VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMSwitcher.cpp@ 32131

Last change on this file since 32131 was 30149, checked in by vboxsync, 15 years ago

Added note

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 37.3 KB
Line 
1/* $Id: VMMSwitcher.cpp 30149 2010-06-10 12:20:22Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor, World Switcher(s).
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_VMM
22#include <VBox/vmm.h>
23#include <VBox/pgm.h>
24#include <VBox/selm.h>
25#include <VBox/mm.h>
26#include <VBox/sup.h>
27#include "VMMInternal.h"
28#include "VMMSwitcher/VMMSwitcher.h"
29#include <VBox/vm.h>
30#include <VBox/dis.h>
31
32#include <VBox/err.h>
33#include <VBox/param.h>
34#include <iprt/assert.h>
35#include <iprt/alloc.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39#include <iprt/ctype.h>
40
41
42/*******************************************************************************
43* Global Variables *
44*******************************************************************************/
45/** Array of switcher defininitions.
46 * The type and index shall match!
47 */
48static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
49{
50 NULL, /* invalid entry */
51#ifdef VBOX_WITH_RAW_MODE
52# ifndef RT_ARCH_AMD64
53 &vmmR3Switcher32BitTo32Bit_Def,
54 &vmmR3Switcher32BitToPAE_Def,
55 &vmmR3Switcher32BitToAMD64_Def,
56 &vmmR3SwitcherPAETo32Bit_Def,
57 &vmmR3SwitcherPAEToPAE_Def,
58 &vmmR3SwitcherPAEToAMD64_Def,
59 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
60# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
61 &vmmR3SwitcherAMD64ToPAE_Def,
62# else
63 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
64# endif
65 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
66# else /* RT_ARCH_AMD64 */
67 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
68 NULL, //&vmmR3Switcher32BitToPAE_Def,
69 NULL, //&vmmR3Switcher32BitToAMD64_Def,
70 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
71 NULL, //&vmmR3SwitcherPAEToPAE_Def,
72 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
73 &vmmR3SwitcherAMD64To32Bit_Def,
74 &vmmR3SwitcherAMD64ToPAE_Def,
75 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
76# endif /* RT_ARCH_AMD64 */
77#else /* !VBOX_WITH_RAW_MODE */
78 NULL,
79 NULL,
80 NULL,
81 NULL,
82 NULL,
83 NULL,
84 NULL,
85 NULL,
86 NULL
87#endif /* !VBOX_WITH_RAW_MODE */
88};
89
90
91/**
92 * VMMR3Init worker that initiates the switcher code (aka core code).
93 *
94 * This is core per VM code which might need fixups and/or for ease of use are
95 * put on linear contiguous backing.
96 *
97 * @returns VBox status code.
98 * @param pVM Pointer to the shared VM structure.
99 */
100int vmmR3SwitcherInit(PVM pVM)
101{
102#ifndef VBOX_WITH_RAW_MODE
103 return VINF_SUCCESS;
104#else
105 /*
106 * Calc the size.
107 */
108 unsigned cbCoreCode = 0;
109 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
110 {
111 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
112 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
113 if (pSwitcher)
114 {
115 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
116 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
117 }
118 }
119
120 /*
121 * Allocate continguous pages for switchers and deal with
122 * conflicts in the intermediate mapping of the code.
