VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 87819

Last change on this file since 87819 was 87819, checked in by vboxsync, 4 years ago

VMM: Disabled the EMT yield timer as it is out dated (multi core CPUs) and will be pointless when timers move off the EMTs. bugref:9943

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.5 KB
Line 
1/* $Id: VMM.cpp 87819 2021-02-20 10:24:03Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
154 do { \
155 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
156 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
157 { /* likely? */ } \
158 else \
159 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
160 } while (0)
161
162
163/*********************************************************************************************************************************
164* Internal Functions *
165*********************************************************************************************************************************/
166static int vmmR3InitStacks(PVM pVM);
167static int vmmR3InitLoggers(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
172static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
173 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
174static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
175static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176
177
178/**
179 * Initializes the VMM.
180 *
181 * @returns VBox status code.
182 * @param pVM The cross context VM structure.
183 */
184VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
185{
186 LogFlow(("VMMR3Init\n"));
187
188 /*
189 * Assert alignment, sizes and order.
190 */
191 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
192 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
193
194 /*
195 * Init basic VM VMM members.
196 */
197 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
198 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
199 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
200 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
201 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
202 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
203 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
204 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
206
207#if 0 /* pointless when timers doesn't run on EMT */
208 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
209 * The EMT yield interval. The EMT yielding is a hack we employ to play a
210 * bit nicer with the rest of the system (like for instance the GUI).
211 */
212 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
213 23 /* Value arrived at after experimenting with the grub boot prompt. */);
214 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
215#endif
216
217 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
218 * Controls whether we employ per-cpu preemption timers to limit the time
219 * spent executing guest code. This option is not available on all
220 * platforms and we will silently ignore this setting then. If we are
221 * running in VT-x mode, we will use the VMX-preemption timer instead of
222 * this one when possible.
223 */
224 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
225 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
226 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
227
228 /*
229 * Initialize the VMM rendezvous semaphores.
230 */
231 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
232 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
233 return VERR_NO_MEMORY;
234 for (VMCPUID i = 0; i < pVM->cCpus; i++)
235 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
236 for (VMCPUID i = 0; i < pVM->cCpus; i++)
237 {
238 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
239 AssertRCReturn(rc, rc);
240 }
241 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
242 AssertRCReturn(rc, rc);
243 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
244 AssertRCReturn(rc, rc);
245 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
246 AssertRCReturn(rc, rc);
247 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
248 AssertRCReturn(rc, rc);
249 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
250 AssertRCReturn(rc, rc);
251 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
252 AssertRCReturn(rc, rc);
253 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
254 AssertRCReturn(rc, rc);
255 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
256 AssertRCReturn(rc, rc);
257
258 /*
259 * Register the saved state data unit.
260 */
261 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
262 NULL, NULL, NULL,
263 NULL, vmmR3Save, NULL,
264 NULL, vmmR3Load, NULL);
265 if (RT_FAILURE(rc))
266 return rc;
267
268 /*
269 * Register the Ring-0 VM handle with the session for fast ioctl calls.
270 */
271 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
272 if (RT_FAILURE(rc))
273 return rc;
274
275 /*
276 * Init various sub-components.
277 */
278 rc = vmmR3InitStacks(pVM);
279 if (RT_SUCCESS(rc))
280 {
281 rc = vmmR3InitLoggers(pVM);
282
283#ifdef VBOX_WITH_NMI
284 /*
285 * Allocate mapping for the host APIC.
286 */
287 if (RT_SUCCESS(rc))
288 {
289 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
290 AssertRC(rc);
291 }
292#endif
293 if (RT_SUCCESS(rc))
294 {
295 /*
296 * Debug info and statistics.
297 */
298 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
299 vmmR3InitRegisterStats(pVM);
300 vmmInitFormatTypes();
301
302 return VINF_SUCCESS;
303 }
304 }
305 /** @todo Need failure cleanup? */
306
307 return rc;
308}
309
310
311/**
312 * Allocate & setup the VMM RC stack(s) (for EMTs).
313 *
314 * The stacks are also used for long jumps in Ring-0.
315 *
316 * @returns VBox status code.
317 * @param pVM The cross context VM structure.
318 *
319 * @remarks The optional guard page gets it protection setup up during R3 init
320 * completion because of init order issues.
321 */
322static int vmmR3InitStacks(PVM pVM)
323{
324 int rc = VINF_SUCCESS;
325#ifdef VMM_R0_SWITCH_STACK
326 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
327#else
328 uint32_t fFlags = 0;
329#endif
330
331 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
332 {
333 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
334
335#ifdef VBOX_STRICT_VMM_STACK
336 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
337#else
338 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
339#endif
340 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
341 if (RT_SUCCESS(rc))
342 {
343#ifdef VBOX_STRICT_VMM_STACK
344 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
345#endif
346 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
347
348 }
349 }
350
351 return rc;
352}
353
354
355/**
356 * Initialize the loggers.
357 *
358 * @returns VBox status code.
359 * @param pVM The cross context VM structure.
360 */
361static int vmmR3InitLoggers(PVM pVM)
362{
363 int rc;
364#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
365
366 /*
367 * Allocate R0 Logger instance (finalized in the relocator).
368 */
369#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
370 PRTLOGGER pLogger = RTLogDefaultInstance();
371 if (pLogger)
372 {
373 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
374 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
375 {
376 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
377 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
378 (void **)&pVCpu->vmm.s.pR0LoggerR3);
379 if (RT_FAILURE(rc))
380 return rc;
381 pVCpu->vmm.s.pR0LoggerR3->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
382 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
383 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
384 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
385 }
386 }
387#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
388
389 /*
390 * Release logging.
391 */
392 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
393 if (pRelLogger)
394 {
395 /*
396 * Ring-0 release logger.
397 */
398 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
399 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
400 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
401
402 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
403 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
404 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
405
406 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
407
408 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
409 {
410 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
411 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
412 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
413 if (RT_FAILURE(rc))
414 return rc;
415 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
416 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
417 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
418 pVmmLogger->pVM = VMCC_GET_VMR0_FOR_CALL(pVM);
419 pVmmLogger->cbLogger = (uint32_t)cbLogger;
420 pVmmLogger->fCreated = false;
421 pVmmLogger->fFlushingDisabled = false;
422 pVmmLogger->fRegistered = false;
423 pVmmLogger->idCpu = idCpu;
424
425 char szR0ThreadName[16];
426 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", idCpu);
427 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
428 pfnLoggerWrapper, pfnLoggerFlush,
429 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
430 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
431
432 /* We only update the release log instance here. */
433 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
434 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
435 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
436
437 pVmmLogger->fCreated = true;
438 }
439 }
440
441 return VINF_SUCCESS;
442}
443
444
445/**
446 * VMMR3Init worker that register the statistics with STAM.
447 *
448 * @param pVM The cross context VM structure.
449 */
450static void vmmR3InitRegisterStats(PVM pVM)
451{
452 RT_NOREF_PV(pVM);
453
454 /*
455 * Statistics.
456 */
457 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
520
521#ifdef VBOX_WITH_STATISTICS
522 for (VMCPUID i = 0; i < pVM->cCpus; i++)
523 {
524 PVMCPU pVCpu = pVM->apCpusR3[i];
525 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
526 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
527 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
528 }
529#endif
530 for (VMCPUID i = 0; i < pVM->cCpus; i++)
531 {
532 PVMCPU pVCpu = pVM->apCpusR3[i];
533 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
534 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
535 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
536 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
537 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
538 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
539 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
540 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
541 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
542 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
543 }
544}
545
546
547/**
548 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
549 *
550 * @returns VBox status code.
551 * @param pVM The cross context VM structure.
552 * @param pVCpu The cross context per CPU structure.
553 * @thread EMT(pVCpu)
554 */
555static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
556{
557 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
558}
559
560
561/**
562 * Initializes the R0 VMM.
563 *
564 * @returns VBox status code.
565 * @param pVM The cross context VM structure.
566 */
567VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
568{
569 int rc;
570 PVMCPU pVCpu = VMMGetCpu(pVM);
571 Assert(pVCpu && pVCpu->idCpu == 0);
572
573#ifdef LOG_ENABLED
574 /*
575 * Initialize the ring-0 logger if we haven't done so yet.
576 */
577 if ( pVCpu->vmm.s.pR0LoggerR3
578 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
579 {
580 rc = VMMR3UpdateLoggers(pVM);
581 if (RT_FAILURE(rc))
582 return rc;
583 }
584#endif
585
586 /*
587 * Call Ring-0 entry with init code.
588 */
589 for (;;)
590 {
591#ifdef NO_SUPCALLR0VMM
592 //rc = VERR_GENERAL_FAILURE;
593 rc = VINF_SUCCESS;
594#else
595 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
596#endif
597 /*
598 * Flush the logs.
599 */
600#ifdef LOG_ENABLED
601 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
602#endif
603 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
604 if (rc != VINF_VMM_CALL_HOST)
605 break;
606 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
607 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
608 break;
609 /* Resume R0 */
610 }
611
612 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
613 {
614 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
615 if (RT_SUCCESS(rc))
616 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
617 }
618
619 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
620 if (pVM->apCpusR3[0]->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
621 LogRel(("VMM: Enabled thread-context hooks\n"));
622 else
623 LogRel(("VMM: Thread-context hooks unavailable\n"));
624
625 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
626 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
627 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
628 else
629 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
630 if (pVM->vmm.s.fIsPreemptPossible)
631 LogRel(("VMM: Kernel preemption is possible\n"));
632 else
633 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
634
635 /*
636 * Send all EMTs to ring-0 to get their logger initialized.
637 */
638 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
639 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
640
641 return rc;
642}
643
644
645/**
646 * Called when an init phase completes.
647 *
648 * @returns VBox status code.
649 * @param pVM The cross context VM structure.
650 * @param enmWhat Which init phase.
651 */
652VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
653{
654 int rc = VINF_SUCCESS;
655
656 switch (enmWhat)
657 {
658 case VMINITCOMPLETED_RING3:
659 {
660#if 0 /* pointless when timers doesn't run on EMT */
661 /*
662 * Create the EMT yield timer.
663 */
664 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
665 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
666 AssertRCReturn(rc, rc);
667
668 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
669 AssertRCReturn(rc, rc);
670#endif
671 break;
672 }
673
674 case VMINITCOMPLETED_HM:
675 {
676 /*
677 * Disable the periodic preemption timers if we can use the
678 * VMX-preemption timer instead.
679 */
680 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
681 && HMR3IsVmxPreemptionTimerUsed(pVM))
682 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
683 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
684
685 /*
686 * Last chance for GIM to update its CPUID leaves if it requires
687 * knowledge/information from HM initialization.
688 */
689 rc = GIMR3InitCompleted(pVM);
690 AssertRCReturn(rc, rc);
691
692 /*
693 * CPUM's post-initialization (print CPUIDs).
694 */
695 CPUMR3LogCpuIdAndMsrFeatures(pVM);
696 break;
697 }
698
699 default: /* shuts up gcc */
700 break;
701 }
702
703 return rc;
704}
705
706
707/**
708 * Terminate the VMM bits.
709 *
710 * @returns VBox status code.
711 * @param pVM The cross context VM structure.
712 */
713VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
714{
715 PVMCPU pVCpu = VMMGetCpu(pVM);
716 Assert(pVCpu && pVCpu->idCpu == 0);
717
718 /*
719 * Call Ring-0 entry with termination code.
720 */
721 int rc;
722 for (;;)
723 {
724#ifdef NO_SUPCALLR0VMM
725 //rc = VERR_GENERAL_FAILURE;
726 rc = VINF_SUCCESS;
727#else
728 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
729#endif
730 /*
731 * Flush the logs.
732 */
733#ifdef LOG_ENABLED
734 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
735#endif
736 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
737 if (rc != VINF_VMM_CALL_HOST)
738 break;
739 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
740 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
741 break;
742 /* Resume R0 */
743 }
744 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
745 {
746 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
747 if (RT_SUCCESS(rc))
748 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
749 }
750
751 for (VMCPUID i = 0; i < pVM->cCpus; i++)
752 {
753 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
754 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
755 }
756 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
757 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
758 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
759 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
760 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
761 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
762 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
763 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
764 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
765 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
766 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
767 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
768 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
769 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
770 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
771 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
772
773 vmmTermFormatTypes();
774 return rc;
775}
776
777
778/**
779 * Applies relocations to data and code managed by this
780 * component. This function will be called at init and
781 * whenever the VMM need to relocate it self inside the GC.
782 *
783 * The VMM will need to apply relocations to the core code.
784 *
785 * @param pVM The cross context VM structure.
786 * @param offDelta The relocation delta.
787 */
788VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
789{
790 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
791 RT_NOREF(offDelta);
792
793 /*
794 * Update the logger.
795 */
796 VMMR3UpdateLoggers(pVM);
797}
798
799
800/**
801 * Updates the settings for the RC and R0 loggers.
802 *
803 * @returns VBox status code.
804 * @param pVM The cross context VM structure.
805 */
806VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
807{
808 int rc = VINF_SUCCESS;
809
810#ifdef LOG_ENABLED
811 /*
812 * For the ring-0 EMT logger, we use a per-thread logger instance
813 * in ring-0. Only initialize it once.
814 */
815 PRTLOGGER const pDefault = RTLogDefaultInstance();
816 for (VMCPUID i = 0; i < pVM->cCpus; i++)
817 {
818 PVMCPU pVCpu = pVM->apCpusR3[i];
819 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
820 if (pR0LoggerR3)
821 {
822 if (!pR0LoggerR3->fCreated)
823 {
824 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
825 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
826 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
827
828 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
829 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
830 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
831
832 char szR0ThreadName[16];
833 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
834 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
835 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
836 pfnLoggerWrapper, pfnLoggerFlush,
837 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
838 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
839
840 pR0LoggerR3->idCpu = i;
841 pR0LoggerR3->fCreated = true;
842 pR0LoggerR3->fFlushingDisabled = false;
843 }
844
845 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
846 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
847 AssertRC(rc);
848 }
849 }
850#else
851 RT_NOREF(pVM);
852#endif
853
854 return rc;
855}
856
857
858/**
859 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
860 *
861 * @returns Pointer to the buffer.
862 * @param pVM The cross context VM structure.
863 */
864VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
865{
866 return pVM->vmm.s.szRing0AssertMsg1;
867}
868
869
870/**
871 * Returns the VMCPU of the specified virtual CPU.
872 *
873 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
874 *
875 * @param pUVM The user mode VM handle.
876 * @param idCpu The ID of the virtual CPU.
877 */
878VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
879{
880 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
881 AssertReturn(idCpu < pUVM->cCpus, NULL);
882 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
883 return pUVM->pVM->apCpusR3[idCpu];
884}
885
886
887/**
888 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
889 *
890 * @returns Pointer to the buffer.
891 * @param pVM The cross context VM structure.
892 */
893VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
894{
895 return pVM->vmm.s.szRing0AssertMsg2;
896}
897
898
899/**
900 * Execute state save operation.
901 *
902 * @returns VBox status code.
903 * @param pVM The cross context VM structure.
904 * @param pSSM SSM operation handle.
905 */
906static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
907{
908 LogFlow(("vmmR3Save:\n"));
909
910 /*
911 * Save the started/stopped state of all CPUs except 0 as it will always
912 * be running. This avoids breaking the saved state version. :-)
913 */
914 for (VMCPUID i = 1; i < pVM->cCpus; i++)
915 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
916
917 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
918}
919
920
921/**
922 * Execute state load operation.
923 *
924 * @returns VBox status code.
925 * @param pVM The cross context VM structure.
926 * @param pSSM SSM operation handle.
927 * @param uVersion Data layout version.
928 * @param uPass The data pass.
929 */
930static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
931{
932 LogFlow(("vmmR3Load:\n"));
933 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
934
935 /*
936 * Validate version.
937 */
938 if ( uVersion != VMM_SAVED_STATE_VERSION
939 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
940 {
941 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
942 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
943 }
944
945 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
946 {
947 /* Ignore the stack bottom, stack pointer and stack bits. */
948 RTRCPTR RCPtrIgnored;
949 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
950 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
951#ifdef RT_OS_DARWIN
952 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
953 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
954 && SSMR3HandleRevision(pSSM) >= 48858
955 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
956 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
957 )
958 SSMR3Skip(pSSM, 16384);
959 else
960 SSMR3Skip(pSSM, 8192);
961#else
962 SSMR3Skip(pSSM, 8192);
963#endif
964 }
965
966 /*
967 * Restore the VMCPU states. VCPU 0 is always started.
968 */
969 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
970 for (VMCPUID i = 1; i < pVM->cCpus; i++)
971 {
972 bool fStarted;
973 int rc = SSMR3GetBool(pSSM, &fStarted);
974 if (RT_FAILURE(rc))
975 return rc;
976 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
977 }
978
979 /* terminator */
980 uint32_t u32;
981 int rc = SSMR3GetU32(pSSM, &u32);
982 if (RT_FAILURE(rc))
983 return rc;
984 if (u32 != UINT32_MAX)
985 {
986 AssertMsgFailed(("u32=%#x\n", u32));
987 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
988 }
989 return VINF_SUCCESS;
990}
991
992
993/**
994 * Suspends the CPU yielder.
995 *
996 * @param pVM The cross context VM structure.
997 */
998VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
999{
1000#if 0 /* pointless when timers doesn't run on EMT */
1001 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1002 if (!pVM->vmm.s.cYieldResumeMillies)
1003 {
1004 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1005 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1006 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1007 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1008 else
1009 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1010 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1011 }
1012 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1013#else
1014 RT_NOREF(pVM);
1015#endif
1016}
1017
1018
1019/**
1020 * Stops the CPU yielder.
1021 *
1022 * @param pVM The cross context VM structure.
1023 */
1024VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1025{
1026#if 0 /* pointless when timers doesn't run on EMT */
1027 if (!pVM->vmm.s.cYieldResumeMillies)
1028 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1029 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1030 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1031#else
1032 RT_NOREF(pVM);
1033#endif
1034}
1035
1036
1037/**
1038 * Resumes the CPU yielder when it has been a suspended or stopped.
1039 *
1040 * @param pVM The cross context VM structure.
1041 */
1042VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1043{
1044#if 0 /* pointless when timers doesn't run on EMT */
1045 if (pVM->vmm.s.cYieldResumeMillies)
1046 {
1047 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1048 pVM->vmm.s.cYieldResumeMillies = 0;
1049 }
1050#else
1051 RT_NOREF(pVM);
1052#endif
1053}
1054
1055
1056#if 0 /* pointless when timers doesn't run on EMT */
1057/**
1058 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1059 *
1060 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1061 */
1062static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1063{
1064 NOREF(pvUser);
1065
1066 /*
1067 * This really needs some careful tuning. While we shouldn't be too greedy since
1068 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1069 * because that'll cause us to stop up.
1070 *
1071 * The current logic is to use the default interval when there is no lag worth
1072 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1073 *
1074 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1075 * so the lag is up to date.)
1076 */
1077 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1078 if ( u64Lag < 50000000 /* 50ms */
1079 || ( u64Lag < 1000000000 /* 1s */
1080 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1081 )
1082 {
1083 uint64_t u64Elapsed = RTTimeNanoTS();
1084 pVM->vmm.s.u64LastYield = u64Elapsed;
1085
1086 RTThreadYield();
1087
1088#ifdef LOG_ENABLED
1089 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1090 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1091#endif
1092 }
1093 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1094}
1095#endif
1096
1097
1098/**
1099 * Executes guest code (Intel VT-x and AMD-V).
1100 *
1101 * @param pVM The cross context VM structure.
1102 * @param pVCpu The cross context virtual CPU structure.
1103 */
1104VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1105{
1106 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1107
1108 for (;;)
1109 {
1110 int rc;
1111 do
1112 {
1113#ifdef NO_SUPCALLR0VMM
1114 rc = VERR_GENERAL_FAILURE;
1115#else
1116 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1117 if (RT_LIKELY(rc == VINF_SUCCESS))
1118 rc = pVCpu->vmm.s.iLastGZRc;
1119#endif
1120 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1121
1122#if 0 /** @todo triggers too often */
1123 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1124#endif
1125
1126 /*
1127 * Flush the logs
1128 */
1129#ifdef LOG_ENABLED
1130 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1131#endif
1132 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1133 if (rc != VINF_VMM_CALL_HOST)
1134 {
1135 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1136 return rc;
1137 }
1138 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1139 if (RT_FAILURE(rc))
1140 return rc;
1141 /* Resume R0 */
1142 }
1143}
1144
1145
1146/**
1147 * Perform one of the fast I/O control VMMR0 operation.
1148 *
1149 * @returns VBox strict status code.
1150 * @param pVM The cross context VM structure.
1151 * @param pVCpu The cross context virtual CPU structure.
1152 * @param enmOperation The operation to perform.
1153 */
1154VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1155{
1156 for (;;)
1157 {
1158 VBOXSTRICTRC rcStrict;
1159 do
1160 {
1161#ifdef NO_SUPCALLR0VMM
1162 rcStrict = VERR_GENERAL_FAILURE;
1163#else
1164 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1165 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1166 rcStrict = pVCpu->vmm.s.iLastGZRc;
1167#endif
1168 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1169
1170 /*
1171 * Flush the logs
1172 */
1173#ifdef LOG_ENABLED
1174 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1175#endif
1176 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1177 if (rcStrict != VINF_VMM_CALL_HOST)
1178 return rcStrict;
1179 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1180 if (RT_FAILURE(rc))
1181 return rc;
1182 /* Resume R0 */
1183 }
1184}
1185
1186
1187/**
1188 * VCPU worker for VMMR3SendStartupIpi.
1189 *
1190 * @param pVM The cross context VM structure.
1191 * @param idCpu Virtual CPU to perform SIPI on.
1192 * @param uVector The SIPI vector.
1193 */
1194static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1195{
1196 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1197 VMCPU_ASSERT_EMT(pVCpu);
1198
1199 /*
1200 * In the INIT state, the target CPU is only responsive to an SIPI.
1201 * This is also true for when when the CPU is in VMX non-root mode.
1202 *
1203 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1204 * See Intel spec. 26.6.2 "Activity State".
1205 */
1206 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1207 return VINF_SUCCESS;
1208
1209 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1210#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1211 if (CPUMIsGuestInVmxRootMode(pCtx))
1212 {
1213 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1214 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1215 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1216
1217 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1218 return VINF_SUCCESS;
1219 }
1220#endif
1221
1222 pCtx->cs.Sel = uVector << 8;
1223 pCtx->cs.ValidSel = uVector << 8;
1224 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1225 pCtx->cs.u64Base = uVector << 12;
1226 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1227 pCtx->rip = 0;
1228
1229 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1230
1231# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1232 EMSetState(pVCpu, EMSTATE_HALTED);
1233 return VINF_EM_RESCHEDULE;
1234# else /* And if we go the VMCPU::enmState way it can stay here. */
1235 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1236 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1237 return VINF_SUCCESS;
1238# endif
1239}
1240
1241
1242/**
1243 * VCPU worker for VMMR3SendInitIpi.
1244 *
1245 * @returns VBox status code.
1246 * @param pVM The cross context VM structure.
1247 * @param idCpu Virtual CPU to perform SIPI on.
1248 */
1249static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1250{
1251 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1252 VMCPU_ASSERT_EMT(pVCpu);
1253
1254 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1255
1256 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1257 * wait-for-SIPI state. Verify. */
1258
1259 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1261 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1262 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1263 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1264#endif
1265
1266 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1267 * IPI (e.g. SVM_EXIT_INIT). */
1268
1269 PGMR3ResetCpu(pVM, pVCpu);
1270 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1271 APICR3InitIpi(pVCpu);
1272 TRPMR3ResetCpu(pVCpu);
1273 CPUMR3ResetCpu(pVM, pVCpu);
1274 EMR3ResetCpu(pVCpu);
1275 HMR3ResetCpu(pVCpu);
1276 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1277
1278 /* This will trickle up on the target EMT. */
1279 return VINF_EM_WAIT_SIPI;
1280}
1281
1282
1283/**
1284 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1285 * vector-dependent state and unhalting processor.
1286 *
1287 * @param pVM The cross context VM structure.
1288 * @param idCpu Virtual CPU to perform SIPI on.
1289 * @param uVector SIPI vector.
1290 */
1291VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1292{
1293 AssertReturnVoid(idCpu < pVM->cCpus);
1294
1295 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1296 AssertRC(rc);
1297}
1298
1299
1300/**
1301 * Sends init IPI to the virtual CPU.
1302 *
1303 * @param pVM The cross context VM structure.
1304 * @param idCpu Virtual CPU to perform int IPI on.
1305 */
1306VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1307{
1308 AssertReturnVoid(idCpu < pVM->cCpus);
1309
1310 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1311 AssertRC(rc);
1312}
1313
1314
1315/**
1316 * Registers the guest memory range that can be used for patching.
1317 *
1318 * @returns VBox status code.
1319 * @param pVM The cross context VM structure.
1320 * @param pPatchMem Patch memory range.
1321 * @param cbPatchMem Size of the memory range.
1322 */
1323VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1324{
1325 VM_ASSERT_EMT(pVM);
1326 if (HMIsEnabled(pVM))
1327 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1328
1329 return VERR_NOT_SUPPORTED;
1330}
1331
1332
1333/**
1334 * Deregisters the guest memory range that can be used for patching.
1335 *
1336 * @returns VBox status code.
1337 * @param pVM The cross context VM structure.
1338 * @param pPatchMem Patch memory range.
1339 * @param cbPatchMem Size of the memory range.
1340 */
1341VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1342{
1343 if (HMIsEnabled(pVM))
1344 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1345
1346 return VINF_SUCCESS;
1347}
1348
1349
1350/**
1351 * Common recursion handler for the other EMTs.
1352 *
1353 * @returns Strict VBox status code.
1354 * @param pVM The cross context VM structure.
1355 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1356 * @param rcStrict Current status code to be combined with the one
1357 * from this recursion and returned.
1358 */
1359static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1360{
1361 int rc2;
1362
1363 /*
1364 * We wait here while the initiator of this recursion reconfigures
1365 * everything. The last EMT to get in signals the initiator.
1366 */
1367 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1368 {
1369 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1370 AssertLogRelRC(rc2);
1371 }
1372
1373 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1374 AssertLogRelRC(rc2);
1375
1376 /*
1377 * Do the normal rendezvous processing.
1378 */
1379 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1380 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1381
1382 /*
1383 * Wait for the initiator to restore everything.
1384 */
1385 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1386 AssertLogRelRC(rc2);
1387
1388 /*
1389 * Last thread out of here signals the initiator.
1390 */
1391 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1392 {
1393 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1394 AssertLogRelRC(rc2);
1395 }
1396
1397 /*
1398 * Merge status codes and return.
1399 */
1400 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1401 if ( rcStrict2 != VINF_SUCCESS
1402 && ( rcStrict == VINF_SUCCESS
1403 || rcStrict > rcStrict2))
1404 rcStrict = rcStrict2;
1405 return rcStrict;
1406}
1407
1408
1409/**
1410 * Count returns and have the last non-caller EMT wake up the caller.
1411 *
1412 * @returns VBox strict informational status code for EM scheduling. No failures
1413 * will be returned here, those are for the caller only.
1414 *
1415 * @param pVM The cross context VM structure.
1416 * @param rcStrict The current accumulated recursive status code,
1417 * to be merged with i32RendezvousStatus and
1418 * returned.
1419 */
1420DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1421{
1422 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1423
1424 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1425 if (cReturned == pVM->cCpus - 1U)
1426 {
1427 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1428 AssertLogRelRC(rc);
1429 }
1430
1431 /*
1432 * Merge the status codes, ignoring error statuses in this code path.
1433 */
1434 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1435 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1436 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1437 VERR_IPE_UNEXPECTED_INFO_STATUS);
1438
1439 if (RT_SUCCESS(rcStrict2))
1440 {
1441 if ( rcStrict2 != VINF_SUCCESS
1442 && ( rcStrict == VINF_SUCCESS
1443 || rcStrict > rcStrict2))
1444 rcStrict = rcStrict2;
1445 }
1446 return rcStrict;
1447}
1448
1449
1450/**
1451 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1452 *
1453 * @returns VBox strict informational status code for EM scheduling. No failures
1454 * will be returned here, those are for the caller only. When
1455 * fIsCaller is set, VINF_SUCCESS is always returned.
1456 *
1457 * @param pVM The cross context VM structure.
1458 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1459 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1460 * not.
1461 * @param fFlags The flags.
1462 * @param pfnRendezvous The callback.
1463 * @param pvUser The user argument for the callback.
1464 */
1465static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1466 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1467{
1468 int rc;
1469 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1470
1471 /*
1472 * Enter, the last EMT triggers the next callback phase.
1473 */
1474 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1475 if (cEntered != pVM->cCpus)
1476 {
1477 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1478 {
1479 /* Wait for our turn. */
1480 for (;;)
1481 {
1482 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1483 AssertLogRelRC(rc);
1484 if (!pVM->vmm.s.fRendezvousRecursion)
1485 break;
1486 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1487 }
1488 }
1489 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1490 {
1491 /* Wait for the last EMT to arrive and wake everyone up. */
1492 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1493 AssertLogRelRC(rc);
1494 Assert(!pVM->vmm.s.fRendezvousRecursion);
1495 }
1496 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1497 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1498 {
1499 /* Wait for our turn. */
1500 for (;;)
1501 {
1502 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1503 AssertLogRelRC(rc);
1504 if (!pVM->vmm.s.fRendezvousRecursion)
1505 break;
1506 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1507 }
1508 }
1509 else
1510 {
1511 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1512
1513 /*
1514 * The execute once is handled specially to optimize the code flow.
1515 *
1516 * The last EMT to arrive will perform the callback and the other
1517 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1518 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1519 * returns, that EMT will initiate the normal return sequence.
1520 */
1521 if (!fIsCaller)
1522 {
1523 for (;;)
1524 {
1525 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1526 AssertLogRelRC(rc);
1527 if (!pVM->vmm.s.fRendezvousRecursion)
1528 break;
1529 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1530 }
1531
1532 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1533 }
1534 return VINF_SUCCESS;
1535 }
1536 }
1537 else
1538 {
1539 /*
1540 * All EMTs are waiting, clear the FF and take action according to the
1541 * execution method.
1542 */
1543 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1544
1545 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1546 {
1547 /* Wake up everyone. */
1548 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1549 AssertLogRelRC(rc);
1550 }
1551 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1552 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1553 {
1554 /* Figure out who to wake up and wake it up. If it's ourself, then
1555 it's easy otherwise wait for our turn. */
1556 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1557 ? 0
1558 : pVM->cCpus - 1U;
1559 if (pVCpu->idCpu != iFirst)
1560 {
1561 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1562 AssertLogRelRC(rc);
1563 for (;;)
1564 {
1565 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1566 AssertLogRelRC(rc);
1567 if (!pVM->vmm.s.fRendezvousRecursion)
1568 break;
1569 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1570 }
1571 }
1572 }
1573 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1574 }
1575
1576
1577 /*
1578 * Do the callback and update the status if necessary.
1579 */
1580 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1581 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1582 {
1583 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1584 if (rcStrict2 != VINF_SUCCESS)
1585 {
1586 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1587 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1588 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1589 int32_t i32RendezvousStatus;
1590 do
1591 {
1592 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1593 if ( rcStrict2 == i32RendezvousStatus
1594 || RT_FAILURE(i32RendezvousStatus)
1595 || ( i32RendezvousStatus != VINF_SUCCESS
1596 && rcStrict2 > i32RendezvousStatus))
1597 break;
1598 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1599 }
1600 }
1601
1602 /*
1603 * Increment the done counter and take action depending on whether we're
1604 * the last to finish callback execution.
1605 */
1606 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1607 if ( cDone != pVM->cCpus
1608 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1609 {
1610 /* Signal the next EMT? */
1611 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1612 {
1613 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1614 AssertLogRelRC(rc);
1615 }
1616 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1617 {
1618 Assert(cDone == pVCpu->idCpu + 1U);
1619 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1620 AssertLogRelRC(rc);
1621 }
1622 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1623 {
1624 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1625 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1626 AssertLogRelRC(rc);
1627 }
1628
1629 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1630 if (!fIsCaller)
1631 {
1632 for (;;)
1633 {
1634 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1635 AssertLogRelRC(rc);
1636 if (!pVM->vmm.s.fRendezvousRecursion)
1637 break;
1638 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1639 }
1640 }
1641 }
1642 else
1643 {
1644 /* Callback execution is all done, tell the rest to return. */
1645 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1646 AssertLogRelRC(rc);
1647 }
1648
1649 if (!fIsCaller)
1650 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1651 return rcStrictRecursion;
1652}
1653
1654
1655/**
1656 * Called in response to VM_FF_EMT_RENDEZVOUS.
1657 *
1658 * @returns VBox strict status code - EM scheduling. No errors will be returned
1659 * here, nor will any non-EM scheduling status codes be returned.
1660 *
1661 * @param pVM The cross context VM structure.
1662 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1663 *
1664 * @thread EMT
1665 */
1666VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1667{
1668 Assert(!pVCpu->vmm.s.fInRendezvous);
1669 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1670 pVCpu->vmm.s.fInRendezvous = true;
1671 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1672 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1673 pVCpu->vmm.s.fInRendezvous = false;
1674 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1675 return VBOXSTRICTRC_TODO(rcStrict);
1676}
1677
1678
1679/**
1680 * Helper for resetting an single wakeup event sempahore.
1681 *
1682 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1683 * @param hEvt The event semaphore to reset.
1684 */
1685static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1686{
1687 for (uint32_t cLoops = 0; ; cLoops++)
1688 {
1689 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1690 if (rc != VINF_SUCCESS || cLoops > _4K)
1691 return rc;
1692 }
1693}
1694
1695
1696/**
1697 * Worker for VMMR3EmtRendezvous that handles recursion.
1698 *
1699 * @returns VBox strict status code. This will be the first error,
1700 * VINF_SUCCESS, or an EM scheduling status code.
1701 *
1702 * @param pVM The cross context VM structure.
1703 * @param pVCpu The cross context virtual CPU structure of the
1704 * calling EMT.
1705 * @param fFlags Flags indicating execution methods. See
1706 * grp_VMMR3EmtRendezvous_fFlags.
1707 * @param pfnRendezvous The callback.
1708 * @param pvUser User argument for the callback.
1709 *
1710 * @thread EMT(pVCpu)
1711 */
1712static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1713 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1714{
1715 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1716 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1717 Assert(pVCpu->vmm.s.fInRendezvous);
1718
1719 /*
1720 * Save the current state.
1721 */
1722 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1723 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1724 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1725 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1726 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1727
1728 /*
1729 * Check preconditions and save the current state.
1730 */
1731 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1732 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1733 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1734 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1735 VERR_INTERNAL_ERROR);
1736 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1737 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1738
1739 /*
1740 * Reset the recursion prep and pop semaphores.
1741 */
1742 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1743 AssertLogRelRCReturn(rc, rc);
1744 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1745 AssertLogRelRCReturn(rc, rc);
1746 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1747 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1748 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1749 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1750
1751 /*
1752 * Usher the other thread into the recursion routine.
1753 */
1754 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1755 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1756
1757 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1758 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1759 while (cLeft-- > 0)
1760 {
1761 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1762 AssertLogRelRC(rc);
1763 }
1764 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1765 {
1766 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1767 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1768 {
1769 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1770 AssertLogRelRC(rc);
1771 }
1772 }
1773 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1774 {
1775 Assert(cLeft == pVCpu->idCpu);
1776 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1777 {
1778 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1779 AssertLogRelRC(rc);
1780 }
1781 }
1782 else
1783 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1784 VERR_INTERNAL_ERROR_4);
1785
1786 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1787 AssertLogRelRC(rc);
1788 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1789 AssertLogRelRC(rc);
1790
1791
1792 /*
1793 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1794 */
1795 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1796 {
1797 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1798 AssertLogRelRC(rc);
1799 }
1800
1801 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1802
1803 /*
1804 * Clear the slate and setup the new rendezvous.
1805 */
1806 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1807 {
1808 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1809 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1810 }
1811 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1812 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1813 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1814 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1815
1816 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1817 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1818 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1819 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1820 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1821 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1822 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1823 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1824
1825 /*
1826 * We're ready to go now, do normal rendezvous processing.
1827 */
1828 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1829 AssertLogRelRC(rc);
1830
1831 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1832
1833 /*
1834 * The caller waits for the other EMTs to be done, return and waiting on the
1835 * pop semaphore.
1836 */
1837 for (;;)
1838 {
1839 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1840 AssertLogRelRC(rc);
1841 if (!pVM->vmm.s.fRendezvousRecursion)
1842 break;
1843 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1844 }
1845
1846 /*
1847 * Get the return code and merge it with the above recursion status.
1848 */
1849 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1850 if ( rcStrict2 != VINF_SUCCESS
1851 && ( rcStrict == VINF_SUCCESS
1852 || rcStrict > rcStrict2))
1853 rcStrict = rcStrict2;
1854
1855 /*
1856 * Restore the parent rendezvous state.
1857 */
1858 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1859 {
1860 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1861 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1862 }
1863 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1864 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1865 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1866 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1867
1868 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1869 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1870 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1871 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1872 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1873 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1874 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1875
1876 /*
1877 * Usher the other EMTs back to their parent recursion routine, waiting
1878 * for them to all get there before we return (makes sure they've been
1879 * scheduled and are past the pop event sem, see below).
1880 */
1881 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1882 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1883 AssertLogRelRC(rc);
1884
1885 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1886 {
1887 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1888 AssertLogRelRC(rc);
1889 }
1890
1891 /*
1892 * We must reset the pop semaphore on the way out (doing the pop caller too,
1893 * just in case). The parent may be another recursion.
1894 */
1895 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1896 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1897
1898 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1899
1900 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1901 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1902 return rcStrict;
1903}
1904
1905
1906/**
1907 * EMT rendezvous.
1908 *
1909 * Gathers all the EMTs and execute some code on each of them, either in a one
1910 * by one fashion or all at once.
1911 *
1912 * @returns VBox strict status code. This will be the first error,
1913 * VINF_SUCCESS, or an EM scheduling status code.
1914 *
1915 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1916 * doesn't support it or if the recursion is too deep.
1917 *
1918 * @param pVM The cross context VM structure.
1919 * @param fFlags Flags indicating execution methods. See
1920 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1921 * descending and ascending rendezvous types support
1922 * recursion from inside @a pfnRendezvous.
1923 * @param pfnRendezvous The callback.
1924 * @param pvUser User argument for the callback.
1925 *
1926 * @thread Any.
1927 */
1928VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1929{
1930 /*
1931 * Validate input.
1932 */
1933 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1934 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1935 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1936 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1937 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1938 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1939 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1940 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1941
1942 VBOXSTRICTRC rcStrict;
1943 PVMCPU pVCpu = VMMGetCpu(pVM);
1944 if (!pVCpu)
1945 {
1946 /*
1947 * Forward the request to an EMT thread.
1948 */
1949 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1950 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1951 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1952 else
1953 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1954 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1955 }
1956 else if ( pVM->cCpus == 1
1957 || ( pVM->enmVMState == VMSTATE_DESTROYING
1958 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1959 {
1960 /*
1961 * Shortcut for the single EMT case.
1962 *
1963 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1964 * during vmR3Destroy after other emulation threads have started terminating.
1965 */
1966 if (!pVCpu->vmm.s.fInRendezvous)
1967 {
1968 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1969 pVCpu->vmm.s.fInRendezvous = true;
1970 pVM->vmm.s.fRendezvousFlags = fFlags;
1971 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1972 pVCpu->vmm.s.fInRendezvous = false;
1973 }
1974 else
1975 {
1976 /* Recursion. Do the same checks as in the SMP case. */
1977 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1978 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1979 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1980 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1981 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1982 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1983 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1984 , VERR_DEADLOCK);
1985
1986 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1987 pVM->vmm.s.cRendezvousRecursions++;
1988 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1989 pVM->vmm.s.fRendezvousFlags = fFlags;
1990
1991 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1992
1993 pVM->vmm.s.fRendezvousFlags = fParentFlags;
1994 pVM->vmm.s.cRendezvousRecursions--;
1995 }
1996 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1997 }
1998 else
1999 {
2000 /*
2001 * Spin lock. If busy, check for recursion, if not recursing wait for
2002 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2003 */
2004 int rc;
2005 rcStrict = VINF_SUCCESS;
2006 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2007 {
2008 /* Allow recursion in some cases. */
2009 if ( pVCpu->vmm.s.fInRendezvous
2010 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2011 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2012 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2013 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2014 ))
2015 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2016
2017 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2018 VERR_DEADLOCK);
2019
2020 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2021 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2022 {
2023 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2024 {
2025 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2026 if ( rc != VINF_SUCCESS
2027 && ( rcStrict == VINF_SUCCESS
2028 || rcStrict > rc))
2029 rcStrict = rc;
2030 /** @todo Perhaps deal with termination here? */
2031 }
2032 ASMNopPause();
2033 }
2034 }
2035
2036 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2037 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2038 Assert(!pVCpu->vmm.s.fInRendezvous);
2039 pVCpu->vmm.s.fInRendezvous = true;
2040
2041 /*
2042 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2043 */
2044 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2045 {
2046 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2047 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2048 }
2049 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2050 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2051 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2052 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2053 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2054 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2055 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2056 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2057 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2058 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2059 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2060
2061 /*
2062 * Set the FF and poke the other EMTs.
2063 */
2064 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2065 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2066
2067 /*
2068 * Do the same ourselves.
2069 */
2070 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2071
2072 /*
2073 * The caller waits for the other EMTs to be done and return before doing
2074 * the cleanup. This makes away with wakeup / reset races we would otherwise
2075 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2076 */
2077 for (;;)
2078 {
2079 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2080 AssertLogRelRC(rc);
2081 if (!pVM->vmm.s.fRendezvousRecursion)
2082 break;
2083 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2084 }
2085
2086 /*
2087 * Get the return code and clean up a little bit.
2088 */
2089 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2090 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2091
2092 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2093 pVCpu->vmm.s.fInRendezvous = false;
2094
2095 /*
2096 * Merge rcStrict, rcStrict2 and rcStrict3.
2097 */
2098 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2099 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2100 if ( rcStrict2 != VINF_SUCCESS
2101 && ( rcStrict == VINF_SUCCESS
2102 || rcStrict > rcStrict2))
2103 rcStrict = rcStrict2;
2104 if ( rcStrict3 != VINF_SUCCESS
2105 && ( rcStrict == VINF_SUCCESS
2106 || rcStrict > rcStrict3))
2107 rcStrict = rcStrict3;
2108 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2109 }
2110
2111 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2112 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2113 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2114 VERR_IPE_UNEXPECTED_INFO_STATUS);
2115 return VBOXSTRICTRC_VAL(rcStrict);
2116}
2117
2118
2119/**
2120 * Interface for vmR3SetHaltMethodU.
2121 *
2122 * @param pVCpu The cross context virtual CPU structure of the
2123 * calling EMT.
2124 * @param fMayHaltInRing0 The new state.
2125 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2126 * @thread EMT(pVCpu)
2127 *
2128 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2129 * component.
2130 */
2131VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2132{
2133 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2134 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2135}
2136
2137
2138/**
2139 * Read from the ring 0 jump buffer stack.
2140 *
2141 * @returns VBox status code.
2142 *
2143 * @param pVM The cross context VM structure.
2144 * @param idCpu The ID of the source CPU context (for the address).
2145 * @param R0Addr Where to start reading.
2146 * @param pvBuf Where to store the data we've read.
2147 * @param cbRead The number of bytes to read.
2148 */
2149VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2150{
2151 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2152 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2153 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2154
2155 int rc;
2156#ifdef VMM_R0_SWITCH_STACK
2157 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2158#else
2159 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2160#endif
2161 if ( off < VMM_STACK_SIZE
2162 && off + cbRead <= VMM_STACK_SIZE)
2163 {
2164 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2165 rc = VINF_SUCCESS;
2166 }
2167 else
2168 rc = VERR_INVALID_POINTER;
2169
2170 /* Supply the setjmp return RIP/EIP. */
2171 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2172 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2173 {
2174 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2175 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2176 size_t offDst = 0;
2177 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2178 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2179 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2180 {
2181 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2182 Assert(offSrc < cbSrc);
2183 pbSrc -= offSrc;
2184 cbSrc -= offSrc;
2185 }
2186 if (cbSrc > cbRead - offDst)
2187 cbSrc = cbRead - offDst;
2188 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2189
2190 if (cbSrc == cbRead)
2191 rc = VINF_SUCCESS;
2192 }
2193
2194 return rc;
2195}
2196
2197
2198/**
2199 * Used by the DBGF stack unwinder to initialize the register state.
2200 *
2201 * @param pUVM The user mode VM handle.
2202 * @param idCpu The ID of the CPU being unwound.
2203 * @param pState The unwind state to initialize.
2204 */
2205VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2206{
2207 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2208 AssertReturnVoid(pVCpu);
2209
2210 /*
2211 * Locate the resume point on the stack.
2212 */
2213#ifdef VMM_R0_SWITCH_STACK
2214 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2215 AssertReturnVoid(off < VMM_STACK_SIZE);
2216#else
2217 uintptr_t off = 0;
2218#endif
2219
2220#ifdef RT_ARCH_AMD64
2221 /*
2222 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2223 */
2224# ifdef VBOX_STRICT
2225 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2226 off += 8; /* RESUME_MAGIC */
2227# endif
2228# ifdef RT_OS_WINDOWS
2229 off += 0xa0; /* XMM6 thru XMM15 */
2230# endif
2231 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2232 off += 8;
2233 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2234 off += 8;
2235# ifdef RT_OS_WINDOWS
2236 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2237 off += 8;
2238 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2239 off += 8;
2240# endif
2241 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2242 off += 8;
2243 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2244 off += 8;
2245 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2246 off += 8;
2247 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2248 off += 8;
2249 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2250 off += 8;
2251 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2252 off += 8;
2253
2254#elif defined(RT_ARCH_X86)
2255 /*
2256 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2257 */
2258# ifdef VBOX_STRICT
2259 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2260 off += 4; /* RESUME_MAGIC */
2261# endif
2262 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2263 off += 4;
2264 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2265 off += 4;
2266 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2267 off += 4;
2268 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2269 off += 4;
2270 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2271 off += 4;
2272 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2273 off += 4;
2274#else
2275# error "Port me"
2276#endif
2277
2278 /*
2279 * This is all we really need here, though the above helps if the assembly
2280 * doesn't contain unwind info (currently only on win/64, so that is useful).
2281 */
2282 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2283 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2284}
2285
2286
2287/**
2288 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2289 *
2290 * @returns VBox status code.
2291 * @param pVM The cross context VM structure.
2292 * @param uOperation Operation to execute.
2293 * @param u64Arg Constant argument.
2294 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2295 * details.
2296 */
2297VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2298{
2299 PVMCPU pVCpu = VMMGetCpu(pVM);
2300 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2301 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2302}
2303
2304
2305/**
2306 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2307 *
2308 * @returns VBox status code.
2309 * @param pVM The cross context VM structure.
2310 * @param pVCpu The cross context VM structure.
2311 * @param enmOperation Operation to execute.
2312 * @param u64Arg Constant argument.
2313 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2314 * details.
2315 */
2316VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2317{
2318 int rc;
2319 for (;;)
2320 {
2321#ifdef NO_SUPCALLR0VMM
2322 rc = VERR_GENERAL_FAILURE;
2323#else
2324 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2325#endif
2326 /*
2327 * Flush the logs.
2328 */
2329#ifdef LOG_ENABLED
2330 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2331#endif
2332 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2333 if (rc != VINF_VMM_CALL_HOST)
2334 break;
2335 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2336 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2337 break;
2338 /* Resume R0 */
2339 }
2340
2341 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2342 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2343 VERR_IPE_UNEXPECTED_INFO_STATUS);
2344 return rc;
2345}
2346
2347
2348/**
2349 * Service a call to the ring-3 host code.
2350 *
2351 * @returns VBox status code.
2352 * @param pVM The cross context VM structure.
2353 * @param pVCpu The cross context virtual CPU structure.
2354 * @remarks Careful with critsects.
2355 */
2356static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2357{
2358 /*
2359 * We must also check for pending critsect exits or else we can deadlock
2360 * when entering other critsects here.
2361 */
2362 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2363 PDMCritSectBothFF(pVCpu);
2364
2365 switch (pVCpu->vmm.s.enmCallRing3Operation)
2366 {
2367 /*
2368 * Acquire a critical section.
2369 */
2370 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2371 {
2372 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2373 true /*fCallRing3*/);
2374 break;
2375 }
2376
2377 /*
2378 * Enter a r/w critical section exclusively.
2379 */
2380 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2381 {
2382 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2383 true /*fCallRing3*/);
2384 break;
2385 }
2386
2387 /*
2388 * Enter a r/w critical section shared.
2389 */
2390 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2391 {
2392 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2393 true /*fCallRing3*/);
2394 break;
2395 }
2396
2397 /*
2398 * Acquire the PDM lock.
2399 */
2400 case VMMCALLRING3_PDM_LOCK:
2401 {
2402 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2403 break;
2404 }
2405
2406 /*
2407 * Grow the PGM pool.
2408 */
2409 case VMMCALLRING3_PGM_POOL_GROW:
2410 {
2411 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2412 break;
2413 }
2414
2415 /*
2416 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2417 */
2418 case VMMCALLRING3_PGM_MAP_CHUNK:
2419 {
2420 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2421 break;
2422 }
2423
2424 /*
2425 * Allocates more handy pages.
2426 */
2427 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2428 {
2429 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2430 break;
2431 }
2432
2433 /*
2434 * Allocates a large page.
2435 */
2436 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2437 {
2438 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2439 break;
2440 }
2441
2442 /*
2443 * Acquire the PGM lock.
2444 */
2445 case VMMCALLRING3_PGM_LOCK:
2446 {
2447 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2448 break;
2449 }
2450
2451 /*
2452 * Acquire the MM hypervisor heap lock.
2453 */
2454 case VMMCALLRING3_MMHYPER_LOCK:
2455 {
2456 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2457 break;
2458 }
2459
2460 /*
2461 * This is a noop. We just take this route to avoid unnecessary
2462 * tests in the loops.
2463 */
2464 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2465 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2466 LogAlways(("*FLUSH*\n"));
2467 break;
2468
2469 /*
2470 * Set the VM error message.
2471 */
2472 case VMMCALLRING3_VM_SET_ERROR:
2473 VMR3SetErrorWorker(pVM);
2474 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2475 break;
2476
2477 /*
2478 * Set the VM runtime error message.
2479 */
2480 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2481 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2482 break;
2483
2484 /*
2485 * Signal a ring 0 hypervisor assertion.
2486 * Cancel the longjmp operation that's in progress.
2487 */
2488 case VMMCALLRING3_VM_R0_ASSERTION:
2489 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2490 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2491#ifdef RT_ARCH_X86
2492 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2493#else
2494 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2495#endif
2496#ifdef VMM_R0_SWITCH_STACK
2497 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2498#endif
2499 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2500 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2501 return VERR_VMM_RING0_ASSERTION;
2502
2503 /*
2504 * A forced switch to ring 0 for preemption purposes.
2505 */
2506 case VMMCALLRING3_VM_R0_PREEMPT:
2507 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2508 break;
2509
2510 default:
2511 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2512 return VERR_VMM_UNKNOWN_RING3_CALL;
2513 }
2514
2515 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2516 return VINF_SUCCESS;
2517}
2518
2519
2520/**
2521 * Displays the Force action Flags.
2522 *
2523 * @param pVM The cross context VM structure.
2524 * @param pHlp The output helpers.
2525 * @param pszArgs The additional arguments (ignored).
2526 */
2527static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2528{
2529 int c;
2530 uint32_t f;
2531 NOREF(pszArgs);
2532
2533#define PRINT_FLAG(prf,flag) do { \
2534 if (f & (prf##flag)) \
2535 { \
2536 static const char *s_psz = #flag; \
2537 if (!(c % 6)) \
2538 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2539 else \
2540 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2541 c++; \
2542 f &= ~(prf##flag); \
2543 } \
2544 } while (0)
2545
2546#define PRINT_GROUP(prf,grp,sfx) do { \
2547 if (f & (prf##grp##sfx)) \
2548 { \
2549 static const char *s_psz = #grp; \
2550 if (!(c % 5)) \
2551 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2552 else \
2553 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2554 c++; \
2555 } \
2556 } while (0)
2557
2558 /*
2559 * The global flags.
2560 */
2561 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2562 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2563
2564 /* show the flag mnemonics */
2565 c = 0;
2566 f = fGlobalForcedActions;
2567 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2568 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2569 PRINT_FLAG(VM_FF_,PDM_DMA);
2570 PRINT_FLAG(VM_FF_,DBGF);
2571 PRINT_FLAG(VM_FF_,REQUEST);
2572 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2573 PRINT_FLAG(VM_FF_,RESET);
2574 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2575 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2576 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2577 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2578 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2579 if (f)
2580 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2581 else
2582 pHlp->pfnPrintf(pHlp, "\n");
2583
2584 /* the groups */
2585 c = 0;
2586 f = fGlobalForcedActions;
2587 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2588 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2589 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2590 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2591 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2592 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2593 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2594 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2595 if (c)
2596 pHlp->pfnPrintf(pHlp, "\n");
2597
2598 /*
2599 * Per CPU flags.
2600 */
2601 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2602 {
2603 PVMCPU pVCpu = pVM->apCpusR3[i];
2604 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2605 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2606
2607 /* show the flag mnemonics */
2608 c = 0;
2609 f = fLocalForcedActions;
2610 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2611 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2612 PRINT_FLAG(VMCPU_FF_,TIMER);
2613 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2614 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2615 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2616 PRINT_FLAG(VMCPU_FF_,UNHALT);
2617 PRINT_FLAG(VMCPU_FF_,IEM);
2618 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2619 PRINT_FLAG(VMCPU_FF_,DBGF);
2620 PRINT_FLAG(VMCPU_FF_,REQUEST);
2621 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2622 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2623 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2624 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2625 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2626 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2627 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2628 PRINT_FLAG(VMCPU_FF_,TO_R3);
2629 PRINT_FLAG(VMCPU_FF_,IOM);
2630 if (f)
2631 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2632 else
2633 pHlp->pfnPrintf(pHlp, "\n");
2634
2635 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2636 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2637
2638 /* the groups */
2639 c = 0;
2640 f = fLocalForcedActions;
2641 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2642 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2643 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2644 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2645 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2646 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2647 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2648 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2649 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2650 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2651 if (c)
2652 pHlp->pfnPrintf(pHlp, "\n");
2653 }
2654
2655#undef PRINT_FLAG
2656#undef PRINT_GROUP
2657}
2658
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette