/* $Id: VMMTests.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * VMM - The Virtual Machine Monitor Core, Tests. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ //#define NO_SUPCALLR0VMM /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_VMM #include /* for SUPGetCpuHzFromGIP */ #include #include #include #include #include #include #include #include #include "VMMInternal.h" #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_RAW_MODE static void vmmR3TestClearStack(PVMCPU pVCpu) { /* We leave the first 64 bytes of the stack alone because of strict ring-0 long jump code uses it. */ memset(pVCpu->vmm.s.pbEMTStackR3 + 64, 0xaa, VMM_STACK_SIZE - 64); } static int vmmR3ReportMsrRange(PVM pVM, uint32_t uMsr, uint64_t cMsrs, PRTSTREAM pReportStrm, uint32_t *pcMsrsFound) { /* * Preps. */ RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCTestReadMsrs", &RCPtrEP); AssertMsgRCReturn(rc, ("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc), rc); uint32_t const cMsrsPerCall = 16384; uint32_t cbResults = cMsrsPerCall * sizeof(VMMTESTMSRENTRY); PVMMTESTMSRENTRY paResults; rc = MMHyperAlloc(pVM, cbResults, 0, MM_TAG_VMM, (void **)&paResults); AssertMsgRCReturn(rc, ("Error allocating %#x bytes off the hyper heap: %Rrc\n", cbResults, rc), rc); /* * The loop. */ RTRCPTR RCPtrResults = MMHyperR3ToRC(pVM, paResults); uint32_t cMsrsFound = 0; uint32_t uLastMsr = uMsr; uint64_t uNsTsStart = RTTimeNanoTS(); for (;;) { if ( pReportStrm && uMsr - uLastMsr > _64K && (uMsr & (_4M - 1)) == 0) { if (uMsr - uLastMsr < 16U*_1M) RTStrmFlush(pReportStrm); RTPrintf("... %#010x [%u ns/msr] ...\n", uMsr, (RTTimeNanoTS() - uNsTsStart) / uMsr); } /*RT_BZERO(paResults, cbResults);*/ uint32_t const cBatch = RT_MIN(cMsrsPerCall, cMsrs); rc = VMMR3CallRC(pVM, RCPtrEP, 4, pVM->pVMRC, uMsr, cBatch, RCPtrResults); if (RT_FAILURE(rc)) { RTPrintf("VMM: VMMR3CallRC failed rc=%Rrc, uMsr=%#x\n", rc, uMsr); break; } for (uint32_t i = 0; i < cBatch; i++) if (paResults[i].uMsr != UINT64_MAX) { if (paResults[i].uValue == 0) { if (pReportStrm) RTStrmPrintf(pReportStrm, " MVO(%#010llx, \"MSR\", UINT64_C(%#018llx)),\n", paResults[i].uMsr, paResults[i].uValue); RTPrintf("%#010llx = 0\n", paResults[i].uMsr); } else { if (pReportStrm) RTStrmPrintf(pReportStrm, " MVO(%#010llx, \"MSR\", UINT64_C(%#018llx)),\n", paResults[i].uMsr, paResults[i].uValue); RTPrintf("%#010llx = %#010x`%08x\n", paResults[i].uMsr, RT_HI_U32(paResults[i].uValue), RT_LO_U32(paResults[i].uValue)); } cMsrsFound++; uLastMsr = paResults[i].uMsr; } /* Advance. */ if (cMsrs <= cMsrsPerCall) break; cMsrs -= cMsrsPerCall; uMsr += cMsrsPerCall; } *pcMsrsFound += cMsrsFound; MMHyperFree(pVM, paResults); return rc; } /** * Produces a quick report of MSRs. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pReportStrm Pointer to the report output stream. Optional. * @param fWithCpuId Whether CPUID should be included. */ static int vmmR3DoMsrQuickReport(PVM pVM, PRTSTREAM pReportStrm, bool fWithCpuId) { uint64_t uTsStart = RTTimeNanoTS(); RTPrintf("=== MSR Quick Report Start ===\n"); RTStrmFlush(g_pStdOut); if (fWithCpuId) { DBGFR3InfoStdErr(pVM->pUVM, "cpuid", "verbose"); RTPrintf("\n"); } if (pReportStrm) RTStrmPrintf(pReportStrm, "\n\n{\n"); static struct { uint32_t uFirst, cMsrs; } const s_aRanges[] = { { 0x00000000, 0x00042000 }, { 0x10000000, 0x00001000 }, { 0x20000000, 0x00001000 }, { 0x40000000, 0x00012000 }, { 0x80000000, 0x00012000 }, // Need 0xc0000000..0xc001106f (at least), but trouble on solaris w/ 10h and 0fh family cpus: // { 0xc0000000, 0x00022000 }, { 0xc0000000, 0x00010000 }, { 0xc0010000, 0x00001040 }, { 0xc0011040, 0x00004040 }, /* should cause trouble... */ }; uint32_t cMsrsFound = 0; int rc = VINF_SUCCESS; for (unsigned i = 0; i < RT_ELEMENTS(s_aRanges) && RT_SUCCESS(rc); i++) { //if (i >= 3) //{ //RTStrmFlush(g_pStdOut); //RTThreadSleep(40); //} rc = vmmR3ReportMsrRange(pVM, s_aRanges[i].uFirst, s_aRanges[i].cMsrs, pReportStrm, &cMsrsFound); } if (pReportStrm) RTStrmPrintf(pReportStrm, "}; /* %u (%#x) MSRs; rc=%Rrc */\n", cMsrsFound, cMsrsFound, rc); RTPrintf("Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound); RTPrintf("=== MSR Quick Report End (rc=%Rrc, %'llu ns) ===\n", rc, RTTimeNanoTS() - uTsStart); return rc; } /** * Performs a testcase. * * @returns return value from the test. * @param pVM The cross context VM structure. * @param enmTestcase The testcase operation to perform. * @param uVariation The testcase variation id. */ static int vmmR3DoGCTest(PVM pVM, VMMRCOPERATION enmTestcase, unsigned uVariation) { PVMCPU pVCpu = &pVM->aCpus[0]; RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP); if (RT_FAILURE(rc)) return rc; Log(("vmmR3DoGCTest: %d %#x\n", enmTestcase, uVariation)); CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); vmmR3TestClearStack(pVCpu); CPUMPushHyper(pVCpu, uVariation); CPUMPushHyper(pVCpu, enmTestcase); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); # if 1 /* flush the raw-mode logs. */ # ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); # endif # ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelGetDefaultInstance(), pRelLogger); # endif # endif Log(("vmmR3DoGCTest: rc=%Rrc iLastGZRc=%Rrc\n", rc, pVCpu->vmm.s.iLastGZRc)); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; return rc; } /** * Performs a trap test. * * @returns Return value from the trap test. * @param pVM The cross context VM structure. * @param u8Trap The trap number to test. * @param uVariation The testcase variation. * @param rcExpect The expected result. * @param u32Eax The expected eax value. * @param pszFaultEIP The fault address. Pass NULL if this isn't available or doesn't apply. * @param pszDesc The test description. */ static int vmmR3DoTrapTest(PVM pVM, uint8_t u8Trap, unsigned uVariation, int rcExpect, uint32_t u32Eax, const char *pszFaultEIP, const char *pszDesc) { PVMCPU pVCpu = &pVM->aCpus[0]; RTPrintf("VMM: testing 0%x / %d - %s\n", u8Trap, uVariation, pszDesc); RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP); if (RT_FAILURE(rc)) return rc; CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); vmmR3TestClearStack(pVCpu); CPUMPushHyper(pVCpu, uVariation); CPUMPushHyper(pVCpu, u8Trap + VMMRC_DO_TESTCASE_TRAP_FIRST); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; bool fDump = false; if (rc != rcExpect) { RTPrintf("VMM: FAILURE - rc=%Rrc expected %Rrc\n", rc, rcExpect); if (rc != VERR_NOT_IMPLEMENTED) fDump = true; } else if ( rcExpect != VINF_SUCCESS && u8Trap != 8 /* double fault doesn't dare set TrapNo. */ && u8Trap != 3 /* guest only, we're not in guest. */ && u8Trap != 1 /* guest only, we're not in guest. */ && u8Trap != TRPMGetTrapNo(pVCpu)) { RTPrintf("VMM: FAILURE - Trap %#x expected %#x\n", TRPMGetTrapNo(pVCpu), u8Trap); fDump = true; } else if (pszFaultEIP) { RTRCPTR RCPtrFault; int rc2 = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, pszFaultEIP, &RCPtrFault); if (RT_FAILURE(rc2)) RTPrintf("VMM: FAILURE - Failed to resolve symbol '%s', %Rrc!\n", pszFaultEIP, rc); else if (RCPtrFault != CPUMGetHyperEIP(pVCpu)) { RTPrintf("VMM: FAILURE - EIP=%08RX32 expected %RRv (%s)\n", CPUMGetHyperEIP(pVCpu), RCPtrFault, pszFaultEIP); fDump = true; } } else if (rcExpect != VINF_SUCCESS) { if (CPUMGetHyperSS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - ss=%x expected %x\n", CPUMGetHyperSS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperES(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - es=%x expected %x\n", CPUMGetHyperES(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperDS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - ds=%x expected %x\n", CPUMGetHyperDS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperFS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - fs=%x expected %x\n", CPUMGetHyperFS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperGS(pVCpu) == SELMGetHyperDS(pVM)) RTPrintf("VMM: FAILURE - gs=%x expected %x\n", CPUMGetHyperGS(pVCpu), SELMGetHyperDS(pVM)); if (CPUMGetHyperEDI(pVCpu) == 0x01234567) RTPrintf("VMM: FAILURE - edi=%x expected %x\n", CPUMGetHyperEDI(pVCpu), 0x01234567); if (CPUMGetHyperESI(pVCpu) == 0x42000042) RTPrintf("VMM: FAILURE - esi=%x expected %x\n", CPUMGetHyperESI(pVCpu), 0x42000042); if (CPUMGetHyperEBP(pVCpu) == 0xffeeddcc) RTPrintf("VMM: FAILURE - ebp=%x expected %x\n", CPUMGetHyperEBP(pVCpu), 0xffeeddcc); if (CPUMGetHyperEBX(pVCpu) == 0x89abcdef) RTPrintf("VMM: FAILURE - ebx=%x expected %x\n", CPUMGetHyperEBX(pVCpu), 0x89abcdef); if (CPUMGetHyperECX(pVCpu) == 0xffffaaaa) RTPrintf("VMM: FAILURE - ecx=%x expected %x\n", CPUMGetHyperECX(pVCpu), 0xffffaaaa); if (CPUMGetHyperEDX(pVCpu) == 0x77778888) RTPrintf("VMM: FAILURE - edx=%x expected %x\n", CPUMGetHyperEDX(pVCpu), 0x77778888); if (CPUMGetHyperEAX(pVCpu) == u32Eax) RTPrintf("VMM: FAILURE - eax=%x expected %x\n", CPUMGetHyperEAX(pVCpu), u32Eax); } if (fDump) VMMR3FatalDump(pVM, pVCpu, rc); return rc; } #endif /* VBOX_WITH_RAW_MODE */ /* execute the switch. */ VMMR3DECL(int) VMMDoTest(PVM pVM) { int rc = VINF_SUCCESS; #ifdef VBOX_WITH_RAW_MODE PVMCPU pVCpu = &pVM->aCpus[0]; PUVM pUVM = pVM->pUVM; # ifdef NO_SUPCALLR0VMM RTPrintf("NO_SUPCALLR0VMM\n"); return rc; # endif /* * Setup stack for calling VMMRCEntry(). */ RTRCPTR RCPtrEP; rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP); if (RT_SUCCESS(rc)) { RTPrintf("VMM: VMMRCEntry=%RRv\n", RCPtrEP); /* * Test various crashes which we must be able to recover from. */ vmmR3DoTrapTest(pVM, 0x3, 0, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3"); vmmR3DoTrapTest(pVM, 0x3, 1, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3 WP"); # if 0//defined(DEBUG_bird) /* guess most people would like to skip these since they write to com1. */ vmmR3DoTrapTest(pVM, 0x8, 0, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG]"); SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */ bool f; rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "DoubleFault", &f); # if !defined(DEBUG_bird) if (RT_SUCCESS(rc) && f) # endif { /* see triple fault warnings in SELM and VMMRC.cpp. */ vmmR3DoTrapTest(pVM, 0x8, 1, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG] WP"); SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */ } # endif vmmR3DoTrapTest(pVM, 0xd, 0, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP"); /// @todo find a better \#GP case, on intel ltr will \#PF (busy update?) and not \#GP. //vmmR3DoTrapTest(pVM, 0xd, 1, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP WP"); vmmR3DoTrapTest(pVM, 0xe, 0, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL)"); vmmR3DoTrapTest(pVM, 0xe, 1, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL) WP"); vmmR3DoTrapTest(pVM, 0xe, 2, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler"); /* This test is no longer relevant as fs and gs are loaded with NULL selectors and we will always return to HC if a #GP occurs while returning to guest code. vmmR3DoTrapTest(pVM, 0xe, 4, VINF_SUCCESS, 0x00000000, NULL, "#PF w/Tmp Handler and bad fs"); */ /* * Set a debug register and perform a context switch. */ rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: Nop test failed, rc=%Rrc not VINF_SUCCESS\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } /* a harmless breakpoint */ RTPrintf("VMM: testing hardware bp at 0x10000 (not hit)\n"); DBGFADDRESS Addr; DBGFR3AddrFromFlat(pUVM, &Addr, 0x10000); RTUINT iBp0; rc = DBGFR3BpSetReg(pUVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp0); AssertReleaseRC(rc); rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: DR0=0x10000 test failed with rc=%Rrc!\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } /* a bad one at VMMRCEntry */ RTPrintf("VMM: testing hardware bp at VMMRCEntry (hit)\n"); DBGFR3AddrFromFlat(pUVM, &Addr, RCPtrEP); RTUINT iBp1; rc = DBGFR3BpSetReg(pUVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp1); AssertReleaseRC(rc); rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_NOP, 0); if (rc != VINF_EM_DBG_HYPER_BREAKPOINT) { RTPrintf("VMM: DR1=VMMRCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } /* resume the breakpoint */ RTPrintf("VMM: resuming hyper after breakpoint\n"); CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_RF); rc = VMMR3ResumeHyper(pVM, pVCpu); if (rc != VINF_SUCCESS) { RTPrintf("VMM: failed to resume on hyper breakpoint, rc=%Rrc = KNOWN BUG\n", rc); /** @todo fix VMMR3ResumeHyper */ return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } /* engage the breakpoint again and try single stepping. */ RTPrintf("VMM: testing hardware bp at VMMRCEntry + stepping\n"); rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_NOP, 0); if (rc != VINF_EM_DBG_HYPER_BREAKPOINT) { RTPrintf("VMM: DR1=VMMRCEntry test failed with rc=%Rrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } RTGCUINTREG OldPc = CPUMGetHyperEIP(pVCpu); RTPrintf("%RGr=>", OldPc); unsigned i; for (i = 0; i < 8; i++) { CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF); rc = VMMR3ResumeHyper(pVM, pVCpu); if (rc != VINF_EM_DBG_HYPER_STEPPED) { RTPrintf("\nVMM: failed to step on hyper breakpoint, rc=%Rrc\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } RTGCUINTREG Pc = CPUMGetHyperEIP(pVCpu); RTPrintf("%RGr=>", Pc); if (Pc == OldPc) { RTPrintf("\nVMM: step failed, PC: %RGr -> %RGr\n", OldPc, Pc); return VERR_GENERAL_FAILURE; } OldPc = Pc; } RTPrintf("ok\n"); /* done, clear it */ if ( RT_FAILURE(DBGFR3BpClear(pUVM, iBp0)) || RT_FAILURE(DBGFR3BpClear(pUVM, iBp1))) { RTPrintf("VMM: Failed to clear breakpoints!\n"); return VERR_GENERAL_FAILURE; } rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_NOP, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: NOP failed, rc=%Rrc\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } /* * Interrupt masking. Failure may indiate NMI watchdog activity. */ RTPrintf("VMM: interrupt masking...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250); for (i = 0; i < 10000; i++) { uint64_t StartTick = ASMReadTSC(); rc = vmmR3DoGCTest(pVM, VMMRC_DO_TESTCASE_INTERRUPT_MASKING, 0); if (rc != VINF_SUCCESS) { RTPrintf("VMM: Interrupt masking failed: rc=%Rrc\n", rc); return RT_FAILURE(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS; } uint64_t Ticks = ASMReadTSC() - StartTick; if (Ticks < (SUPGetCpuHzFromGip(g_pSUPGlobalInfoPage) / 10000)) RTPrintf("Warning: Ticks=%RU64 (< %RU64)\n", Ticks, SUPGetCpuHzFromGip(g_pSUPGlobalInfoPage) / 10000); } /* * Interrupt forwarding. */ CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMRC_DO_TESTCASE_HYPER_INTERRUPT); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ Log(("trampoline=%x\n", pVM->vmm.s.pfnCallTrampolineRC)); /* * Switch and do da thing. */ RTPrintf("VMM: interrupt forwarding...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250); i = 0; uint64_t tsBegin = RTTimeNanoTS(); uint64_t TickStart = ASMReadTSC(); Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); do { rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; if (RT_FAILURE(rc)) { Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } i++; if (!(i % 32)) Log(("VMM: iteration %d, esi=%08x edi=%08x ebx=%08x\n", i, CPUMGetHyperESI(pVCpu), CPUMGetHyperEDI(pVCpu), CPUMGetHyperEBX(pVCpu))); } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); uint64_t TickEnd = ASMReadTSC(); uint64_t tsEnd = RTTimeNanoTS(); uint64_t Elapsed = tsEnd - tsBegin; uint64_t PerIteration = Elapsed / (uint64_t)i; uint64_t cTicksElapsed = TickEnd - TickStart; uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration); Log(("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration)); /* * These forced actions are not necessary for the test and trigger breakpoints too. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS); /* * Profile switching. */ RTPrintf("VMM: profiling switcher...\n"); Log(("VMM: profiling switcher...\n")); uint64_t TickMin = UINT64_MAX; tsBegin = RTTimeNanoTS(); TickStart = ASMReadTSC(); Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); for (i = 0; i < 1000000; i++) { CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMRC_DO_TESTCASE_NOP); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ uint64_t TickThisStart = ASMReadTSC(); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart; if (RT_FAILURE(rc)) { Log(("VMM: GC returned fatal %Rra in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } if (TickThisElapsed < TickMin) TickMin = TickThisElapsed; } TickEnd = ASMReadTSC(); tsEnd = RTTimeNanoTS(); Elapsed = tsEnd - tsBegin; PerIteration = Elapsed / (uint64_t)i; cTicksElapsed = TickEnd - TickStart; cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin); Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin)); rc = VINF_SUCCESS; # if 0 /* drop this for now as it causes trouble on AMDs (Opteron 2384 and possibly others). */ /* * A quick MSR report. */ vmmR3DoMsrQuickReport(pVM, NULL, true); # endif } else AssertMsgFailed(("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc)); #else /* !VBOX_WITH_RAW_MODE */ RT_NOREF(pVM); #endif /* !VBOX_WITH_RAW_MODE */ return rc; } #define SYNC_SEL(pHyperCtx, reg) \ if (pHyperCtx->reg.Sel) \ { \ DBGFSELINFO selInfo; \ int rc2 = SELMR3GetShadowSelectorInfo(pVM, pHyperCtx->reg.Sel, &selInfo); \ AssertRC(rc2); \ \ pHyperCtx->reg.u64Base = selInfo.GCPtrBase; \ pHyperCtx->reg.u32Limit = selInfo.cbLimit; \ pHyperCtx->reg.Attr.n.u1Present = selInfo.u.Raw.Gen.u1Present; \ pHyperCtx->reg.Attr.n.u1DefBig = selInfo.u.Raw.Gen.u1DefBig; \ pHyperCtx->reg.Attr.n.u1Granularity = selInfo.u.Raw.Gen.u1Granularity; \ pHyperCtx->reg.Attr.n.u4Type = selInfo.u.Raw.Gen.u4Type; \ pHyperCtx->reg.Attr.n.u2Dpl = selInfo.u.Raw.Gen.u2Dpl; \ pHyperCtx->reg.Attr.n.u1DescType = selInfo.u.Raw.Gen.u1DescType; \ pHyperCtx->reg.Attr.n.u1Long = selInfo.u.Raw.Gen.u1Long; \ } /* execute the switch. */ VMMR3DECL(int) VMMDoHmTest(PVM pVM) { uint32_t i; int rc; PCPUMCTX pHyperCtx, pGuestCtx; RTGCPHYS CR3Phys = 0x0; /* fake address */ PVMCPU pVCpu = &pVM->aCpus[0]; if (!HMIsEnabled(pVM)) { RTPrintf("VMM: Hardware accelerated test not available!\n"); return VERR_ACCESS_DENIED; } #ifdef VBOX_WITH_RAW_MODE /* * These forced actions are not necessary for the test and trigger breakpoints too. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS); #endif /* Enable mapping of the hypervisor into the shadow page table. */ uint32_t cb; rc = PGMR3MappingsSize(pVM, &cb); AssertRCReturn(rc, rc); /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */ rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb); AssertRCReturn(rc, rc); pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); pHyperCtx->cr0 = X86_CR0_PE | X86_CR0_WP | X86_CR0_PG | X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; pHyperCtx->cr4 = X86_CR4_PGE | X86_CR4_OSFXSR | X86_CR4_OSXMMEEXCPT; PGMChangeMode(pVCpu, pHyperCtx->cr0, pHyperCtx->cr4, pHyperCtx->msrEFER); PGMSyncCR3(pVCpu, pHyperCtx->cr0, CR3Phys, pHyperCtx->cr4, true); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER); VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); VM_FF_CLEAR(pVM, VM_FF_REQUEST); /* * Setup stack for calling VMMRCEntry(). */ RTRCPTR RCPtrEP; rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCEntry", &RCPtrEP); if (RT_SUCCESS(rc)) { RTPrintf("VMM: VMMRCEntry=%RRv\n", RCPtrEP); pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); /* Fill in hidden selector registers for the hypervisor state. */ SYNC_SEL(pHyperCtx, cs); SYNC_SEL(pHyperCtx, ds); SYNC_SEL(pHyperCtx, es); SYNC_SEL(pHyperCtx, fs); SYNC_SEL(pHyperCtx, gs); SYNC_SEL(pHyperCtx, ss); SYNC_SEL(pHyperCtx, tr); /* * Profile switching. */ RTPrintf("VMM: profiling switcher...\n"); Log(("VMM: profiling switcher...\n")); uint64_t TickMin = UINT64_MAX; uint64_t tsBegin = RTTimeNanoTS(); uint64_t TickStart = ASMReadTSC(); for (i = 0; i < 1000000; i++) { CPUMSetHyperState(pVCpu, pVM->vmm.s.pfnCallTrampolineRC, pVCpu->vmm.s.pbEMTStackBottomRC, 0, 0); CPUMPushHyper(pVCpu, 0); CPUMPushHyper(pVCpu, VMMRC_DO_TESTCASE_HM_NOP); CPUMPushHyper(pVCpu, pVM->pVMRC); CPUMPushHyper(pVCpu, 3 * sizeof(RTRCPTR)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEP); /* what to call */ pHyperCtx = CPUMGetHyperCtxPtr(pVCpu); pGuestCtx = CPUMQueryGuestCtxPtr(pVCpu); /* Copy the hypervisor context to make sure we have a valid guest context. */ *pGuestCtx = *pHyperCtx; pGuestCtx->cr3 = CR3Phys; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TIMER); VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); uint64_t TickThisStart = ASMReadTSC(); rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, 0); uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart; if (RT_FAILURE(rc)) { Log(("VMM: R0 returned fatal %Rrc in iteration %d\n", rc, i)); VMMR3FatalDump(pVM, pVCpu, rc); return rc; } if (TickThisElapsed < TickMin) TickMin = TickThisElapsed; } uint64_t TickEnd = ASMReadTSC(); uint64_t tsEnd = RTTimeNanoTS(); uint64_t Elapsed = tsEnd - tsBegin; uint64_t PerIteration = Elapsed / (uint64_t)i; uint64_t cTicksElapsed = TickEnd - TickStart; uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i; RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin); Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n", i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin)); rc = VINF_SUCCESS; } else AssertMsgFailed(("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc)); return rc; } #ifdef VBOX_WITH_RAW_MODE /** * Used by VMMDoBruteForceMsrs to dump the CPUID info of the host CPU as a * prefix to the MSR report. */ static DECLCALLBACK(void) vmmDoPrintfVToStream(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list va) { PRTSTREAM pOutStrm = ((PRTSTREAM *)pHlp)[-1]; RTStrmPrintfV(pOutStrm, pszFormat, va); } /** * Used by VMMDoBruteForceMsrs to dump the CPUID info of the host CPU as a * prefix to the MSR report. */ static DECLCALLBACK(void) vmmDoPrintfToStream(PCDBGFINFOHLP pHlp, const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); vmmDoPrintfVToStream(pHlp, pszFormat, va); va_end(va); } #endif /** * Uses raw-mode to query all possible MSRs on the real hardware. * * This generates a msr-report.txt file (appending, no overwriting) as well as * writing the values and process to stdout. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) VMMDoBruteForceMsrs(PVM pVM) { #ifdef VBOX_WITH_RAW_MODE PRTSTREAM pOutStrm; int rc = RTStrmOpen("msr-report.txt", "a", &pOutStrm); if (RT_SUCCESS(rc)) { /* Header */ struct { PRTSTREAM pOutStrm; DBGFINFOHLP Hlp; } MyHlp = { pOutStrm, { vmmDoPrintfToStream, vmmDoPrintfVToStream } }; DBGFR3Info(pVM->pUVM, "cpuid", "verbose", &MyHlp.Hlp); RTStrmPrintf(pOutStrm, "\n"); uint32_t cMsrsFound = 0; vmmR3ReportMsrRange(pVM, 0, _4G, pOutStrm, &cMsrsFound); RTStrmPrintf(pOutStrm, "Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound); RTPrintf("Total %u (%#x) MSRs\n", cMsrsFound, cMsrsFound); RTStrmClose(pOutStrm); } return rc; #else RT_NOREF(pVM); return VERR_NOT_SUPPORTED; #endif } /** * Uses raw-mode to query all known MSRS on the real hardware. * * This generates a known-msr-report.txt file (appending, no overwriting) as * well as writing the values and process to stdout. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) VMMDoKnownMsrs(PVM pVM) { #ifdef VBOX_WITH_RAW_MODE PRTSTREAM pOutStrm; int rc = RTStrmOpen("known-msr-report.txt", "a", &pOutStrm); if (RT_SUCCESS(rc)) { vmmR3DoMsrQuickReport(pVM, pOutStrm, false); RTStrmClose(pOutStrm); } return rc; #else RT_NOREF(pVM); return VERR_NOT_SUPPORTED; #endif } /** * MSR experimentation. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) VMMDoMsrExperiments(PVM pVM) { #ifdef VBOX_WITH_RAW_MODE /* * Preps. */ RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMRC_MAIN_MODULE_NAME, "VMMRCTestTestWriteMsr", &RCPtrEP); AssertMsgRCReturn(rc, ("Failed to resolved VMMRC.rc::VMMRCEntry(), rc=%Rrc\n", rc), rc); uint64_t *pauValues; rc = MMHyperAlloc(pVM, 2 * sizeof(uint64_t), 0, MM_TAG_VMM, (void **)&pauValues); AssertMsgRCReturn(rc, ("Error allocating %#x bytes off the hyper heap: %Rrc\n", 2 * sizeof(uint64_t), rc), rc); RTRCPTR RCPtrValues = MMHyperR3ToRC(pVM, pauValues); /* * Do the experiments. */ uint32_t uMsr = 0x00000277; uint64_t uValue = UINT64_C(0x0007010600070106); # if 0 uValue &= ~(RT_BIT_64(17) | RT_BIT_64(16) | RT_BIT_64(15) | RT_BIT_64(14) | RT_BIT_64(13)); uValue |= RT_BIT_64(13); rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n", uMsr, pauValues[0], uValue, pauValues[1], rc); # elif 1 const uint64_t uOrgValue = uValue; uint32_t cChanges = 0; for (int iBit = 63; iBit >= 58; iBit--) { uValue = uOrgValue & ~RT_BIT_64(iBit); rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\nclear bit=%u -> %s\n", uMsr, pauValues[0], uValue, pauValues[1], rc, iBit, (pauValues[0] ^ pauValues[1]) & RT_BIT_64(iBit) ? "changed" : "unchanged"); cChanges += RT_BOOL(pauValues[0] ^ pauValues[1]); uValue = uOrgValue | RT_BIT_64(iBit); rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\nset bit=%u -> %s\n", uMsr, pauValues[0], uValue, pauValues[1], rc, iBit, (pauValues[0] ^ pauValues[1]) & RT_BIT_64(iBit) ? "changed" : "unchanged"); cChanges += RT_BOOL(pauValues[0] ^ pauValues[1]); } RTPrintf("%u change(s)\n", cChanges); # else uint64_t fWriteable = 0; for (uint32_t i = 0; i <= 63; i++) { uValue = RT_BIT_64(i); # if 0 if (uValue & (0x7)) continue; # endif rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n", uMsr, pauValues[0], uValue, pauValues[1], rc); if (RT_SUCCESS(rc)) fWriteable |= RT_BIT_64(i); } uValue = 0; rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n", uMsr, pauValues[0], uValue, pauValues[1], rc); uValue = UINT64_MAX; rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc\n", uMsr, pauValues[0], uValue, pauValues[1], rc); uValue = fWriteable; rc = VMMR3CallRC(pVM, RCPtrEP, 6, pVM->pVMRC, uMsr, RT_LODWORD(uValue), RT_HIDWORD(uValue), RCPtrValues, RCPtrValues + sizeof(uint64_t)); RTPrintf("uMsr=%#010x before=%#018llx written=%#018llx after=%#018llx rc=%Rrc [fWriteable]\n", uMsr, pauValues[0], uValue, pauValues[1], rc); # endif /* * Cleanups. */ MMHyperFree(pVM, pauValues); return rc; #else RT_NOREF(pVM); return VERR_NOT_SUPPORTED; #endif }