123 */
124 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
125 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
126 int rc = VERR_NO_MEMORY;
127 if (pVM->vmm.s.pvCoreCodeR3)
128 {
129 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
130 if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT)
131 {
132 /* try more allocations - Solaris, Linux. */
133 const unsigned cTries = 8234;
134 struct VMMInitBadTry
135 {
136 RTR0PTR pvR0;
137 void *pvR3;
138 RTHCPHYS HCPhys;
139 RTUINT cb;
140 } *paBadTries = (struct VMMInitBadTry *)RTMemTmpAlloc(sizeof(*paBadTries) * cTries);
141 AssertReturn(paBadTries, VERR_NO_TMP_MEMORY);
142 unsigned i = 0;
143 do
144 {
145 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
146 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
147 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
148 i++;
149 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
150 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
151 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
152 if (!pVM->vmm.s.pvCoreCodeR3)
153 break;
154 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
155 } while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT
156 && i < cTries - 1);
157
158 /* cleanup */
159 if (RT_FAILURE(rc))
160 {
161 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
162 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
163 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
164 paBadTries[i].cb = pVM->vmm.s.cbCoreCode;
165 i++;
166 LogRel(("Failed to allocated and map core code: rc=%Rrc\n", rc));
167 }
168 while (i-- > 0)
169 {
170 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%RHp\n",
171 i, paBadTries[i].pvR3, paBadTries[i].pvR0, paBadTries[i].HCPhys));
172 SUPR3ContFree(paBadTries[i].pvR3, paBadTries[i].cb >> PAGE_SHIFT);
173 }
174 RTMemTmpFree(paBadTries);
175 }
176 }
177 if (RT_SUCCESS(rc))
178 {
179 /*
180 * copy the code.
181 */
182 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
183 {
184 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
185 if (pSwitcher)
186 memcpy((uint8_t *)pVM->vmm.s.pvCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
187 pSwitcher->pvCode, pSwitcher->cbCode);
188 }
189
190 /*
191 * Map the code into the GC address space.
192 */
193 RTGCPTR GCPtr;
194 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode,
195 cbCoreCode, "Core Code", &GCPtr);
196 if (RT_SUCCESS(rc))
197 {
198 pVM->vmm.s.pvCoreCodeRC = GCPtr;
199 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
200 LogRel(("CoreCode: R3=%RHv R0=%RHv RC=%RRv Phys=%RHp cb=%#x\n",
201 pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
202
203 /*
204 * Finally, PGM probably has selected a switcher already but we need
205 * to get the routine addresses, so we'll reselect it.
206 * This may legally fail so, we're ignoring the rc.
207 */
208 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
209 return rc;
210 }
211
212 /* shit */
213 AssertMsgFailed(("PGMR3Map(,%RRv, %RHp, %#x, 0) failed with rc=%Rrc\n", pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
214 SUPR3ContFree(pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
215 }
216 else
217 VMSetError(pVM, rc, RT_SRC_POS,
218 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
219 cbCoreCode);
220
221 pVM->vmm.s.pvCoreCodeR3 = NULL;
222 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
223 pVM->vmm.s.pvCoreCodeRC = 0;
224 return rc;
225#endif
226}
227
228/**
229 * Relocate the switchers, called by VMMR#Relocate.
230 *
231 * @param pVM Pointer to the shared VM structure.
232 * @param offDelta The relocation delta.
233 */
234void vmmR3SwitcherRelocate(PVM pVM, RTGCINTPTR offDelta)
235{
236#ifdef VBOX_WITH_RAW_MODE
237 /*
238 * Relocate all the switchers.
239 */
240 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
241 {
242 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
243 if (pSwitcher && pSwitcher->pfnRelocate)
244 {
245 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
246 pSwitcher->pfnRelocate(pVM,
247 pSwitcher,
248 pVM->vmm.s.pvCoreCodeR0 + off,
249 (uint8_t *)pVM->vmm.s.pvCoreCodeR3 + off,
250 pVM->vmm.s.pvCoreCodeRC + off,
251 pVM->vmm.s.HCPhysCoreCode + off);
252 }
253 }
254
255 /*
256 * Recalc the RC address for the current switcher.
257 */
258 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
259 RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
260 pVM->vmm.s.pfnGuestToHostRC = RCPtr + pSwitcher->offGCGuestToHost;
261 pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offGCCallTrampoline;
262 pVM->pfnVMMGCGuestToHostAsm = RCPtr + pSwitcher->offGCGuestToHostAsm;
263 pVM->pfnVMMGCGuestToHostAsmHyperCtx = RCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
264 pVM->pfnVMMGCGuestToHostAsmGuestCtx = RCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
265
266// AssertFailed();
267#endif
268}
269
270
271/**
272 * Generic switcher code relocator.
273 *
274 * @param pVM The VM handle.
275 * @param pSwitcher The switcher definition.
276 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
277 * @param R0PtrCode Pointer to the core code block for the switcher, ring-0 mapping.
278 * @param GCPtrCode The guest context address corresponding to pu8Code.
279 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
280 * @param SelCS The hypervisor CS selector.
281 * @param SelDS The hypervisor DS selector.
282 * @param SelTSS The hypervisor TSS selector.
283 * @param GCPtrGDT The GC address of the hypervisor GDT.
284 * @param SelCS64 The 64-bit mode hypervisor CS selector.
285 */
286static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
287 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
288{
289 union
290 {
291 const uint8_t *pu8;
292 const uint16_t *pu16;
293 const uint32_t *pu32;
294 const uint64_t *pu64;
295 const void *pv;
296 uintptr_t u;
297 } u;
298 u.pv = pSwitcher->pvFixups;
299
300 /*
301 * Process fixups.
302 */
303 uint8_t u8;
304 while ((u8 = *u.pu8++) != FIX_THE_END)
305 {
306 /*
307 * Get the source (where to write the fixup).
308 */
309 uint32_t offSrc = *u.pu32++;
310 Assert(offSrc < pSwitcher->cbCode);
311 union
312 {
313 uint8_t *pu8;
314 uint16_t *pu16;
315 uint32_t *pu32;
316 uint64_t *pu64;
317 uintptr_t u;
318 } uSrc;
319 uSrc.pu8 = pu8CodeR3 + offSrc;
320
321 /* The fixup target and method depends on the type. */
322 switch (u8)
323 {
324 /*
325 * 32-bit relative, source in HC and target in GC.
326 */
327 case FIX_HC_2_GC_NEAR_REL:
328 {
329 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
330 uint32_t offTrg = *u.pu32++;
331 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
332 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
333 break;
334 }
335
336 /*
337 * 32-bit relative, source in HC and target in ID.
338 */
339 case FIX_HC_2_ID_NEAR_REL:
340 {
341 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
342 uint32_t offTrg = *u.pu32++;
343 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
344 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (R0PtrCode + offSrc + 4));
345 break;
346 }
347
348 /*
349 * 32-bit relative, source in GC and target in HC.
350 */
351 case FIX_GC_2_HC_NEAR_REL:
352 {
353 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
354 uint32_t offTrg = *u.pu32++;
355 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
356 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (GCPtrCode + offSrc + 4));
357 break;
358 }
359
360 /*
361 * 32-bit relative, source in GC and target in ID.
362 */
363 case FIX_GC_2_ID_NEAR_REL:
364 {
365 AssertMsg(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode, ("%x - %x < %x\n", offSrc, pSwitcher->offGCCode, pSwitcher->cbGCCode));
366 uint32_t offTrg = *u.pu32++;
367 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
368 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
369 break;
370 }
371
372 /*
373 * 32-bit relative, source in ID and target in HC.
374 */
375 case FIX_ID_2_HC_NEAR_REL:
376 {
377 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
378 uint32_t offTrg = *u.pu32++;
379 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
380 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (u32IDCode + offSrc + 4));
381 break;
382 }
383
384 /*
385 * 32-bit relative, source in ID and target in HC.
386 */
387 case FIX_ID_2_GC_NEAR_REL:
388 {
389 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
390 uint32_t offTrg = *u.pu32++;
391 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
392 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
393 break;
394 }
395
396 /*
397 * 16:32 far jump, target in GC.
398 */
399 case FIX_GC_FAR32:
400 {
401 uint32_t offTrg = *u.pu32++;
402 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
403 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
404 *uSrc.pu16++ = SelCS;
405 break;
406 }
407
408 /*
409 * Make 32-bit GC pointer given CPUM offset.
410 */
411 case FIX_GC_CPUM_OFF:
412 {
413 uint32_t offCPUM = *u.pu32++;
414 Assert(offCPUM < sizeof(pVM->cpum));
415 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
416 break;
417 }
418
419 /*
420 * Make 32-bit GC pointer given CPUMCPU offset.
421 */
422 case FIX_GC_CPUMCPU_OFF:
423 {
424 uint32_t offCPUM = *u.pu32++;
425 Assert(offCPUM < sizeof(pVM->aCpus[0].cpum));
426 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->aCpus[0].cpum) + offCPUM);
427 break;
428 }
429
430 /*
431 * Make 32-bit GC pointer given VM offset.
432 */
433 case FIX_GC_VM_OFF:
434 {
435 uint32_t offVM = *u.pu32++;
436 Assert(offVM < sizeof(VM));
437 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, pVM) + offVM);
438 break;
439 }
440
441 /*
442 * Make 32-bit HC pointer given CPUM offset.
443 */
444 case FIX_HC_CPUM_OFF:
445 {
446 uint32_t offCPUM = *u.pu32++;
447 Assert(offCPUM < sizeof(pVM->cpum));
448 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
449 break;
450 }
451
452 /*
453 * Make 32-bit R0 pointer given VM offset.
454 */
455 case FIX_HC_VM_OFF:
456 {
457 uint32_t offVM = *u.pu32++;
458 Assert(offVM < sizeof(VM));
459 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
460 break;
461 }
462
463 /*
464 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
465 */
466 case FIX_INTER_32BIT_CR3:
467 {
468
469 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
470 break;
471 }
472
473 /*
474 * Store the PAE CR3 (32-bit) for the intermediate memory context.
475 */
476 case FIX_INTER_PAE_CR3:
477 {
478
479 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
480 break;
481 }
482
483 /*
484 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
485 */
486 case FIX_INTER_AMD64_CR3:
487 {
488
489 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
490 break;
491 }
492
493 /*
494 * Store Hypervisor CS (16-bit).
495 */
496 case FIX_HYPER_CS:
497 {
498 *uSrc.pu16 = SelCS;
499 break;
500 }
501
502 /*
503 * Store Hypervisor DS (16-bit).
504 */
505 case FIX_HYPER_DS:
506 {
507 *uSrc.pu16 = SelDS;
508 break;
509 }
510
511 /*
512 * Store Hypervisor TSS (16-bit).
513 */
514 case FIX_HYPER_TSS:
515 {
516 *uSrc.pu16 = SelTSS;
517 break;
518 }
519
520 /*
521 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
522 */
523 case FIX_GC_TSS_GDTE_DW2:
524 {
525 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
526 *uSrc.pu32 = (uint32_t)GCPtr;
527 break;
528 }
529
530 /*
531 * Store the EFER or mask for the 32->64 bit switcher.
532 */
533 case FIX_EFER_OR_MASK:
534 {
535 uint32_t u32OrMask = MSR_K6_EFER_LME | MSR_K6_EFER_SCE;
536 /** note: we don't care if cpuid 0x8000001 isn't supported as that implies long mode isn't either, so this switcher would never be used. */
537 if (!!(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_NX))
538 u32OrMask |= MSR_K6_EFER_NXE;
539
540 *uSrc.pu32 = u32OrMask;
541 break;
542 }
543
544 /*
545 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
546 */
547 case FIX_NO_FXSAVE_JMP:
548 {
549 uint32_t offTrg = *u.pu32++;
550 Assert(offTrg < pSwitcher->cbCode);
551 if (!CPUMSupportsFXSR(pVM))
552 {
553 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
554 *uSrc.pu32++ = offTrg - (offSrc + 5);
555 }
556 else
557 {
558 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
559 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
560 }
561 break;
562 }
563
564 /*
565 * Insert relative jump to specified target it SYSENTER isn't used by the host.
566 */
567 case FIX_NO_SYSENTER_JMP:
568 {
569 uint32_t offTrg = *u.pu32++;
570 Assert(offTrg < pSwitcher->cbCode);
571 if (!CPUMIsHostUsingSysEnter(pVM))
572 {
573 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
574 *uSrc.pu32++ = offTrg - (offSrc + 5);
575 }
576 else
577 {
578 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
579 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
580 }
581 break;
582 }
583
584 /*
585 * Insert relative jump to specified target it SYSCALL isn't used by the host.
586 */
587 case FIX_NO_SYSCALL_JMP:
588 {
589 uint32_t offTrg = *u.pu32++;
590 Assert(offTrg < pSwitcher->cbCode);
591 if (!CPUMIsHostUsingSysCall(pVM))
592 {
593 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
594 *uSrc.pu32++ = offTrg - (offSrc + 5);
595 }
596 else
597 {
598 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
599 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
600 }
601 break;
602 }
603
604 /*
605 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
606 */
607 case FIX_HC_32BIT:
608 {
609 uint32_t offTrg = *u.pu32++;
610 Assert(offSrc < pSwitcher->cbCode);
611 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
612 *uSrc.pu32 = R0PtrCode + offTrg;
613 break;
614 }
615
616#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
617 /*
618 * 64-bit HC Code Selector (no argument).
619 */
620 case FIX_HC_64BIT_CS:
621 {
622 Assert(offSrc < pSwitcher->cbCode);
623# if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
624 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
625# else
626 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
627# endif
628 break;
629 }
630
631 /*
632 * 64-bit HC pointer to the CPUM instance data (no argument).
633 */
634 case FIX_HC_64BIT_CPUM:
635 {
636 Assert(offSrc < pSwitcher->cbCode);
637 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
638 break;
639 }
640#endif
641 /*
642 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
643 */
644 case FIX_HC_64BIT:
645 {
646 uint32_t offTrg = *u.pu32++;
647 Assert(offSrc < pSwitcher->cbCode);
648 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
649 *uSrc.pu64 = R0PtrCode + offTrg;
650 break;
651 }
652
653#ifdef RT_ARCH_X86
654 case FIX_GC_64_BIT_CPUM_OFF:
655 {
656 uint32_t offCPUM = *u.pu32++;
657 Assert(offCPUM < sizeof(pVM->cpum));
658 *uSrc.pu64 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
659 break;
660 }
661#endif
662
663 /*
664 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
665 */
666 case FIX_ID_32BIT:
667 {
668 uint32_t offTrg = *u.pu32++;
669 Assert(offSrc < pSwitcher->cbCode);
670 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
671 *uSrc.pu32 = u32IDCode + offTrg;
672 break;
673 }
674
675 /*
676 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
677 */
678 case FIX_ID_64BIT:
679 case FIX_HC_64BIT_NOCHECK:
680 {
681 uint32_t offTrg = *u.pu32++;
682 Assert(offSrc < pSwitcher->cbCode);
683 Assert(u8 == FIX_HC_64BIT_NOCHECK || offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
684 *uSrc.pu64 = u32IDCode + offTrg;
685 break;
686 }
687
688 /*
689 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
690 */
691 case FIX_ID_FAR32_TO_64BIT_MODE:
692 {
693 uint32_t offTrg = *u.pu32++;
694 Assert(offSrc < pSwitcher->cbCode);
695 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
696 *uSrc.pu32++ = u32IDCode + offTrg;
697 *uSrc.pu16 = SelCS64;
698 AssertRelease(SelCS64);
699 break;
700 }
701
702#ifdef VBOX_WITH_NMI
703 /*
704 * 32-bit address to the APIC base.
705 */
706 case FIX_GC_APIC_BASE_32BIT:
707 {
708 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
709 break;
710 }
711#endif
712
713 default:
714 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
715 break;
716 }
717 }
718
719#ifdef LOG_ENABLED
720 /*
721 * If Log2 is enabled disassemble the switcher code.
722 *
723 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
724 */
725 if (LogIs2Enabled())
726 {
727 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
728 " R0PtrCode = %p\n"
729 " pu8CodeR3 = %p\n"
730 " GCPtrCode = %RGv\n"
731 " u32IDCode = %08x\n"
732 " pVMRC = %RRv\n"
733 " pCPUMRC = %RRv\n"
734 " pVMR3 = %p\n"
735 " pCPUMR3 = %p\n"
736 " GCPtrGDT = %RGv\n"
737 " InterCR3s = %08RHp, %08RHp, %08RHp (32-Bit, PAE, AMD64)\n"
738 " HyperCR3s = %08RHp (32-Bit, PAE & AMD64)\n"
739 " SelCS = %04x\n"
740 " SelDS = %04x\n"
741 " SelCS64 = %04x\n"
742 " SelTSS = %04x\n",
743 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
744 R0PtrCode,
745 pu8CodeR3,
746 GCPtrCode,
747 u32IDCode,
748 VM_RC_ADDR(pVM, pVM),
749 VM_RC_ADDR(pVM, &pVM->cpum),
750 pVM,
751 &pVM->cpum,
752 GCPtrGDT,
753 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
754 PGMGetHyperCR3(VMMGetCpu(pVM)),
755 SelCS, SelDS, SelCS64, SelTSS);
756
757 uint32_t offCode = 0;
758 while (offCode < pSwitcher->cbCode)
759 {
760 /*
761 * Figure out where this is.
762 */
763 const char *pszDesc = NULL;
764 RTUINTPTR uBase;
765 uint32_t cbCode;
766 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
767 {
768 pszDesc = "HCCode0";
769 uBase = R0PtrCode;
770 offCode = pSwitcher->offHCCode0;
771 cbCode = pSwitcher->cbHCCode0;
772 }
773 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
774 {
775 pszDesc = "HCCode1";
776 uBase = R0PtrCode;
777 offCode = pSwitcher->offHCCode1;
778 cbCode = pSwitcher->cbHCCode1;
779 }
780 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
781 {
782 pszDesc = "GCCode";
783 uBase = GCPtrCode;
784 offCode = pSwitcher->offGCCode;
785 cbCode = pSwitcher->cbGCCode;
786 }
787 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
788 {
789 pszDesc = "IDCode0";
790 uBase = u32IDCode;
791 offCode = pSwitcher->offIDCode0;
792 cbCode = pSwitcher->cbIDCode0;
793 }
794 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
795 {
796 pszDesc = "IDCode1";
797 uBase = u32IDCode;
798 offCode = pSwitcher->offIDCode1;
799 cbCode = pSwitcher->cbIDCode1;
800 }
801 else
802 {
803 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
804 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
805 offCode++;
806 continue;
807 }
808
809 /*
810 * Disassemble it.
811 */
812 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
813 DISCPUSTATE Cpu;
814
815 memset(&Cpu, 0, sizeof(Cpu));
816 Cpu.mode = CPUMODE_32BIT;
817 while (cbCode > 0)
818 {
819 /* try label it */
820 if (pSwitcher->offR0HostToGuest == offCode)
821 RTLogPrintf(" *R0HostToGuest:\n");
822 if (pSwitcher->offGCGuestToHost == offCode)
823 RTLogPrintf(" *GCGuestToHost:\n");
824 if (pSwitcher->offGCCallTrampoline == offCode)
825 RTLogPrintf(" *GCCallTrampoline:\n");
826 if (pSwitcher->offGCGuestToHostAsm == offCode)
827 RTLogPrintf(" *GCGuestToHostAsm:\n");
828 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
829 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
830 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
831 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
832
833 /* disas */
834 uint32_t cbInstr = 0;
835 char szDisas[256];
836 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pu8CodeR3 + offCode, uBase - (uintptr_t)pu8CodeR3, &cbInstr, szDisas)))
837 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
838 else
839 {
840 RTLogPrintf(" %04x: %02x '%c'\n",
841 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
842 cbInstr = 1;
843 }
844 offCode += cbInstr;
845 cbCode -= RT_MIN(cbInstr, cbCode);
846 }
847 }
848 }
849#endif
850}
851
852
853/**
854 * Relocator for the 32-Bit to 32-Bit world switcher.
855 */
856DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
857{
858 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
859 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
860}
861
862
863/**
864 * Relocator for the 32-Bit to PAE world switcher.
865 */
866DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
867{
868 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
869 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
870}
871
872
873/**
874 * Relocator for the 32-Bit to AMD64 world switcher.
875 */
876DECLCALLBACK(void) vmmR3Switcher32BitToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
877{
878 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
879 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
880}
881
882
883/**
884 * Relocator for the PAE to 32-Bit world switcher.
885 */
886DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
887{
888 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
889 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
890}
891
892
893/**
894 * Relocator for the PAE to PAE world switcher.
895 */
896DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
897{
898 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
899 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
900}
901
902/**
903 * Relocator for the PAE to AMD64 world switcher.
904 */
905DECLCALLBACK(void) vmmR3SwitcherPAEToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
906{
907 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
908 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
909}
910
911
912/**
913 * Relocator for the AMD64 to 32-bit world switcher.
914 */
915DECLCALLBACK(void) vmmR3SwitcherAMD64To32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
916{
917 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
918 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
919}
920
921
922/**
923 * Relocator for the AMD64 to PAE world switcher.
924 */
925DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
926{
927 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
928 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
929}
930
931
932/**
933 * Selects the switcher to be used for switching to GC.
934 *
935 * @returns VBox status code.
936 * @param pVM VM handle.
937 * @param enmSwitcher The new switcher.
938 * @remark This function may be called before the VMM is initialized.
939 */
940VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
941{
942 /*
943 * Validate input.
944 */
945 if ( enmSwitcher < VMMSWITCHER_INVALID
946 || enmSwitcher >= VMMSWITCHER_MAX)
947 {
948 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
949 return VERR_INVALID_PARAMETER;
950 }
951
952 /* Do nothing if the switcher is disabled. */
953 if (pVM->vmm.s.fSwitcherDisabled)
954 return VINF_SUCCESS;
955
956 /*
957 * Select the new switcher.
958 */
959 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
960 if (pSwitcher)
961 {
962 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
963 pVM->vmm.s.enmSwitcher = enmSwitcher;
964
965 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
966 pVM->vmm.s.pfnHostToGuestR0 = pbCodeR0 + pSwitcher->offR0HostToGuest;
967
968 RTGCPTR GCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[enmSwitcher];
969 pVM->vmm.s.pfnGuestToHostRC = GCPtr + pSwitcher->offGCGuestToHost;
970 pVM->vmm.s.pfnCallTrampolineRC = GCPtr + pSwitcher->offGCCallTrampoline;
971 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
972 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
973 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
974 return VINF_SUCCESS;
975 }
976
977 return VERR_NOT_IMPLEMENTED;
978}
979
980
981/**
982 * Disable the switcher logic permanently.
983 *
984 * @returns VBox status code.
985 * @param pVM VM handle.
986 */
987VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
988{
989/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
990 * @code
991 * mov eax, VERR_INTERNAL_ERROR
992 * ret
993 * @endcode
994 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
995 */
996 pVM->vmm.s.fSwitcherDisabled = true;
997 return VINF_SUCCESS;
998}
999
1000
1001/**
1002 * Gets the switcher to be used for switching to GC.
1003 *
1004 * @returns host to guest ring 0 switcher entrypoint
1005 * @param pVM VM handle.
1006 * @param enmSwitcher The new switcher.
1007 */
1008VMMR3DECL(RTR0PTR) VMMR3GetHostToGuestSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1009{
1010 /*
1011 * Validate input.
1012 */
1013 if ( enmSwitcher < VMMSWITCHER_INVALID
1014 || enmSwitcher >= VMMSWITCHER_MAX)
1015 {
1016 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1017 return NIL_RTR0PTR;
1018 }
1019
1020 /*
1021 * Select the new switcher.
1022 */
1023 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1024 if (pSwitcher)
1025 {
1026 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
1027 return pbCodeR0 + pSwitcher->offR0HostToGuest;
1028 }
1029 return NIL_RTR0PTR;
1030}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette