1 | /* $Id: IEMInline.h 98969 2023-03-15 00:24:47Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IEM - Interpreted Execution Manager - Inlined Functions.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2011-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 | #ifndef VMM_INCLUDED_SRC_include_IEMInline_h
|
---|
29 | #define VMM_INCLUDED_SRC_include_IEMInline_h
|
---|
30 | #ifndef RT_WITHOUT_PRAGMA_ONCE
|
---|
31 | # pragma once
|
---|
32 | #endif
|
---|
33 |
|
---|
34 |
|
---|
35 |
|
---|
36 | /**
|
---|
37 | * Makes status code addjustments (pass up from I/O and access handler)
|
---|
38 | * as well as maintaining statistics.
|
---|
39 | *
|
---|
40 | * @returns Strict VBox status code to pass up.
|
---|
41 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
42 | * @param rcStrict The status from executing an instruction.
|
---|
43 | */
|
---|
44 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemExecStatusCodeFiddling(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
45 | {
|
---|
46 | if (rcStrict != VINF_SUCCESS)
|
---|
47 | {
|
---|
48 | if (RT_SUCCESS(rcStrict))
|
---|
49 | {
|
---|
50 | AssertMsg( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|
---|
51 | || rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
52 | || rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
53 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
54 | || rcStrict == VINF_IOM_R3_MMIO_READ
|
---|
55 | || rcStrict == VINF_IOM_R3_MMIO_READ_WRITE
|
---|
56 | || rcStrict == VINF_IOM_R3_MMIO_WRITE
|
---|
57 | || rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE
|
---|
58 | || rcStrict == VINF_CPUM_R3_MSR_READ
|
---|
59 | || rcStrict == VINF_CPUM_R3_MSR_WRITE
|
---|
60 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
61 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
62 | || rcStrict == VINF_EM_TRIPLE_FAULT
|
---|
63 | || rcStrict == VINF_GIM_R3_HYPERCALL
|
---|
64 | /* raw-mode / virt handlers only: */
|
---|
65 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT
|
---|
66 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT
|
---|
67 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT
|
---|
68 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT
|
---|
69 | || rcStrict == VINF_SELM_SYNC_GDT
|
---|
70 | || rcStrict == VINF_CSAM_PENDING_ACTION
|
---|
71 | || rcStrict == VINF_PATM_CHECK_PATCH_PAGE
|
---|
72 | /* nested hw.virt codes: */
|
---|
73 | || rcStrict == VINF_VMX_VMEXIT
|
---|
74 | || rcStrict == VINF_VMX_INTERCEPT_NOT_ACTIVE
|
---|
75 | || rcStrict == VINF_VMX_MODIFIES_BEHAVIOR
|
---|
76 | || rcStrict == VINF_SVM_VMEXIT
|
---|
77 | , ("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
78 | /** @todo adjust for VINF_EM_RAW_EMULATE_INSTR. */
|
---|
79 | int32_t const rcPassUp = pVCpu->iem.s.rcPassUp;
|
---|
80 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
81 | if ( rcStrict == VINF_VMX_VMEXIT
|
---|
82 | && rcPassUp == VINF_SUCCESS)
|
---|
83 | rcStrict = VINF_SUCCESS;
|
---|
84 | else
|
---|
85 | #endif
|
---|
86 | #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
|
---|
87 | if ( rcStrict == VINF_SVM_VMEXIT
|
---|
88 | && rcPassUp == VINF_SUCCESS)
|
---|
89 | rcStrict = VINF_SUCCESS;
|
---|
90 | else
|
---|
91 | #endif
|
---|
92 | if (rcPassUp == VINF_SUCCESS)
|
---|
93 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
94 | else if ( rcPassUp < VINF_EM_FIRST
|
---|
95 | || rcPassUp > VINF_EM_LAST
|
---|
96 | || rcPassUp < VBOXSTRICTRC_VAL(rcStrict))
|
---|
97 | {
|
---|
98 | Log(("IEM: rcPassUp=%Rrc! rcStrict=%Rrc\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
99 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
100 | rcStrict = rcPassUp;
|
---|
101 | }
|
---|
102 | else
|
---|
103 | {
|
---|
104 | Log(("IEM: rcPassUp=%Rrc rcStrict=%Rrc!\n", rcPassUp, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
105 | pVCpu->iem.s.cRetInfStatuses++;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | else if (rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED)
|
---|
109 | pVCpu->iem.s.cRetAspectNotImplemented++;
|
---|
110 | else if (rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED)
|
---|
111 | pVCpu->iem.s.cRetInstrNotImplemented++;
|
---|
112 | else
|
---|
113 | pVCpu->iem.s.cRetErrStatuses++;
|
---|
114 | }
|
---|
115 | else if (pVCpu->iem.s.rcPassUp != VINF_SUCCESS)
|
---|
116 | {
|
---|
117 | pVCpu->iem.s.cRetPassUpStatus++;
|
---|
118 | rcStrict = pVCpu->iem.s.rcPassUp;
|
---|
119 | }
|
---|
120 |
|
---|
121 | return rcStrict;
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Sets the pass up status.
|
---|
127 | *
|
---|
128 | * @returns VINF_SUCCESS.
|
---|
129 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
130 | * calling thread.
|
---|
131 | * @param rcPassUp The pass up status. Must be informational.
|
---|
132 | * VINF_SUCCESS is not allowed.
|
---|
133 | */
|
---|
134 | DECLINLINE(int) iemSetPassUpStatus(PVMCPUCC pVCpu, VBOXSTRICTRC rcPassUp) RT_NOEXCEPT
|
---|
135 | {
|
---|
136 | AssertRC(VBOXSTRICTRC_VAL(rcPassUp)); Assert(rcPassUp != VINF_SUCCESS);
|
---|
137 |
|
---|
138 | int32_t const rcOldPassUp = pVCpu->iem.s.rcPassUp;
|
---|
139 | if (rcOldPassUp == VINF_SUCCESS)
|
---|
140 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
141 | /* If both are EM scheduling codes, use EM priority rules. */
|
---|
142 | else if ( rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST
|
---|
143 | && rcPassUp >= VINF_EM_FIRST && rcPassUp <= VINF_EM_LAST)
|
---|
144 | {
|
---|
145 | if (rcPassUp < rcOldPassUp)
|
---|
146 | {
|
---|
147 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
148 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
149 | }
|
---|
150 | else
|
---|
151 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
152 | }
|
---|
153 | /* Override EM scheduling with specific status code. */
|
---|
154 | else if (rcOldPassUp >= VINF_EM_FIRST && rcOldPassUp <= VINF_EM_LAST)
|
---|
155 | {
|
---|
156 | Log(("IEM: rcPassUp=%Rrc! rcOldPassUp=%Rrc\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
157 | pVCpu->iem.s.rcPassUp = VBOXSTRICTRC_VAL(rcPassUp);
|
---|
158 | }
|
---|
159 | /* Don't override specific status code, first come first served. */
|
---|
160 | else
|
---|
161 | Log(("IEM: rcPassUp=%Rrc rcOldPassUp=%Rrc!\n", VBOXSTRICTRC_VAL(rcPassUp), rcOldPassUp));
|
---|
162 | return VINF_SUCCESS;
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Calculates the CPU mode.
|
---|
168 | *
|
---|
169 | * This is mainly for updating IEMCPU::enmCpuMode.
|
---|
170 | *
|
---|
171 | * @returns CPU mode.
|
---|
172 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
173 | * calling thread.
|
---|
174 | */
|
---|
175 | DECLINLINE(IEMMODE) iemCalcCpuMode(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
176 | {
|
---|
177 | if (CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx))
|
---|
178 | return IEMMODE_64BIT;
|
---|
179 | if (pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig) /** @todo check if this is correct... */
|
---|
180 | return IEMMODE_32BIT;
|
---|
181 | return IEMMODE_16BIT;
|
---|
182 | }
|
---|
183 |
|
---|
184 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
185 |
|
---|
186 | # if defined(VBOX_INCLUDED_vmm_dbgf_h) || defined(DOXYGEN_RUNNING) /* dbgf.ro.cEnabledHwBreakpoints */
|
---|
187 | /**
|
---|
188 | * Initializes the execution state.
|
---|
189 | *
|
---|
190 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
191 | * calling thread.
|
---|
192 | * @param fBypassHandlers Whether to bypass access handlers.
|
---|
193 | *
|
---|
194 | * @remarks Callers of this must call iemUninitExec() to undo potentially fatal
|
---|
195 | * side-effects in strict builds.
|
---|
196 | */
|
---|
197 | DECLINLINE(void) iemInitExec(PVMCPUCC pVCpu, bool fBypassHandlers) RT_NOEXCEPT
|
---|
198 | {
|
---|
199 | IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
200 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM));
|
---|
201 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs));
|
---|
202 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss));
|
---|
203 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es));
|
---|
204 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds));
|
---|
205 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.fs));
|
---|
206 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.gs));
|
---|
207 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ldtr));
|
---|
208 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.tr));
|
---|
209 |
|
---|
210 | pVCpu->iem.s.uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
211 | pVCpu->iem.s.enmCpuMode = iemCalcCpuMode(pVCpu);
|
---|
212 | # ifdef VBOX_STRICT
|
---|
213 | pVCpu->iem.s.enmDefAddrMode = (IEMMODE)0xfe;
|
---|
214 | pVCpu->iem.s.enmEffAddrMode = (IEMMODE)0xfe;
|
---|
215 | pVCpu->iem.s.enmDefOpSize = (IEMMODE)0xfe;
|
---|
216 | pVCpu->iem.s.enmEffOpSize = (IEMMODE)0xfe;
|
---|
217 | pVCpu->iem.s.fPrefixes = 0xfeedbeef;
|
---|
218 | pVCpu->iem.s.uRexReg = 127;
|
---|
219 | pVCpu->iem.s.uRexB = 127;
|
---|
220 | pVCpu->iem.s.offModRm = 127;
|
---|
221 | pVCpu->iem.s.uRexIndex = 127;
|
---|
222 | pVCpu->iem.s.iEffSeg = 127;
|
---|
223 | pVCpu->iem.s.idxPrefix = 127;
|
---|
224 | pVCpu->iem.s.uVex3rdReg = 127;
|
---|
225 | pVCpu->iem.s.uVexLength = 127;
|
---|
226 | pVCpu->iem.s.fEvexStuff = 127;
|
---|
227 | pVCpu->iem.s.uFpuOpcode = UINT16_MAX;
|
---|
228 | # ifdef IEM_WITH_CODE_TLB
|
---|
229 | pVCpu->iem.s.offInstrNextByte = UINT16_MAX;
|
---|
230 | pVCpu->iem.s.pbInstrBuf = NULL;
|
---|
231 | pVCpu->iem.s.cbInstrBuf = UINT16_MAX;
|
---|
232 | pVCpu->iem.s.cbInstrBufTotal = UINT16_MAX;
|
---|
233 | pVCpu->iem.s.offCurInstrStart = INT16_MAX;
|
---|
234 | pVCpu->iem.s.uInstrBufPc = UINT64_C(0xc0ffc0ffcff0c0ff);
|
---|
235 | # else
|
---|
236 | pVCpu->iem.s.offOpcode = 127;
|
---|
237 | pVCpu->iem.s.cbOpcode = 127;
|
---|
238 | # endif
|
---|
239 | # endif /* VBOX_STRICT */
|
---|
240 |
|
---|
241 | pVCpu->iem.s.cActiveMappings = 0;
|
---|
242 | pVCpu->iem.s.iNextMapping = 0;
|
---|
243 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
244 | pVCpu->iem.s.fBypassHandlers = fBypassHandlers;
|
---|
245 | pVCpu->iem.s.fDisregardLock = false;
|
---|
246 | pVCpu->iem.s.fPendingInstructionBreakpoints = false;
|
---|
247 | pVCpu->iem.s.fPendingDataBreakpoints = false;
|
---|
248 | pVCpu->iem.s.fPendingIoBreakpoints = false;
|
---|
249 | if (RT_LIKELY( !(pVCpu->cpum.GstCtx.dr[7] & X86_DR7_ENABLED_MASK)
|
---|
250 | && pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledHwBreakpoints == 0))
|
---|
251 | { /* likely */ }
|
---|
252 | else
|
---|
253 | iemInitPendingBreakpointsSlow(pVCpu);
|
---|
254 | }
|
---|
255 | # endif /* VBOX_INCLUDED_vmm_dbgf_h */
|
---|
256 |
|
---|
257 |
|
---|
258 | # if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
|
---|
259 | /**
|
---|
260 | * Performs a minimal reinitialization of the execution state.
|
---|
261 | *
|
---|
262 | * This is intended to be used by VM-exits, SMM, LOADALL and other similar
|
---|
263 | * 'world-switch' types operations on the CPU. Currently only nested
|
---|
264 | * hardware-virtualization uses it.
|
---|
265 | *
|
---|
266 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
267 | */
|
---|
268 | DECLINLINE(void) iemReInitExec(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
269 | {
|
---|
270 | IEMMODE const enmMode = iemCalcCpuMode(pVCpu);
|
---|
271 | uint8_t const uCpl = CPUMGetGuestCPL(pVCpu);
|
---|
272 |
|
---|
273 | pVCpu->iem.s.uCpl = uCpl;
|
---|
274 | pVCpu->iem.s.enmCpuMode = enmMode;
|
---|
275 | pVCpu->iem.s.enmDefAddrMode = enmMode; /** @todo check if this is correct... */
|
---|
276 | pVCpu->iem.s.enmEffAddrMode = enmMode;
|
---|
277 | if (enmMode != IEMMODE_64BIT)
|
---|
278 | {
|
---|
279 | pVCpu->iem.s.enmDefOpSize = enmMode; /** @todo check if this is correct... */
|
---|
280 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
281 | }
|
---|
282 | else
|
---|
283 | {
|
---|
284 | pVCpu->iem.s.enmDefOpSize = IEMMODE_32BIT;
|
---|
285 | pVCpu->iem.s.enmEffOpSize = enmMode;
|
---|
286 | }
|
---|
287 | pVCpu->iem.s.iEffSeg = X86_SREG_DS;
|
---|
288 | # ifndef IEM_WITH_CODE_TLB
|
---|
289 | /** @todo Shouldn't we be doing this in IEMTlbInvalidateAll()? */
|
---|
290 | pVCpu->iem.s.offOpcode = 0;
|
---|
291 | pVCpu->iem.s.cbOpcode = 0;
|
---|
292 | # endif
|
---|
293 | pVCpu->iem.s.rcPassUp = VINF_SUCCESS;
|
---|
294 | }
|
---|
295 | # endif
|
---|
296 |
|
---|
297 |
|
---|
298 | /**
|
---|
299 | * Counterpart to #iemInitExec that undoes evil strict-build stuff.
|
---|
300 | *
|
---|
301 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
302 | * calling thread.
|
---|
303 | */
|
---|
304 | DECLINLINE(void) iemUninitExec(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
305 | {
|
---|
306 | /* Note! do not touch fInPatchCode here! (see iemUninitExecAndFiddleStatusAndMaybeReenter) */
|
---|
307 | # ifdef VBOX_STRICT
|
---|
308 | # ifdef IEM_WITH_CODE_TLB
|
---|
309 | NOREF(pVCpu);
|
---|
310 | # else
|
---|
311 | pVCpu->iem.s.cbOpcode = 0;
|
---|
312 | # endif
|
---|
313 | # else
|
---|
314 | NOREF(pVCpu);
|
---|
315 | # endif
|
---|
316 | }
|
---|
317 |
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * Calls iemUninitExec, iemExecStatusCodeFiddling and iemRCRawMaybeReenter.
|
---|
321 | *
|
---|
322 | * Only calling iemRCRawMaybeReenter in raw-mode, obviously.
|
---|
323 | *
|
---|
324 | * @returns Fiddled strict vbox status code, ready to return to non-IEM caller.
|
---|
325 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
326 | * @param rcStrict The status code to fiddle.
|
---|
327 | */
|
---|
328 | DECLINLINE(VBOXSTRICTRC) iemUninitExecAndFiddleStatusAndMaybeReenter(PVMCPUCC pVCpu, VBOXSTRICTRC rcStrict) RT_NOEXCEPT
|
---|
329 | {
|
---|
330 | iemUninitExec(pVCpu);
|
---|
331 | return iemExecStatusCodeFiddling(pVCpu, rcStrict);
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | /**
|
---|
336 | * Macro used by the IEMExec* method to check the given instruction length.
|
---|
337 | *
|
---|
338 | * Will return on failure!
|
---|
339 | *
|
---|
340 | * @param a_cbInstr The given instruction length.
|
---|
341 | * @param a_cbMin The minimum length.
|
---|
342 | */
|
---|
343 | # define IEMEXEC_ASSERT_INSTR_LEN_RETURN(a_cbInstr, a_cbMin) \
|
---|
344 | AssertMsgReturn((unsigned)(a_cbInstr) - (unsigned)(a_cbMin) <= (unsigned)15 - (unsigned)(a_cbMin), \
|
---|
345 | ("cbInstr=%u cbMin=%u\n", (a_cbInstr), (a_cbMin)), VERR_IEM_INVALID_INSTR_LENGTH)
|
---|
346 |
|
---|
347 |
|
---|
348 | # ifndef IEM_WITH_SETJMP
|
---|
349 |
|
---|
350 | /**
|
---|
351 | * Fetches the first opcode byte.
|
---|
352 | *
|
---|
353 | * @returns Strict VBox status code.
|
---|
354 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
355 | * calling thread.
|
---|
356 | * @param pu8 Where to return the opcode byte.
|
---|
357 | */
|
---|
358 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetFirstU8(PVMCPUCC pVCpu, uint8_t *pu8) RT_NOEXCEPT
|
---|
359 | {
|
---|
360 | /*
|
---|
361 | * Check for hardware instruction breakpoints.
|
---|
362 | */
|
---|
363 | if (RT_LIKELY(!pVCpu->iem.s.fPendingInstructionBreakpoints))
|
---|
364 | { /* likely */ }
|
---|
365 | else
|
---|
366 | {
|
---|
367 | VBOXSTRICTRC rcStrict = DBGFBpCheckInstruction(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
368 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
369 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
370 | { /* likely */ }
|
---|
371 | else if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
372 | return iemRaiseDebugException(pVCpu);
|
---|
373 | else
|
---|
374 | return rcStrict;
|
---|
375 | }
|
---|
376 |
|
---|
377 | /*
|
---|
378 | * Fetch the first opcode byte.
|
---|
379 | */
|
---|
380 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
381 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
382 | {
|
---|
383 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
384 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
385 | return VINF_SUCCESS;
|
---|
386 | }
|
---|
387 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
388 | }
|
---|
389 |
|
---|
390 | # else /* IEM_WITH_SETJMP */
|
---|
391 |
|
---|
392 | /**
|
---|
393 | * Fetches the first opcode byte, longjmp on error.
|
---|
394 | *
|
---|
395 | * @returns The opcode byte.
|
---|
396 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
397 | */
|
---|
398 | DECL_INLINE_THROW(uint8_t) iemOpcodeGetFirstU8Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
399 | {
|
---|
400 | /*
|
---|
401 | * Check for hardware instruction breakpoints.
|
---|
402 | */
|
---|
403 | if (RT_LIKELY(!pVCpu->iem.s.fPendingInstructionBreakpoints))
|
---|
404 | { /* likely */ }
|
---|
405 | else
|
---|
406 | {
|
---|
407 | VBOXSTRICTRC rcStrict = DBGFBpCheckInstruction(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
408 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
409 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
410 | { /* likely */ }
|
---|
411 | else
|
---|
412 | {
|
---|
413 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
414 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
415 | IEM_DO_LONGJMP(pVCpu, VBOXSTRICTRC_VAL(rcStrict));
|
---|
416 | }
|
---|
417 | }
|
---|
418 |
|
---|
419 | /*
|
---|
420 | * Fetch the first opcode byte.
|
---|
421 | */
|
---|
422 | # ifdef IEM_WITH_CODE_TLB
|
---|
423 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
424 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
425 | if (RT_LIKELY( pbBuf != NULL
|
---|
426 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
427 | {
|
---|
428 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
429 | return pbBuf[offBuf];
|
---|
430 | }
|
---|
431 | # else
|
---|
432 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
433 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
434 | {
|
---|
435 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
436 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
437 | }
|
---|
438 | # endif
|
---|
439 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
440 | }
|
---|
441 |
|
---|
442 | # endif /* IEM_WITH_SETJMP */
|
---|
443 |
|
---|
444 | /**
|
---|
445 | * Fetches the first opcode byte, returns/throws automatically on failure.
|
---|
446 | *
|
---|
447 | * @param a_pu8 Where to return the opcode byte.
|
---|
448 | * @remark Implicitly references pVCpu.
|
---|
449 | */
|
---|
450 | # ifndef IEM_WITH_SETJMP
|
---|
451 | # define IEM_OPCODE_GET_FIRST_U8(a_pu8) \
|
---|
452 | do \
|
---|
453 | { \
|
---|
454 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetFirstU8(pVCpu, (a_pu8)); \
|
---|
455 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
456 | { /* likely */ } \
|
---|
457 | else \
|
---|
458 | return rcStrict2; \
|
---|
459 | } while (0)
|
---|
460 | # else
|
---|
461 | # define IEM_OPCODE_GET_FIRST_U8(a_pu8) (*(a_pu8) = iemOpcodeGetFirstU8Jmp(pVCpu))
|
---|
462 | # endif /* IEM_WITH_SETJMP */
|
---|
463 |
|
---|
464 |
|
---|
465 | # ifndef IEM_WITH_SETJMP
|
---|
466 |
|
---|
467 | /**
|
---|
468 | * Fetches the next opcode byte.
|
---|
469 | *
|
---|
470 | * @returns Strict VBox status code.
|
---|
471 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
472 | * calling thread.
|
---|
473 | * @param pu8 Where to return the opcode byte.
|
---|
474 | */
|
---|
475 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU8(PVMCPUCC pVCpu, uint8_t *pu8) RT_NOEXCEPT
|
---|
476 | {
|
---|
477 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
478 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
479 | {
|
---|
480 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
481 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
482 | return VINF_SUCCESS;
|
---|
483 | }
|
---|
484 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
485 | }
|
---|
486 |
|
---|
487 | # else /* IEM_WITH_SETJMP */
|
---|
488 |
|
---|
489 | /**
|
---|
490 | * Fetches the next opcode byte, longjmp on error.
|
---|
491 | *
|
---|
492 | * @returns The opcode byte.
|
---|
493 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
494 | */
|
---|
495 | DECL_INLINE_THROW(uint8_t) iemOpcodeGetNextU8Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
496 | {
|
---|
497 | # ifdef IEM_WITH_CODE_TLB
|
---|
498 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
499 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
500 | if (RT_LIKELY( pbBuf != NULL
|
---|
501 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
502 | {
|
---|
503 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
504 | return pbBuf[offBuf];
|
---|
505 | }
|
---|
506 | # else
|
---|
507 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
508 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
509 | {
|
---|
510 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
511 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
512 | }
|
---|
513 | # endif
|
---|
514 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
515 | }
|
---|
516 |
|
---|
517 | # endif /* IEM_WITH_SETJMP */
|
---|
518 |
|
---|
519 | /**
|
---|
520 | * Fetches the next opcode byte, returns automatically on failure.
|
---|
521 | *
|
---|
522 | * @param a_pu8 Where to return the opcode byte.
|
---|
523 | * @remark Implicitly references pVCpu.
|
---|
524 | */
|
---|
525 | # ifndef IEM_WITH_SETJMP
|
---|
526 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) \
|
---|
527 | do \
|
---|
528 | { \
|
---|
529 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU8(pVCpu, (a_pu8)); \
|
---|
530 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
531 | { /* likely */ } \
|
---|
532 | else \
|
---|
533 | return rcStrict2; \
|
---|
534 | } while (0)
|
---|
535 | # else
|
---|
536 | # define IEM_OPCODE_GET_NEXT_U8(a_pu8) (*(a_pu8) = iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
537 | # endif /* IEM_WITH_SETJMP */
|
---|
538 |
|
---|
539 |
|
---|
540 | # ifndef IEM_WITH_SETJMP
|
---|
541 | /**
|
---|
542 | * Fetches the next signed byte from the opcode stream.
|
---|
543 | *
|
---|
544 | * @returns Strict VBox status code.
|
---|
545 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
546 | * @param pi8 Where to return the signed byte.
|
---|
547 | */
|
---|
548 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8(PVMCPUCC pVCpu, int8_t *pi8) RT_NOEXCEPT
|
---|
549 | {
|
---|
550 | return iemOpcodeGetNextU8(pVCpu, (uint8_t *)pi8);
|
---|
551 | }
|
---|
552 | # endif /* !IEM_WITH_SETJMP */
|
---|
553 |
|
---|
554 |
|
---|
555 | /**
|
---|
556 | * Fetches the next signed byte from the opcode stream, returning automatically
|
---|
557 | * on failure.
|
---|
558 | *
|
---|
559 | * @param a_pi8 Where to return the signed byte.
|
---|
560 | * @remark Implicitly references pVCpu.
|
---|
561 | */
|
---|
562 | # ifndef IEM_WITH_SETJMP
|
---|
563 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) \
|
---|
564 | do \
|
---|
565 | { \
|
---|
566 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8(pVCpu, (a_pi8)); \
|
---|
567 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
568 | return rcStrict2; \
|
---|
569 | } while (0)
|
---|
570 | # else /* IEM_WITH_SETJMP */
|
---|
571 | # define IEM_OPCODE_GET_NEXT_S8(a_pi8) (*(a_pi8) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
572 |
|
---|
573 | # endif /* IEM_WITH_SETJMP */
|
---|
574 |
|
---|
575 |
|
---|
576 | # ifndef IEM_WITH_SETJMP
|
---|
577 | /**
|
---|
578 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
579 | * unsigned 16-bit.
|
---|
580 | *
|
---|
581 | * @returns Strict VBox status code.
|
---|
582 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
583 | * @param pu16 Where to return the unsigned word.
|
---|
584 | */
|
---|
585 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU16(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
586 | {
|
---|
587 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
588 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
589 | return iemOpcodeGetNextS8SxU16Slow(pVCpu, pu16);
|
---|
590 |
|
---|
591 | *pu16 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
592 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
593 | return VINF_SUCCESS;
|
---|
594 | }
|
---|
595 | # endif /* !IEM_WITH_SETJMP */
|
---|
596 |
|
---|
597 | /**
|
---|
598 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
599 | * a word, returning automatically on failure.
|
---|
600 | *
|
---|
601 | * @param a_pu16 Where to return the word.
|
---|
602 | * @remark Implicitly references pVCpu.
|
---|
603 | */
|
---|
604 | # ifndef IEM_WITH_SETJMP
|
---|
605 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) \
|
---|
606 | do \
|
---|
607 | { \
|
---|
608 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU16(pVCpu, (a_pu16)); \
|
---|
609 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
610 | return rcStrict2; \
|
---|
611 | } while (0)
|
---|
612 | # else
|
---|
613 | # define IEM_OPCODE_GET_NEXT_S8_SX_U16(a_pu16) (*(a_pu16) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
614 | # endif
|
---|
615 |
|
---|
616 | # ifndef IEM_WITH_SETJMP
|
---|
617 | /**
|
---|
618 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
619 | * unsigned 32-bit.
|
---|
620 | *
|
---|
621 | * @returns Strict VBox status code.
|
---|
622 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
623 | * @param pu32 Where to return the unsigned dword.
|
---|
624 | */
|
---|
625 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
626 | {
|
---|
627 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
628 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
629 | return iemOpcodeGetNextS8SxU32Slow(pVCpu, pu32);
|
---|
630 |
|
---|
631 | *pu32 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
632 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
633 | return VINF_SUCCESS;
|
---|
634 | }
|
---|
635 | # endif /* !IEM_WITH_SETJMP */
|
---|
636 |
|
---|
637 | /**
|
---|
638 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
639 | * a word, returning automatically on failure.
|
---|
640 | *
|
---|
641 | * @param a_pu32 Where to return the word.
|
---|
642 | * @remark Implicitly references pVCpu.
|
---|
643 | */
|
---|
644 | # ifndef IEM_WITH_SETJMP
|
---|
645 | # define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) \
|
---|
646 | do \
|
---|
647 | { \
|
---|
648 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU32(pVCpu, (a_pu32)); \
|
---|
649 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
650 | return rcStrict2; \
|
---|
651 | } while (0)
|
---|
652 | # else
|
---|
653 | # define IEM_OPCODE_GET_NEXT_S8_SX_U32(a_pu32) (*(a_pu32) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
654 | # endif
|
---|
655 |
|
---|
656 |
|
---|
657 | # ifndef IEM_WITH_SETJMP
|
---|
658 | /**
|
---|
659 | * Fetches the next signed byte from the opcode stream, extending it to
|
---|
660 | * unsigned 64-bit.
|
---|
661 | *
|
---|
662 | * @returns Strict VBox status code.
|
---|
663 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
664 | * @param pu64 Where to return the unsigned qword.
|
---|
665 | */
|
---|
666 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS8SxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
667 | {
|
---|
668 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
669 | if (RT_UNLIKELY(offOpcode >= pVCpu->iem.s.cbOpcode))
|
---|
670 | return iemOpcodeGetNextS8SxU64Slow(pVCpu, pu64);
|
---|
671 |
|
---|
672 | *pu64 = (int8_t)pVCpu->iem.s.abOpcode[offOpcode];
|
---|
673 | pVCpu->iem.s.offOpcode = offOpcode + 1;
|
---|
674 | return VINF_SUCCESS;
|
---|
675 | }
|
---|
676 | # endif /* !IEM_WITH_SETJMP */
|
---|
677 |
|
---|
678 | /**
|
---|
679 | * Fetches the next signed byte from the opcode stream and sign-extending it to
|
---|
680 | * a word, returning automatically on failure.
|
---|
681 | *
|
---|
682 | * @param a_pu64 Where to return the word.
|
---|
683 | * @remark Implicitly references pVCpu.
|
---|
684 | */
|
---|
685 | # ifndef IEM_WITH_SETJMP
|
---|
686 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) \
|
---|
687 | do \
|
---|
688 | { \
|
---|
689 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS8SxU64(pVCpu, (a_pu64)); \
|
---|
690 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
691 | return rcStrict2; \
|
---|
692 | } while (0)
|
---|
693 | # else
|
---|
694 | # define IEM_OPCODE_GET_NEXT_S8_SX_U64(a_pu64) (*(a_pu64) = (int8_t)iemOpcodeGetNextU8Jmp(pVCpu))
|
---|
695 | # endif
|
---|
696 |
|
---|
697 |
|
---|
698 | # ifndef IEM_WITH_SETJMP
|
---|
699 | /**
|
---|
700 | * Fetches the next opcode byte.
|
---|
701 | *
|
---|
702 | * @returns Strict VBox status code.
|
---|
703 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
704 | * calling thread.
|
---|
705 | * @param pu8 Where to return the opcode byte.
|
---|
706 | */
|
---|
707 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextRm(PVMCPUCC pVCpu, uint8_t *pu8) RT_NOEXCEPT
|
---|
708 | {
|
---|
709 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
710 | pVCpu->iem.s.offModRm = offOpcode;
|
---|
711 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
712 | {
|
---|
713 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
714 | *pu8 = pVCpu->iem.s.abOpcode[offOpcode];
|
---|
715 | return VINF_SUCCESS;
|
---|
716 | }
|
---|
717 | return iemOpcodeGetNextU8Slow(pVCpu, pu8);
|
---|
718 | }
|
---|
719 | # else /* IEM_WITH_SETJMP */
|
---|
720 | /**
|
---|
721 | * Fetches the next opcode byte, longjmp on error.
|
---|
722 | *
|
---|
723 | * @returns The opcode byte.
|
---|
724 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
725 | */
|
---|
726 | DECL_INLINE_THROW(uint8_t) iemOpcodeGetNextRmJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
727 | {
|
---|
728 | # ifdef IEM_WITH_CODE_TLB
|
---|
729 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
730 | pVCpu->iem.s.offModRm = offBuf;
|
---|
731 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
732 | if (RT_LIKELY( pbBuf != NULL
|
---|
733 | && offBuf < pVCpu->iem.s.cbInstrBuf))
|
---|
734 | {
|
---|
735 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 1;
|
---|
736 | return pbBuf[offBuf];
|
---|
737 | }
|
---|
738 | # else
|
---|
739 | uintptr_t offOpcode = pVCpu->iem.s.offOpcode;
|
---|
740 | pVCpu->iem.s.offModRm = offOpcode;
|
---|
741 | if (RT_LIKELY((uint8_t)offOpcode < pVCpu->iem.s.cbOpcode))
|
---|
742 | {
|
---|
743 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 1;
|
---|
744 | return pVCpu->iem.s.abOpcode[offOpcode];
|
---|
745 | }
|
---|
746 | # endif
|
---|
747 | return iemOpcodeGetNextU8SlowJmp(pVCpu);
|
---|
748 | }
|
---|
749 | # endif /* IEM_WITH_SETJMP */
|
---|
750 |
|
---|
751 | /**
|
---|
752 | * Fetches the next opcode byte, which is a ModR/M byte, returns automatically
|
---|
753 | * on failure.
|
---|
754 | *
|
---|
755 | * Will note down the position of the ModR/M byte for VT-x exits.
|
---|
756 | *
|
---|
757 | * @param a_pbRm Where to return the RM opcode byte.
|
---|
758 | * @remark Implicitly references pVCpu.
|
---|
759 | */
|
---|
760 | # ifndef IEM_WITH_SETJMP
|
---|
761 | # define IEM_OPCODE_GET_NEXT_RM(a_pbRm) \
|
---|
762 | do \
|
---|
763 | { \
|
---|
764 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextRm(pVCpu, (a_pbRm)); \
|
---|
765 | if (rcStrict2 == VINF_SUCCESS) \
|
---|
766 | { /* likely */ } \
|
---|
767 | else \
|
---|
768 | return rcStrict2; \
|
---|
769 | } while (0)
|
---|
770 | # else
|
---|
771 | # define IEM_OPCODE_GET_NEXT_RM(a_pbRm) (*(a_pbRm) = iemOpcodeGetNextRmJmp(pVCpu))
|
---|
772 | # endif /* IEM_WITH_SETJMP */
|
---|
773 |
|
---|
774 |
|
---|
775 | # ifndef IEM_WITH_SETJMP
|
---|
776 |
|
---|
777 | /**
|
---|
778 | * Fetches the next opcode word.
|
---|
779 | *
|
---|
780 | * @returns Strict VBox status code.
|
---|
781 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
782 | * @param pu16 Where to return the opcode word.
|
---|
783 | */
|
---|
784 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT
|
---|
785 | {
|
---|
786 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
787 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
788 | {
|
---|
789 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
790 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
791 | *pu16 = *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
792 | # else
|
---|
793 | *pu16 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
794 | # endif
|
---|
795 | return VINF_SUCCESS;
|
---|
796 | }
|
---|
797 | return iemOpcodeGetNextU16Slow(pVCpu, pu16);
|
---|
798 | }
|
---|
799 |
|
---|
800 | # else /* IEM_WITH_SETJMP */
|
---|
801 |
|
---|
802 | /**
|
---|
803 | * Fetches the next opcode word, longjmp on error.
|
---|
804 | *
|
---|
805 | * @returns The opcode word.
|
---|
806 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
807 | */
|
---|
808 | DECL_INLINE_THROW(uint16_t) iemOpcodeGetNextU16Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
809 | {
|
---|
810 | # ifdef IEM_WITH_CODE_TLB
|
---|
811 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
812 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
813 | if (RT_LIKELY( pbBuf != NULL
|
---|
814 | && offBuf + 2 <= pVCpu->iem.s.cbInstrBuf))
|
---|
815 | {
|
---|
816 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 2;
|
---|
817 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
818 | return *(uint16_t const *)&pbBuf[offBuf];
|
---|
819 | # else
|
---|
820 | return RT_MAKE_U16(pbBuf[offBuf], pbBuf[offBuf + 1]);
|
---|
821 | # endif
|
---|
822 | }
|
---|
823 | # else /* !IEM_WITH_CODE_TLB */
|
---|
824 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
825 | if (RT_LIKELY((uint8_t)offOpcode + 2 <= pVCpu->iem.s.cbOpcode))
|
---|
826 | {
|
---|
827 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 2;
|
---|
828 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
829 | return *(uint16_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
830 | # else
|
---|
831 | return RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
832 | # endif
|
---|
833 | }
|
---|
834 | # endif /* !IEM_WITH_CODE_TLB */
|
---|
835 | return iemOpcodeGetNextU16SlowJmp(pVCpu);
|
---|
836 | }
|
---|
837 |
|
---|
838 | # endif /* IEM_WITH_SETJMP */
|
---|
839 |
|
---|
840 | /**
|
---|
841 | * Fetches the next opcode word, returns automatically on failure.
|
---|
842 | *
|
---|
843 | * @param a_pu16 Where to return the opcode word.
|
---|
844 | * @remark Implicitly references pVCpu.
|
---|
845 | */
|
---|
846 | # ifndef IEM_WITH_SETJMP
|
---|
847 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) \
|
---|
848 | do \
|
---|
849 | { \
|
---|
850 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16(pVCpu, (a_pu16)); \
|
---|
851 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
852 | return rcStrict2; \
|
---|
853 | } while (0)
|
---|
854 | # else
|
---|
855 | # define IEM_OPCODE_GET_NEXT_U16(a_pu16) (*(a_pu16) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
856 | # endif
|
---|
857 |
|
---|
858 | # ifndef IEM_WITH_SETJMP
|
---|
859 | /**
|
---|
860 | * Fetches the next opcode word, zero extending it to a double word.
|
---|
861 | *
|
---|
862 | * @returns Strict VBox status code.
|
---|
863 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
864 | * @param pu32 Where to return the opcode double word.
|
---|
865 | */
|
---|
866 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
867 | {
|
---|
868 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
869 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
870 | return iemOpcodeGetNextU16ZxU32Slow(pVCpu, pu32);
|
---|
871 |
|
---|
872 | *pu32 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
873 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
874 | return VINF_SUCCESS;
|
---|
875 | }
|
---|
876 | # endif /* !IEM_WITH_SETJMP */
|
---|
877 |
|
---|
878 | /**
|
---|
879 | * Fetches the next opcode word and zero extends it to a double word, returns
|
---|
880 | * automatically on failure.
|
---|
881 | *
|
---|
882 | * @param a_pu32 Where to return the opcode double word.
|
---|
883 | * @remark Implicitly references pVCpu.
|
---|
884 | */
|
---|
885 | # ifndef IEM_WITH_SETJMP
|
---|
886 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) \
|
---|
887 | do \
|
---|
888 | { \
|
---|
889 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU32(pVCpu, (a_pu32)); \
|
---|
890 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
891 | return rcStrict2; \
|
---|
892 | } while (0)
|
---|
893 | # else
|
---|
894 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
895 | # endif
|
---|
896 |
|
---|
897 | # ifndef IEM_WITH_SETJMP
|
---|
898 | /**
|
---|
899 | * Fetches the next opcode word, zero extending it to a quad word.
|
---|
900 | *
|
---|
901 | * @returns Strict VBox status code.
|
---|
902 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
903 | * @param pu64 Where to return the opcode quad word.
|
---|
904 | */
|
---|
905 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU16ZxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
906 | {
|
---|
907 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
908 | if (RT_UNLIKELY(offOpcode + 2 > pVCpu->iem.s.cbOpcode))
|
---|
909 | return iemOpcodeGetNextU16ZxU64Slow(pVCpu, pu64);
|
---|
910 |
|
---|
911 | *pu64 = RT_MAKE_U16(pVCpu->iem.s.abOpcode[offOpcode], pVCpu->iem.s.abOpcode[offOpcode + 1]);
|
---|
912 | pVCpu->iem.s.offOpcode = offOpcode + 2;
|
---|
913 | return VINF_SUCCESS;
|
---|
914 | }
|
---|
915 | # endif /* !IEM_WITH_SETJMP */
|
---|
916 |
|
---|
917 | /**
|
---|
918 | * Fetches the next opcode word and zero extends it to a quad word, returns
|
---|
919 | * automatically on failure.
|
---|
920 | *
|
---|
921 | * @param a_pu64 Where to return the opcode quad word.
|
---|
922 | * @remark Implicitly references pVCpu.
|
---|
923 | */
|
---|
924 | # ifndef IEM_WITH_SETJMP
|
---|
925 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) \
|
---|
926 | do \
|
---|
927 | { \
|
---|
928 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU16ZxU64(pVCpu, (a_pu64)); \
|
---|
929 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
930 | return rcStrict2; \
|
---|
931 | } while (0)
|
---|
932 | # else
|
---|
933 | # define IEM_OPCODE_GET_NEXT_U16_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
934 | # endif
|
---|
935 |
|
---|
936 |
|
---|
937 | # ifndef IEM_WITH_SETJMP
|
---|
938 | /**
|
---|
939 | * Fetches the next signed word from the opcode stream.
|
---|
940 | *
|
---|
941 | * @returns Strict VBox status code.
|
---|
942 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
943 | * @param pi16 Where to return the signed word.
|
---|
944 | */
|
---|
945 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS16(PVMCPUCC pVCpu, int16_t *pi16) RT_NOEXCEPT
|
---|
946 | {
|
---|
947 | return iemOpcodeGetNextU16(pVCpu, (uint16_t *)pi16);
|
---|
948 | }
|
---|
949 | # endif /* !IEM_WITH_SETJMP */
|
---|
950 |
|
---|
951 |
|
---|
952 | /**
|
---|
953 | * Fetches the next signed word from the opcode stream, returning automatically
|
---|
954 | * on failure.
|
---|
955 | *
|
---|
956 | * @param a_pi16 Where to return the signed word.
|
---|
957 | * @remark Implicitly references pVCpu.
|
---|
958 | */
|
---|
959 | # ifndef IEM_WITH_SETJMP
|
---|
960 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) \
|
---|
961 | do \
|
---|
962 | { \
|
---|
963 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS16(pVCpu, (a_pi16)); \
|
---|
964 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
965 | return rcStrict2; \
|
---|
966 | } while (0)
|
---|
967 | # else
|
---|
968 | # define IEM_OPCODE_GET_NEXT_S16(a_pi16) (*(a_pi16) = (int16_t)iemOpcodeGetNextU16Jmp(pVCpu))
|
---|
969 | # endif
|
---|
970 |
|
---|
971 | # ifndef IEM_WITH_SETJMP
|
---|
972 |
|
---|
973 | /**
|
---|
974 | * Fetches the next opcode dword.
|
---|
975 | *
|
---|
976 | * @returns Strict VBox status code.
|
---|
977 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
978 | * @param pu32 Where to return the opcode double word.
|
---|
979 | */
|
---|
980 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT
|
---|
981 | {
|
---|
982 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
983 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
984 | {
|
---|
985 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
986 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
987 | *pu32 = *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
988 | # else
|
---|
989 | *pu32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
990 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
991 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
992 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
993 | # endif
|
---|
994 | return VINF_SUCCESS;
|
---|
995 | }
|
---|
996 | return iemOpcodeGetNextU32Slow(pVCpu, pu32);
|
---|
997 | }
|
---|
998 |
|
---|
999 | # else /* IEM_WITH_SETJMP */
|
---|
1000 |
|
---|
1001 | /**
|
---|
1002 | * Fetches the next opcode dword, longjmp on error.
|
---|
1003 | *
|
---|
1004 | * @returns The opcode dword.
|
---|
1005 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1006 | */
|
---|
1007 | DECL_INLINE_THROW(uint32_t) iemOpcodeGetNextU32Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1008 | {
|
---|
1009 | # ifdef IEM_WITH_CODE_TLB
|
---|
1010 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1011 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1012 | if (RT_LIKELY( pbBuf != NULL
|
---|
1013 | && offBuf + 4 <= pVCpu->iem.s.cbInstrBuf))
|
---|
1014 | {
|
---|
1015 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 4;
|
---|
1016 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1017 | return *(uint32_t const *)&pbBuf[offBuf];
|
---|
1018 | # else
|
---|
1019 | return RT_MAKE_U32_FROM_U8(pbBuf[offBuf],
|
---|
1020 | pbBuf[offBuf + 1],
|
---|
1021 | pbBuf[offBuf + 2],
|
---|
1022 | pbBuf[offBuf + 3]);
|
---|
1023 | # endif
|
---|
1024 | }
|
---|
1025 | # else
|
---|
1026 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1027 | if (RT_LIKELY((uint8_t)offOpcode + 4 <= pVCpu->iem.s.cbOpcode))
|
---|
1028 | {
|
---|
1029 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 4;
|
---|
1030 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1031 | return *(uint32_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1032 | # else
|
---|
1033 | return RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1034 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1035 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1036 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1037 | # endif
|
---|
1038 | }
|
---|
1039 | # endif
|
---|
1040 | return iemOpcodeGetNextU32SlowJmp(pVCpu);
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | # endif /* IEM_WITH_SETJMP */
|
---|
1044 |
|
---|
1045 | /**
|
---|
1046 | * Fetches the next opcode dword, returns automatically on failure.
|
---|
1047 | *
|
---|
1048 | * @param a_pu32 Where to return the opcode dword.
|
---|
1049 | * @remark Implicitly references pVCpu.
|
---|
1050 | */
|
---|
1051 | # ifndef IEM_WITH_SETJMP
|
---|
1052 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) \
|
---|
1053 | do \
|
---|
1054 | { \
|
---|
1055 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32(pVCpu, (a_pu32)); \
|
---|
1056 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1057 | return rcStrict2; \
|
---|
1058 | } while (0)
|
---|
1059 | # else
|
---|
1060 | # define IEM_OPCODE_GET_NEXT_U32(a_pu32) (*(a_pu32) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1061 | # endif
|
---|
1062 |
|
---|
1063 | # ifndef IEM_WITH_SETJMP
|
---|
1064 | /**
|
---|
1065 | * Fetches the next opcode dword, zero extending it to a quad word.
|
---|
1066 | *
|
---|
1067 | * @returns Strict VBox status code.
|
---|
1068 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1069 | * @param pu64 Where to return the opcode quad word.
|
---|
1070 | */
|
---|
1071 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU32ZxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1072 | {
|
---|
1073 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1074 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
1075 | return iemOpcodeGetNextU32ZxU64Slow(pVCpu, pu64);
|
---|
1076 |
|
---|
1077 | *pu64 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1078 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1079 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1080 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1081 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1082 | return VINF_SUCCESS;
|
---|
1083 | }
|
---|
1084 | # endif /* !IEM_WITH_SETJMP */
|
---|
1085 |
|
---|
1086 | /**
|
---|
1087 | * Fetches the next opcode dword and zero extends it to a quad word, returns
|
---|
1088 | * automatically on failure.
|
---|
1089 | *
|
---|
1090 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1091 | * @remark Implicitly references pVCpu.
|
---|
1092 | */
|
---|
1093 | # ifndef IEM_WITH_SETJMP
|
---|
1094 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) \
|
---|
1095 | do \
|
---|
1096 | { \
|
---|
1097 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU32ZxU64(pVCpu, (a_pu64)); \
|
---|
1098 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1099 | return rcStrict2; \
|
---|
1100 | } while (0)
|
---|
1101 | # else
|
---|
1102 | # define IEM_OPCODE_GET_NEXT_U32_ZX_U64(a_pu64) (*(a_pu64) = iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1103 | # endif
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | # ifndef IEM_WITH_SETJMP
|
---|
1107 | /**
|
---|
1108 | * Fetches the next signed double word from the opcode stream.
|
---|
1109 | *
|
---|
1110 | * @returns Strict VBox status code.
|
---|
1111 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1112 | * @param pi32 Where to return the signed double word.
|
---|
1113 | */
|
---|
1114 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32(PVMCPUCC pVCpu, int32_t *pi32) RT_NOEXCEPT
|
---|
1115 | {
|
---|
1116 | return iemOpcodeGetNextU32(pVCpu, (uint32_t *)pi32);
|
---|
1117 | }
|
---|
1118 | # endif
|
---|
1119 |
|
---|
1120 | /**
|
---|
1121 | * Fetches the next signed double word from the opcode stream, returning
|
---|
1122 | * automatically on failure.
|
---|
1123 | *
|
---|
1124 | * @param a_pi32 Where to return the signed double word.
|
---|
1125 | * @remark Implicitly references pVCpu.
|
---|
1126 | */
|
---|
1127 | # ifndef IEM_WITH_SETJMP
|
---|
1128 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) \
|
---|
1129 | do \
|
---|
1130 | { \
|
---|
1131 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32(pVCpu, (a_pi32)); \
|
---|
1132 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1133 | return rcStrict2; \
|
---|
1134 | } while (0)
|
---|
1135 | # else
|
---|
1136 | # define IEM_OPCODE_GET_NEXT_S32(a_pi32) (*(a_pi32) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1137 | # endif
|
---|
1138 |
|
---|
1139 | # ifndef IEM_WITH_SETJMP
|
---|
1140 | /**
|
---|
1141 | * Fetches the next opcode dword, sign extending it into a quad word.
|
---|
1142 | *
|
---|
1143 | * @returns Strict VBox status code.
|
---|
1144 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1145 | * @param pu64 Where to return the opcode quad word.
|
---|
1146 | */
|
---|
1147 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextS32SxU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1148 | {
|
---|
1149 | uint8_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1150 | if (RT_UNLIKELY(offOpcode + 4 > pVCpu->iem.s.cbOpcode))
|
---|
1151 | return iemOpcodeGetNextS32SxU64Slow(pVCpu, pu64);
|
---|
1152 |
|
---|
1153 | int32_t i32 = RT_MAKE_U32_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1154 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1155 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1156 | pVCpu->iem.s.abOpcode[offOpcode + 3]);
|
---|
1157 | *pu64 = i32;
|
---|
1158 | pVCpu->iem.s.offOpcode = offOpcode + 4;
|
---|
1159 | return VINF_SUCCESS;
|
---|
1160 | }
|
---|
1161 | # endif /* !IEM_WITH_SETJMP */
|
---|
1162 |
|
---|
1163 | /**
|
---|
1164 | * Fetches the next opcode double word and sign extends it to a quad word,
|
---|
1165 | * returns automatically on failure.
|
---|
1166 | *
|
---|
1167 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1168 | * @remark Implicitly references pVCpu.
|
---|
1169 | */
|
---|
1170 | # ifndef IEM_WITH_SETJMP
|
---|
1171 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) \
|
---|
1172 | do \
|
---|
1173 | { \
|
---|
1174 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextS32SxU64(pVCpu, (a_pu64)); \
|
---|
1175 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1176 | return rcStrict2; \
|
---|
1177 | } while (0)
|
---|
1178 | # else
|
---|
1179 | # define IEM_OPCODE_GET_NEXT_S32_SX_U64(a_pu64) (*(a_pu64) = (int32_t)iemOpcodeGetNextU32Jmp(pVCpu))
|
---|
1180 | # endif
|
---|
1181 |
|
---|
1182 | # ifndef IEM_WITH_SETJMP
|
---|
1183 |
|
---|
1184 | /**
|
---|
1185 | * Fetches the next opcode qword.
|
---|
1186 | *
|
---|
1187 | * @returns Strict VBox status code.
|
---|
1188 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1189 | * @param pu64 Where to return the opcode qword.
|
---|
1190 | */
|
---|
1191 | DECLINLINE(VBOXSTRICTRC) iemOpcodeGetNextU64(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT
|
---|
1192 | {
|
---|
1193 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1194 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
1195 | {
|
---|
1196 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1197 | *pu64 = *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1198 | # else
|
---|
1199 | *pu64 = RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1200 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1201 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1202 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1203 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1204 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1205 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1206 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1207 | # endif
|
---|
1208 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
1209 | return VINF_SUCCESS;
|
---|
1210 | }
|
---|
1211 | return iemOpcodeGetNextU64Slow(pVCpu, pu64);
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | # else /* IEM_WITH_SETJMP */
|
---|
1215 |
|
---|
1216 | /**
|
---|
1217 | * Fetches the next opcode qword, longjmp on error.
|
---|
1218 | *
|
---|
1219 | * @returns The opcode qword.
|
---|
1220 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1221 | */
|
---|
1222 | DECL_INLINE_THROW(uint64_t) iemOpcodeGetNextU64Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
1223 | {
|
---|
1224 | # ifdef IEM_WITH_CODE_TLB
|
---|
1225 | uintptr_t offBuf = pVCpu->iem.s.offInstrNextByte;
|
---|
1226 | uint8_t const *pbBuf = pVCpu->iem.s.pbInstrBuf;
|
---|
1227 | if (RT_LIKELY( pbBuf != NULL
|
---|
1228 | && offBuf + 8 <= pVCpu->iem.s.cbInstrBuf))
|
---|
1229 | {
|
---|
1230 | pVCpu->iem.s.offInstrNextByte = (uint32_t)offBuf + 8;
|
---|
1231 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1232 | return *(uint64_t const *)&pbBuf[offBuf];
|
---|
1233 | # else
|
---|
1234 | return RT_MAKE_U64_FROM_U8(pbBuf[offBuf],
|
---|
1235 | pbBuf[offBuf + 1],
|
---|
1236 | pbBuf[offBuf + 2],
|
---|
1237 | pbBuf[offBuf + 3],
|
---|
1238 | pbBuf[offBuf + 4],
|
---|
1239 | pbBuf[offBuf + 5],
|
---|
1240 | pbBuf[offBuf + 6],
|
---|
1241 | pbBuf[offBuf + 7]);
|
---|
1242 | # endif
|
---|
1243 | }
|
---|
1244 | # else
|
---|
1245 | uintptr_t const offOpcode = pVCpu->iem.s.offOpcode;
|
---|
1246 | if (RT_LIKELY((uint8_t)offOpcode + 8 <= pVCpu->iem.s.cbOpcode))
|
---|
1247 | {
|
---|
1248 | pVCpu->iem.s.offOpcode = (uint8_t)offOpcode + 8;
|
---|
1249 | # ifdef IEM_USE_UNALIGNED_DATA_ACCESS
|
---|
1250 | return *(uint64_t const *)&pVCpu->iem.s.abOpcode[offOpcode];
|
---|
1251 | # else
|
---|
1252 | return RT_MAKE_U64_FROM_U8(pVCpu->iem.s.abOpcode[offOpcode],
|
---|
1253 | pVCpu->iem.s.abOpcode[offOpcode + 1],
|
---|
1254 | pVCpu->iem.s.abOpcode[offOpcode + 2],
|
---|
1255 | pVCpu->iem.s.abOpcode[offOpcode + 3],
|
---|
1256 | pVCpu->iem.s.abOpcode[offOpcode + 4],
|
---|
1257 | pVCpu->iem.s.abOpcode[offOpcode + 5],
|
---|
1258 | pVCpu->iem.s.abOpcode[offOpcode + 6],
|
---|
1259 | pVCpu->iem.s.abOpcode[offOpcode + 7]);
|
---|
1260 | # endif
|
---|
1261 | }
|
---|
1262 | # endif
|
---|
1263 | return iemOpcodeGetNextU64SlowJmp(pVCpu);
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | # endif /* IEM_WITH_SETJMP */
|
---|
1267 |
|
---|
1268 | /**
|
---|
1269 | * Fetches the next opcode quad word, returns automatically on failure.
|
---|
1270 | *
|
---|
1271 | * @param a_pu64 Where to return the opcode quad word.
|
---|
1272 | * @remark Implicitly references pVCpu.
|
---|
1273 | */
|
---|
1274 | # ifndef IEM_WITH_SETJMP
|
---|
1275 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) \
|
---|
1276 | do \
|
---|
1277 | { \
|
---|
1278 | VBOXSTRICTRC rcStrict2 = iemOpcodeGetNextU64(pVCpu, (a_pu64)); \
|
---|
1279 | if (rcStrict2 != VINF_SUCCESS) \
|
---|
1280 | return rcStrict2; \
|
---|
1281 | } while (0)
|
---|
1282 | # else
|
---|
1283 | # define IEM_OPCODE_GET_NEXT_U64(a_pu64) ( *(a_pu64) = iemOpcodeGetNextU64Jmp(pVCpu) )
|
---|
1284 | # endif
|
---|
1285 |
|
---|
1286 | #endif /* !IEM_WITH_OPAQUE_DECODER_STATE */
|
---|
1287 |
|
---|
1288 |
|
---|
1289 | /** @name Misc Worker Functions.
|
---|
1290 | * @{
|
---|
1291 | */
|
---|
1292 |
|
---|
1293 | /**
|
---|
1294 | * Gets the correct EFLAGS regardless of whether PATM stores parts of them or
|
---|
1295 | * not (kind of obsolete now).
|
---|
1296 | *
|
---|
1297 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1298 | */
|
---|
1299 | #define IEMMISC_GET_EFL(a_pVCpu) ( (a_pVCpu)->cpum.GstCtx.eflags.u )
|
---|
1300 |
|
---|
1301 | /**
|
---|
1302 | * Updates the EFLAGS in the correct manner wrt. PATM (kind of obsolete).
|
---|
1303 | *
|
---|
1304 | * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1305 | * @param a_fEfl The new EFLAGS.
|
---|
1306 | */
|
---|
1307 | #define IEMMISC_SET_EFL(a_pVCpu, a_fEfl) do { (a_pVCpu)->cpum.GstCtx.eflags.u = (a_fEfl); } while (0)
|
---|
1308 |
|
---|
1309 |
|
---|
1310 | /**
|
---|
1311 | * Loads a NULL data selector into a selector register, both the hidden and
|
---|
1312 | * visible parts, in protected mode.
|
---|
1313 | *
|
---|
1314 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1315 | * @param pSReg Pointer to the segment register.
|
---|
1316 | * @param uRpl The RPL.
|
---|
1317 | */
|
---|
1318 | DECLINLINE(void) iemHlpLoadNullDataSelectorProt(PVMCPUCC pVCpu, PCPUMSELREG pSReg, RTSEL uRpl) RT_NOEXCEPT
|
---|
1319 | {
|
---|
1320 | /** @todo Testcase: write a testcase checking what happends when loading a NULL
|
---|
1321 | * data selector in protected mode. */
|
---|
1322 | pSReg->Sel = uRpl;
|
---|
1323 | pSReg->ValidSel = uRpl;
|
---|
1324 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
1325 | if (IEM_IS_GUEST_CPU_INTEL(pVCpu))
|
---|
1326 | {
|
---|
1327 | /* VT-x (Intel 3960x) observed doing something like this. */
|
---|
1328 | pSReg->Attr.u = X86DESCATTR_UNUSABLE | X86DESCATTR_G | X86DESCATTR_D | (pVCpu->iem.s.uCpl << X86DESCATTR_DPL_SHIFT);
|
---|
1329 | pSReg->u32Limit = UINT32_MAX;
|
---|
1330 | pSReg->u64Base = 0;
|
---|
1331 | }
|
---|
1332 | else
|
---|
1333 | {
|
---|
1334 | pSReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
1335 | pSReg->u32Limit = 0;
|
---|
1336 | pSReg->u64Base = 0;
|
---|
1337 | }
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | /** @} */
|
---|
1341 |
|
---|
1342 |
|
---|
1343 | /*
|
---|
1344 | *
|
---|
1345 | * Helpers routines.
|
---|
1346 | * Helpers routines.
|
---|
1347 | * Helpers routines.
|
---|
1348 | *
|
---|
1349 | */
|
---|
1350 |
|
---|
1351 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1352 |
|
---|
1353 | /**
|
---|
1354 | * Recalculates the effective operand size.
|
---|
1355 | *
|
---|
1356 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1357 | */
|
---|
1358 | DECLINLINE(void) iemRecalEffOpSize(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1359 | {
|
---|
1360 | switch (pVCpu->iem.s.enmCpuMode)
|
---|
1361 | {
|
---|
1362 | case IEMMODE_16BIT:
|
---|
1363 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_32BIT : IEMMODE_16BIT;
|
---|
1364 | break;
|
---|
1365 | case IEMMODE_32BIT:
|
---|
1366 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP ? IEMMODE_16BIT : IEMMODE_32BIT;
|
---|
1367 | break;
|
---|
1368 | case IEMMODE_64BIT:
|
---|
1369 | switch (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP))
|
---|
1370 | {
|
---|
1371 | case 0:
|
---|
1372 | pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize;
|
---|
1373 | break;
|
---|
1374 | case IEM_OP_PRF_SIZE_OP:
|
---|
1375 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1376 | break;
|
---|
1377 | case IEM_OP_PRF_SIZE_REX_W:
|
---|
1378 | case IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP:
|
---|
1379 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1380 | break;
|
---|
1381 | }
|
---|
1382 | break;
|
---|
1383 | default:
|
---|
1384 | AssertFailed();
|
---|
1385 | }
|
---|
1386 | }
|
---|
1387 |
|
---|
1388 |
|
---|
1389 | /**
|
---|
1390 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
1391 | * operand size.
|
---|
1392 | *
|
---|
1393 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1394 | */
|
---|
1395 | DECLINLINE(void) iemRecalEffOpSize64Default(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1396 | {
|
---|
1397 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
1398 | pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
|
---|
1399 | if ((pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP)
|
---|
1400 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1401 | else
|
---|
1402 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 |
|
---|
1406 | /**
|
---|
1407 | * Sets the default operand size to 64-bit and recalculates the effective
|
---|
1408 | * operand size, with intel ignoring any operand size prefix (AMD respects it).
|
---|
1409 | *
|
---|
1410 | * This is for the relative jumps.
|
---|
1411 | *
|
---|
1412 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1413 | */
|
---|
1414 | DECLINLINE(void) iemRecalEffOpSize64DefaultAndIntelIgnoresOpSizePrefix(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1415 | {
|
---|
1416 | Assert(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
|
---|
1417 | pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
|
---|
1418 | if ( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_SIZE_REX_W | IEM_OP_PRF_SIZE_OP)) != IEM_OP_PRF_SIZE_OP
|
---|
1419 | || pVCpu->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL)
|
---|
1420 | pVCpu->iem.s.enmEffOpSize = IEMMODE_64BIT;
|
---|
1421 | else
|
---|
1422 | pVCpu->iem.s.enmEffOpSize = IEMMODE_16BIT;
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | #endif /* !IEM_WITH_OPAQUE_DECODER_STATE */
|
---|
1426 |
|
---|
1427 |
|
---|
1428 |
|
---|
1429 | /** @name Register Access.
|
---|
1430 | * @{
|
---|
1431 | */
|
---|
1432 |
|
---|
1433 | /**
|
---|
1434 | * Gets a reference (pointer) to the specified hidden segment register.
|
---|
1435 | *
|
---|
1436 | * @returns Hidden register reference.
|
---|
1437 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1438 | * @param iSegReg The segment register.
|
---|
1439 | */
|
---|
1440 | DECLINLINE(PCPUMSELREG) iemSRegGetHid(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1441 | {
|
---|
1442 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1443 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1444 | PCPUMSELREG pSReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
1445 |
|
---|
1446 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
1447 | return pSReg;
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 |
|
---|
1451 | /**
|
---|
1452 | * Ensures that the given hidden segment register is up to date.
|
---|
1453 | *
|
---|
1454 | * @returns Hidden register reference.
|
---|
1455 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1456 | * @param pSReg The segment register.
|
---|
1457 | */
|
---|
1458 | DECLINLINE(PCPUMSELREG) iemSRegUpdateHid(PVMCPUCC pVCpu, PCPUMSELREG pSReg) RT_NOEXCEPT
|
---|
1459 | {
|
---|
1460 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
1461 | NOREF(pVCpu);
|
---|
1462 | return pSReg;
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 |
|
---|
1466 | /**
|
---|
1467 | * Gets a reference (pointer) to the specified segment register (the selector
|
---|
1468 | * value).
|
---|
1469 | *
|
---|
1470 | * @returns Pointer to the selector variable.
|
---|
1471 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1472 | * @param iSegReg The segment register.
|
---|
1473 | */
|
---|
1474 | DECLINLINE(uint16_t *) iemSRegRef(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1475 | {
|
---|
1476 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1477 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1478 | return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 |
|
---|
1482 | /**
|
---|
1483 | * Fetches the selector value of a segment register.
|
---|
1484 | *
|
---|
1485 | * @returns The selector value.
|
---|
1486 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1487 | * @param iSegReg The segment register.
|
---|
1488 | */
|
---|
1489 | DECLINLINE(uint16_t) iemSRegFetchU16(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1490 | {
|
---|
1491 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1492 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1493 | return pVCpu->cpum.GstCtx.aSRegs[iSegReg].Sel;
|
---|
1494 | }
|
---|
1495 |
|
---|
1496 |
|
---|
1497 | /**
|
---|
1498 | * Fetches the base address value of a segment register.
|
---|
1499 | *
|
---|
1500 | * @returns The selector value.
|
---|
1501 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1502 | * @param iSegReg The segment register.
|
---|
1503 | */
|
---|
1504 | DECLINLINE(uint64_t) iemSRegBaseFetchU64(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1505 | {
|
---|
1506 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1507 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1508 | return pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 |
|
---|
1512 | /**
|
---|
1513 | * Gets a reference (pointer) to the specified general purpose register.
|
---|
1514 | *
|
---|
1515 | * @returns Register reference.
|
---|
1516 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1517 | * @param iReg The general purpose register.
|
---|
1518 | */
|
---|
1519 | DECLINLINE(void *) iemGRegRef(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1520 | {
|
---|
1521 | Assert(iReg < 16);
|
---|
1522 | return &pVCpu->cpum.GstCtx.aGRegs[iReg];
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 |
|
---|
1526 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1527 | /**
|
---|
1528 | * Gets a reference (pointer) to the specified 8-bit general purpose register.
|
---|
1529 | *
|
---|
1530 | * Because of AH, CH, DH and BH we cannot use iemGRegRef directly here.
|
---|
1531 | *
|
---|
1532 | * @returns Register reference.
|
---|
1533 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1534 | * @param iReg The register.
|
---|
1535 | */
|
---|
1536 | DECLINLINE(uint8_t *) iemGRegRefU8(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1537 | {
|
---|
1538 | if (iReg < 4 || (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX))
|
---|
1539 | {
|
---|
1540 | Assert(iReg < 16);
|
---|
1541 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u8;
|
---|
1542 | }
|
---|
1543 | /* high 8-bit register. */
|
---|
1544 | Assert(iReg < 8);
|
---|
1545 | return &pVCpu->cpum.GstCtx.aGRegs[iReg & 3].bHi;
|
---|
1546 | }
|
---|
1547 | #endif
|
---|
1548 |
|
---|
1549 |
|
---|
1550 | /**
|
---|
1551 | * Gets a reference (pointer) to the specified 16-bit general purpose register.
|
---|
1552 | *
|
---|
1553 | * @returns Register reference.
|
---|
1554 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1555 | * @param iReg The register.
|
---|
1556 | */
|
---|
1557 | DECLINLINE(uint16_t *) iemGRegRefU16(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1558 | {
|
---|
1559 | Assert(iReg < 16);
|
---|
1560 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 |
|
---|
1564 | /**
|
---|
1565 | * Gets a reference (pointer) to the specified 32-bit general purpose register.
|
---|
1566 | *
|
---|
1567 | * @returns Register reference.
|
---|
1568 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1569 | * @param iReg The register.
|
---|
1570 | */
|
---|
1571 | DECLINLINE(uint32_t *) iemGRegRefU32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1572 | {
|
---|
1573 | Assert(iReg < 16);
|
---|
1574 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1575 | }
|
---|
1576 |
|
---|
1577 |
|
---|
1578 | /**
|
---|
1579 | * Gets a reference (pointer) to the specified signed 32-bit general purpose register.
|
---|
1580 | *
|
---|
1581 | * @returns Register reference.
|
---|
1582 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1583 | * @param iReg The register.
|
---|
1584 | */
|
---|
1585 | DECLINLINE(int32_t *) iemGRegRefI32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1586 | {
|
---|
1587 | Assert(iReg < 16);
|
---|
1588 | return (int32_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1589 | }
|
---|
1590 |
|
---|
1591 |
|
---|
1592 | /**
|
---|
1593 | * Gets a reference (pointer) to the specified 64-bit general purpose register.
|
---|
1594 | *
|
---|
1595 | * @returns Register reference.
|
---|
1596 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1597 | * @param iReg The register.
|
---|
1598 | */
|
---|
1599 | DECLINLINE(uint64_t *) iemGRegRefU64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1600 | {
|
---|
1601 | Assert(iReg < 64);
|
---|
1602 | return &pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 |
|
---|
1606 | /**
|
---|
1607 | * Gets a reference (pointer) to the specified signed 64-bit general purpose register.
|
---|
1608 | *
|
---|
1609 | * @returns Register reference.
|
---|
1610 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1611 | * @param iReg The register.
|
---|
1612 | */
|
---|
1613 | DECLINLINE(int64_t *) iemGRegRefI64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1614 | {
|
---|
1615 | Assert(iReg < 16);
|
---|
1616 | return (int64_t *)&pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1617 | }
|
---|
1618 |
|
---|
1619 |
|
---|
1620 | /**
|
---|
1621 | * Gets a reference (pointer) to the specified segment register's base address.
|
---|
1622 | *
|
---|
1623 | * @returns Segment register base address reference.
|
---|
1624 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1625 | * @param iSegReg The segment selector.
|
---|
1626 | */
|
---|
1627 | DECLINLINE(uint64_t *) iemSRegBaseRefU64(PVMCPUCC pVCpu, uint8_t iSegReg) RT_NOEXCEPT
|
---|
1628 | {
|
---|
1629 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
1630 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
1631 | return &pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 |
|
---|
1635 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1636 | /**
|
---|
1637 | * Fetches the value of a 8-bit general purpose register.
|
---|
1638 | *
|
---|
1639 | * @returns The register value.
|
---|
1640 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1641 | * @param iReg The register.
|
---|
1642 | */
|
---|
1643 | DECLINLINE(uint8_t) iemGRegFetchU8(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1644 | {
|
---|
1645 | return *iemGRegRefU8(pVCpu, iReg);
|
---|
1646 | }
|
---|
1647 | #endif
|
---|
1648 |
|
---|
1649 |
|
---|
1650 | /**
|
---|
1651 | * Fetches the value of a 16-bit general purpose register.
|
---|
1652 | *
|
---|
1653 | * @returns The register value.
|
---|
1654 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1655 | * @param iReg The register.
|
---|
1656 | */
|
---|
1657 | DECLINLINE(uint16_t) iemGRegFetchU16(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1658 | {
|
---|
1659 | Assert(iReg < 16);
|
---|
1660 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u16;
|
---|
1661 | }
|
---|
1662 |
|
---|
1663 |
|
---|
1664 | /**
|
---|
1665 | * Fetches the value of a 32-bit general purpose register.
|
---|
1666 | *
|
---|
1667 | * @returns The register value.
|
---|
1668 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1669 | * @param iReg The register.
|
---|
1670 | */
|
---|
1671 | DECLINLINE(uint32_t) iemGRegFetchU32(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1672 | {
|
---|
1673 | Assert(iReg < 16);
|
---|
1674 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u32;
|
---|
1675 | }
|
---|
1676 |
|
---|
1677 |
|
---|
1678 | /**
|
---|
1679 | * Fetches the value of a 64-bit general purpose register.
|
---|
1680 | *
|
---|
1681 | * @returns The register value.
|
---|
1682 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1683 | * @param iReg The register.
|
---|
1684 | */
|
---|
1685 | DECLINLINE(uint64_t) iemGRegFetchU64(PVMCPUCC pVCpu, uint8_t iReg) RT_NOEXCEPT
|
---|
1686 | {
|
---|
1687 | Assert(iReg < 16);
|
---|
1688 | return pVCpu->cpum.GstCtx.aGRegs[iReg].u64;
|
---|
1689 | }
|
---|
1690 |
|
---|
1691 |
|
---|
1692 | /**
|
---|
1693 | * Get the address of the top of the stack.
|
---|
1694 | *
|
---|
1695 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1696 | */
|
---|
1697 | DECLINLINE(RTGCPTR) iemRegGetEffRsp(PCVMCPU pVCpu) RT_NOEXCEPT
|
---|
1698 | {
|
---|
1699 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1700 | return pVCpu->cpum.GstCtx.rsp;
|
---|
1701 | if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1702 | return pVCpu->cpum.GstCtx.esp;
|
---|
1703 | return pVCpu->cpum.GstCtx.sp;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 |
|
---|
1707 | /**
|
---|
1708 | * Updates the RIP/EIP/IP to point to the next instruction.
|
---|
1709 | *
|
---|
1710 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1711 | * @param cbInstr The number of bytes to add.
|
---|
1712 | */
|
---|
1713 | DECL_FORCE_INLINE(void) iemRegAddToRip(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
1714 | {
|
---|
1715 | /*
|
---|
1716 | * Advance RIP.
|
---|
1717 | *
|
---|
1718 | * When we're targetting 8086/8, 80186/8 or 80286 mode the updates are 16-bit,
|
---|
1719 | * while in all other modes except LM64 the updates are 32-bit. This means
|
---|
1720 | * we need to watch for both 32-bit and 16-bit "carry" situations, i.e.
|
---|
1721 | * 4GB and 64KB rollovers, and decide whether anything needs masking.
|
---|
1722 | *
|
---|
1723 | * See PC wrap around tests in bs3-cpu-weird-1.
|
---|
1724 | */
|
---|
1725 | uint64_t const uRipPrev = pVCpu->cpum.GstCtx.rip;
|
---|
1726 | uint64_t const uRipNext = uRipPrev + cbInstr;
|
---|
1727 | if (RT_LIKELY( !((uRipNext ^ uRipPrev) & (RT_BIT_64(32) | RT_BIT_64(16)))
|
---|
1728 | || pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT))
|
---|
1729 | pVCpu->cpum.GstCtx.rip = uRipNext;
|
---|
1730 | else if (IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_386)
|
---|
1731 | pVCpu->cpum.GstCtx.rip = (uint32_t)uRipNext;
|
---|
1732 | else
|
---|
1733 | pVCpu->cpum.GstCtx.rip = (uint16_t)uRipNext;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 |
|
---|
1737 | /**
|
---|
1738 | * Called by iemRegAddToRipAndFinishingClearingRF and others when any of the
|
---|
1739 | * following EFLAGS bits are set:
|
---|
1740 | * - X86_EFL_RF - clear it.
|
---|
1741 | * - CPUMCTX_INHIBIT_SHADOW (_SS/_STI) - clear them.
|
---|
1742 | * - X86_EFL_TF - generate single step \#DB trap.
|
---|
1743 | * - CPUMCTX_DBG_HIT_DR0/1/2/3 - generate \#DB trap (data or I/O, not
|
---|
1744 | * instruction).
|
---|
1745 | *
|
---|
1746 | * According to @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events},
|
---|
1747 | * a \#DB due to TF (single stepping) or a DRx non-instruction breakpoint
|
---|
1748 | * takes priority over both NMIs and hardware interrupts. So, neither is
|
---|
1749 | * considered here. (The RESET, \#MC, SMI, INIT, STOPCLK and FLUSH events are
|
---|
1750 | * either unsupported will be triggered on-top of any \#DB raised here.)
|
---|
1751 | *
|
---|
1752 | * The RF flag only needs to be cleared here as it only suppresses instruction
|
---|
1753 | * breakpoints which are not raised here (happens synchronously during
|
---|
1754 | * instruction fetching).
|
---|
1755 | *
|
---|
1756 | * The CPUMCTX_INHIBIT_SHADOW_SS flag will be cleared by this function, so its
|
---|
1757 | * status has no bearing on whether \#DB exceptions are raised.
|
---|
1758 | *
|
---|
1759 | * @note This must *NOT* be called by the two instructions setting the
|
---|
1760 | * CPUMCTX_INHIBIT_SHADOW_SS flag.
|
---|
1761 | *
|
---|
1762 | * @see @sdmv3{077,200,Table 6-2,Priority Among Concurrent Events}
|
---|
1763 | * @see @sdmv3{077,200,6.8.3,Masking Exceptions and Interrupts When Switching
|
---|
1764 | * Stacks}
|
---|
1765 | */
|
---|
1766 | static VBOXSTRICTRC iemFinishInstructionWithFlagsSet(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1767 | {
|
---|
1768 | /*
|
---|
1769 | * Normally we're just here to clear RF and/or interrupt shadow bits.
|
---|
1770 | */
|
---|
1771 | if (RT_LIKELY((pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)) == 0))
|
---|
1772 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW);
|
---|
1773 | else
|
---|
1774 | {
|
---|
1775 | /*
|
---|
1776 | * Raise a #DB or/and DBGF event.
|
---|
1777 | */
|
---|
1778 | VBOXSTRICTRC rcStrict;
|
---|
1779 | if (pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_TF | CPUMCTX_DBG_HIT_DRX_MASK))
|
---|
1780 | {
|
---|
1781 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
1782 | pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK;
|
---|
1783 | if (pVCpu->cpum.GstCtx.eflags.uBoth & X86_EFL_TF)
|
---|
1784 | pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS;
|
---|
1785 | pVCpu->cpum.GstCtx.dr[6] |= (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
1786 | LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64\n",
|
---|
1787 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
|
---|
1788 | pVCpu->cpum.GstCtx.rflags.uBoth));
|
---|
1789 |
|
---|
1790 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK);
|
---|
1791 | rcStrict = iemRaiseDebugException(pVCpu);
|
---|
1792 |
|
---|
1793 | /* A DBGF event/breakpoint trumps the iemRaiseDebugException informational status code. */
|
---|
1794 | if ((pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_MASK) && RT_FAILURE(rcStrict))
|
---|
1795 | {
|
---|
1796 | rcStrict = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_BP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_EVENT;
|
---|
1797 | LogFlowFunc(("dbgf at %04X:%016llX: %Rrc\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1798 | }
|
---|
1799 | }
|
---|
1800 | else
|
---|
1801 | {
|
---|
1802 | Assert(pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_MASK);
|
---|
1803 | rcStrict = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_DBGF_BP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_EVENT;
|
---|
1804 | LogFlowFunc(("dbgf at %04X:%016llX: %Rrc\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1805 | }
|
---|
1806 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_DBG_DBGF_MASK;
|
---|
1807 | return rcStrict;
|
---|
1808 | }
|
---|
1809 | return VINF_SUCCESS;
|
---|
1810 | }
|
---|
1811 |
|
---|
1812 |
|
---|
1813 | /**
|
---|
1814 | * Clears the RF and CPUMCTX_INHIBIT_SHADOW, triggering \#DB if pending.
|
---|
1815 | *
|
---|
1816 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1817 | */
|
---|
1818 | DECL_FORCE_INLINE(VBOXSTRICTRC) iemRegFinishClearingRF(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1819 | {
|
---|
1820 | /*
|
---|
1821 | * We assume that most of the time nothing actually needs doing here.
|
---|
1822 | */
|
---|
1823 | AssertCompile(CPUMCTX_INHIBIT_SHADOW < UINT32_MAX);
|
---|
1824 | if (RT_LIKELY(!( pVCpu->cpum.GstCtx.eflags.uBoth
|
---|
1825 | & (X86_EFL_TF | X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK)) ))
|
---|
1826 | return VINF_SUCCESS;
|
---|
1827 | return iemFinishInstructionWithFlagsSet(pVCpu);
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | /**
|
---|
1832 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF
|
---|
1833 | * and CPUMCTX_INHIBIT_SHADOW.
|
---|
1834 | *
|
---|
1835 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1836 | * @param cbInstr The number of bytes to add.
|
---|
1837 | */
|
---|
1838 | DECLINLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
|
---|
1839 | {
|
---|
1840 | iemRegAddToRip(pVCpu, cbInstr);
|
---|
1841 | return iemRegFinishClearingRF(pVCpu);
|
---|
1842 | }
|
---|
1843 |
|
---|
1844 |
|
---|
1845 | /**
|
---|
1846 | * Extended version of iemFinishInstructionWithFlagsSet that goes with
|
---|
1847 | * iemRegAddToRipAndFinishingClearingRfEx.
|
---|
1848 | *
|
---|
1849 | * See iemFinishInstructionWithFlagsSet() for details.
|
---|
1850 | */
|
---|
1851 | static VBOXSTRICTRC iemFinishInstructionWithTfSet(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1852 | {
|
---|
1853 | /*
|
---|
1854 | * Raise a #DB.
|
---|
1855 | */
|
---|
1856 | IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
1857 | pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK;
|
---|
1858 | pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_BS
|
---|
1859 | | (pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_DBG_HIT_DRX_MASK) >> CPUMCTX_DBG_HIT_DRX_SHIFT;
|
---|
1860 | /** @todo Do we set all pending \#DB events, or just one? */
|
---|
1861 | LogFlowFunc(("Guest #DB fired at %04X:%016llX: DR6=%08X, RFLAGS=%16RX64 (popf)\n",
|
---|
1862 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, (unsigned)pVCpu->cpum.GstCtx.dr[6],
|
---|
1863 | pVCpu->cpum.GstCtx.rflags.uBoth));
|
---|
1864 | pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW | CPUMCTX_DBG_HIT_DRX_MASK | CPUMCTX_DBG_DBGF_MASK);
|
---|
1865 | return iemRaiseDebugException(pVCpu);
|
---|
1866 | }
|
---|
1867 |
|
---|
1868 |
|
---|
1869 | /**
|
---|
1870 | * Extended version of iemRegAddToRipAndFinishingClearingRF for use by POPF and
|
---|
1871 | * others potentially updating EFLAGS.TF.
|
---|
1872 | *
|
---|
1873 | * The single step event must be generated using the TF value at the start of
|
---|
1874 | * the instruction, not the new value set by it.
|
---|
1875 | *
|
---|
1876 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1877 | * @param cbInstr The number of bytes to add.
|
---|
1878 | * @param fEflOld The EFLAGS at the start of the instruction
|
---|
1879 | * execution.
|
---|
1880 | */
|
---|
1881 | DECLINLINE(VBOXSTRICTRC) iemRegAddToRipAndFinishingClearingRfEx(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t fEflOld) RT_NOEXCEPT
|
---|
1882 | {
|
---|
1883 | iemRegAddToRip(pVCpu, cbInstr);
|
---|
1884 | if (!(fEflOld & X86_EFL_TF))
|
---|
1885 | return iemRegFinishClearingRF(pVCpu);
|
---|
1886 | return iemFinishInstructionWithTfSet(pVCpu);
|
---|
1887 | }
|
---|
1888 |
|
---|
1889 |
|
---|
1890 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
1891 | /**
|
---|
1892 | * Updates the RIP/EIP/IP to point to the next instruction and clears EFLAGS.RF.
|
---|
1893 | *
|
---|
1894 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1895 | */
|
---|
1896 | DECLINLINE(VBOXSTRICTRC) iemRegUpdateRipAndFinishClearingRF(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
1897 | {
|
---|
1898 | return iemRegAddToRipAndFinishingClearingRF(pVCpu, IEM_GET_INSTR_LEN(pVCpu));
|
---|
1899 | }
|
---|
1900 | #endif
|
---|
1901 |
|
---|
1902 |
|
---|
1903 | /**
|
---|
1904 | * Adds to the stack pointer.
|
---|
1905 | *
|
---|
1906 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1907 | * @param cbToAdd The number of bytes to add (8-bit!).
|
---|
1908 | */
|
---|
1909 | DECLINLINE(void) iemRegAddToRsp(PVMCPUCC pVCpu, uint8_t cbToAdd) RT_NOEXCEPT
|
---|
1910 | {
|
---|
1911 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1912 | pVCpu->cpum.GstCtx.rsp += cbToAdd;
|
---|
1913 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1914 | pVCpu->cpum.GstCtx.esp += cbToAdd;
|
---|
1915 | else
|
---|
1916 | pVCpu->cpum.GstCtx.sp += cbToAdd;
|
---|
1917 | }
|
---|
1918 |
|
---|
1919 |
|
---|
1920 | /**
|
---|
1921 | * Subtracts from the stack pointer.
|
---|
1922 | *
|
---|
1923 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1924 | * @param cbToSub The number of bytes to subtract (8-bit!).
|
---|
1925 | */
|
---|
1926 | DECLINLINE(void) iemRegSubFromRsp(PVMCPUCC pVCpu, uint8_t cbToSub) RT_NOEXCEPT
|
---|
1927 | {
|
---|
1928 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1929 | pVCpu->cpum.GstCtx.rsp -= cbToSub;
|
---|
1930 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1931 | pVCpu->cpum.GstCtx.esp -= cbToSub;
|
---|
1932 | else
|
---|
1933 | pVCpu->cpum.GstCtx.sp -= cbToSub;
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 |
|
---|
1937 | /**
|
---|
1938 | * Adds to the temporary stack pointer.
|
---|
1939 | *
|
---|
1940 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1941 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
1942 | * @param cbToAdd The number of bytes to add (16-bit).
|
---|
1943 | */
|
---|
1944 | DECLINLINE(void) iemRegAddToRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToAdd) RT_NOEXCEPT
|
---|
1945 | {
|
---|
1946 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1947 | pTmpRsp->u += cbToAdd;
|
---|
1948 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1949 | pTmpRsp->DWords.dw0 += cbToAdd;
|
---|
1950 | else
|
---|
1951 | pTmpRsp->Words.w0 += cbToAdd;
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 |
|
---|
1955 | /**
|
---|
1956 | * Subtracts from the temporary stack pointer.
|
---|
1957 | *
|
---|
1958 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1959 | * @param pTmpRsp The temporary SP/ESP/RSP to update.
|
---|
1960 | * @param cbToSub The number of bytes to subtract.
|
---|
1961 | * @remarks The @a cbToSub argument *MUST* be 16-bit, iemCImpl_enter is
|
---|
1962 | * expecting that.
|
---|
1963 | */
|
---|
1964 | DECLINLINE(void) iemRegSubFromRspEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint16_t cbToSub) RT_NOEXCEPT
|
---|
1965 | {
|
---|
1966 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1967 | pTmpRsp->u -= cbToSub;
|
---|
1968 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1969 | pTmpRsp->DWords.dw0 -= cbToSub;
|
---|
1970 | else
|
---|
1971 | pTmpRsp->Words.w0 -= cbToSub;
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 |
|
---|
1975 | /**
|
---|
1976 | * Calculates the effective stack address for a push of the specified size as
|
---|
1977 | * well as the new RSP value (upper bits may be masked).
|
---|
1978 | *
|
---|
1979 | * @returns Effective stack addressf for the push.
|
---|
1980 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
1981 | * @param cbItem The size of the stack item to pop.
|
---|
1982 | * @param puNewRsp Where to return the new RSP value.
|
---|
1983 | */
|
---|
1984 | DECLINLINE(RTGCPTR) iemRegGetRspForPush(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
1985 | {
|
---|
1986 | RTUINT64U uTmpRsp;
|
---|
1987 | RTGCPTR GCPtrTop;
|
---|
1988 | uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
1989 |
|
---|
1990 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
1991 | GCPtrTop = uTmpRsp.u -= cbItem;
|
---|
1992 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
1993 | GCPtrTop = uTmpRsp.DWords.dw0 -= cbItem;
|
---|
1994 | else
|
---|
1995 | GCPtrTop = uTmpRsp.Words.w0 -= cbItem;
|
---|
1996 | *puNewRsp = uTmpRsp.u;
|
---|
1997 | return GCPtrTop;
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 |
|
---|
2001 | /**
|
---|
2002 | * Gets the current stack pointer and calculates the value after a pop of the
|
---|
2003 | * specified size.
|
---|
2004 | *
|
---|
2005 | * @returns Current stack pointer.
|
---|
2006 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2007 | * @param cbItem The size of the stack item to pop.
|
---|
2008 | * @param puNewRsp Where to return the new RSP value.
|
---|
2009 | */
|
---|
2010 | DECLINLINE(RTGCPTR) iemRegGetRspForPop(PCVMCPU pVCpu, uint8_t cbItem, uint64_t *puNewRsp) RT_NOEXCEPT
|
---|
2011 | {
|
---|
2012 | RTUINT64U uTmpRsp;
|
---|
2013 | RTGCPTR GCPtrTop;
|
---|
2014 | uTmpRsp.u = pVCpu->cpum.GstCtx.rsp;
|
---|
2015 |
|
---|
2016 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2017 | {
|
---|
2018 | GCPtrTop = uTmpRsp.u;
|
---|
2019 | uTmpRsp.u += cbItem;
|
---|
2020 | }
|
---|
2021 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2022 | {
|
---|
2023 | GCPtrTop = uTmpRsp.DWords.dw0;
|
---|
2024 | uTmpRsp.DWords.dw0 += cbItem;
|
---|
2025 | }
|
---|
2026 | else
|
---|
2027 | {
|
---|
2028 | GCPtrTop = uTmpRsp.Words.w0;
|
---|
2029 | uTmpRsp.Words.w0 += cbItem;
|
---|
2030 | }
|
---|
2031 | *puNewRsp = uTmpRsp.u;
|
---|
2032 | return GCPtrTop;
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 |
|
---|
2036 | /**
|
---|
2037 | * Calculates the effective stack address for a push of the specified size as
|
---|
2038 | * well as the new temporary RSP value (upper bits may be masked).
|
---|
2039 | *
|
---|
2040 | * @returns Effective stack addressf for the push.
|
---|
2041 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2042 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
2043 | * @param cbItem The size of the stack item to pop.
|
---|
2044 | */
|
---|
2045 | DECLINLINE(RTGCPTR) iemRegGetRspForPushEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem) RT_NOEXCEPT
|
---|
2046 | {
|
---|
2047 | RTGCPTR GCPtrTop;
|
---|
2048 |
|
---|
2049 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2050 | GCPtrTop = pTmpRsp->u -= cbItem;
|
---|
2051 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2052 | GCPtrTop = pTmpRsp->DWords.dw0 -= cbItem;
|
---|
2053 | else
|
---|
2054 | GCPtrTop = pTmpRsp->Words.w0 -= cbItem;
|
---|
2055 | return GCPtrTop;
|
---|
2056 | }
|
---|
2057 |
|
---|
2058 |
|
---|
2059 | /**
|
---|
2060 | * Gets the effective stack address for a pop of the specified size and
|
---|
2061 | * calculates and updates the temporary RSP.
|
---|
2062 | *
|
---|
2063 | * @returns Current stack pointer.
|
---|
2064 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2065 | * @param pTmpRsp The temporary stack pointer. This is updated.
|
---|
2066 | * @param cbItem The size of the stack item to pop.
|
---|
2067 | */
|
---|
2068 | DECLINLINE(RTGCPTR) iemRegGetRspForPopEx(PCVMCPU pVCpu, PRTUINT64U pTmpRsp, uint8_t cbItem) RT_NOEXCEPT
|
---|
2069 | {
|
---|
2070 | RTGCPTR GCPtrTop;
|
---|
2071 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2072 | {
|
---|
2073 | GCPtrTop = pTmpRsp->u;
|
---|
2074 | pTmpRsp->u += cbItem;
|
---|
2075 | }
|
---|
2076 | else if (pVCpu->cpum.GstCtx.ss.Attr.n.u1DefBig)
|
---|
2077 | {
|
---|
2078 | GCPtrTop = pTmpRsp->DWords.dw0;
|
---|
2079 | pTmpRsp->DWords.dw0 += cbItem;
|
---|
2080 | }
|
---|
2081 | else
|
---|
2082 | {
|
---|
2083 | GCPtrTop = pTmpRsp->Words.w0;
|
---|
2084 | pTmpRsp->Words.w0 += cbItem;
|
---|
2085 | }
|
---|
2086 | return GCPtrTop;
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | /** @} */
|
---|
2090 |
|
---|
2091 |
|
---|
2092 | /** @name FPU access and helpers.
|
---|
2093 | *
|
---|
2094 | * @{
|
---|
2095 | */
|
---|
2096 |
|
---|
2097 |
|
---|
2098 | /**
|
---|
2099 | * Hook for preparing to use the host FPU.
|
---|
2100 | *
|
---|
2101 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2102 | *
|
---|
2103 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2104 | */
|
---|
2105 | DECLINLINE(void) iemFpuPrepareUsage(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2106 | {
|
---|
2107 | #ifdef IN_RING3
|
---|
2108 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2109 | #else
|
---|
2110 | CPUMRZFpuStatePrepareHostCpuForUse(pVCpu);
|
---|
2111 | #endif
|
---|
2112 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2113 | }
|
---|
2114 |
|
---|
2115 |
|
---|
2116 | /**
|
---|
2117 | * Hook for preparing to use the host FPU for SSE.
|
---|
2118 | *
|
---|
2119 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2120 | *
|
---|
2121 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2122 | */
|
---|
2123 | DECLINLINE(void) iemFpuPrepareUsageSse(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2124 | {
|
---|
2125 | iemFpuPrepareUsage(pVCpu);
|
---|
2126 | }
|
---|
2127 |
|
---|
2128 |
|
---|
2129 | /**
|
---|
2130 | * Hook for preparing to use the host FPU for AVX.
|
---|
2131 | *
|
---|
2132 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2133 | *
|
---|
2134 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2135 | */
|
---|
2136 | DECLINLINE(void) iemFpuPrepareUsageAvx(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2137 | {
|
---|
2138 | iemFpuPrepareUsage(pVCpu);
|
---|
2139 | }
|
---|
2140 |
|
---|
2141 |
|
---|
2142 | /**
|
---|
2143 | * Hook for actualizing the guest FPU state before the interpreter reads it.
|
---|
2144 | *
|
---|
2145 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2146 | *
|
---|
2147 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2148 | */
|
---|
2149 | DECLINLINE(void) iemFpuActualizeStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2150 | {
|
---|
2151 | #ifdef IN_RING3
|
---|
2152 | NOREF(pVCpu);
|
---|
2153 | #else
|
---|
2154 | CPUMRZFpuStateActualizeForRead(pVCpu);
|
---|
2155 | #endif
|
---|
2156 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2157 | }
|
---|
2158 |
|
---|
2159 |
|
---|
2160 | /**
|
---|
2161 | * Hook for actualizing the guest FPU state before the interpreter changes it.
|
---|
2162 | *
|
---|
2163 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2164 | *
|
---|
2165 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2166 | */
|
---|
2167 | DECLINLINE(void) iemFpuActualizeStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2168 | {
|
---|
2169 | #ifdef IN_RING3
|
---|
2170 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2171 | #else
|
---|
2172 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2173 | #endif
|
---|
2174 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 |
|
---|
2178 | /**
|
---|
2179 | * Hook for actualizing the guest XMM0..15 and MXCSR register state for read
|
---|
2180 | * only.
|
---|
2181 | *
|
---|
2182 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2183 | *
|
---|
2184 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2185 | */
|
---|
2186 | DECLINLINE(void) iemFpuActualizeSseStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2187 | {
|
---|
2188 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
2189 | NOREF(pVCpu);
|
---|
2190 | #else
|
---|
2191 | CPUMRZFpuStateActualizeSseForRead(pVCpu);
|
---|
2192 | #endif
|
---|
2193 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2194 | }
|
---|
2195 |
|
---|
2196 |
|
---|
2197 | /**
|
---|
2198 | * Hook for actualizing the guest XMM0..15 and MXCSR register state for
|
---|
2199 | * read+write.
|
---|
2200 | *
|
---|
2201 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2202 | *
|
---|
2203 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2204 | */
|
---|
2205 | DECLINLINE(void) iemFpuActualizeSseStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2206 | {
|
---|
2207 | #if defined(IN_RING3) || defined(VBOX_WITH_KERNEL_USING_XMM)
|
---|
2208 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2209 | #else
|
---|
2210 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2211 | #endif
|
---|
2212 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2213 |
|
---|
2214 | /* Make sure any changes are loaded the next time around. */
|
---|
2215 | pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_SSE;
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 |
|
---|
2219 | /**
|
---|
2220 | * Hook for actualizing the guest YMM0..15 and MXCSR register state for read
|
---|
2221 | * only.
|
---|
2222 | *
|
---|
2223 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2224 | *
|
---|
2225 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2226 | */
|
---|
2227 | DECLINLINE(void) iemFpuActualizeAvxStateForRead(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2228 | {
|
---|
2229 | #ifdef IN_RING3
|
---|
2230 | NOREF(pVCpu);
|
---|
2231 | #else
|
---|
2232 | CPUMRZFpuStateActualizeAvxForRead(pVCpu);
|
---|
2233 | #endif
|
---|
2234 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2235 | }
|
---|
2236 |
|
---|
2237 |
|
---|
2238 | /**
|
---|
2239 | * Hook for actualizing the guest YMM0..15 and MXCSR register state for
|
---|
2240 | * read+write.
|
---|
2241 | *
|
---|
2242 | * This is necessary in ring-0 and raw-mode context (nop in ring-3).
|
---|
2243 | *
|
---|
2244 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2245 | */
|
---|
2246 | DECLINLINE(void) iemFpuActualizeAvxStateForChange(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2247 | {
|
---|
2248 | #ifdef IN_RING3
|
---|
2249 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_FPU_REM);
|
---|
2250 | #else
|
---|
2251 | CPUMRZFpuStateActualizeForChange(pVCpu);
|
---|
2252 | #endif
|
---|
2253 | IEM_CTX_IMPORT_NORET(pVCpu, CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx);
|
---|
2254 |
|
---|
2255 | /* Just assume we're going to make changes to the SSE and YMM_HI parts. */
|
---|
2256 | pVCpu->cpum.GstCtx.XState.Hdr.bmXState |= XSAVE_C_YMM | XSAVE_C_SSE;
|
---|
2257 | }
|
---|
2258 |
|
---|
2259 |
|
---|
2260 | /**
|
---|
2261 | * Stores a QNaN value into a FPU register.
|
---|
2262 | *
|
---|
2263 | * @param pReg Pointer to the register.
|
---|
2264 | */
|
---|
2265 | DECLINLINE(void) iemFpuStoreQNan(PRTFLOAT80U pReg) RT_NOEXCEPT
|
---|
2266 | {
|
---|
2267 | pReg->au32[0] = UINT32_C(0x00000000);
|
---|
2268 | pReg->au32[1] = UINT32_C(0xc0000000);
|
---|
2269 | pReg->au16[4] = UINT16_C(0xffff);
|
---|
2270 | }
|
---|
2271 |
|
---|
2272 |
|
---|
2273 | #ifndef IEM_WITH_OPAQUE_DECODER_STATE
|
---|
2274 | /**
|
---|
2275 | * Updates the FOP, FPU.CS and FPUIP registers.
|
---|
2276 | *
|
---|
2277 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2278 | * @param pFpuCtx The FPU context.
|
---|
2279 | */
|
---|
2280 | DECLINLINE(void) iemFpuUpdateOpcodeAndIpWorker(PVMCPUCC pVCpu, PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
2281 | {
|
---|
2282 | Assert(pVCpu->iem.s.uFpuOpcode != UINT16_MAX);
|
---|
2283 | pFpuCtx->FOP = pVCpu->iem.s.uFpuOpcode;
|
---|
2284 | /** @todo x87.CS and FPUIP needs to be kept seperately. */
|
---|
2285 | if (IEM_IS_REAL_OR_V86_MODE(pVCpu))
|
---|
2286 | {
|
---|
2287 | /** @todo Testcase: making assumptions about how FPUIP and FPUDP are handled
|
---|
2288 | * happens in real mode here based on the fnsave and fnstenv images. */
|
---|
2289 | pFpuCtx->CS = 0;
|
---|
2290 | pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.eip | ((uint32_t)pVCpu->cpum.GstCtx.cs.Sel << 4);
|
---|
2291 | }
|
---|
2292 | else if (!IEM_IS_LONG_MODE(pVCpu))
|
---|
2293 | {
|
---|
2294 | pFpuCtx->CS = pVCpu->cpum.GstCtx.cs.Sel;
|
---|
2295 | pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
|
---|
2296 | }
|
---|
2297 | else
|
---|
2298 | *(uint64_t *)&pFpuCtx->FPUIP = pVCpu->cpum.GstCtx.rip;
|
---|
2299 | }
|
---|
2300 | #endif /* !IEM_WITH_OPAQUE_DECODER_STATE */
|
---|
2301 |
|
---|
2302 |
|
---|
2303 |
|
---|
2304 |
|
---|
2305 | /**
|
---|
2306 | * Marks the specified stack register as free (for FFREE).
|
---|
2307 | *
|
---|
2308 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2309 | * @param iStReg The register to free.
|
---|
2310 | */
|
---|
2311 | DECLINLINE(void) iemFpuStackFree(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT
|
---|
2312 | {
|
---|
2313 | Assert(iStReg < 8);
|
---|
2314 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2315 | uint8_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2316 | pFpuCtx->FTW &= ~RT_BIT(iReg);
|
---|
2317 | }
|
---|
2318 |
|
---|
2319 |
|
---|
2320 | /**
|
---|
2321 | * Increments FSW.TOP, i.e. pops an item off the stack without freeing it.
|
---|
2322 | *
|
---|
2323 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2324 | */
|
---|
2325 | DECLINLINE(void) iemFpuStackIncTop(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2326 | {
|
---|
2327 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2328 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
2329 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
2330 | uTop = (uTop + (1 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
2331 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
2332 | uFsw |= uTop;
|
---|
2333 | pFpuCtx->FSW = uFsw;
|
---|
2334 | }
|
---|
2335 |
|
---|
2336 |
|
---|
2337 | /**
|
---|
2338 | * Decrements FSW.TOP, i.e. push an item off the stack without storing anything.
|
---|
2339 | *
|
---|
2340 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2341 | */
|
---|
2342 | DECLINLINE(void) iemFpuStackDecTop(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2343 | {
|
---|
2344 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2345 | uint16_t uFsw = pFpuCtx->FSW;
|
---|
2346 | uint16_t uTop = uFsw & X86_FSW_TOP_MASK;
|
---|
2347 | uTop = (uTop + (7 << X86_FSW_TOP_SHIFT)) & X86_FSW_TOP_MASK;
|
---|
2348 | uFsw &= ~X86_FSW_TOP_MASK;
|
---|
2349 | uFsw |= uTop;
|
---|
2350 | pFpuCtx->FSW = uFsw;
|
---|
2351 | }
|
---|
2352 |
|
---|
2353 |
|
---|
2354 |
|
---|
2355 |
|
---|
2356 | DECLINLINE(int) iemFpuStRegNotEmpty(PVMCPUCC pVCpu, uint8_t iStReg) RT_NOEXCEPT
|
---|
2357 | {
|
---|
2358 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2359 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2360 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
2361 | return VINF_SUCCESS;
|
---|
2362 | return VERR_NOT_FOUND;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 |
|
---|
2366 | DECLINLINE(int) iemFpuStRegNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg, PCRTFLOAT80U *ppRef) RT_NOEXCEPT
|
---|
2367 | {
|
---|
2368 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2369 | uint16_t iReg = (X86_FSW_TOP_GET(pFpuCtx->FSW) + iStReg) & X86_FSW_TOP_SMASK;
|
---|
2370 | if (pFpuCtx->FTW & RT_BIT(iReg))
|
---|
2371 | {
|
---|
2372 | *ppRef = &pFpuCtx->aRegs[iStReg].r80;
|
---|
2373 | return VINF_SUCCESS;
|
---|
2374 | }
|
---|
2375 | return VERR_NOT_FOUND;
|
---|
2376 | }
|
---|
2377 |
|
---|
2378 |
|
---|
2379 | DECLINLINE(int) iemFpu2StRegsNotEmptyRef(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0,
|
---|
2380 | uint8_t iStReg1, PCRTFLOAT80U *ppRef1) RT_NOEXCEPT
|
---|
2381 | {
|
---|
2382 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2383 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2384 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
2385 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
2386 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
2387 | {
|
---|
2388 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
2389 | *ppRef1 = &pFpuCtx->aRegs[iStReg1].r80;
|
---|
2390 | return VINF_SUCCESS;
|
---|
2391 | }
|
---|
2392 | return VERR_NOT_FOUND;
|
---|
2393 | }
|
---|
2394 |
|
---|
2395 |
|
---|
2396 | DECLINLINE(int) iemFpu2StRegsNotEmptyRefFirst(PVMCPUCC pVCpu, uint8_t iStReg0, PCRTFLOAT80U *ppRef0, uint8_t iStReg1) RT_NOEXCEPT
|
---|
2397 | {
|
---|
2398 | PX86FXSTATE pFpuCtx = &pVCpu->cpum.GstCtx.XState.x87;
|
---|
2399 | uint16_t iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2400 | uint16_t iReg0 = (iTop + iStReg0) & X86_FSW_TOP_SMASK;
|
---|
2401 | uint16_t iReg1 = (iTop + iStReg1) & X86_FSW_TOP_SMASK;
|
---|
2402 | if ((pFpuCtx->FTW & (RT_BIT(iReg0) | RT_BIT(iReg1))) == (RT_BIT(iReg0) | RT_BIT(iReg1)))
|
---|
2403 | {
|
---|
2404 | *ppRef0 = &pFpuCtx->aRegs[iStReg0].r80;
|
---|
2405 | return VINF_SUCCESS;
|
---|
2406 | }
|
---|
2407 | return VERR_NOT_FOUND;
|
---|
2408 | }
|
---|
2409 |
|
---|
2410 |
|
---|
2411 | /**
|
---|
2412 | * Rotates the stack registers when setting new TOS.
|
---|
2413 | *
|
---|
2414 | * @param pFpuCtx The FPU context.
|
---|
2415 | * @param iNewTop New TOS value.
|
---|
2416 | * @remarks We only do this to speed up fxsave/fxrstor which
|
---|
2417 | * arrange the FP registers in stack order.
|
---|
2418 | * MUST be done before writing the new TOS (FSW).
|
---|
2419 | */
|
---|
2420 | DECLINLINE(void) iemFpuRotateStackSetTop(PX86FXSTATE pFpuCtx, uint16_t iNewTop) RT_NOEXCEPT
|
---|
2421 | {
|
---|
2422 | uint16_t iOldTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2423 | RTFLOAT80U ar80Temp[8];
|
---|
2424 |
|
---|
2425 | if (iOldTop == iNewTop)
|
---|
2426 | return;
|
---|
2427 |
|
---|
2428 | /* Unscrew the stack and get it into 'native' order. */
|
---|
2429 | ar80Temp[0] = pFpuCtx->aRegs[(8 - iOldTop + 0) & X86_FSW_TOP_SMASK].r80;
|
---|
2430 | ar80Temp[1] = pFpuCtx->aRegs[(8 - iOldTop + 1) & X86_FSW_TOP_SMASK].r80;
|
---|
2431 | ar80Temp[2] = pFpuCtx->aRegs[(8 - iOldTop + 2) & X86_FSW_TOP_SMASK].r80;
|
---|
2432 | ar80Temp[3] = pFpuCtx->aRegs[(8 - iOldTop + 3) & X86_FSW_TOP_SMASK].r80;
|
---|
2433 | ar80Temp[4] = pFpuCtx->aRegs[(8 - iOldTop + 4) & X86_FSW_TOP_SMASK].r80;
|
---|
2434 | ar80Temp[5] = pFpuCtx->aRegs[(8 - iOldTop + 5) & X86_FSW_TOP_SMASK].r80;
|
---|
2435 | ar80Temp[6] = pFpuCtx->aRegs[(8 - iOldTop + 6) & X86_FSW_TOP_SMASK].r80;
|
---|
2436 | ar80Temp[7] = pFpuCtx->aRegs[(8 - iOldTop + 7) & X86_FSW_TOP_SMASK].r80;
|
---|
2437 |
|
---|
2438 | /* Now rotate the stack to the new position. */
|
---|
2439 | pFpuCtx->aRegs[0].r80 = ar80Temp[(iNewTop + 0) & X86_FSW_TOP_SMASK];
|
---|
2440 | pFpuCtx->aRegs[1].r80 = ar80Temp[(iNewTop + 1) & X86_FSW_TOP_SMASK];
|
---|
2441 | pFpuCtx->aRegs[2].r80 = ar80Temp[(iNewTop + 2) & X86_FSW_TOP_SMASK];
|
---|
2442 | pFpuCtx->aRegs[3].r80 = ar80Temp[(iNewTop + 3) & X86_FSW_TOP_SMASK];
|
---|
2443 | pFpuCtx->aRegs[4].r80 = ar80Temp[(iNewTop + 4) & X86_FSW_TOP_SMASK];
|
---|
2444 | pFpuCtx->aRegs[5].r80 = ar80Temp[(iNewTop + 5) & X86_FSW_TOP_SMASK];
|
---|
2445 | pFpuCtx->aRegs[6].r80 = ar80Temp[(iNewTop + 6) & X86_FSW_TOP_SMASK];
|
---|
2446 | pFpuCtx->aRegs[7].r80 = ar80Temp[(iNewTop + 7) & X86_FSW_TOP_SMASK];
|
---|
2447 | }
|
---|
2448 |
|
---|
2449 |
|
---|
2450 | /**
|
---|
2451 | * Updates the FPU exception status after FCW is changed.
|
---|
2452 | *
|
---|
2453 | * @param pFpuCtx The FPU context.
|
---|
2454 | */
|
---|
2455 | DECLINLINE(void) iemFpuRecalcExceptionStatus(PX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
2456 | {
|
---|
2457 | uint16_t u16Fsw = pFpuCtx->FSW;
|
---|
2458 | if ((u16Fsw & X86_FSW_XCPT_MASK) & ~(pFpuCtx->FCW & X86_FCW_XCPT_MASK))
|
---|
2459 | u16Fsw |= X86_FSW_ES | X86_FSW_B;
|
---|
2460 | else
|
---|
2461 | u16Fsw &= ~(X86_FSW_ES | X86_FSW_B);
|
---|
2462 | pFpuCtx->FSW = u16Fsw;
|
---|
2463 | }
|
---|
2464 |
|
---|
2465 |
|
---|
2466 | /**
|
---|
2467 | * Calculates the full FTW (FPU tag word) for use in FNSTENV and FNSAVE.
|
---|
2468 | *
|
---|
2469 | * @returns The full FTW.
|
---|
2470 | * @param pFpuCtx The FPU context.
|
---|
2471 | */
|
---|
2472 | DECLINLINE(uint16_t) iemFpuCalcFullFtw(PCX86FXSTATE pFpuCtx) RT_NOEXCEPT
|
---|
2473 | {
|
---|
2474 | uint8_t const u8Ftw = (uint8_t)pFpuCtx->FTW;
|
---|
2475 | uint16_t u16Ftw = 0;
|
---|
2476 | unsigned const iTop = X86_FSW_TOP_GET(pFpuCtx->FSW);
|
---|
2477 | for (unsigned iSt = 0; iSt < 8; iSt++)
|
---|
2478 | {
|
---|
2479 | unsigned const iReg = (iSt + iTop) & 7;
|
---|
2480 | if (!(u8Ftw & RT_BIT(iReg)))
|
---|
2481 | u16Ftw |= 3 << (iReg * 2); /* empty */
|
---|
2482 | else
|
---|
2483 | {
|
---|
2484 | uint16_t uTag;
|
---|
2485 | PCRTFLOAT80U const pr80Reg = &pFpuCtx->aRegs[iSt].r80;
|
---|
2486 | if (pr80Reg->s.uExponent == 0x7fff)
|
---|
2487 | uTag = 2; /* Exponent is all 1's => Special. */
|
---|
2488 | else if (pr80Reg->s.uExponent == 0x0000)
|
---|
2489 | {
|
---|
2490 | if (pr80Reg->s.uMantissa == 0x0000)
|
---|
2491 | uTag = 1; /* All bits are zero => Zero. */
|
---|
2492 | else
|
---|
2493 | uTag = 2; /* Must be special. */
|
---|
2494 | }
|
---|
2495 | else if (pr80Reg->s.uMantissa & RT_BIT_64(63)) /* The J bit. */
|
---|
2496 | uTag = 0; /* Valid. */
|
---|
2497 | else
|
---|
2498 | uTag = 2; /* Must be special. */
|
---|
2499 |
|
---|
2500 | u16Ftw |= uTag << (iReg * 2);
|
---|
2501 | }
|
---|
2502 | }
|
---|
2503 |
|
---|
2504 | return u16Ftw;
|
---|
2505 | }
|
---|
2506 |
|
---|
2507 |
|
---|
2508 | /**
|
---|
2509 | * Converts a full FTW to a compressed one (for use in FLDENV and FRSTOR).
|
---|
2510 | *
|
---|
2511 | * @returns The compressed FTW.
|
---|
2512 | * @param u16FullFtw The full FTW to convert.
|
---|
2513 | */
|
---|
2514 | DECLINLINE(uint16_t) iemFpuCompressFtw(uint16_t u16FullFtw) RT_NOEXCEPT
|
---|
2515 | {
|
---|
2516 | uint8_t u8Ftw = 0;
|
---|
2517 | for (unsigned i = 0; i < 8; i++)
|
---|
2518 | {
|
---|
2519 | if ((u16FullFtw & 3) != 3 /*empty*/)
|
---|
2520 | u8Ftw |= RT_BIT(i);
|
---|
2521 | u16FullFtw >>= 2;
|
---|
2522 | }
|
---|
2523 |
|
---|
2524 | return u8Ftw;
|
---|
2525 | }
|
---|
2526 |
|
---|
2527 | /** @} */
|
---|
2528 |
|
---|
2529 |
|
---|
2530 | /** @name Memory access.
|
---|
2531 | *
|
---|
2532 | * @{
|
---|
2533 | */
|
---|
2534 |
|
---|
2535 |
|
---|
2536 | /**
|
---|
2537 | * Checks whether alignment checks are enabled or not.
|
---|
2538 | *
|
---|
2539 | * @returns true if enabled, false if not.
|
---|
2540 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2541 | */
|
---|
2542 | DECLINLINE(bool) iemMemAreAlignmentChecksEnabled(PVMCPUCC pVCpu) RT_NOEXCEPT
|
---|
2543 | {
|
---|
2544 | AssertCompile(X86_CR0_AM == X86_EFL_AC);
|
---|
2545 | return pVCpu->iem.s.uCpl == 3
|
---|
2546 | && (((uint32_t)pVCpu->cpum.GstCtx.cr0 & pVCpu->cpum.GstCtx.eflags.u) & X86_CR0_AM);
|
---|
2547 | }
|
---|
2548 |
|
---|
2549 | /**
|
---|
2550 | * Checks if the given segment can be written to, raise the appropriate
|
---|
2551 | * exception if not.
|
---|
2552 | *
|
---|
2553 | * @returns VBox strict status code.
|
---|
2554 | *
|
---|
2555 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2556 | * @param pHid Pointer to the hidden register.
|
---|
2557 | * @param iSegReg The register number.
|
---|
2558 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
2559 | * segment. (In 64-bit code it may differ from the
|
---|
2560 | * base in the hidden segment.)
|
---|
2561 | */
|
---|
2562 | DECLINLINE(VBOXSTRICTRC) iemMemSegCheckWriteAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid,
|
---|
2563 | uint8_t iSegReg, uint64_t *pu64BaseAddr) RT_NOEXCEPT
|
---|
2564 | {
|
---|
2565 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2566 |
|
---|
2567 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2568 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
2569 | else
|
---|
2570 | {
|
---|
2571 | if (!pHid->Attr.n.u1Present)
|
---|
2572 | {
|
---|
2573 | uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
|
---|
2574 | AssertRelease(uSel == 0);
|
---|
2575 | Log(("iemMemSegCheckWriteAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
|
---|
2576 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | if ( ( (pHid->Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
2580 | || !(pHid->Attr.n.u4Type & X86_SEL_TYPE_WRITE) )
|
---|
2581 | && pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT )
|
---|
2582 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
2583 | *pu64BaseAddr = pHid->u64Base;
|
---|
2584 | }
|
---|
2585 | return VINF_SUCCESS;
|
---|
2586 | }
|
---|
2587 |
|
---|
2588 |
|
---|
2589 | /**
|
---|
2590 | * Checks if the given segment can be read from, raise the appropriate
|
---|
2591 | * exception if not.
|
---|
2592 | *
|
---|
2593 | * @returns VBox strict status code.
|
---|
2594 | *
|
---|
2595 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2596 | * @param pHid Pointer to the hidden register.
|
---|
2597 | * @param iSegReg The register number.
|
---|
2598 | * @param pu64BaseAddr Where to return the base address to use for the
|
---|
2599 | * segment. (In 64-bit code it may differ from the
|
---|
2600 | * base in the hidden segment.)
|
---|
2601 | */
|
---|
2602 | DECLINLINE(VBOXSTRICTRC) iemMemSegCheckReadAccessEx(PVMCPUCC pVCpu, PCCPUMSELREGHID pHid,
|
---|
2603 | uint8_t iSegReg, uint64_t *pu64BaseAddr) RT_NOEXCEPT
|
---|
2604 | {
|
---|
2605 | IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2606 |
|
---|
2607 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2608 | *pu64BaseAddr = iSegReg < X86_SREG_FS ? 0 : pHid->u64Base;
|
---|
2609 | else
|
---|
2610 | {
|
---|
2611 | if (!pHid->Attr.n.u1Present)
|
---|
2612 | {
|
---|
2613 | uint16_t uSel = iemSRegFetchU16(pVCpu, iSegReg);
|
---|
2614 | AssertRelease(uSel == 0);
|
---|
2615 | Log(("iemMemSegCheckReadAccessEx: %#x (index %u) - bad selector -> #GP\n", uSel, iSegReg));
|
---|
2616 | return iemRaiseGeneralProtectionFault0(pVCpu);
|
---|
2617 | }
|
---|
2618 |
|
---|
2619 | if ((pHid->Attr.n.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ)) == X86_SEL_TYPE_CODE)
|
---|
2620 | return iemRaiseSelectorInvalidAccess(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
2621 | *pu64BaseAddr = pHid->u64Base;
|
---|
2622 | }
|
---|
2623 | return VINF_SUCCESS;
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 |
|
---|
2627 | /**
|
---|
2628 | * Maps a physical page.
|
---|
2629 | *
|
---|
2630 | * @returns VBox status code (see PGMR3PhysTlbGCPhys2Ptr).
|
---|
2631 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2632 | * @param GCPhysMem The physical address.
|
---|
2633 | * @param fAccess The intended access.
|
---|
2634 | * @param ppvMem Where to return the mapping address.
|
---|
2635 | * @param pLock The PGM lock.
|
---|
2636 | */
|
---|
2637 | DECLINLINE(int) iemMemPageMap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess,
|
---|
2638 | void **ppvMem, PPGMPAGEMAPLOCK pLock) RT_NOEXCEPT
|
---|
2639 | {
|
---|
2640 | #ifdef IEM_LOG_MEMORY_WRITES
|
---|
2641 | if (fAccess & IEM_ACCESS_TYPE_WRITE)
|
---|
2642 | return VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
2643 | #endif
|
---|
2644 |
|
---|
2645 | /** @todo This API may require some improving later. A private deal with PGM
|
---|
2646 | * regarding locking and unlocking needs to be struct. A couple of TLBs
|
---|
2647 | * living in PGM, but with publicly accessible inlined access methods
|
---|
2648 | * could perhaps be an even better solution. */
|
---|
2649 | int rc = PGMPhysIemGCPhys2Ptr(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
2650 | GCPhysMem,
|
---|
2651 | RT_BOOL(fAccess & IEM_ACCESS_TYPE_WRITE),
|
---|
2652 | pVCpu->iem.s.fBypassHandlers,
|
---|
2653 | ppvMem,
|
---|
2654 | pLock);
|
---|
2655 | /*Log(("PGMPhysIemGCPhys2Ptr %Rrc pLock=%.*Rhxs\n", rc, sizeof(*pLock), pLock));*/
|
---|
2656 | AssertMsg(rc == VINF_SUCCESS || RT_FAILURE_NP(rc), ("%Rrc\n", rc));
|
---|
2657 |
|
---|
2658 | return rc;
|
---|
2659 | }
|
---|
2660 |
|
---|
2661 |
|
---|
2662 | /**
|
---|
2663 | * Unmap a page previously mapped by iemMemPageMap.
|
---|
2664 | *
|
---|
2665 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2666 | * @param GCPhysMem The physical address.
|
---|
2667 | * @param fAccess The intended access.
|
---|
2668 | * @param pvMem What iemMemPageMap returned.
|
---|
2669 | * @param pLock The PGM lock.
|
---|
2670 | */
|
---|
2671 | DECLINLINE(void) iemMemPageUnmap(PVMCPUCC pVCpu, RTGCPHYS GCPhysMem, uint32_t fAccess,
|
---|
2672 | const void *pvMem, PPGMPAGEMAPLOCK pLock) RT_NOEXCEPT
|
---|
2673 | {
|
---|
2674 | NOREF(pVCpu);
|
---|
2675 | NOREF(GCPhysMem);
|
---|
2676 | NOREF(fAccess);
|
---|
2677 | NOREF(pvMem);
|
---|
2678 | PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), pLock);
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 | #ifdef IEM_WITH_SETJMP
|
---|
2682 |
|
---|
2683 | /** @todo slim this down */
|
---|
2684 | DECL_INLINE_THROW(RTGCPTR) iemMemApplySegmentToReadJmp(PVMCPUCC pVCpu, uint8_t iSegReg,
|
---|
2685 | size_t cbMem, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2686 | {
|
---|
2687 | Assert(cbMem >= 1);
|
---|
2688 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
2689 |
|
---|
2690 | /*
|
---|
2691 | * 64-bit mode is simpler.
|
---|
2692 | */
|
---|
2693 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2694 | {
|
---|
2695 | if (iSegReg >= X86_SREG_FS && iSegReg != UINT8_MAX)
|
---|
2696 | {
|
---|
2697 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2698 | PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
2699 | GCPtrMem += pSel->u64Base;
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
2703 | return GCPtrMem;
|
---|
2704 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
2705 | }
|
---|
2706 | /*
|
---|
2707 | * 16-bit and 32-bit segmentation.
|
---|
2708 | */
|
---|
2709 | else if (iSegReg != UINT8_MAX)
|
---|
2710 | {
|
---|
2711 | /** @todo Does this apply to segments with 4G-1 limit? */
|
---|
2712 | uint32_t const GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem - 1;
|
---|
2713 | if (RT_LIKELY(GCPtrLast32 >= (uint32_t)GCPtrMem))
|
---|
2714 | {
|
---|
2715 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2716 | PCPUMSELREGHID const pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
2717 | switch (pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
|
---|
2718 | | X86_SEL_TYPE_READ | X86_SEL_TYPE_WRITE /* same as read */
|
---|
2719 | | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_CONF /* same as down */
|
---|
2720 | | X86_SEL_TYPE_CODE))
|
---|
2721 | {
|
---|
2722 | case X86DESCATTR_P: /* readonly data, expand up */
|
---|
2723 | case X86DESCATTR_P | X86_SEL_TYPE_WRITE: /* writable data, expand up */
|
---|
2724 | case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ: /* code, read-only */
|
---|
2725 | case X86DESCATTR_P | X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_CONF: /* conforming code, read-only */
|
---|
2726 | /* expand up */
|
---|
2727 | if (RT_LIKELY(GCPtrLast32 <= pSel->u32Limit))
|
---|
2728 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
2729 | Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x vs %#x\n",
|
---|
2730 | (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit));
|
---|
2731 | break;
|
---|
2732 |
|
---|
2733 | case X86DESCATTR_P | X86_SEL_TYPE_DOWN: /* readonly data, expand down */
|
---|
2734 | case X86DESCATTR_P | X86_SEL_TYPE_DOWN | X86_SEL_TYPE_WRITE: /* writable data, expand down */
|
---|
2735 | /* expand down */
|
---|
2736 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
2737 | && ( pSel->Attr.n.u1DefBig
|
---|
2738 | || GCPtrLast32 <= UINT32_C(0xffff)) ))
|
---|
2739 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
2740 | Log10(("iemMemApplySegmentToReadJmp: expand down out of bounds %#x..%#x vs %#x..%#x\n",
|
---|
2741 | (uint32_t)GCPtrMem, GCPtrLast32, pSel->u32Limit, pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT16_MAX));
|
---|
2742 | break;
|
---|
2743 |
|
---|
2744 | default:
|
---|
2745 | Log10(("iemMemApplySegmentToReadJmp: bad selector %#x\n", pSel->Attr.u));
|
---|
2746 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
2747 | break;
|
---|
2748 | }
|
---|
2749 | }
|
---|
2750 | Log10(("iemMemApplySegmentToReadJmp: out of bounds %#x..%#x\n",(uint32_t)GCPtrMem, GCPtrLast32));
|
---|
2751 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_R);
|
---|
2752 | }
|
---|
2753 | /*
|
---|
2754 | * 32-bit flat address.
|
---|
2755 | */
|
---|
2756 | else
|
---|
2757 | return GCPtrMem;
|
---|
2758 | }
|
---|
2759 |
|
---|
2760 |
|
---|
2761 | /** @todo slim this down */
|
---|
2762 | DECL_INLINE_THROW(RTGCPTR) iemMemApplySegmentToWriteJmp(PVMCPUCC pVCpu, uint8_t iSegReg, size_t cbMem,
|
---|
2763 | RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP
|
---|
2764 | {
|
---|
2765 | Assert(cbMem >= 1);
|
---|
2766 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
2767 |
|
---|
2768 | /*
|
---|
2769 | * 64-bit mode is simpler.
|
---|
2770 | */
|
---|
2771 | if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
|
---|
2772 | {
|
---|
2773 | if (iSegReg >= X86_SREG_FS)
|
---|
2774 | {
|
---|
2775 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2776 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
2777 | GCPtrMem += pSel->u64Base;
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 | if (RT_LIKELY(X86_IS_CANONICAL(GCPtrMem) && X86_IS_CANONICAL(GCPtrMem + cbMem - 1)))
|
---|
2781 | return GCPtrMem;
|
---|
2782 | }
|
---|
2783 | /*
|
---|
2784 | * 16-bit and 32-bit segmentation.
|
---|
2785 | */
|
---|
2786 | else
|
---|
2787 | {
|
---|
2788 | IEM_CTX_IMPORT_JMP(pVCpu, CPUMCTX_EXTRN_SREG_FROM_IDX(iSegReg));
|
---|
2789 | PCPUMSELREGHID pSel = iemSRegGetHid(pVCpu, iSegReg);
|
---|
2790 | uint32_t const fRelevantAttrs = pSel->Attr.u & ( X86DESCATTR_P | X86DESCATTR_UNUSABLE
|
---|
2791 | | X86_SEL_TYPE_CODE | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN);
|
---|
2792 | if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE)) /* data, expand up */
|
---|
2793 | {
|
---|
2794 | /* expand up */
|
---|
2795 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
2796 | if (RT_LIKELY( GCPtrLast32 > pSel->u32Limit
|
---|
2797 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
2798 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
2799 | }
|
---|
2800 | else if (fRelevantAttrs == (X86DESCATTR_P | X86_SEL_TYPE_WRITE | X86_SEL_TYPE_DOWN)) /* data, expand up */
|
---|
2801 | {
|
---|
2802 | /* expand down */
|
---|
2803 | uint32_t GCPtrLast32 = (uint32_t)GCPtrMem + (uint32_t)cbMem;
|
---|
2804 | if (RT_LIKELY( (uint32_t)GCPtrMem > pSel->u32Limit
|
---|
2805 | && GCPtrLast32 <= (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))
|
---|
2806 | && GCPtrLast32 > (uint32_t)GCPtrMem))
|
---|
2807 | return (uint32_t)GCPtrMem + (uint32_t)pSel->u64Base;
|
---|
2808 | }
|
---|
2809 | else
|
---|
2810 | iemRaiseSelectorInvalidAccessJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
2811 | iemRaiseSelectorBoundsJmp(pVCpu, iSegReg, IEM_ACCESS_DATA_W);
|
---|
2812 | }
|
---|
2813 | iemRaiseGeneralProtectionFault0Jmp(pVCpu);
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 | #endif /* IEM_WITH_SETJMP */
|
---|
2817 |
|
---|
2818 | /**
|
---|
2819 | * Fakes a long mode stack selector for SS = 0.
|
---|
2820 | *
|
---|
2821 | * @param pDescSs Where to return the fake stack descriptor.
|
---|
2822 | * @param uDpl The DPL we want.
|
---|
2823 | */
|
---|
2824 | DECLINLINE(void) iemMemFakeStackSelDesc(PIEMSELDESC pDescSs, uint32_t uDpl) RT_NOEXCEPT
|
---|
2825 | {
|
---|
2826 | pDescSs->Long.au64[0] = 0;
|
---|
2827 | pDescSs->Long.au64[1] = 0;
|
---|
2828 | pDescSs->Long.Gen.u4Type = X86_SEL_TYPE_RW_ACC;
|
---|
2829 | pDescSs->Long.Gen.u1DescType = 1; /* 1 = code / data, 0 = system. */
|
---|
2830 | pDescSs->Long.Gen.u2Dpl = uDpl;
|
---|
2831 | pDescSs->Long.Gen.u1Present = 1;
|
---|
2832 | pDescSs->Long.Gen.u1Long = 1;
|
---|
2833 | }
|
---|
2834 |
|
---|
2835 | /** @} */
|
---|
2836 |
|
---|
2837 |
|
---|
2838 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
2839 |
|
---|
2840 | /**
|
---|
2841 | * Gets CR0 fixed-0 bits in VMX operation.
|
---|
2842 | *
|
---|
2843 | * We do this rather than fetching what we report to the guest (in
|
---|
2844 | * IA32_VMX_CR0_FIXED0 MSR) because real hardware (and so do we) report the same
|
---|
2845 | * values regardless of whether unrestricted-guest feature is available on the CPU.
|
---|
2846 | *
|
---|
2847 | * @returns CR0 fixed-0 bits.
|
---|
2848 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2849 | * @param fVmxNonRootMode Whether the CR0 fixed-0 bits for VMX non-root mode
|
---|
2850 | * must be returned. When @c false, the CR0 fixed-0
|
---|
2851 | * bits for VMX root mode is returned.
|
---|
2852 | *
|
---|
2853 | */
|
---|
2854 | DECLINLINE(uint64_t) iemVmxGetCr0Fixed0(PCVMCPUCC pVCpu, bool fVmxNonRootMode) RT_NOEXCEPT
|
---|
2855 | {
|
---|
2856 | Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
|
---|
2857 |
|
---|
2858 | PCVMXMSRS pMsrs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs;
|
---|
2859 | if ( fVmxNonRootMode
|
---|
2860 | && (pMsrs->ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST))
|
---|
2861 | return VMX_V_CR0_FIXED0_UX;
|
---|
2862 | return VMX_V_CR0_FIXED0;
|
---|
2863 | }
|
---|
2864 |
|
---|
2865 |
|
---|
2866 | /**
|
---|
2867 | * Sets virtual-APIC write emulation as pending.
|
---|
2868 | *
|
---|
2869 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2870 | * @param offApic The offset in the virtual-APIC page that was written.
|
---|
2871 | */
|
---|
2872 | DECLINLINE(void) iemVmxVirtApicSetPendingWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
|
---|
2873 | {
|
---|
2874 | Assert(offApic < XAPIC_OFF_END + 4);
|
---|
2875 |
|
---|
2876 | /*
|
---|
2877 | * Record the currently updated APIC offset, as we need this later for figuring
|
---|
2878 | * out whether to perform TPR, EOI or self-IPI virtualization as well as well
|
---|
2879 | * as for supplying the exit qualification when causing an APIC-write VM-exit.
|
---|
2880 | */
|
---|
2881 | pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = offApic;
|
---|
2882 |
|
---|
2883 | /*
|
---|
2884 | * Flag that we need to perform virtual-APIC write emulation (TPR/PPR/EOI/Self-IPI
|
---|
2885 | * virtualization or APIC-write emulation).
|
---|
2886 | */
|
---|
2887 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
2888 | VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
|
---|
2889 | }
|
---|
2890 |
|
---|
2891 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
2892 |
|
---|
2893 | #endif /* !VMM_INCLUDED_SRC_include_IEMInline_h */
|
---|