VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 80161

Last change on this file since 80161 was 80074, checked in by vboxsync, 5 years ago

VMM,Main,++: Retired the unfinished FTM component.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.4 KB
Line 
1/* $Id: VMM.cpp 80074 2019-07-31 14:18:34Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_pdm
41 * - @subpage pg_pgm
42 * - @subpage pg_rem
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#ifdef VBOX_WITH_REM
124# include <VBox/vmm/rem.h>
125#endif
126#include <VBox/vmm/ssm.h>
127#include <VBox/vmm/tm.h>
128#include "VMMInternal.h"
129#include <VBox/vmm/vm.h>
130#include <VBox/vmm/uvm.h>
131
132#include <VBox/err.h>
133#include <VBox/param.h>
134#include <VBox/version.h>
135#include <VBox/vmm/hm.h>
136#include <iprt/assert.h>
137#include <iprt/alloc.h>
138#include <iprt/asm.h>
139#include <iprt/time.h>
140#include <iprt/semaphore.h>
141#include <iprt/stream.h>
142#include <iprt/string.h>
143#include <iprt/stdarg.h>
144#include <iprt/ctype.h>
145#include <iprt/x86.h>
146
147
148/*********************************************************************************************************************************
149* Defined Constants And Macros *
150*********************************************************************************************************************************/
151/** The saved state version. */
152#define VMM_SAVED_STATE_VERSION 4
153/** The saved state version used by v3.0 and earlier. (Teleportation) */
154#define VMM_SAVED_STATE_VERSION_3_0 3
155
156/** Macro for flushing the ring-0 logging. */
157#define VMM_FLUSH_R0_LOG(a_pR0Logger, a_pR3Logger) \
158 do { \
159 PVMMR0LOGGER pVmmLogger = (a_pR0Logger); \
160 if (!pVmmLogger || pVmmLogger->Logger.offScratch == 0) \
161 { /* likely? */ } \
162 else \
163 RTLogFlushR0(a_pR3Logger, &pVmmLogger->Logger); \
164 } while (0)
165
166
167/*********************************************************************************************************************************
168* Internal Functions *
169*********************************************************************************************************************************/
170static int vmmR3InitStacks(PVM pVM);
171static int vmmR3InitLoggers(PVM pVM);
172static void vmmR3InitRegisterStats(PVM pVM);
173static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
175static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
176static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
177 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
178static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
179static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/**
183 * Initializes the VMM.
184 *
185 * @returns VBox status code.
186 * @param pVM The cross context VM structure.
187 */
188VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
189{
190 LogFlow(("VMMR3Init\n"));
191
192 /*
193 * Assert alignment, sizes and order.
194 */
195 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
196 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
197
198 /*
199 * Init basic VM VMM members.
200 */
201 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
202 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
203 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
204 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
205 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
206 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
208 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
209 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
210
211 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
212 * The EMT yield interval. The EMT yielding is a hack we employ to play a
213 * bit nicer with the rest of the system (like for instance the GUI).
214 */
215 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
216 23 /* Value arrived at after experimenting with the grub boot prompt. */);
217 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
218
219
220 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
221 * Controls whether we employ per-cpu preemption timers to limit the time
222 * spent executing guest code. This option is not available on all
223 * platforms and we will silently ignore this setting then. If we are
224 * running in VT-x mode, we will use the VMX-preemption timer instead of
225 * this one when possible.
226 */
227 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
228 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
229 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
230
231 /*
232 * Initialize the VMM rendezvous semaphores.
233 */
234 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
235 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
236 return VERR_NO_MEMORY;
237 for (VMCPUID i = 0; i < pVM->cCpus; i++)
238 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
239 for (VMCPUID i = 0; i < pVM->cCpus; i++)
240 {
241 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
242 AssertRCReturn(rc, rc);
243 }
244 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
245 AssertRCReturn(rc, rc);
246 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
247 AssertRCReturn(rc, rc);
248 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
249 AssertRCReturn(rc, rc);
250 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
251 AssertRCReturn(rc, rc);
252 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
253 AssertRCReturn(rc, rc);
254 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
255 AssertRCReturn(rc, rc);
256 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
257 AssertRCReturn(rc, rc);
258 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
259 AssertRCReturn(rc, rc);
260
261 /*
262 * Register the saved state data unit.
263 */
264 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
265 NULL, NULL, NULL,
266 NULL, vmmR3Save, NULL,
267 NULL, vmmR3Load, NULL);
268 if (RT_FAILURE(rc))
269 return rc;
270
271 /*
272 * Register the Ring-0 VM handle with the session for fast ioctl calls.
273 */
274 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
275 if (RT_FAILURE(rc))
276 return rc;
277
278 /*
279 * Init various sub-components.
280 */
281 rc = vmmR3InitStacks(pVM);
282 if (RT_SUCCESS(rc))
283 {
284 rc = vmmR3InitLoggers(pVM);
285
286#ifdef VBOX_WITH_NMI
287 /*
288 * Allocate mapping for the host APIC.
289 */
290 if (RT_SUCCESS(rc))
291 {
292 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
293 AssertRC(rc);
294 }
295#endif
296 if (RT_SUCCESS(rc))
297 {
298 /*
299 * Debug info and statistics.
300 */
301 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
302 vmmR3InitRegisterStats(pVM);
303 vmmInitFormatTypes();
304
305 return VINF_SUCCESS;
306 }
307 }
308 /** @todo Need failure cleanup? */
309
310 return rc;
311}
312
313
314/**
315 * Allocate & setup the VMM RC stack(s) (for EMTs).
316 *
317 * The stacks are also used for long jumps in Ring-0.
318 *
319 * @returns VBox status code.
320 * @param pVM The cross context VM structure.
321 *
322 * @remarks The optional guard page gets it protection setup up during R3 init
323 * completion because of init order issues.
324 */
325static int vmmR3InitStacks(PVM pVM)
326{
327 int rc = VINF_SUCCESS;
328#ifdef VMM_R0_SWITCH_STACK
329 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
330#else
331 uint32_t fFlags = 0;
332#endif
333
334 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
335 {
336 PVMCPU pVCpu = &pVM->aCpus[idCpu];
337
338#ifdef VBOX_STRICT_VMM_STACK
339 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
340#else
341 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
342#endif
343 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
344 if (RT_SUCCESS(rc))
345 {
346#ifdef VBOX_STRICT_VMM_STACK
347 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
348#endif
349 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
350
351 }
352 }
353
354 return rc;
355}
356
357
358/**
359 * Initialize the loggers.
360 *
361 * @returns VBox status code.
362 * @param pVM The cross context VM structure.
363 */
364static int vmmR3InitLoggers(PVM pVM)
365{
366 int rc;
367#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_UOFFSETOF_DYN(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
368
369 /*
370 * Allocate R0 Logger instance (finalized in the relocator).
371 */
372#if defined(LOG_ENABLED) && defined(VBOX_WITH_R0_LOGGING)
373 PRTLOGGER pLogger = RTLogDefaultInstance();
374 if (pLogger)
375 {
376 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
377 for (VMCPUID i = 0; i < pVM->cCpus; i++)
378 {
379 PVMCPU pVCpu = &pVM->aCpus[i];
380 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
381 (void **)&pVCpu->vmm.s.pR0LoggerR3);
382 if (RT_FAILURE(rc))
383 return rc;
384 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
385 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
386 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
387 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
388 }
389 }
390#endif /* LOG_ENABLED && VBOX_WITH_R0_LOGGING */
391
392 /*
393 * Release logging.
394 */
395 PRTLOGGER pRelLogger = RTLogRelGetDefaultInstance();
396 if (pRelLogger)
397 {
398 /*
399 * Ring-0 release logger.
400 */
401 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
402 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
403 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
404
405 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
406 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
407 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
408
409 size_t const cbLogger = RTLogCalcSizeForR0(pRelLogger->cGroups, 0);
410
411 for (VMCPUID i = 0; i < pVM->cCpus; i++)
412 {
413 PVMCPU pVCpu = &pVM->aCpus[i];
414 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
415 (void **)&pVCpu->vmm.s.pR0RelLoggerR3);
416 if (RT_FAILURE(rc))
417 return rc;
418 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR3;
419 RTR0PTR R0PtrVmmLogger = MMHyperR3ToR0(pVM, pVmmLogger);
420 pVCpu->vmm.s.pR0RelLoggerR0 = R0PtrVmmLogger;
421 pVmmLogger->pVM = pVM->pVMR0;
422 pVmmLogger->cbLogger = (uint32_t)cbLogger;
423 pVmmLogger->fCreated = false;
424 pVmmLogger->fFlushingDisabled = false;
425 pVmmLogger->fRegistered = false;
426 pVmmLogger->idCpu = i;
427
428 char szR0ThreadName[16];
429 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
430 rc = RTLogCreateForR0(&pVmmLogger->Logger, pVmmLogger->cbLogger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
431 pfnLoggerWrapper, pfnLoggerFlush,
432 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
433 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
434
435 /* We only update the release log instance here. */
436 rc = RTLogCopyGroupsAndFlagsForR0(&pVmmLogger->Logger, R0PtrVmmLogger + RT_UOFFSETOF(VMMR0LOGGER, Logger),
437 pRelLogger, RTLOGFLAGS_BUFFERED, UINT32_MAX);
438 AssertReleaseMsgRCReturn(rc, ("RTLogCopyGroupsAndFlagsForR0 failed! rc=%Rra\n", rc), rc);
439
440 pVmmLogger->fCreated = true;
441 }
442 }
443
444 return VINF_SUCCESS;
445}
446
447
448/**
449 * VMMR3Init worker that register the statistics with STAM.
450 *
451 * @param pVM The cross context VM structure.
452 */
453static void vmmR3InitRegisterStats(PVM pVM)
454{
455 RT_NOREF_PV(pVM);
456
457 /*
458 * Statistics.
459 */
460 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
463 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
464 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
465 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
466 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
467 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
468 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
496 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
497 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
498 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
499 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
500 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
501 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
502 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
503 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
504 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
505 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
506 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
514 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
515 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
516 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
517 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
518 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
519 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
520 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
521 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
522 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
523 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
524
525#ifdef VBOX_WITH_STATISTICS
526 for (VMCPUID i = 0; i < pVM->cCpus; i++)
527 {
528 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
529 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
530 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
531 }
532#endif
533 for (VMCPUID i = 0; i < pVM->cCpus; i++)
534 {
535 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
536 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
537 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
538 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
539 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
540 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
541 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
542 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
543 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
544 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
545 }
546}
547
548
549/**
550 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
551 *
552 * @returns VBox status code.
553 * @param pVM The cross context VM structure.
554 * @param pVCpu The cross context per CPU structure.
555 * @thread EMT(pVCpu)
556 */
557static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
558{
559 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
560}
561
562
563/**
564 * Initializes the R0 VMM.
565 *
566 * @returns VBox status code.
567 * @param pVM The cross context VM structure.
568 */
569VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
570{
571 int rc;
572 PVMCPU pVCpu = VMMGetCpu(pVM);
573 Assert(pVCpu && pVCpu->idCpu == 0);
574
575#ifdef LOG_ENABLED
576 /*
577 * Initialize the ring-0 logger if we haven't done so yet.
578 */
579 if ( pVCpu->vmm.s.pR0LoggerR3
580 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
581 {
582 rc = VMMR3UpdateLoggers(pVM);
583 if (RT_FAILURE(rc))
584 return rc;
585 }
586#endif
587
588 /*
589 * Call Ring-0 entry with init code.
590 */
591 for (;;)
592 {
593#ifdef NO_SUPCALLR0VMM
594 //rc = VERR_GENERAL_FAILURE;
595 rc = VINF_SUCCESS;
596#else
597 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
598#endif
599 /*
600 * Flush the logs.
601 */
602#ifdef LOG_ENABLED
603 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
604#endif
605 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
606 if (rc != VINF_VMM_CALL_HOST)
607 break;
608 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
609 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
610 break;
611 /* Resume R0 */
612 }
613
614 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
615 {
616 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
617 if (RT_SUCCESS(rc))
618 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
619 }
620
621 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
622 if (pVM->aCpus[0].vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
623 LogRel(("VMM: Enabled thread-context hooks\n"));
624 else
625 LogRel(("VMM: Thread-context hooks unavailable\n"));
626
627 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
628 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
629 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
630 else
631 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
632 if (pVM->vmm.s.fIsPreemptPossible)
633 LogRel(("VMM: Kernel preemption is possible\n"));
634 else
635 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
636
637 /*
638 * Send all EMTs to ring-0 to get their logger initialized.
639 */
640 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
641 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, &pVM->aCpus[idCpu]);
642
643 return rc;
644}
645
646
647/**
648 * Called when an init phase completes.
649 *
650 * @returns VBox status code.
651 * @param pVM The cross context VM structure.
652 * @param enmWhat Which init phase.
653 */
654VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
655{
656 int rc = VINF_SUCCESS;
657
658 switch (enmWhat)
659 {
660 case VMINITCOMPLETED_RING3:
661 {
662 /*
663 * Create the EMT yield timer.
664 */
665 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
666 AssertRCReturn(rc, rc);
667
668 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
669 AssertRCReturn(rc, rc);
670 break;
671 }
672
673 case VMINITCOMPLETED_HM:
674 {
675 /*
676 * Disable the periodic preemption timers if we can use the
677 * VMX-preemption timer instead.
678 */
679 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
680 && HMR3IsVmxPreemptionTimerUsed(pVM))
681 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
682 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
683
684 /*
685 * Last chance for GIM to update its CPUID leaves if it requires
686 * knowledge/information from HM initialization.
687 */
688 rc = GIMR3InitCompleted(pVM);
689 AssertRCReturn(rc, rc);
690
691 /*
692 * CPUM's post-initialization (print CPUIDs).
693 */
694 CPUMR3LogCpuIdAndMsrFeatures(pVM);
695 break;
696 }
697
698 default: /* shuts up gcc */
699 break;
700 }
701
702 return rc;
703}
704
705
706/**
707 * Terminate the VMM bits.
708 *
709 * @returns VBox status code.
710 * @param pVM The cross context VM structure.
711 */
712VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
713{
714 PVMCPU pVCpu = VMMGetCpu(pVM);
715 Assert(pVCpu && pVCpu->idCpu == 0);
716
717 /*
718 * Call Ring-0 entry with termination code.
719 */
720 int rc;
721 for (;;)
722 {
723#ifdef NO_SUPCALLR0VMM
724 //rc = VERR_GENERAL_FAILURE;
725 rc = VINF_SUCCESS;
726#else
727 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
728#endif
729 /*
730 * Flush the logs.
731 */
732#ifdef LOG_ENABLED
733 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
734#endif
735 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
736 if (rc != VINF_VMM_CALL_HOST)
737 break;
738 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
739 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
740 break;
741 /* Resume R0 */
742 }
743 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
744 {
745 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
746 if (RT_SUCCESS(rc))
747 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
748 }
749
750 for (VMCPUID i = 0; i < pVM->cCpus; i++)
751 {
752 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
753 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
754 }
755 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
756 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
757 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
758 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
759 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
760 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
761 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
762 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
763 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
764 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
765 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
766 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
767 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
768 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
769 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
770 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
771
772 vmmTermFormatTypes();
773 return rc;
774}
775
776
777/**
778 * Applies relocations to data and code managed by this
779 * component. This function will be called at init and
780 * whenever the VMM need to relocate it self inside the GC.
781 *
782 * The VMM will need to apply relocations to the core code.
783 *
784 * @param pVM The cross context VM structure.
785 * @param offDelta The relocation delta.
786 */
787VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
788{
789 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
790 RT_NOREF(offDelta);
791
792 /*
793 * Update the logger.
794 */
795 VMMR3UpdateLoggers(pVM);
796}
797
798
799/**
800 * Updates the settings for the RC and R0 loggers.
801 *
802 * @returns VBox status code.
803 * @param pVM The cross context VM structure.
804 */
805VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
806{
807 int rc = VINF_SUCCESS;
808
809#ifdef LOG_ENABLED
810 /*
811 * For the ring-0 EMT logger, we use a per-thread logger instance
812 * in ring-0. Only initialize it once.
813 */
814 PRTLOGGER const pDefault = RTLogDefaultInstance();
815 for (VMCPUID i = 0; i < pVM->cCpus; i++)
816 {
817 PVMCPU pVCpu = &pVM->aCpus[i];
818 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
819 if (pR0LoggerR3)
820 {
821 if (!pR0LoggerR3->fCreated)
822 {
823 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
824 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
825 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
826
827 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
828 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
829 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
830
831 char szR0ThreadName[16];
832 RTStrPrintf(szR0ThreadName, sizeof(szR0ThreadName), "EMT-%u-R0", i);
833 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
834 pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
835 pfnLoggerWrapper, pfnLoggerFlush,
836 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY, szR0ThreadName);
837 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
838
839 pR0LoggerR3->idCpu = i;
840 pR0LoggerR3->fCreated = true;
841 pR0LoggerR3->fFlushingDisabled = false;
842 }
843
844 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_UOFFSETOF(VMMR0LOGGER, Logger),
845 pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX);
846 AssertRC(rc);
847 }
848 }
849#else
850 RT_NOREF(pVM);
851#endif
852
853 return rc;
854}
855
856
857/**
858 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
859 *
860 * @returns Pointer to the buffer.
861 * @param pVM The cross context VM structure.
862 */
863VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
864{
865 return pVM->vmm.s.szRing0AssertMsg1;
866}
867
868
869/**
870 * Returns the VMCPU of the specified virtual CPU.
871 *
872 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
873 *
874 * @param pUVM The user mode VM handle.
875 * @param idCpu The ID of the virtual CPU.
876 */
877VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
878{
879 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
880 AssertReturn(idCpu < pUVM->cCpus, NULL);
881 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
882 return &pUVM->pVM->aCpus[idCpu];
883}
884
885
886/**
887 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
888 *
889 * @returns Pointer to the buffer.
890 * @param pVM The cross context VM structure.
891 */
892VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
893{
894 return pVM->vmm.s.szRing0AssertMsg2;
895}
896
897
898/**
899 * Execute state save operation.
900 *
901 * @returns VBox status code.
902 * @param pVM The cross context VM structure.
903 * @param pSSM SSM operation handle.
904 */
905static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
906{
907 LogFlow(("vmmR3Save:\n"));
908
909 /*
910 * Save the started/stopped state of all CPUs except 0 as it will always
911 * be running. This avoids breaking the saved state version. :-)
912 */
913 for (VMCPUID i = 1; i < pVM->cCpus; i++)
914 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
915
916 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
917}
918
919
920/**
921 * Execute state load operation.
922 *
923 * @returns VBox status code.
924 * @param pVM The cross context VM structure.
925 * @param pSSM SSM operation handle.
926 * @param uVersion Data layout version.
927 * @param uPass The data pass.
928 */
929static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
930{
931 LogFlow(("vmmR3Load:\n"));
932 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
933
934 /*
935 * Validate version.
936 */
937 if ( uVersion != VMM_SAVED_STATE_VERSION
938 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
939 {
940 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
941 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
942 }
943
944 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
945 {
946 /* Ignore the stack bottom, stack pointer and stack bits. */
947 RTRCPTR RCPtrIgnored;
948 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
949 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
950#ifdef RT_OS_DARWIN
951 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
952 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
953 && SSMR3HandleRevision(pSSM) >= 48858
954 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
955 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
956 )
957 SSMR3Skip(pSSM, 16384);
958 else
959 SSMR3Skip(pSSM, 8192);
960#else
961 SSMR3Skip(pSSM, 8192);
962#endif
963 }
964
965 /*
966 * Restore the VMCPU states. VCPU 0 is always started.
967 */
968 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
969 for (VMCPUID i = 1; i < pVM->cCpus; i++)
970 {
971 bool fStarted;
972 int rc = SSMR3GetBool(pSSM, &fStarted);
973 if (RT_FAILURE(rc))
974 return rc;
975 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
976 }
977
978 /* terminator */
979 uint32_t u32;
980 int rc = SSMR3GetU32(pSSM, &u32);
981 if (RT_FAILURE(rc))
982 return rc;
983 if (u32 != UINT32_MAX)
984 {
985 AssertMsgFailed(("u32=%#x\n", u32));
986 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
987 }
988 return VINF_SUCCESS;
989}
990
991
992/**
993 * Suspends the CPU yielder.
994 *
995 * @param pVM The cross context VM structure.
996 */
997VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
998{
999 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1000 if (!pVM->vmm.s.cYieldResumeMillies)
1001 {
1002 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1003 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1004 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1005 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1006 else
1007 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1008 TMTimerStop(pVM->vmm.s.pYieldTimer);
1009 }
1010 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1011}
1012
1013
1014/**
1015 * Stops the CPU yielder.
1016 *
1017 * @param pVM The cross context VM structure.
1018 */
1019VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1020{
1021 if (!pVM->vmm.s.cYieldResumeMillies)
1022 TMTimerStop(pVM->vmm.s.pYieldTimer);
1023 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1024 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1025}
1026
1027
1028/**
1029 * Resumes the CPU yielder when it has been a suspended or stopped.
1030 *
1031 * @param pVM The cross context VM structure.
1032 */
1033VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1034{
1035 if (pVM->vmm.s.cYieldResumeMillies)
1036 {
1037 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1038 pVM->vmm.s.cYieldResumeMillies = 0;
1039 }
1040}
1041
1042
1043/**
1044 * Internal timer callback function.
1045 *
1046 * @param pVM The cross context VM structure.
1047 * @param pTimer The timer handle.
1048 * @param pvUser User argument specified upon timer creation.
1049 */
1050static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1051{
1052 NOREF(pvUser);
1053
1054 /*
1055 * This really needs some careful tuning. While we shouldn't be too greedy since
1056 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1057 * because that'll cause us to stop up.
1058 *
1059 * The current logic is to use the default interval when there is no lag worth
1060 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1061 *
1062 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1063 * so the lag is up to date.)
1064 */
1065 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1066 if ( u64Lag < 50000000 /* 50ms */
1067 || ( u64Lag < 1000000000 /* 1s */
1068 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1069 )
1070 {
1071 uint64_t u64Elapsed = RTTimeNanoTS();
1072 pVM->vmm.s.u64LastYield = u64Elapsed;
1073
1074 RTThreadYield();
1075
1076#ifdef LOG_ENABLED
1077 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1078 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1079#endif
1080 }
1081 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1082}
1083
1084
1085/**
1086 * Executes guest code (Intel VT-x and AMD-V).
1087 *
1088 * @param pVM The cross context VM structure.
1089 * @param pVCpu The cross context virtual CPU structure.
1090 */
1091VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1092{
1093 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1094
1095 for (;;)
1096 {
1097 int rc;
1098 do
1099 {
1100#ifdef NO_SUPCALLR0VMM
1101 rc = VERR_GENERAL_FAILURE;
1102#else
1103 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1104 if (RT_LIKELY(rc == VINF_SUCCESS))
1105 rc = pVCpu->vmm.s.iLastGZRc;
1106#endif
1107 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1108
1109#if 0 /** @todo triggers too often */
1110 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1111#endif
1112
1113 /*
1114 * Flush the logs
1115 */
1116#ifdef LOG_ENABLED
1117 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1118#endif
1119 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1120 if (rc != VINF_VMM_CALL_HOST)
1121 {
1122 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1123 return rc;
1124 }
1125 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1126 if (RT_FAILURE(rc))
1127 return rc;
1128 /* Resume R0 */
1129 }
1130}
1131
1132
1133/**
1134 * Perform one of the fast I/O control VMMR0 operation.
1135 *
1136 * @returns VBox strict status code.
1137 * @param pVM The cross context VM structure.
1138 * @param pVCpu The cross context virtual CPU structure.
1139 * @param enmOperation The operation to perform.
1140 */
1141VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1142{
1143 for (;;)
1144 {
1145 VBOXSTRICTRC rcStrict;
1146 do
1147 {
1148#ifdef NO_SUPCALLR0VMM
1149 rcStrict = VERR_GENERAL_FAILURE;
1150#else
1151 rcStrict = SUPR3CallVMMR0Fast(pVM->pVMR0, enmOperation, pVCpu->idCpu);
1152 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1153 rcStrict = pVCpu->vmm.s.iLastGZRc;
1154#endif
1155 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1156
1157 /*
1158 * Flush the logs
1159 */
1160#ifdef LOG_ENABLED
1161 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
1162#endif
1163 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
1164 if (rcStrict != VINF_VMM_CALL_HOST)
1165 return rcStrict;
1166 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1167 if (RT_FAILURE(rc))
1168 return rc;
1169 /* Resume R0 */
1170 }
1171}
1172
1173
1174/**
1175 * VCPU worker for VMMR3SendStartupIpi.
1176 *
1177 * @param pVM The cross context VM structure.
1178 * @param idCpu Virtual CPU to perform SIPI on.
1179 * @param uVector The SIPI vector.
1180 */
1181static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1182{
1183 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1184 VMCPU_ASSERT_EMT(pVCpu);
1185
1186 /*
1187 * In the INIT state, the target CPU is only responsive to an SIPI.
1188 * This is also true for when when the CPU is in VMX non-root mode.
1189 *
1190 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1191 * See Intel spec. 26.6.2 "Activity State".
1192 */
1193 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1194 return VINF_SUCCESS;
1195
1196 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1197#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1198 if (CPUMIsGuestInVmxRootMode(pCtx))
1199 {
1200 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1201 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1202 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1203
1204 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1205 return VINF_SUCCESS;
1206 }
1207#endif
1208
1209 pCtx->cs.Sel = uVector << 8;
1210 pCtx->cs.ValidSel = uVector << 8;
1211 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1212 pCtx->cs.u64Base = uVector << 12;
1213 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1214 pCtx->rip = 0;
1215
1216 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1217
1218# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1219 EMSetState(pVCpu, EMSTATE_HALTED);
1220 return VINF_EM_RESCHEDULE;
1221# else /* And if we go the VMCPU::enmState way it can stay here. */
1222 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1223 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1224 return VINF_SUCCESS;
1225# endif
1226}
1227
1228
1229/**
1230 * VCPU worker for VMMR3SendInitIpi.
1231 *
1232 * @returns VBox status code.
1233 * @param pVM The cross context VM structure.
1234 * @param idCpu Virtual CPU to perform SIPI on.
1235 */
1236static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1237{
1238 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1239 VMCPU_ASSERT_EMT(pVCpu);
1240
1241 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1242
1243 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1244 * wait-for-SIPI state. Verify. */
1245
1246 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1247#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1248 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1249 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1250 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1251#endif
1252
1253 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1254 * IPI (e.g. SVM_EXIT_INIT). */
1255
1256 PGMR3ResetCpu(pVM, pVCpu);
1257 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1258 APICR3InitIpi(pVCpu);
1259 TRPMR3ResetCpu(pVCpu);
1260 CPUMR3ResetCpu(pVM, pVCpu);
1261 EMR3ResetCpu(pVCpu);
1262 HMR3ResetCpu(pVCpu);
1263 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1264
1265 /* This will trickle up on the target EMT. */
1266 return VINF_EM_WAIT_SIPI;
1267}
1268
1269
1270/**
1271 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1272 * vector-dependent state and unhalting processor.
1273 *
1274 * @param pVM The cross context VM structure.
1275 * @param idCpu Virtual CPU to perform SIPI on.
1276 * @param uVector SIPI vector.
1277 */
1278VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1279{
1280 AssertReturnVoid(idCpu < pVM->cCpus);
1281
1282 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1283 AssertRC(rc);
1284}
1285
1286
1287/**
1288 * Sends init IPI to the virtual CPU.
1289 *
1290 * @param pVM The cross context VM structure.
1291 * @param idCpu Virtual CPU to perform int IPI on.
1292 */
1293VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1294{
1295 AssertReturnVoid(idCpu < pVM->cCpus);
1296
1297 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1298 AssertRC(rc);
1299}
1300
1301
1302/**
1303 * Registers the guest memory range that can be used for patching.
1304 *
1305 * @returns VBox status code.
1306 * @param pVM The cross context VM structure.
1307 * @param pPatchMem Patch memory range.
1308 * @param cbPatchMem Size of the memory range.
1309 */
1310VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1311{
1312 VM_ASSERT_EMT(pVM);
1313 if (HMIsEnabled(pVM))
1314 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1315
1316 return VERR_NOT_SUPPORTED;
1317}
1318
1319
1320/**
1321 * Deregisters the guest memory range that can be used for patching.
1322 *
1323 * @returns VBox status code.
1324 * @param pVM The cross context VM structure.
1325 * @param pPatchMem Patch memory range.
1326 * @param cbPatchMem Size of the memory range.
1327 */
1328VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1329{
1330 if (HMIsEnabled(pVM))
1331 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1332
1333 return VINF_SUCCESS;
1334}
1335
1336
1337/**
1338 * Common recursion handler for the other EMTs.
1339 *
1340 * @returns Strict VBox status code.
1341 * @param pVM The cross context VM structure.
1342 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1343 * @param rcStrict Current status code to be combined with the one
1344 * from this recursion and returned.
1345 */
1346static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1347{
1348 int rc2;
1349
1350 /*
1351 * We wait here while the initiator of this recursion reconfigures
1352 * everything. The last EMT to get in signals the initiator.
1353 */
1354 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1355 {
1356 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1357 AssertLogRelRC(rc2);
1358 }
1359
1360 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1361 AssertLogRelRC(rc2);
1362
1363 /*
1364 * Do the normal rendezvous processing.
1365 */
1366 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1367 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1368
1369 /*
1370 * Wait for the initiator to restore everything.
1371 */
1372 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1373 AssertLogRelRC(rc2);
1374
1375 /*
1376 * Last thread out of here signals the initiator.
1377 */
1378 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1379 {
1380 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1381 AssertLogRelRC(rc2);
1382 }
1383
1384 /*
1385 * Merge status codes and return.
1386 */
1387 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1388 if ( rcStrict2 != VINF_SUCCESS
1389 && ( rcStrict == VINF_SUCCESS
1390 || rcStrict > rcStrict2))
1391 rcStrict = rcStrict2;
1392 return rcStrict;
1393}
1394
1395
1396/**
1397 * Count returns and have the last non-caller EMT wake up the caller.
1398 *
1399 * @returns VBox strict informational status code for EM scheduling. No failures
1400 * will be returned here, those are for the caller only.
1401 *
1402 * @param pVM The cross context VM structure.
1403 * @param rcStrict The current accumulated recursive status code,
1404 * to be merged with i32RendezvousStatus and
1405 * returned.
1406 */
1407DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1408{
1409 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1410
1411 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1412 if (cReturned == pVM->cCpus - 1U)
1413 {
1414 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1415 AssertLogRelRC(rc);
1416 }
1417
1418 /*
1419 * Merge the status codes, ignoring error statuses in this code path.
1420 */
1421 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1422 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1423 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1424 VERR_IPE_UNEXPECTED_INFO_STATUS);
1425
1426 if (RT_SUCCESS(rcStrict2))
1427 {
1428 if ( rcStrict2 != VINF_SUCCESS
1429 && ( rcStrict == VINF_SUCCESS
1430 || rcStrict > rcStrict2))
1431 rcStrict = rcStrict2;
1432 }
1433 return rcStrict;
1434}
1435
1436
1437/**
1438 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1439 *
1440 * @returns VBox strict informational status code for EM scheduling. No failures
1441 * will be returned here, those are for the caller only. When
1442 * fIsCaller is set, VINF_SUCCESS is always returned.
1443 *
1444 * @param pVM The cross context VM structure.
1445 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1446 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1447 * not.
1448 * @param fFlags The flags.
1449 * @param pfnRendezvous The callback.
1450 * @param pvUser The user argument for the callback.
1451 */
1452static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1453 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1454{
1455 int rc;
1456 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1457
1458 /*
1459 * Enter, the last EMT triggers the next callback phase.
1460 */
1461 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1462 if (cEntered != pVM->cCpus)
1463 {
1464 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1465 {
1466 /* Wait for our turn. */
1467 for (;;)
1468 {
1469 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1470 AssertLogRelRC(rc);
1471 if (!pVM->vmm.s.fRendezvousRecursion)
1472 break;
1473 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1474 }
1475 }
1476 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1477 {
1478 /* Wait for the last EMT to arrive and wake everyone up. */
1479 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1480 AssertLogRelRC(rc);
1481 Assert(!pVM->vmm.s.fRendezvousRecursion);
1482 }
1483 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1484 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1485 {
1486 /* Wait for our turn. */
1487 for (;;)
1488 {
1489 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1490 AssertLogRelRC(rc);
1491 if (!pVM->vmm.s.fRendezvousRecursion)
1492 break;
1493 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1494 }
1495 }
1496 else
1497 {
1498 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1499
1500 /*
1501 * The execute once is handled specially to optimize the code flow.
1502 *
1503 * The last EMT to arrive will perform the callback and the other
1504 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1505 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1506 * returns, that EMT will initiate the normal return sequence.
1507 */
1508 if (!fIsCaller)
1509 {
1510 for (;;)
1511 {
1512 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1513 AssertLogRelRC(rc);
1514 if (!pVM->vmm.s.fRendezvousRecursion)
1515 break;
1516 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1517 }
1518
1519 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1520 }
1521 return VINF_SUCCESS;
1522 }
1523 }
1524 else
1525 {
1526 /*
1527 * All EMTs are waiting, clear the FF and take action according to the
1528 * execution method.
1529 */
1530 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1531
1532 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1533 {
1534 /* Wake up everyone. */
1535 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1536 AssertLogRelRC(rc);
1537 }
1538 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1539 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1540 {
1541 /* Figure out who to wake up and wake it up. If it's ourself, then
1542 it's easy otherwise wait for our turn. */
1543 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1544 ? 0
1545 : pVM->cCpus - 1U;
1546 if (pVCpu->idCpu != iFirst)
1547 {
1548 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1549 AssertLogRelRC(rc);
1550 for (;;)
1551 {
1552 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1553 AssertLogRelRC(rc);
1554 if (!pVM->vmm.s.fRendezvousRecursion)
1555 break;
1556 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1557 }
1558 }
1559 }
1560 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1561 }
1562
1563
1564 /*
1565 * Do the callback and update the status if necessary.
1566 */
1567 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1568 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1569 {
1570 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1571 if (rcStrict2 != VINF_SUCCESS)
1572 {
1573 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1574 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1575 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1576 int32_t i32RendezvousStatus;
1577 do
1578 {
1579 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1580 if ( rcStrict2 == i32RendezvousStatus
1581 || RT_FAILURE(i32RendezvousStatus)
1582 || ( i32RendezvousStatus != VINF_SUCCESS
1583 && rcStrict2 > i32RendezvousStatus))
1584 break;
1585 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1586 }
1587 }
1588
1589 /*
1590 * Increment the done counter and take action depending on whether we're
1591 * the last to finish callback execution.
1592 */
1593 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1594 if ( cDone != pVM->cCpus
1595 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1596 {
1597 /* Signal the next EMT? */
1598 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1599 {
1600 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1601 AssertLogRelRC(rc);
1602 }
1603 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1604 {
1605 Assert(cDone == pVCpu->idCpu + 1U);
1606 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1607 AssertLogRelRC(rc);
1608 }
1609 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1610 {
1611 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1612 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1613 AssertLogRelRC(rc);
1614 }
1615
1616 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1617 if (!fIsCaller)
1618 {
1619 for (;;)
1620 {
1621 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1622 AssertLogRelRC(rc);
1623 if (!pVM->vmm.s.fRendezvousRecursion)
1624 break;
1625 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1626 }
1627 }
1628 }
1629 else
1630 {
1631 /* Callback execution is all done, tell the rest to return. */
1632 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1633 AssertLogRelRC(rc);
1634 }
1635
1636 if (!fIsCaller)
1637 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1638 return rcStrictRecursion;
1639}
1640
1641
1642/**
1643 * Called in response to VM_FF_EMT_RENDEZVOUS.
1644 *
1645 * @returns VBox strict status code - EM scheduling. No errors will be returned
1646 * here, nor will any non-EM scheduling status codes be returned.
1647 *
1648 * @param pVM The cross context VM structure.
1649 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1650 *
1651 * @thread EMT
1652 */
1653VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1654{
1655 Assert(!pVCpu->vmm.s.fInRendezvous);
1656 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1657 pVCpu->vmm.s.fInRendezvous = true;
1658 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1659 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1660 pVCpu->vmm.s.fInRendezvous = false;
1661 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1662 return VBOXSTRICTRC_TODO(rcStrict);
1663}
1664
1665
1666/**
1667 * Helper for resetting an single wakeup event sempahore.
1668 *
1669 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1670 * @param hEvt The event semaphore to reset.
1671 */
1672static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1673{
1674 for (uint32_t cLoops = 0; ; cLoops++)
1675 {
1676 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1677 if (rc != VINF_SUCCESS || cLoops > _4K)
1678 return rc;
1679 }
1680}
1681
1682
1683/**
1684 * Worker for VMMR3EmtRendezvous that handles recursion.
1685 *
1686 * @returns VBox strict status code. This will be the first error,
1687 * VINF_SUCCESS, or an EM scheduling status code.
1688 *
1689 * @param pVM The cross context VM structure.
1690 * @param pVCpu The cross context virtual CPU structure of the
1691 * calling EMT.
1692 * @param fFlags Flags indicating execution methods. See
1693 * grp_VMMR3EmtRendezvous_fFlags.
1694 * @param pfnRendezvous The callback.
1695 * @param pvUser User argument for the callback.
1696 *
1697 * @thread EMT(pVCpu)
1698 */
1699static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1700 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1701{
1702 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1703 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1704 Assert(pVCpu->vmm.s.fInRendezvous);
1705
1706 /*
1707 * Save the current state.
1708 */
1709 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1710 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1711 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1712 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1713 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1714
1715 /*
1716 * Check preconditions and save the current state.
1717 */
1718 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1719 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1720 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1721 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1722 VERR_INTERNAL_ERROR);
1723 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1724 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1725
1726 /*
1727 * Reset the recursion prep and pop semaphores.
1728 */
1729 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1730 AssertLogRelRCReturn(rc, rc);
1731 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1732 AssertLogRelRCReturn(rc, rc);
1733 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1734 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1735 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1736 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1737
1738 /*
1739 * Usher the other thread into the recursion routine.
1740 */
1741 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1742 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1743
1744 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1745 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1746 while (cLeft-- > 0)
1747 {
1748 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1749 AssertLogRelRC(rc);
1750 }
1751 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1752 {
1753 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1754 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1755 {
1756 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1757 AssertLogRelRC(rc);
1758 }
1759 }
1760 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1761 {
1762 Assert(cLeft == pVCpu->idCpu);
1763 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1764 {
1765 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1766 AssertLogRelRC(rc);
1767 }
1768 }
1769 else
1770 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1771 VERR_INTERNAL_ERROR_4);
1772
1773 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1774 AssertLogRelRC(rc);
1775 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1776 AssertLogRelRC(rc);
1777
1778
1779 /*
1780 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1781 */
1782 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1783 {
1784 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1785 AssertLogRelRC(rc);
1786 }
1787
1788 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1789
1790 /*
1791 * Clear the slate and setup the new rendezvous.
1792 */
1793 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1794 {
1795 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1796 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1797 }
1798 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1799 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1800 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1801 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1802
1803 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1804 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1805 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1806 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1807 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1808 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1809 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1810 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1811
1812 /*
1813 * We're ready to go now, do normal rendezvous processing.
1814 */
1815 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1816 AssertLogRelRC(rc);
1817
1818 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1819
1820 /*
1821 * The caller waits for the other EMTs to be done, return and waiting on the
1822 * pop semaphore.
1823 */
1824 for (;;)
1825 {
1826 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1827 AssertLogRelRC(rc);
1828 if (!pVM->vmm.s.fRendezvousRecursion)
1829 break;
1830 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1831 }
1832
1833 /*
1834 * Get the return code and merge it with the above recursion status.
1835 */
1836 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1837 if ( rcStrict2 != VINF_SUCCESS
1838 && ( rcStrict == VINF_SUCCESS
1839 || rcStrict > rcStrict2))
1840 rcStrict = rcStrict2;
1841
1842 /*
1843 * Restore the parent rendezvous state.
1844 */
1845 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1846 {
1847 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1848 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1849 }
1850 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1851 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1852 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1853 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1854
1855 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1856 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1857 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1858 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1859 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1860 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1861 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1862
1863 /*
1864 * Usher the other EMTs back to their parent recursion routine, waiting
1865 * for them to all get there before we return (makes sure they've been
1866 * scheduled and are past the pop event sem, see below).
1867 */
1868 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1869 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1870 AssertLogRelRC(rc);
1871
1872 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1873 {
1874 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
1875 AssertLogRelRC(rc);
1876 }
1877
1878 /*
1879 * We must reset the pop semaphore on the way out (doing the pop caller too,
1880 * just in case). The parent may be another recursion.
1881 */
1882 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
1883 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1884
1885 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
1886
1887 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
1888 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
1889 return rcStrict;
1890}
1891
1892
1893/**
1894 * EMT rendezvous.
1895 *
1896 * Gathers all the EMTs and execute some code on each of them, either in a one
1897 * by one fashion or all at once.
1898 *
1899 * @returns VBox strict status code. This will be the first error,
1900 * VINF_SUCCESS, or an EM scheduling status code.
1901 *
1902 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
1903 * doesn't support it or if the recursion is too deep.
1904 *
1905 * @param pVM The cross context VM structure.
1906 * @param fFlags Flags indicating execution methods. See
1907 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
1908 * descending and ascending rendezvous types support
1909 * recursion from inside @a pfnRendezvous.
1910 * @param pfnRendezvous The callback.
1911 * @param pvUser User argument for the callback.
1912 *
1913 * @thread Any.
1914 */
1915VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1916{
1917 /*
1918 * Validate input.
1919 */
1920 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1921 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1922 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1923 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1924 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1925 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1926 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1927 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1928
1929 VBOXSTRICTRC rcStrict;
1930 PVMCPU pVCpu = VMMGetCpu(pVM);
1931 if (!pVCpu)
1932 {
1933 /*
1934 * Forward the request to an EMT thread.
1935 */
1936 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
1937 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
1938 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1939 else
1940 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1941 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1942 }
1943 else if ( pVM->cCpus == 1
1944 || ( pVM->enmVMState == VMSTATE_DESTROYING
1945 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
1946 {
1947 /*
1948 * Shortcut for the single EMT case.
1949 *
1950 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
1951 * during vmR3Destroy after other emulation threads have started terminating.
1952 */
1953 if (!pVCpu->vmm.s.fInRendezvous)
1954 {
1955 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
1956 pVCpu->vmm.s.fInRendezvous = true;
1957 pVM->vmm.s.fRendezvousFlags = fFlags;
1958 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1959 pVCpu->vmm.s.fInRendezvous = false;
1960 }
1961 else
1962 {
1963 /* Recursion. Do the same checks as in the SMP case. */
1964 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
1965 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
1966 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
1967 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1968 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1969 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1970 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
1971 , VERR_DEADLOCK);
1972
1973 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1974 pVM->vmm.s.cRendezvousRecursions++;
1975 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1976 pVM->vmm.s.fRendezvousFlags = fFlags;
1977
1978 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1979
1980 pVM->vmm.s.fRendezvousFlags = fParentFlags;
1981 pVM->vmm.s.cRendezvousRecursions--;
1982 }
1983 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
1984 }
1985 else
1986 {
1987 /*
1988 * Spin lock. If busy, check for recursion, if not recursing wait for
1989 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
1990 */
1991 int rc;
1992 rcStrict = VINF_SUCCESS;
1993 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1994 {
1995 /* Allow recursion in some cases. */
1996 if ( pVCpu->vmm.s.fInRendezvous
1997 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1998 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1999 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2000 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2001 ))
2002 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2003
2004 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2005 VERR_DEADLOCK);
2006
2007 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2008 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2009 {
2010 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2011 {
2012 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2013 if ( rc != VINF_SUCCESS
2014 && ( rcStrict == VINF_SUCCESS
2015 || rcStrict > rc))
2016 rcStrict = rc;
2017 /** @todo Perhaps deal with termination here? */
2018 }
2019 ASMNopPause();
2020 }
2021 }
2022
2023 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2024 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2025 Assert(!pVCpu->vmm.s.fInRendezvous);
2026 pVCpu->vmm.s.fInRendezvous = true;
2027
2028 /*
2029 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2030 */
2031 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2032 {
2033 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2034 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2035 }
2036 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2037 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2038 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2039 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2040 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2041 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2042 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2043 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2044 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2045 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2046 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2047
2048 /*
2049 * Set the FF and poke the other EMTs.
2050 */
2051 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2052 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2053
2054 /*
2055 * Do the same ourselves.
2056 */
2057 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2058
2059 /*
2060 * The caller waits for the other EMTs to be done and return before doing
2061 * the cleanup. This makes away with wakeup / reset races we would otherwise
2062 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2063 */
2064 for (;;)
2065 {
2066 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2067 AssertLogRelRC(rc);
2068 if (!pVM->vmm.s.fRendezvousRecursion)
2069 break;
2070 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2071 }
2072
2073 /*
2074 * Get the return code and clean up a little bit.
2075 */
2076 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2077 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2078
2079 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2080 pVCpu->vmm.s.fInRendezvous = false;
2081
2082 /*
2083 * Merge rcStrict, rcStrict2 and rcStrict3.
2084 */
2085 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2086 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2087 if ( rcStrict2 != VINF_SUCCESS
2088 && ( rcStrict == VINF_SUCCESS
2089 || rcStrict > rcStrict2))
2090 rcStrict = rcStrict2;
2091 if ( rcStrict3 != VINF_SUCCESS
2092 && ( rcStrict == VINF_SUCCESS
2093 || rcStrict > rcStrict3))
2094 rcStrict = rcStrict3;
2095 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2096 }
2097
2098 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2099 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2100 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2101 VERR_IPE_UNEXPECTED_INFO_STATUS);
2102 return VBOXSTRICTRC_VAL(rcStrict);
2103}
2104
2105
2106/**
2107 * Interface for vmR3SetHaltMethodU.
2108 *
2109 * @param pVCpu The cross context virtual CPU structure of the
2110 * calling EMT.
2111 * @param fMayHaltInRing0 The new state.
2112 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2113 * @thread EMT(pVCpu)
2114 *
2115 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2116 * component.
2117 */
2118VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2119{
2120 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2121 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2122}
2123
2124
2125/**
2126 * Read from the ring 0 jump buffer stack.
2127 *
2128 * @returns VBox status code.
2129 *
2130 * @param pVM The cross context VM structure.
2131 * @param idCpu The ID of the source CPU context (for the address).
2132 * @param R0Addr Where to start reading.
2133 * @param pvBuf Where to store the data we've read.
2134 * @param cbRead The number of bytes to read.
2135 */
2136VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2137{
2138 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2139 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2140 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2141
2142 int rc;
2143#ifdef VMM_R0_SWITCH_STACK
2144 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2145#else
2146 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2147#endif
2148 if ( off < VMM_STACK_SIZE
2149 && off + cbRead <= VMM_STACK_SIZE)
2150 {
2151 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2152 rc = VINF_SUCCESS;
2153 }
2154 else
2155 rc = VERR_INVALID_POINTER;
2156
2157 /* Supply the setjmp return RIP/EIP. */
2158 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2159 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2160 {
2161 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2162 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2163 size_t offDst = 0;
2164 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2165 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2166 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2167 {
2168 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2169 Assert(offSrc < cbSrc);
2170 pbSrc -= offSrc;
2171 cbSrc -= offSrc;
2172 }
2173 if (cbSrc > cbRead - offDst)
2174 cbSrc = cbRead - offDst;
2175 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2176
2177 if (cbSrc == cbRead)
2178 rc = VINF_SUCCESS;
2179 }
2180
2181 return rc;
2182}
2183
2184
2185/**
2186 * Used by the DBGF stack unwinder to initialize the register state.
2187 *
2188 * @param pUVM The user mode VM handle.
2189 * @param idCpu The ID of the CPU being unwound.
2190 * @param pState The unwind state to initialize.
2191 */
2192VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2193{
2194 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2195 AssertReturnVoid(pVCpu);
2196
2197 /*
2198 * Locate the resume point on the stack.
2199 */
2200#ifdef VMM_R0_SWITCH_STACK
2201 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2202 AssertReturnVoid(off < VMM_STACK_SIZE);
2203#else
2204 uintptr_t off = 0;
2205#endif
2206
2207#ifdef RT_ARCH_AMD64
2208 /*
2209 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2210 */
2211# ifdef VBOX_STRICT
2212 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2213 off += 8; /* RESUME_MAGIC */
2214# endif
2215# ifdef RT_OS_WINDOWS
2216 off += 0xa0; /* XMM6 thru XMM15 */
2217# endif
2218 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2219 off += 8;
2220 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2221 off += 8;
2222# ifdef RT_OS_WINDOWS
2223 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2224 off += 8;
2225 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2226 off += 8;
2227# endif
2228 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2229 off += 8;
2230 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2231 off += 8;
2232 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2233 off += 8;
2234 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2235 off += 8;
2236 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2237 off += 8;
2238 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2239 off += 8;
2240
2241#elif defined(RT_ARCH_X86)
2242 /*
2243 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2244 */
2245# ifdef VBOX_STRICT
2246 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2247 off += 4; /* RESUME_MAGIC */
2248# endif
2249 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2250 off += 4;
2251 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2252 off += 4;
2253 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2254 off += 4;
2255 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2256 off += 4;
2257 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2258 off += 4;
2259 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2260 off += 4;
2261#else
2262# error "Port me"
2263#endif
2264
2265 /*
2266 * This is all we really need here, though the above helps if the assembly
2267 * doesn't contain unwind info (currently only on win/64, so that is useful).
2268 */
2269 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2270 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2271}
2272
2273
2274/**
2275 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2276 *
2277 * @returns VBox status code.
2278 * @param pVM The cross context VM structure.
2279 * @param uOperation Operation to execute.
2280 * @param u64Arg Constant argument.
2281 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2282 * details.
2283 */
2284VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2285{
2286 PVMCPU pVCpu = VMMGetCpu(pVM);
2287 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2288 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2289}
2290
2291
2292/**
2293 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2294 *
2295 * @returns VBox status code.
2296 * @param pVM The cross context VM structure.
2297 * @param pVCpu The cross context VM structure.
2298 * @param enmOperation Operation to execute.
2299 * @param u64Arg Constant argument.
2300 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2301 * details.
2302 */
2303VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2304{
2305 int rc;
2306 for (;;)
2307 {
2308#ifdef NO_SUPCALLR0VMM
2309 rc = VERR_GENERAL_FAILURE;
2310#else
2311 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2312#endif
2313 /*
2314 * Flush the logs.
2315 */
2316#ifdef LOG_ENABLED
2317 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0LoggerR3, NULL);
2318#endif
2319 VMM_FLUSH_R0_LOG(pVCpu->vmm.s.pR0RelLoggerR3, RTLogRelGetDefaultInstance());
2320 if (rc != VINF_VMM_CALL_HOST)
2321 break;
2322 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2323 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2324 break;
2325 /* Resume R0 */
2326 }
2327
2328 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2329 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2330 VERR_IPE_UNEXPECTED_INFO_STATUS);
2331 return rc;
2332}
2333
2334
2335/**
2336 * Service a call to the ring-3 host code.
2337 *
2338 * @returns VBox status code.
2339 * @param pVM The cross context VM structure.
2340 * @param pVCpu The cross context virtual CPU structure.
2341 * @remarks Careful with critsects.
2342 */
2343static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2344{
2345 /*
2346 * We must also check for pending critsect exits or else we can deadlock
2347 * when entering other critsects here.
2348 */
2349 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2350 PDMCritSectBothFF(pVCpu);
2351
2352 switch (pVCpu->vmm.s.enmCallRing3Operation)
2353 {
2354 /*
2355 * Acquire a critical section.
2356 */
2357 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2358 {
2359 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2360 true /*fCallRing3*/);
2361 break;
2362 }
2363
2364 /*
2365 * Enter a r/w critical section exclusively.
2366 */
2367 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_EXCL:
2368 {
2369 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterExclEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2370 true /*fCallRing3*/);
2371 break;
2372 }
2373
2374 /*
2375 * Enter a r/w critical section shared.
2376 */
2377 case VMMCALLRING3_PDM_CRIT_SECT_RW_ENTER_SHARED:
2378 {
2379 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectRwEnterSharedEx((PPDMCRITSECTRW)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2380 true /*fCallRing3*/);
2381 break;
2382 }
2383
2384 /*
2385 * Acquire the PDM lock.
2386 */
2387 case VMMCALLRING3_PDM_LOCK:
2388 {
2389 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2390 break;
2391 }
2392
2393 /*
2394 * Grow the PGM pool.
2395 */
2396 case VMMCALLRING3_PGM_POOL_GROW:
2397 {
2398 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2399 break;
2400 }
2401
2402 /*
2403 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2404 */
2405 case VMMCALLRING3_PGM_MAP_CHUNK:
2406 {
2407 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2408 break;
2409 }
2410
2411 /*
2412 * Allocates more handy pages.
2413 */
2414 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2415 {
2416 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2417 break;
2418 }
2419
2420 /*
2421 * Allocates a large page.
2422 */
2423 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2424 {
2425 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2426 break;
2427 }
2428
2429 /*
2430 * Acquire the PGM lock.
2431 */
2432 case VMMCALLRING3_PGM_LOCK:
2433 {
2434 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2435 break;
2436 }
2437
2438 /*
2439 * Acquire the MM hypervisor heap lock.
2440 */
2441 case VMMCALLRING3_MMHYPER_LOCK:
2442 {
2443 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2444 break;
2445 }
2446
2447#ifdef VBOX_WITH_REM
2448 /*
2449 * Flush REM handler notifications.
2450 */
2451 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2452 {
2453 REMR3ReplayHandlerNotifications(pVM);
2454 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2455 break;
2456 }
2457#endif
2458
2459 /*
2460 * This is a noop. We just take this route to avoid unnecessary
2461 * tests in the loops.
2462 */
2463 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2464 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2465 LogAlways(("*FLUSH*\n"));
2466 break;
2467
2468 /*
2469 * Set the VM error message.
2470 */
2471 case VMMCALLRING3_VM_SET_ERROR:
2472 VMR3SetErrorWorker(pVM);
2473 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2474 break;
2475
2476 /*
2477 * Set the VM runtime error message.
2478 */
2479 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2480 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2481 break;
2482
2483 /*
2484 * Signal a ring 0 hypervisor assertion.
2485 * Cancel the longjmp operation that's in progress.
2486 */
2487 case VMMCALLRING3_VM_R0_ASSERTION:
2488 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2489 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2490#ifdef RT_ARCH_X86
2491 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2492#else
2493 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2494#endif
2495#ifdef VMM_R0_SWITCH_STACK
2496 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2497#endif
2498 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2499 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2500 return VERR_VMM_RING0_ASSERTION;
2501
2502 /*
2503 * A forced switch to ring 0 for preemption purposes.
2504 */
2505 case VMMCALLRING3_VM_R0_PREEMPT:
2506 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2507 break;
2508
2509 default:
2510 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2511 return VERR_VMM_UNKNOWN_RING3_CALL;
2512 }
2513
2514 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2515 return VINF_SUCCESS;
2516}
2517
2518
2519/**
2520 * Displays the Force action Flags.
2521 *
2522 * @param pVM The cross context VM structure.
2523 * @param pHlp The output helpers.
2524 * @param pszArgs The additional arguments (ignored).
2525 */
2526static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2527{
2528 int c;
2529 uint32_t f;
2530 NOREF(pszArgs);
2531
2532#define PRINT_FLAG(prf,flag) do { \
2533 if (f & (prf##flag)) \
2534 { \
2535 static const char *s_psz = #flag; \
2536 if (!(c % 6)) \
2537 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2538 else \
2539 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2540 c++; \
2541 f &= ~(prf##flag); \
2542 } \
2543 } while (0)
2544
2545#define PRINT_GROUP(prf,grp,sfx) do { \
2546 if (f & (prf##grp##sfx)) \
2547 { \
2548 static const char *s_psz = #grp; \
2549 if (!(c % 5)) \
2550 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2551 else \
2552 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2553 c++; \
2554 } \
2555 } while (0)
2556
2557 /*
2558 * The global flags.
2559 */
2560 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2561 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2562
2563 /* show the flag mnemonics */
2564 c = 0;
2565 f = fGlobalForcedActions;
2566 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2567 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2568 PRINT_FLAG(VM_FF_,PDM_DMA);
2569 PRINT_FLAG(VM_FF_,DBGF);
2570 PRINT_FLAG(VM_FF_,REQUEST);
2571 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2572 PRINT_FLAG(VM_FF_,RESET);
2573 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2574 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2575 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2576 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2577 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2578 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2579 if (f)
2580 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2581 else
2582 pHlp->pfnPrintf(pHlp, "\n");
2583
2584 /* the groups */
2585 c = 0;
2586 f = fGlobalForcedActions;
2587 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2588 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2589 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2590 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2591 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2592 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2593 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2594 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2595 if (c)
2596 pHlp->pfnPrintf(pHlp, "\n");
2597
2598 /*
2599 * Per CPU flags.
2600 */
2601 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2602 {
2603 const uint64_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2604 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2605
2606 /* show the flag mnemonics */
2607 c = 0;
2608 f = fLocalForcedActions;
2609 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2610 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2611 PRINT_FLAG(VMCPU_FF_,TIMER);
2612 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2613 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2614 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2615 PRINT_FLAG(VMCPU_FF_,UNHALT);
2616 PRINT_FLAG(VMCPU_FF_,IEM);
2617 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2618 PRINT_FLAG(VMCPU_FF_,DBGF);
2619 PRINT_FLAG(VMCPU_FF_,REQUEST);
2620 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2621 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2622 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2623 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2624 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2625 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2626 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2627 PRINT_FLAG(VMCPU_FF_,TO_R3);
2628 PRINT_FLAG(VMCPU_FF_,IOM);
2629 if (f)
2630 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2631 else
2632 pHlp->pfnPrintf(pHlp, "\n");
2633
2634 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2635 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2636
2637 /* the groups */
2638 c = 0;
2639 f = fLocalForcedActions;
2640 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2641 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2642 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2643 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2644 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2645 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2646 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2647 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2648 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2649 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2650 if (c)
2651 pHlp->pfnPrintf(pHlp, "\n");
2652 }
2653
2654#undef PRINT_FLAG
2655#undef PRINT_GROUP
2656}
2657
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette