /** For expanding symbol in slickedit and other products tagging and * crossreferencing IEM symbols. */ #ifndef IEM_STATIC # define IEM_STATIC static #endif /** @def IEM_WITH_3DNOW * Includes the 3DNow decoding. */ #define IEM_WITH_3DNOW /** @def IEM_WITH_THREE_0F_38 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */ #define IEM_WITH_THREE_0F_38 /** @def IEM_WITH_THREE_0F_3A * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */ #define IEM_WITH_THREE_0F_3A /** @def IEM_WITH_VEX * Includes the VEX decoding. */ #define IEM_WITH_VEX /** @def IEM_CFG_TARGET_CPU * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value). * * By default we allow this to be configured by the user via the * CPUM/GuestCpuName config string, but this comes at a slight cost during * decoding. So, for applications of this code where there is no need to * be dynamic wrt target CPU, just modify this define. */ #if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING) # define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC #endif //#define IEM_WITH_CODE_TLB// - work in progress #if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING) /** Instruction statistics. */ typedef struct IEMINSTRSTATS { # define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name; # include "IEMInstructionStatisticsTmpl.h" # undef IEM_DO_INSTR_STAT } IEMINSTRSTATS; #else struct IEMINSTRSTATS; typedef struct IEMINSTRSTATS IEMINSTRSTATS; #endif /** Pointer to IEM instruction statistics. */ typedef IEMINSTRSTATS *PIEMINSTRSTATS; /** Finish and move to types.h */ typedef union { uint32_t u32; } RTFLOAT32U; typedef RTFLOAT32U *PRTFLOAT32U; typedef RTFLOAT32U const *PCRTFLOAT32U; /** * Extended operand mode that includes a representation of 8-bit. * * This is used for packing down modes when invoking some C instruction * implementations. */ typedef enum IEMMODEX { IEMMODEX_16BIT = IEMMODE_16BIT, IEMMODEX_32BIT = IEMMODE_32BIT, IEMMODEX_64BIT = IEMMODE_64BIT, IEMMODEX_8BIT } IEMMODEX; AssertCompileSize(IEMMODEX, 4); /** * Branch types. */ typedef enum IEMBRANCH { IEMBRANCH_JUMP = 1, IEMBRANCH_CALL, IEMBRANCH_TRAP, IEMBRANCH_SOFTWARE_INT, IEMBRANCH_HARDWARE_INT } IEMBRANCH; AssertCompileSize(IEMBRANCH, 4); /** * INT instruction types. */ typedef enum IEMINT { /** INT n instruction (opcode 0xcd imm). */ IEMINT_INTN = 0, /** Single byte INT3 instruction (opcode 0xcc). */ IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR, /** Single byte INTO instruction (opcode 0xce). */ IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR, /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */ IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR } IEMINT; AssertCompileSize(IEMINT, 4); /** * A FPU result. */ typedef struct IEMFPURESULT { /** The output value. */ RTFLOAT80U r80Result; /** The output status. */ uint16_t FSW; } IEMFPURESULT; AssertCompileMemberOffset(IEMFPURESULT, FSW, 10); /** Pointer to a FPU result. */ typedef IEMFPURESULT *PIEMFPURESULT; /** Pointer to a const FPU result. */ typedef IEMFPURESULT const *PCIEMFPURESULT; /** * A FPU result consisting of two output values and FSW. */ typedef struct IEMFPURESULTTWO { /** The first output value. */ RTFLOAT80U r80Result1; /** The output status. */ uint16_t FSW; /** The second output value. */ RTFLOAT80U r80Result2; } IEMFPURESULTTWO; AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10); AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12); /** Pointer to a FPU result consisting of two output values and FSW. */ typedef IEMFPURESULTTWO *PIEMFPURESULTTWO; /** Pointer to a const FPU result consisting of two output values and FSW. */ typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO; /** * IEM TLB entry. * * Lookup assembly: * @code{.asm} ; Calculate tag. mov rax, [VA] shl rax, 16 shr rax, 16 + X86_PAGE_SHIFT or rax, [uTlbRevision] ; Do indexing. movzx ecx, al lea rcx, [pTlbEntries + rcx] ; Check tag. cmp [rcx + IEMTLBENTRY.uTag], rax jne .TlbMiss ; Check access. movsx rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev] cmp rax, [uTlbPhysRev] jne .TlbMiss ; Calc address and we're done. mov eax, X86_PAGE_OFFSET_MASK and eax, [VA] or rax, [rcx + IEMTLBENTRY.pMappingR3] %ifdef VBOX_WITH_STATISTICS inc qword [cTlbHits] %endif jmp .Done .TlbMiss: mov r8d, ACCESS_FLAGS mov rdx, [VA] mov rcx, [pVCpu] call iemTlbTypeMiss .Done: @endcode * */ typedef struct IEMTLBENTRY { /** The TLB entry tag. * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits. * Bits 63 thru 36 are made up of the TLB revision (zero means invalid). * * The TLB lookup code uses the current TLB revision, which won't ever be zero, * enabling an extremely cheap TLB invalidation most of the time. When the TLB * revision wraps around though, the tags needs to be zeroed. * * @note Try use SHRD instruction? After seeing * https://gmplib.org/~tege/x86-timing.pdf, maybe not. */ uint64_t uTag; /** Access flags and physical TLB revision. * * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX). * - Bit 1 - page tables - not writable (complemented X86_PTE_RW). * - Bit 2 - page tables - not user (complemented X86_PTE_US). * - Bit 3 - pgm phys/virt - not directly writable. * - Bit 4 - pgm phys page - not directly readable. * - Bit 5 - currently unused. * - Bit 6 - page tables - not dirty (complemented X86_PTE_D). * - Bit 7 - tlb entry - pMappingR3 member not valid. * - Bits 63 thru 8 are used for the physical TLB revision number. * * We're using complemented bit meanings here because it makes it easy to check * whether special action is required. For instance a user mode write access * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a * non-zero result would mean special handling needed because either it wasn't * writable, or it wasn't user, or the page wasn't dirty. A user mode read * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't * need to check any PTE flag. */ uint64_t fFlagsAndPhysRev; /** The guest physical page address. */ uint64_t GCPhys; /** Pointer to the ring-3 mapping (possibly also valid in ring-0). */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE R3PTRTYPE(uint8_t *) pbMappingR3; #else R3R0PTRTYPE(uint8_t *) pbMappingR3; #endif #if HC_ARCH_BITS == 32 uint32_t u32Padding1; #endif } IEMTLBENTRY; AssertCompileSize(IEMTLBENTRY, 32); /** Pointer to an IEM TLB entry. */ typedef IEMTLBENTRY *PIEMTLBENTRY; /** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev) * @{ */ #define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */ #define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */ #define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */ #define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */ #define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */ #define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(5) /**< Page tables: Not dirty (needs to be made dirty on write). */ #define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(6) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */ #define IEMTLBE_F_PHYS_REV UINT64_C(0xffffffffffffff00) /**< Physical revision mask. */ /** @} */ /** * An IEM TLB. * * We've got two of these, one for data and one for instructions. */ typedef struct IEMTLB { /** The TLB entries. * We've choosen 256 because that way we can obtain the result directly from a * 8-bit register without an additional AND instruction. */ IEMTLBENTRY aEntries[256]; /** The TLB revision. * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36). * (The revision zero indicates an invalid TLB entry.) * * The initial value is choosen to cause an early wraparound. */ uint64_t uTlbRevision; /** The TLB physical address revision - shadow of PGM variable. * * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero, * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3. * * The initial value is choosen to cause an early wraparound. */ uint64_t volatile uTlbPhysRev; /* Statistics: */ /** TLB hits (VBOX_WITH_STATISTICS only). */ uint64_t cTlbHits; /** TLB misses. */ uint32_t cTlbMisses; /** Slow read path. */ uint32_t cTlbSlowReadPath; #if 0 /** TLB misses because of tag mismatch. */ uint32_t cTlbMissesTag; /** TLB misses because of virtual access violation. */ uint32_t cTlbMissesVirtAccess; /** TLB misses because of dirty bit. */ uint32_t cTlbMissesDirty; /** TLB misses because of MMIO */ uint32_t cTlbMissesMmio; /** TLB misses because of write access handlers. */ uint32_t cTlbMissesWriteHandler; /** TLB misses because no r3(/r0) mapping. */ uint32_t cTlbMissesMapping; #endif /** Alignment padding. */ uint32_t au32Padding[3+5]; } IEMTLB; AssertCompileSizeAlignment(IEMTLB, 64); /** IEMTLB::uTlbRevision increment. */ #define IEMTLB_REVISION_INCR RT_BIT_64(36) /** IEMTLB::uTlbPhysRev increment. */ #define IEMTLB_PHYS_REV_INCR RT_BIT_64(8) /** * The per-CPU IEM state. */ typedef struct IEMCPU { /** Info status code that needs to be propagated to the IEM caller. * This cannot be passed internally, as it would complicate all success * checks within the interpreter making the code larger and almost impossible * to get right. Instead, we'll store status codes to pass on here. Each * source of these codes will perform appropriate sanity checks. */ int32_t rcPassUp; /* 0x00 */ /** The current CPU execution mode (CS). */ IEMMODE enmCpuMode; /* 0x04 */ /** The CPL. */ uint8_t uCpl; /* 0x05 */ /** Whether to bypass access handlers or not. */ bool fBypassHandlers; /* 0x06 */ bool fUnusedWasInPatchCode; /* 0x07 */ /** @name Decoder state. * @{ */ #ifdef IEM_WITH_CODE_TLB /** The offset of the next instruction byte. */ uint32_t offInstrNextByte; /* 0x08 */ /** The number of bytes available at pbInstrBuf for the current instruction. * This takes the max opcode length into account so that doesn't need to be * checked separately. */ uint32_t cbInstrBuf; /* 0x0c */ /** Pointer to the page containing RIP, user specified buffer or abOpcode. * This can be NULL if the page isn't mappable for some reason, in which * case we'll do fallback stuff. * * If we're executing an instruction from a user specified buffer, * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page * aligned pointer but pointer to the user data. * * For instructions crossing pages, this will start on the first page and be * advanced to the next page by the time we've decoded the instruction. This * therefore precludes stuff like pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr] */ uint8_t const *pbInstrBuf; /* 0x10 */ # if ARCH_BITS == 32 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */ # endif /** The program counter corresponding to pbInstrBuf. * This is set to a non-canonical address when we need to invalidate it. */ uint64_t uInstrBufPc; /* 0x18 */ /** The number of bytes available at pbInstrBuf in total (for IEMExecLots). * This takes the CS segment limit into account. */ uint16_t cbInstrBufTotal; /* 0x20 */ /** Offset into pbInstrBuf of the first byte of the current instruction. * Can be negative to efficiently handle cross page instructions. */ int16_t offCurInstrStart; /* 0x22 */ /** The prefix mask (IEM_OP_PRF_XXX). */ uint32_t fPrefixes; /* 0x24 */ /** The extra REX ModR/M register field bit (REX.R << 3). */ uint8_t uRexReg; /* 0x28 */ /** The extra REX ModR/M r/m field, SIB base and opcode reg bit * (REX.B << 3). */ uint8_t uRexB; /* 0x29 */ /** The extra REX SIB index field bit (REX.X << 3). */ uint8_t uRexIndex; /* 0x2a */ /** The effective segment register (X86_SREG_XXX). */ uint8_t iEffSeg; /* 0x2b */ /** The offset of the ModR/M byte relative to the start of the instruction. */ uint8_t offModRm; /* 0x2c */ #else /** The size of what has currently been fetched into abOpcode. */ uint8_t cbOpcode; /* 0x08 */ /** The current offset into abOpcode. */ uint8_t offOpcode; /* 0x09 */ /** The offset of the ModR/M byte relative to the start of the instruction. */ uint8_t offModRm; /* 0x0a */ /** The effective segment register (X86_SREG_XXX). */ uint8_t iEffSeg; /* 0x0b */ /** The prefix mask (IEM_OP_PRF_XXX). */ uint32_t fPrefixes; /* 0x0c */ /** The extra REX ModR/M register field bit (REX.R << 3). */ uint8_t uRexReg; /* 0x10 */ /** The extra REX ModR/M r/m field, SIB base and opcode reg bit * (REX.B << 3). */ uint8_t uRexB; /* 0x11 */ /** The extra REX SIB index field bit (REX.X << 3). */ uint8_t uRexIndex; /* 0x12 */ #endif /** The effective operand mode. */ IEMMODE enmEffOpSize; /* 0x2d, 0x13 */ /** The default addressing mode. */ IEMMODE enmDefAddrMode; /* 0x2e, 0x14 */ /** The effective addressing mode. */ IEMMODE enmEffAddrMode; /* 0x2f, 0x15 */ /** The default operand mode. */ IEMMODE enmDefOpSize; /* 0x30, 0x16 */ /** Prefix index (VEX.pp) for two byte and three byte tables. */ uint8_t idxPrefix; /* 0x31, 0x17 */ /** 3rd VEX/EVEX/XOP register. * Please use IEM_GET_EFFECTIVE_VVVV to access. */ uint8_t uVex3rdReg; /* 0x32, 0x18 */ /** The VEX/EVEX/XOP length field. */ uint8_t uVexLength; /* 0x33, 0x19 */ /** Additional EVEX stuff. */ uint8_t fEvexStuff; /* 0x34, 0x1a */ /** Explicit alignment padding. */ uint8_t abAlignment2a[1]; /* 0x35, 0x1b */ /** The FPU opcode (FOP). */ uint16_t uFpuOpcode; /* 0x36, 0x1c */ #ifndef IEM_WITH_CODE_TLB /** Explicit alignment padding. */ uint8_t abAlignment2b[2]; /* 0x1e */ #endif /** The opcode bytes. */ uint8_t abOpcode[15]; /* 0x48, 0x20 */ /** Explicit alignment padding. */ #ifdef IEM_WITH_CODE_TLB uint8_t abAlignment2c[0x48 - 0x47]; /* 0x37 */ #else uint8_t abAlignment2c[0x48 - 0x2f]; /* 0x2f */ #endif /** @} */ /** The flags of the current exception / interrupt. */ uint32_t fCurXcpt; /* 0x48, 0x48 */ /** The current exception / interrupt. */ uint8_t uCurXcpt; /** Exception / interrupt recursion depth. */ int8_t cXcptRecursions; /** The number of active guest memory mappings. */ uint8_t cActiveMappings; /** The next unused mapping index. */ uint8_t iNextMapping; /** Records for tracking guest memory mappings. */ struct { /** The address of the mapped bytes. */ void *pv; /** The access flags (IEM_ACCESS_XXX). * IEM_ACCESS_INVALID if the entry is unused. */ uint32_t fAccess; #if HC_ARCH_BITS == 64 uint32_t u32Alignment4; /**< Alignment padding. */ #endif } aMemMappings[3]; /** Locking records for the mapped memory. */ union { PGMPAGEMAPLOCK Lock; uint64_t au64Padding[2]; } aMemMappingLocks[3]; /** Bounce buffer info. * This runs in parallel to aMemMappings. */ struct { /** The physical address of the first byte. */ RTGCPHYS GCPhysFirst; /** The physical address of the second page. */ RTGCPHYS GCPhysSecond; /** The number of bytes in the first page. */ uint16_t cbFirst; /** The number of bytes in the second page. */ uint16_t cbSecond; /** Whether it's unassigned memory. */ bool fUnassigned; /** Explicit alignment padding. */ bool afAlignment5[3]; } aMemBbMappings[3]; /** Bounce buffer storage. * This runs in parallel to aMemMappings and aMemBbMappings. */ struct { uint8_t ab[512]; } aBounceBuffers[3]; /** Pointer set jump buffer - ring-3 context. */ R3PTRTYPE(jmp_buf *) pJmpBufR3; /** Pointer set jump buffer - ring-0 context. */ R0PTRTYPE(jmp_buf *) pJmpBufR0; /** @todo Should move this near @a fCurXcpt later. */ /** The CR2 for the current exception / interrupt. */ uint64_t uCurXcptCr2; /** The error code for the current exception / interrupt. */ uint32_t uCurXcptErr; /** The VMX APIC-access page handler type. */ PGMPHYSHANDLERTYPE hVmxApicAccessPage; /** @name Statistics * @{ */ /** The number of instructions we've executed. */ uint32_t cInstructions; /** The number of potential exits. */ uint32_t cPotentialExits; /** The number of bytes data or stack written (mostly for IEMExecOneEx). * This may contain uncommitted writes. */ uint32_t cbWritten; /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */ uint32_t cRetInstrNotImplemented; /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */ uint32_t cRetAspectNotImplemented; /** Counts informational statuses returned (other than VINF_SUCCESS). */ uint32_t cRetInfStatuses; /** Counts other error statuses returned. */ uint32_t cRetErrStatuses; /** Number of times rcPassUp has been used. */ uint32_t cRetPassUpStatus; /** Number of times RZ left with instruction commit pending for ring-3. */ uint32_t cPendingCommit; /** Number of long jumps. */ uint32_t cLongJumps; /** @} */ /** @name Target CPU information. * @{ */ #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC /** The target CPU. */ uint32_t uTargetCpu; #else uint32_t u32TargetCpuPadding; #endif /** The CPU vendor. */ CPUMCPUVENDOR enmCpuVendor; /** @} */ /** @name Host CPU information. * @{ */ /** The CPU vendor. */ CPUMCPUVENDOR enmHostCpuVendor; /** @} */ /** Counts RDMSR \#GP(0) LogRel(). */ uint8_t cLogRelRdMsr; /** Counts WRMSR \#GP(0) LogRel(). */ uint8_t cLogRelWrMsr; /** Alignment padding. */ uint8_t abAlignment8[50]; /** Data TLB. * @remarks Must be 64-byte aligned. */ IEMTLB DataTlb; /** Instruction TLB. * @remarks Must be 64-byte aligned. */ IEMTLB CodeTlb; /** Pointer to instruction statistics for ring-0 context. */ R0PTRTYPE(PIEMINSTRSTATS) pStatsR0; /** Ring-3 pointer to instruction statistics for non-ring-3 code. */ R3PTRTYPE(PIEMINSTRSTATS) pStatsCCR3; /** Pointer to instruction statistics for ring-3 context. */ R3PTRTYPE(PIEMINSTRSTATS) pStatsR3; } IEMCPU; AssertCompileMemberOffset(IEMCPU, fCurXcpt, 0x48); AssertCompileMemberAlignment(IEMCPU, DataTlb, 64); AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64); /** Pointer to the per-CPU IEM state. */ typedef IEMCPU *PIEMCPU; /** Pointer to the const per-CPU IEM state. */ typedef IEMCPU const *PCIEMCPU; /** @def IEM_GET_CTX * Gets the guest CPU context for the calling EMT. * @returns PCPUMCTX * @param a_pVCpu The cross context virtual CPU structure of the calling thread. */ #define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx) /** @def IEM_CTX_ASSERT * Asserts that the @a a_fExtrnMbz is present in the CPU context. * @param a_pVCpu The cross context virtual CPU structure of the calling thread. * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero. */ #define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \ ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", (a_pVCpu)->cpum.GstCtx.fExtrn, \ (a_fExtrnMbz))) /** @def IEM_CTX_IMPORT_RET * Makes sure the CPU context bits given by @a a_fExtrnImport are imported. * * Will call the keep to import the bits as needed. * * Returns on import failure. * * @param a_pVCpu The cross context virtual CPU structure of the calling thread. * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import. */ #define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \ do { \ if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \ { /* likely */ } \ else \ { \ int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \ AssertRCReturn(rcCtxImport, rcCtxImport); \ } \ } while (0) /** @def IEM_CTX_IMPORT_NORET * Makes sure the CPU context bits given by @a a_fExtrnImport are imported. * * Will call the keep to import the bits as needed. * * @param a_pVCpu The cross context virtual CPU structure of the calling thread. * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import. */ #define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \ do { \ if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \ { /* likely */ } \ else \ { \ int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \ AssertLogRelRC(rcCtxImport); \ } \ } while (0) /** @def IEM_CTX_IMPORT_JMP * Makes sure the CPU context bits given by @a a_fExtrnImport are imported. * * Will call the keep to import the bits as needed. * * Jumps on import failure. * * @param a_pVCpu The cross context virtual CPU structure of the calling thread. * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import. */ #define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \ do { \ if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \ { /* likely */ } \ else \ { \ int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \ AssertRCStmt(rcCtxImport, longjmp(*pVCpu->iem.s.CTX_SUFF(pJmpBuf), rcCtxImport)); \ } \ } while (0) /** Gets the current IEMTARGETCPU value. * @returns IEMTARGETCPU value. * @param a_pVCpu The cross context virtual CPU structure of the calling thread. */ #if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC # define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU) #else # define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu) #endif /** @def Gets the instruction length. */ #ifdef IEM_WITH_CODE_TLB # define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart) #else # define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode) #endif /** @name IEM_ACCESS_XXX - Access details. * @{ */ #define IEM_ACCESS_INVALID UINT32_C(0x000000ff) #define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001) #define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002) #define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004) #define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007) #define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010) #define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020) #define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030) #define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040) #define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070) /** The writes are partial, so if initialize the bounce buffer with the * orignal RAM content. */ #define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100) /** Used in aMemMappings to indicate that the entry is bounce buffered. */ #define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200) /** Bounce buffer with ring-3 write pending, first page. */ #define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400) /** Bounce buffer with ring-3 write pending, second page. */ #define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800) /** Valid bit mask. */ #define IEM_ACCESS_VALID_MASK UINT32_C(0x00000fff) /** Read+write data alias. */ #define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA) /** Write data alias. */ #define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA) /** Read data alias. */ #define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA) /** Instruction fetch alias. */ #define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE) /** Stack write alias. */ #define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK) /** Stack read alias. */ #define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK) /** Stack read+write alias. */ #define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK) /** Read system table alias. */ #define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS) /** Read+write system table alias. */ #define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS) /** @} */ /** @name Prefix constants (IEMCPU::fPrefixes) * @{ */ #define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */ #define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */ #define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */ #define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */ #define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */ #define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */ #define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f) #define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */ #define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */ #define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */ #define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */ #define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */ #define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */ #define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */ #define IEM_OP_PRF_REX_R RT_BIT_32(25) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */ #define IEM_OP_PRF_REX_B RT_BIT_32(26) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */ #define IEM_OP_PRF_REX_X RT_BIT_32(27) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */ /** Mask with all the REX prefix flags. * This is generally for use when needing to undo the REX prefixes when they * are followed legacy prefixes and therefore does not immediately preceed * the first opcode byte. * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */ #define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W ) #define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */ #define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */ #define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */ /** @} */ /** @name IEMOPFORM_XXX - Opcode forms * @note These are ORed together with IEMOPHINT_XXX. * @{ */ /** ModR/M: reg, r/m */ #define IEMOPFORM_RM 0 /** ModR/M: reg, r/m (register) */ #define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3) /** ModR/M: reg, r/m (memory) */ #define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3) /** ModR/M: r/m, reg */ #define IEMOPFORM_MR 1 /** ModR/M: r/m (register), reg */ #define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3) /** ModR/M: r/m (memory), reg */ #define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3) /** ModR/M: r/m only */ #define IEMOPFORM_M 2 /** ModR/M: r/m only (register). */ #define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3) /** ModR/M: r/m only (memory). */ #define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3) /** ModR/M: reg only */ #define IEMOPFORM_R 3 /** VEX+ModR/M: reg, r/m */ #define IEMOPFORM_VEX_RM 4 /** VEX+ModR/M: reg, r/m (register) */ #define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3) /** VEX+ModR/M: reg, r/m (memory) */ #define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3) /** VEX+ModR/M: r/m, reg */ #define IEMOPFORM_VEX_MR 5 /** VEX+ModR/M: r/m (register), reg */ #define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3) /** VEX+ModR/M: r/m (memory), reg */ #define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3) /** VEX+ModR/M: r/m only */ #define IEMOPFORM_VEX_M 6 /** VEX+ModR/M: r/m only (register). */ #define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3) /** VEX+ModR/M: r/m only (memory). */ #define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3) /** VEX+ModR/M: reg only */ #define IEMOPFORM_VEX_R 7 /** VEX+ModR/M: reg, vvvv, r/m */ #define IEMOPFORM_VEX_RVM 8 /** VEX+ModR/M: reg, vvvv, r/m (register). */ #define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3) /** VEX+ModR/M: reg, vvvv, r/m (memory). */ #define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3) /** VEX+ModR/M: r/m, vvvv, reg */ #define IEMOPFORM_VEX_MVR 9 /** VEX+ModR/M: r/m, vvvv, reg (register) */ #define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3) /** VEX+ModR/M: r/m, vvvv, reg (memory) */ #define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3) /** Fixed register instruction, no R/M. */ #define IEMOPFORM_FIXED 16 /** The r/m is a register. */ #define IEMOPFORM_MOD3 RT_BIT_32(8) /** The r/m is a memory access. */ #define IEMOPFORM_NOT_MOD3 RT_BIT_32(9) /** @} */ /** @name IEMOPHINT_XXX - Additional Opcode Hints * @note These are ORed together with IEMOPFORM_XXX. * @{ */ /** Ignores the operand size prefix (66h). */ #define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10) /** Ignores REX.W (aka WIG). */ #define IEMOPHINT_IGNORES_REXW RT_BIT_32(11) /** Both the operand size prefixes (66h + REX.W) are ignored. */ #define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW) /** Allowed with the lock prefix. */ #define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11) /** The VEX.L value is ignored (aka LIG). */ #define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12) /** The VEX.L value must be zero (i.e. 128-bit width only). */ #define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13) /** Hint to IEMAllInstructionPython.py that this macro should be skipped. */ #define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31) /** @} */ /** * Possible hardware task switch sources. */ typedef enum IEMTASKSWITCH { /** Task switch caused by an interrupt/exception. */ IEMTASKSWITCH_INT_XCPT = 1, /** Task switch caused by a far CALL. */ IEMTASKSWITCH_CALL, /** Task switch caused by a far JMP. */ IEMTASKSWITCH_JUMP, /** Task switch caused by an IRET. */ IEMTASKSWITCH_IRET } IEMTASKSWITCH; AssertCompileSize(IEMTASKSWITCH, 4); /** * Possible CrX load (write) sources. */ typedef enum IEMACCESSCRX { /** CrX access caused by 'mov crX' instruction. */ IEMACCESSCRX_MOV_CRX, /** CrX (CR0) write caused by 'lmsw' instruction. */ IEMACCESSCRX_LMSW, /** CrX (CR0) write caused by 'clts' instruction. */ IEMACCESSCRX_CLTS, /** CrX (CR0) read caused by 'smsw' instruction. */ IEMACCESSCRX_SMSW } IEMACCESSCRX; # ifdef VBOX_WITH_NESTED_HWVIRT_VMX PGM_ALL_CB2_PROTO(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler; # endif /** * Indicates to the verifier that the given flag set is undefined. * * Can be invoked again to add more flags. * * This is a NOOP if the verifier isn't compiled in. * * @note We're temporarily keeping this until code is converted to new * disassembler style opcode handling. */ #define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0) /** @def IEM_DECL_IMPL_TYPE * For typedef'ing an instruction implementation function. * * @param a_RetType The return type. * @param a_Name The name of the type. * @param a_ArgList The argument list enclosed in parentheses. */ /** @def IEM_DECL_IMPL_DEF * For defining an instruction implementation function. * * @param a_RetType The return type. * @param a_Name The name of the type. * @param a_ArgList The argument list enclosed in parentheses. */ #if defined(__GNUC__) && defined(RT_ARCH_X86) # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \ __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \ __attribute__((__fastcall__, __nothrow__)) a_RetType a_Name a_ArgList #elif defined(_MSC_VER) && defined(RT_ARCH_X86) # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \ a_RetType (__fastcall a_Name) a_ArgList # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \ a_RetType __fastcall a_Name a_ArgList #else # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \ a_RetType (VBOXCALL a_Name) a_ArgList # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \ a_RetType VBOXCALL a_Name a_ArgList #endif /** @name Arithmetic assignment operations on bytes (binary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU8, (uint8_t *pu8Dst, uint8_t u8Src, uint32_t *pEFlags)); typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8; FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked; FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked; FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked; FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked; FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked; FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked; FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked; /** @} */ /** @name Arithmetic assignment operations on words (binary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU16, (uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pEFlags)); typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16; FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked; FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked; FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked; FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked; FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked; FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked; FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked; /** @} */ /** @name Arithmetic assignment operations on double words (binary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU32, (uint32_t *pu32Dst, uint32_t u32Src, uint32_t *pEFlags)); typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32; FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked; FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked; FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked; FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked; FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked; FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked; FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked; /** @} */ /** @name Arithmetic assignment operations on quad words (binary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINU64, (uint64_t *pu64Dst, uint64_t u64Src, uint32_t *pEFlags)); typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64; FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked; FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked; FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked; FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked; FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked; FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked; FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked; /** @} */ /** @name Compare operations (thrown in with the binary ops). * @{ */ FNIEMAIMPLBINU8 iemAImpl_cmp_u8; FNIEMAIMPLBINU16 iemAImpl_cmp_u16; FNIEMAIMPLBINU32 iemAImpl_cmp_u32; FNIEMAIMPLBINU64 iemAImpl_cmp_u64; /** @} */ /** @name Test operations (thrown in with the binary ops). * @{ */ FNIEMAIMPLBINU8 iemAImpl_test_u8; FNIEMAIMPLBINU16 iemAImpl_test_u16; FNIEMAIMPLBINU32 iemAImpl_test_u32; FNIEMAIMPLBINU64 iemAImpl_test_u64; /** @} */ /** @name Bit operations operations (thrown in with the binary ops). * @{ */ FNIEMAIMPLBINU16 iemAImpl_bt_u16, iemAImpl_bt_u16_locked; FNIEMAIMPLBINU32 iemAImpl_bt_u32, iemAImpl_bt_u32_locked; FNIEMAIMPLBINU64 iemAImpl_bt_u64, iemAImpl_bt_u64_locked; FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked; FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked; FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked; FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked; FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked; FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked; FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked; FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked; FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked; /** @} */ /** @name Exchange memory with register operations. * @{ */ IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8, (uint8_t *pu8Mem, uint8_t *pu8Reg)); IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16,(uint16_t *pu16Mem, uint16_t *pu16Reg)); IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32,(uint32_t *pu32Mem, uint32_t *pu32Reg)); IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *pu64Mem, uint64_t *pu64Reg)); /** @} */ /** @name Exchange and add operations. * @{ */ IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags)); /** @} */ /** @name Compare and exchange. * @{ */ IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags)); #ifdef RT_ARCH_X86 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags)); #else IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags)); #endif IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)); IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)); /** @} */ /** @name Memory ordering * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void)); typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE; IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void)); IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void)); IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void)); IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void)); /** @} */ /** @name Double precision shifts * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64; FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16; FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32; FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64; FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16; FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32; FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64; /** @} */ /** @name Bit search operations (thrown in with the binary ops). * @{ */ FNIEMAIMPLBINU16 iemAImpl_bsf_u16; FNIEMAIMPLBINU32 iemAImpl_bsf_u32; FNIEMAIMPLBINU64 iemAImpl_bsf_u64; FNIEMAIMPLBINU16 iemAImpl_bsr_u16; FNIEMAIMPLBINU32 iemAImpl_bsr_u32; FNIEMAIMPLBINU64 iemAImpl_bsr_u64; /** @} */ /** @name Signed multiplication operations (thrown in with the binary ops). * @{ */ FNIEMAIMPLBINU16 iemAImpl_imul_two_u16; FNIEMAIMPLBINU32 iemAImpl_imul_two_u32; FNIEMAIMPLBINU64 iemAImpl_imul_two_u64; /** @} */ /** @name Arithmetic assignment operations on bytes (unary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags)); typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8; FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked; FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked; FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked; FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked; /** @} */ /** @name Arithmetic assignment operations on words (unary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags)); typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16; FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked; FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked; FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked; FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked; /** @} */ /** @name Arithmetic assignment operations on double words (unary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags)); typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32; FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked; FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked; FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked; FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked; /** @} */ /** @name Arithmetic assignment operations on quad words (unary). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags)); typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64; FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked; FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked; FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked; FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked; /** @} */ /** @name Shift operations on bytes (Group 2). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU8,(uint8_t *pu8Dst, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8; FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8; FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8; FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8; FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8; FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8; FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8; FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8; /** @} */ /** @name Shift operations on words (Group 2). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU16,(uint16_t *pu16Dst, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16; FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16; FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16; FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16; FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16; FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16; FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16; FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16; /** @} */ /** @name Shift operations on double words (Group 2). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU32,(uint32_t *pu32Dst, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32; FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32; FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32; FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32; FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32; FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32; FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32; FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32; /** @} */ /** @name Shift operations on words (Group 2). * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTU64,(uint64_t *pu64Dst, uint8_t cShift, uint32_t *pEFlags)); typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64; FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64; FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64; FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64; FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64; FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64; FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64; FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64; /** @} */ /** @name Multiplication and division operations. * @{ */ typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags)); typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8; FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_imul_u8; FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_idiv_u8; typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags)); typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16; FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_imul_u16; FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_idiv_u16; typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags)); typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32; FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_imul_u32; FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_idiv_u32; typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags)); typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64; FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_imul_u64; FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_idiv_u64; /** @} */ /** @name Byte Swap. * @{ */ IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */ IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst)); IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst)); /** @} */ /** @name Misc. * @{ */ FNIEMAIMPLBINU16 iemAImpl_arpl; /** @} */ /** @name FPU operations taking a 32-bit float argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)); typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2)); typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32; FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32; FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32; IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r32_to_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val)); /** @} */ /** @name FPU operations taking a 64-bit float argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)); typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64; FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64; FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64; FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64; FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64; FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64; FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64; IEM_DECL_IMPL_DEF(void, iemAImpl_fcom_r80_by_r64,(PCX86FXSTATE pFpuState, uint16_t *pFSW, PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2)); IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r64_to_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val)); /** @} */ /** @name FPU operations taking a 80-bit float argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)); typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80; FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80; FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)); typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW; FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80; FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80; typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2)); typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL; FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80; FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)); typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY; FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80; FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val)); typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW; FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80; FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes)); typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST; FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2; FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo, PCRTFLOAT80U pr80Val)); typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO; FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80; FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80; FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80; IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src)); /** @} */ /** @name FPU operations taking a 16-bit signed integer argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)); typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16; FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16; FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16; FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16; FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16; FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16; FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16; IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i16,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2)); IEM_DECL_IMPL_DEF(void, iemAImpl_fild_i16_to_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i16,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int16_t *pi16Val, PCRTFLOAT80U pr80Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fistt_r80_to_i16,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int16_t *pi16Val, PCRTFLOAT80U pr80Val)); /** @} */ /** @name FPU operations taking a 32-bit signed integer argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)); typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32; FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32; FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32; FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32; FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32; FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32; FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32; IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i32,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2)); IEM_DECL_IMPL_DEF(void, iemAImpl_fild_i32_to_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int32_t *pi32Val, PCRTFLOAT80U pr80Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fistt_r80_to_i32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int32_t *pi32Val, PCRTFLOAT80U pr80Val)); /** @} */ /** @name FPU operations taking a 64-bit signed integer argument * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val1, int64_t const *pi64Val2)); typedef FNIEMAIMPLFPUI64 *PFNIEMAIMPLFPUI64; FNIEMAIMPLFPUI64 iemAImpl_fiadd_r80_by_i64; FNIEMAIMPLFPUI64 iemAImpl_fimul_r80_by_i64; FNIEMAIMPLFPUI64 iemAImpl_fisub_r80_by_i64; FNIEMAIMPLFPUI64 iemAImpl_fisubr_r80_by_i64; FNIEMAIMPLFPUI64 iemAImpl_fidiv_r80_by_i64; FNIEMAIMPLFPUI64 iemAImpl_fidivr_r80_by_i64; IEM_DECL_IMPL_DEF(void, iemAImpl_ficom_r80_by_i64,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val1, int64_t const *pi64Val2)); IEM_DECL_IMPL_DEF(void, iemAImpl_fild_i64_to_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fist_r80_to_i64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int64_t *pi64Val, PCRTFLOAT80U pr80Val)); IEM_DECL_IMPL_DEF(void, iemAImpl_fistt_r80_to_i64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW, int64_t *pi32Val, PCRTFLOAT80U pr80Val)); /** @} */ /** Temporary type representing a 256-bit vector register. */ typedef struct {uint64_t au64[4]; } IEMVMM256; /** Temporary type pointing to a 256-bit vector register. */ typedef IEMVMM256 *PIEMVMM256; /** Temporary type pointing to a const 256-bit vector register. */ typedef IEMVMM256 *PCIEMVMM256; /** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1. * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src)); typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src)); typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128; FNIEMAIMPLMEDIAF2U64 iemAImpl_pxor_u64, iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64; FNIEMAIMPLMEDIAF2U128 iemAImpl_pxor_u128, iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128; /** @} */ /** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1. * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint32_t const *pu32Src)); typedef FNIEMAIMPLMEDIAF1L1U64 *PFNIEMAIMPLMEDIAF1L1U64; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1L1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, uint64_t const *pu64Src)); typedef FNIEMAIMPLMEDIAF1L1U128 *PFNIEMAIMPLMEDIAF1L1U128; FNIEMAIMPLMEDIAF1L1U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64; FNIEMAIMPLMEDIAF1L1U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128; /** @} */ /** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1. * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src)); typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF1H1U64; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF1H1U128,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src)); typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF1H1U128; FNIEMAIMPLMEDIAF1H1U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64; FNIEMAIMPLMEDIAF1H1U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128; /** @} */ /** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil) * @{ */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUF,(PCX86FXSTATE pFpuState, PRTUINT128U pu128Dst, PCRTUINT128U pu128Src, uint8_t bEvil)); typedef FNIEMAIMPLMEDIAPSHUF *PFNIEMAIMPLMEDIAPSHUF; FNIEMAIMPLMEDIAPSHUF iemAImpl_pshufhw, iemAImpl_pshuflw, iemAImpl_pshufd; IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src, uint8_t bEvil)); /** @} */ /** @name Media (SSE/MMX/AVX) operation: Move Byte Mask * @{ */ IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, uint64_t const *pu64Src)); IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(PCX86FXSTATE pFpuState, uint64_t *pu64Dst, PCRTUINT128U pu128Src)); /** @} */ /** @name Media (SSE/MMX/AVX) operation: Sort this later * @{ */ IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, uint64_t uSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)); IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)); /** @} */ /** @name Function tables. * @{ */ /** * Function table for a binary operator providing implementation based on * operand size. */ typedef struct IEMOPBINSIZES { PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8; PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16; PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32; PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64; } IEMOPBINSIZES; /** Pointer to a binary operator function table. */ typedef IEMOPBINSIZES const *PCIEMOPBINSIZES; /** * Function table for a unary operator providing implementation based on * operand size. */ typedef struct IEMOPUNARYSIZES { PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8; PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16; PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32; PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64; } IEMOPUNARYSIZES; /** Pointer to a unary operator function table. */ typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES; /** * Function table for a shift operator providing implementation based on * operand size. */ typedef struct IEMOPSHIFTSIZES { PFNIEMAIMPLSHIFTU8 pfnNormalU8; PFNIEMAIMPLSHIFTU16 pfnNormalU16; PFNIEMAIMPLSHIFTU32 pfnNormalU32; PFNIEMAIMPLSHIFTU64 pfnNormalU64; } IEMOPSHIFTSIZES; /** Pointer to a shift operator function table. */ typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES; /** * Function table for a multiplication or division operation. */ typedef struct IEMOPMULDIVSIZES { PFNIEMAIMPLMULDIVU8 pfnU8; PFNIEMAIMPLMULDIVU16 pfnU16; PFNIEMAIMPLMULDIVU32 pfnU32; PFNIEMAIMPLMULDIVU64 pfnU64; } IEMOPMULDIVSIZES; /** Pointer to a multiplication or division operation function table. */ typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES; /** * Function table for a double precision shift operator providing implementation * based on operand size. */ typedef struct IEMOPSHIFTDBLSIZES { PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16; PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32; PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64; } IEMOPSHIFTDBLSIZES; /** Pointer to a double precision shift function table. */ typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES; /** * Function table for media instruction taking two full sized media registers, * optionally the 2nd being a memory reference (only modifying the first op.) */ typedef struct IEMOPMEDIAF2 { PFNIEMAIMPLMEDIAF2U64 pfnU64; PFNIEMAIMPLMEDIAF2U128 pfnU128; } IEMOPMEDIAF2; /** Pointer to a media operation function table for full sized ops. */ typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2; /** * Function table for media instruction taking taking one full and one lower * half media register. */ typedef struct IEMOPMEDIAF1L1 { PFNIEMAIMPLMEDIAF1L1U64 pfnU64; PFNIEMAIMPLMEDIAF1L1U128 pfnU128; } IEMOPMEDIAF1L1; /** Pointer to a media operation function table for lowhalf+lowhalf -> full. */ typedef IEMOPMEDIAF1L1 const *PCIEMOPMEDIAF1L1; /** * Function table for media instruction taking taking one full and one high half * media register. */ typedef struct IEMOPMEDIAF1H1 { PFNIEMAIMPLMEDIAF1H1U64 pfnU64; PFNIEMAIMPLMEDIAF1H1U128 pfnU128; } IEMOPMEDIAF1H1; /** Pointer to a media operation function table for hihalf+hihalf -> full. */ typedef IEMOPMEDIAF1H1 const *PCIEMOPMEDIAF1H1; /** @} */ /** @name C instruction implementations for anything slightly complicated. * @{ */ /** * For typedef'ing or declaring a C instruction implementation function taking * no extra arguments. * * @param a_Name The name of the type. */ # define IEM_CIMPL_DECL_TYPE_0(a_Name) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr)) /** * For defining a C instruction implementation function taking no extra * arguments. * * @param a_Name The name of the function */ # define IEM_CIMPL_DEF_0(a_Name) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr)) /** * For calling a C instruction implementation function taking no extra * arguments. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. */ # define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr) /** * For typedef'ing or declaring a C instruction implementation function taking * one extra argument. * * @param a_Name The name of the type. * @param a_Type0 The argument type. * @param a_Arg0 The argument name. */ # define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0)) /** * For defining a C instruction implementation function taking one extra * argument. * * @param a_Name The name of the function * @param a_Type0 The argument type. * @param a_Arg0 The argument name. */ # define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0)) /** * For calling a C instruction implementation function taking one extra * argument. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. * @param a0 The name of the 1st argument. */ # define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0)) /** * For typedef'ing or declaring a C instruction implementation function taking * two extra arguments. * * @param a_Name The name of the type. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. */ # define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1)) /** * For defining a C instruction implementation function taking two extra * arguments. * * @param a_Name The name of the function. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. */ # define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1)) /** * For calling a C instruction implementation function taking two extra * arguments. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. * @param a0 The name of the 1st argument. * @param a1 The name of the 2nd argument. */ # define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1)) /** * For typedef'ing or declaring a C instruction implementation function taking * three extra arguments. * * @param a_Name The name of the type. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. */ # define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2)) /** * For defining a C instruction implementation function taking three extra * arguments. * * @param a_Name The name of the function. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. */ # define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2)) /** * For calling a C instruction implementation function taking three extra * arguments. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. * @param a0 The name of the 1st argument. * @param a1 The name of the 2nd argument. * @param a2 The name of the 3rd argument. */ # define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2)) /** * For typedef'ing or declaring a C instruction implementation function taking * four extra arguments. * * @param a_Name The name of the type. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. * @param a_Type3 The type of the 4th argument. * @param a_Arg3 The name of the 4th argument. */ # define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3)) /** * For defining a C instruction implementation function taking four extra * arguments. * * @param a_Name The name of the function. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. * @param a_Type3 The type of the 4th argument. * @param a_Arg3 The name of the 4th argument. */ # define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \ a_Type2 a_Arg2, a_Type3 a_Arg3)) /** * For calling a C instruction implementation function taking four extra * arguments. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. * @param a0 The name of the 1st argument. * @param a1 The name of the 2nd argument. * @param a2 The name of the 3rd argument. * @param a3 The name of the 4th argument. */ # define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3)) /** * For typedef'ing or declaring a C instruction implementation function taking * five extra arguments. * * @param a_Name The name of the type. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. * @param a_Type3 The type of the 4th argument. * @param a_Arg3 The name of the 4th argument. * @param a_Type4 The type of the 5th argument. * @param a_Arg4 The name of the 5th argument. */ # define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \ IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \ a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \ a_Type3 a_Arg3, a_Type4 a_Arg4)) /** * For defining a C instruction implementation function taking five extra * arguments. * * @param a_Name The name of the function. * @param a_Type0 The type of the 1st argument * @param a_Arg0 The name of the 1st argument. * @param a_Type1 The type of the 2nd argument. * @param a_Arg1 The name of the 2nd argument. * @param a_Type2 The type of the 3rd argument. * @param a_Arg2 The name of the 3rd argument. * @param a_Type3 The type of the 4th argument. * @param a_Arg3 The name of the 4th argument. * @param a_Type4 The type of the 5th argument. * @param a_Arg4 The name of the 5th argument. */ # define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \ IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \ a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \ a_Type3 a_Arg3, a_Type4 a_Arg4)) /** * For calling a C instruction implementation function taking five extra * arguments. * * This special call macro adds default arguments to the call and allow us to * change these later. * * @param a_fn The name of the function. * @param a0 The name of the 1st argument. * @param a1 The name of the 2nd argument. * @param a2 The name of the 3rd argument. * @param a3 The name of the 4th argument. * @param a4 The name of the 5th argument. */ # define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4)) /** @} */ /** @} */ RT_C_DECLS_END #endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */