VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 44464

Last change on this file since 44464 was 44394, checked in by vboxsync, 12 years ago

+VMMR3GetCpuByIdU, -FNATOMICHANDLER

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 87.0 KB
Line 
1/* $Id: VMM.cpp 44394 2013-01-26 17:53:53Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmapi.h>
84#include <VBox/vmm/cpum.h>
85#include <VBox/vmm/mm.h>
86#include <VBox/vmm/iom.h>
87#include <VBox/vmm/trpm.h>
88#include <VBox/vmm/selm.h>
89#include <VBox/vmm/em.h>
90#include <VBox/sup.h>
91#include <VBox/vmm/dbgf.h>
92#include <VBox/vmm/csam.h>
93#include <VBox/vmm/patm.h>
94#ifdef VBOX_WITH_REM
95# include <VBox/vmm/rem.h>
96#endif
97#include <VBox/vmm/ssm.h>
98#include <VBox/vmm/ftm.h>
99#include <VBox/vmm/tm.h>
100#include "VMMInternal.h"
101#include "VMMSwitcher.h"
102#include <VBox/vmm/vm.h>
103#include <VBox/vmm/uvm.h>
104
105#include <VBox/err.h>
106#include <VBox/param.h>
107#include <VBox/version.h>
108#include <VBox/vmm/hm.h>
109#include <iprt/assert.h>
110#include <iprt/alloc.h>
111#include <iprt/asm.h>
112#include <iprt/time.h>
113#include <iprt/semaphore.h>
114#include <iprt/stream.h>
115#include <iprt/string.h>
116#include <iprt/stdarg.h>
117#include <iprt/ctype.h>
118#include <iprt/x86.h>
119
120
121
122/*******************************************************************************
123* Defined Constants And Macros *
124*******************************************************************************/
125/** The saved state version. */
126#define VMM_SAVED_STATE_VERSION 4
127/** The saved state version used by v3.0 and earlier. (Teleportation) */
128#define VMM_SAVED_STATE_VERSION_3_0 3
129
130
131/*******************************************************************************
132* Internal Functions *
133*******************************************************************************/
134static int vmmR3InitStacks(PVM pVM);
135static int vmmR3InitLoggers(PVM pVM);
136static void vmmR3InitRegisterStats(PVM pVM);
137static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
138static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
139static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
140static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
141static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142
143
144/**
145 * Initializes the VMM.
146 *
147 * @returns VBox status code.
148 * @param pVM Pointer to the VM.
149 */
150VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
151{
152 LogFlow(("VMMR3Init\n"));
153
154 /*
155 * Assert alignment, sizes and order.
156 */
157 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
158 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
159 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
160
161 /*
162 * Init basic VM VMM members.
163 */
164 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
165 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
166 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
167 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
168 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
169 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
170
171 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
172 * The EMT yield interval. The EMT yielding is a hack we employ to play a
173 * bit nicer with the rest of the system (like for instance the GUI).
174 */
175 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
176 23 /* Value arrived at after experimenting with the grub boot prompt. */);
177 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
178
179
180 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
181 * Controls whether we employ per-cpu preemption timers to limit the time
182 * spent executing guest code. This option is not available on all
183 * platforms and we will silently ignore this setting then. If we are
184 * running in VT-x mode, we will use the VMX-preemption timer instead of
185 * this one when possible.
186 */
187 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
188 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
189 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
190
191 /*
192 * Initialize the VMM rendezvous semaphores.
193 */
194 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
195 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
196 return VERR_NO_MEMORY;
197 for (VMCPUID i = 0; i < pVM->cCpus; i++)
198 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
199 for (VMCPUID i = 0; i < pVM->cCpus; i++)
200 {
201 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
202 AssertRCReturn(rc, rc);
203 }
204 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
205 AssertRCReturn(rc, rc);
206 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
207 AssertRCReturn(rc, rc);
208 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
209 AssertRCReturn(rc, rc);
210 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
211 AssertRCReturn(rc, rc);
212
213 /* GC switchers are enabled by default. Turned off by HM. */
214 pVM->vmm.s.fSwitcherDisabled = false;
215
216 /*
217 * Register the saved state data unit.
218 */
219 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
220 NULL, NULL, NULL,
221 NULL, vmmR3Save, NULL,
222 NULL, vmmR3Load, NULL);
223 if (RT_FAILURE(rc))
224 return rc;
225
226 /*
227 * Register the Ring-0 VM handle with the session for fast ioctl calls.
228 */
229 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
230 if (RT_FAILURE(rc))
231 return rc;
232
233 /*
234 * Init various sub-components.
235 */
236 rc = vmmR3SwitcherInit(pVM);
237 if (RT_SUCCESS(rc))
238 {
239 rc = vmmR3InitStacks(pVM);
240 if (RT_SUCCESS(rc))
241 {
242 rc = vmmR3InitLoggers(pVM);
243
244#ifdef VBOX_WITH_NMI
245 /*
246 * Allocate mapping for the host APIC.
247 */
248 if (RT_SUCCESS(rc))
249 {
250 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
251 AssertRC(rc);
252 }
253#endif
254 if (RT_SUCCESS(rc))
255 {
256 /*
257 * Debug info and statistics.
258 */
259 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
260 vmmR3InitRegisterStats(pVM);
261 vmmInitFormatTypes();
262
263 return VINF_SUCCESS;
264 }
265 }
266 /** @todo: Need failure cleanup. */
267
268 //more todo in here?
269 //if (RT_SUCCESS(rc))
270 //{
271 //}
272 //int rc2 = vmmR3TermCoreCode(pVM);
273 //AssertRC(rc2));
274 }
275
276 return rc;
277}
278
279
280/**
281 * Allocate & setup the VMM RC stack(s) (for EMTs).
282 *
283 * The stacks are also used for long jumps in Ring-0.
284 *
285 * @returns VBox status code.
286 * @param pVM Pointer to the VM.
287 *
288 * @remarks The optional guard page gets it protection setup up during R3 init
289 * completion because of init order issues.
290 */
291static int vmmR3InitStacks(PVM pVM)
292{
293 int rc = VINF_SUCCESS;
294#ifdef VMM_R0_SWITCH_STACK
295 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
296#else
297 uint32_t fFlags = 0;
298#endif
299
300 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
301 {
302 PVMCPU pVCpu = &pVM->aCpus[idCpu];
303
304#ifdef VBOX_STRICT_VMM_STACK
305 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
306#else
307 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
308#endif
309 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
310 if (RT_SUCCESS(rc))
311 {
312#ifdef VBOX_STRICT_VMM_STACK
313 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
314#endif
315#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
316 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
317 if (!VMMIsHwVirtExtForced(pVM))
318 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
319 else
320#endif
321 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
322 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
323 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
324 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
325
326 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
327 }
328 }
329
330 return rc;
331}
332
333
334/**
335 * Initialize the loggers.
336 *
337 * @returns VBox status code.
338 * @param pVM Pointer to the VM.
339 */
340static int vmmR3InitLoggers(PVM pVM)
341{
342 int rc;
343#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
344
345 /*
346 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
347 */
348#ifdef LOG_ENABLED
349 PRTLOGGER pLogger = RTLogDefaultInstance();
350 if (pLogger)
351 {
352 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
353 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
354 if (RT_FAILURE(rc))
355 return rc;
356 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
357
358# ifdef VBOX_WITH_R0_LOGGING
359 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
360 for (VMCPUID i = 0; i < pVM->cCpus; i++)
361 {
362 PVMCPU pVCpu = &pVM->aCpus[i];
363 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
364 (void **)&pVCpu->vmm.s.pR0LoggerR3);
365 if (RT_FAILURE(rc))
366 return rc;
367 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
368 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
369 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
370 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
371 }
372# endif
373 }
374#endif /* LOG_ENABLED */
375
376#ifdef VBOX_WITH_RC_RELEASE_LOGGING
377 /*
378 * Allocate RC release logger instances (finalized in the relocator).
379 */
380 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
381 if (pRelLogger)
382 {
383 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
384 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
385 if (RT_FAILURE(rc))
386 return rc;
387 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
388 }
389#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
390 return VINF_SUCCESS;
391}
392
393
394/**
395 * VMMR3Init worker that register the statistics with STAM.
396 *
397 * @param pVM The shared VM structure.
398 */
399static void vmmR3InitRegisterStats(PVM pVM)
400{
401 /*
402 * Statistics.
403 */
404 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
462 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
463
464#ifdef VBOX_WITH_STATISTICS
465 for (VMCPUID i = 0; i < pVM->cCpus; i++)
466 {
467 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
468 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
469 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
470 }
471#endif
472}
473
474
475/**
476 * Initializes the R0 VMM.
477 *
478 * @returns VBox status code.
479 * @param pVM Pointer to the VM.
480 */
481VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
482{
483 int rc;
484 PVMCPU pVCpu = VMMGetCpu(pVM);
485 Assert(pVCpu && pVCpu->idCpu == 0);
486
487#ifdef LOG_ENABLED
488 /*
489 * Initialize the ring-0 logger if we haven't done so yet.
490 */
491 if ( pVCpu->vmm.s.pR0LoggerR3
492 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
493 {
494 rc = VMMR3UpdateLoggers(pVM);
495 if (RT_FAILURE(rc))
496 return rc;
497 }
498#endif
499
500 /*
501 * Call Ring-0 entry with init code.
502 */
503 for (;;)
504 {
505#ifdef NO_SUPCALLR0VMM
506 //rc = VERR_GENERAL_FAILURE;
507 rc = VINF_SUCCESS;
508#else
509 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
510#endif
511 /*
512 * Flush the logs.
513 */
514#ifdef LOG_ENABLED
515 if ( pVCpu->vmm.s.pR0LoggerR3
516 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
517 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
518#endif
519 if (rc != VINF_VMM_CALL_HOST)
520 break;
521 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
522 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
523 break;
524 /* Resume R0 */
525 }
526
527 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
528 {
529 LogRel(("R0 init failed, rc=%Rra\n", rc));
530 if (RT_SUCCESS(rc))
531 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
532 }
533 return rc;
534}
535
536
537/**
538 * Initializes the RC VMM.
539 *
540 * @returns VBox status code.
541 * @param pVM Pointer to the VM.
542 */
543VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
544{
545 PVMCPU pVCpu = VMMGetCpu(pVM);
546 Assert(pVCpu && pVCpu->idCpu == 0);
547
548 /* In VMX mode, there's no need to init RC. */
549 if (pVM->vmm.s.fSwitcherDisabled)
550 return VINF_SUCCESS;
551
552 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
553
554 /*
555 * Call VMMGCInit():
556 * -# resolve the address.
557 * -# setup stackframe and EIP to use the trampoline.
558 * -# do a generic hypervisor call.
559 */
560 RTRCPTR RCPtrEP;
561 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
562 if (RT_SUCCESS(rc))
563 {
564 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
565 uint64_t u64TS = RTTimeProgramStartNanoTS();
566 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
567 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
568 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
569 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
570 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
571 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
572 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
573 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
574 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
575
576 for (;;)
577 {
578#ifdef NO_SUPCALLR0VMM
579 //rc = VERR_GENERAL_FAILURE;
580 rc = VINF_SUCCESS;
581#else
582 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
583#endif
584#ifdef LOG_ENABLED
585 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
586 if ( pLogger
587 && pLogger->offScratch > 0)
588 RTLogFlushRC(NULL, pLogger);
589#endif
590#ifdef VBOX_WITH_RC_RELEASE_LOGGING
591 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
592 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
593 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
594#endif
595 if (rc != VINF_VMM_CALL_HOST)
596 break;
597 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
598 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
599 break;
600 }
601
602 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
603 {
604 VMMR3FatalDump(pVM, pVCpu, rc);
605 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
606 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
607 }
608 AssertRC(rc);
609 }
610 return rc;
611}
612
613
614/**
615 * Called when an init phase completes.
616 *
617 * @returns VBox status code.
618 * @param pVM Pointer to the VM.
619 * @param enmWhat Which init phase.
620 */
621VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
622{
623 int rc = VINF_SUCCESS;
624
625 switch (enmWhat)
626 {
627 case VMINITCOMPLETED_RING3:
628 {
629 /*
630 * CPUM's post-initialization (APIC base MSR caching).
631 */
632 rc = CPUMR3InitCompleted(pVM);
633 AssertRCReturn(rc, rc);
634
635 /*
636 * Set page attributes to r/w for stack pages.
637 */
638 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
639 {
640 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
641 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
642 AssertRCReturn(rc, rc);
643 }
644
645 /*
646 * Create the EMT yield timer.
647 */
648 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
649 AssertRCReturn(rc, rc);
650
651 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
652 AssertRCReturn(rc, rc);
653
654#ifdef VBOX_WITH_NMI
655 /*
656 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
657 */
658 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
659 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
660 AssertRCReturn(rc, rc);
661#endif
662
663#ifdef VBOX_STRICT_VMM_STACK
664 /*
665 * Setup the stack guard pages: Two inaccessible pages at each sides of the
666 * stack to catch over/under-flows.
667 */
668 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
669 {
670 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
671
672 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
673 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
674
675 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
676 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
677 }
678 pVM->vmm.s.fStackGuardsStationed = true;
679#endif
680 break;
681 }
682
683 case VMINITCOMPLETED_RING0:
684 {
685 /*
686 * Disable the periodic preemption timers if we can use the
687 * VMX-preemption timer instead.
688 */
689 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
690 && HMR3IsVmxPreemptionTimerUsed(pVM))
691 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
692 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
693
694 /*
695 * CPUM's post-initialization (print CPUIDs).
696 */
697 CPUMR3LogCpuIds(pVM);
698 break;
699 }
700
701 default: /* shuts up gcc */
702 break;
703 }
704
705 return rc;
706}
707
708
709/**
710 * Terminate the VMM bits.
711 *
712 * @returns VINF_SUCCESS.
713 * @param pVM Pointer to the VM.
714 */
715VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
716{
717 PVMCPU pVCpu = VMMGetCpu(pVM);
718 Assert(pVCpu && pVCpu->idCpu == 0);
719
720 /*
721 * Call Ring-0 entry with termination code.
722 */
723 int rc;
724 for (;;)
725 {
726#ifdef NO_SUPCALLR0VMM
727 //rc = VERR_GENERAL_FAILURE;
728 rc = VINF_SUCCESS;
729#else
730 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
731#endif
732 /*
733 * Flush the logs.
734 */
735#ifdef LOG_ENABLED
736 if ( pVCpu->vmm.s.pR0LoggerR3
737 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
738 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
739#endif
740 if (rc != VINF_VMM_CALL_HOST)
741 break;
742 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
743 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
744 break;
745 /* Resume R0 */
746 }
747 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
748 {
749 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
750 if (RT_SUCCESS(rc))
751 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
752 }
753
754 for (VMCPUID i = 0; i < pVM->cCpus; i++)
755 {
756 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
757 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
758 }
759 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
760 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
761 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
762 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
763 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
764 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
765 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
766 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
767
768#ifdef VBOX_STRICT_VMM_STACK
769 /*
770 * Make the two stack guard pages present again.
771 */
772 if (pVM->vmm.s.fStackGuardsStationed)
773 {
774 for (VMCPUID i = 0; i < pVM->cCpus; i++)
775 {
776 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
777 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
778 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
779 }
780 pVM->vmm.s.fStackGuardsStationed = false;
781 }
782#endif
783
784 vmmTermFormatTypes();
785 return rc;
786}
787
788
789/**
790 * Applies relocations to data and code managed by this
791 * component. This function will be called at init and
792 * whenever the VMM need to relocate it self inside the GC.
793 *
794 * The VMM will need to apply relocations to the core code.
795 *
796 * @param pVM Pointer to the VM.
797 * @param offDelta The relocation delta.
798 */
799VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
800{
801 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
802
803 /*
804 * Recalc the RC address.
805 */
806#ifdef VBOX_WITH_RAW_MODE
807 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
808#endif
809
810 /*
811 * The stack.
812 */
813 for (VMCPUID i = 0; i < pVM->cCpus; i++)
814 {
815 PVMCPU pVCpu = &pVM->aCpus[i];
816
817 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
818
819 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
820 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
821 }
822
823 /*
824 * All the switchers.
825 */
826 vmmR3SwitcherRelocate(pVM, offDelta);
827
828 /*
829 * Get other RC entry points.
830 */
831 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
832 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
833
834 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
835 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
836
837 /*
838 * Update the logger.
839 */
840 VMMR3UpdateLoggers(pVM);
841}
842
843
844/**
845 * Updates the settings for the RC and R0 loggers.
846 *
847 * @returns VBox status code.
848 * @param pVM Pointer to the VM.
849 */
850VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
851{
852 /*
853 * Simply clone the logger instance (for RC).
854 */
855 int rc = VINF_SUCCESS;
856 RTRCPTR RCPtrLoggerFlush = 0;
857
858 if (pVM->vmm.s.pRCLoggerR3
859#ifdef VBOX_WITH_RC_RELEASE_LOGGING
860 || pVM->vmm.s.pRCRelLoggerR3
861#endif
862 )
863 {
864 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
865 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
866 }
867
868 if (pVM->vmm.s.pRCLoggerR3)
869 {
870 RTRCPTR RCPtrLoggerWrapper = 0;
871 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
872 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
873
874 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
875 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
876 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
877 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
878 }
879
880#ifdef VBOX_WITH_RC_RELEASE_LOGGING
881 if (pVM->vmm.s.pRCRelLoggerR3)
882 {
883 RTRCPTR RCPtrLoggerWrapper = 0;
884 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
885 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
886
887 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
888 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
889 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
890 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
891 }
892#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
893
894#ifdef LOG_ENABLED
895 /*
896 * For the ring-0 EMT logger, we use a per-thread logger instance
897 * in ring-0. Only initialize it once.
898 */
899 PRTLOGGER const pDefault = RTLogDefaultInstance();
900 for (VMCPUID i = 0; i < pVM->cCpus; i++)
901 {
902 PVMCPU pVCpu = &pVM->aCpus[i];
903 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
904 if (pR0LoggerR3)
905 {
906 if (!pR0LoggerR3->fCreated)
907 {
908 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
909 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
910 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
911
912 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
913 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
914 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
915
916 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
917 pfnLoggerWrapper, pfnLoggerFlush,
918 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
919 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
920
921 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
922 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
923 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
924 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pfnLoggerPrefix, NIL_RTR0PTR);
925 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
926
927 pR0LoggerR3->idCpu = i;
928 pR0LoggerR3->fCreated = true;
929 pR0LoggerR3->fFlushingDisabled = false;
930
931 }
932
933 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pDefault,
934 RTLOGFLAGS_BUFFERED, UINT32_MAX);
935 AssertRC(rc);
936 }
937 }
938#endif
939 return rc;
940}
941
942
943/**
944 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
945 *
946 * @returns Pointer to the buffer.
947 * @param pVM Pointer to the VM.
948 */
949VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
950{
951 if (HMIsEnabled(pVM))
952 return pVM->vmm.s.szRing0AssertMsg1;
953
954 RTRCPTR RCPtr;
955 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
956 if (RT_SUCCESS(rc))
957 return (const char *)MMHyperRCToR3(pVM, RCPtr);
958
959 return NULL;
960}
961
962
963/**
964 * Returns the VMCPU of the specified virtual CPU.
965 *
966 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
967 *
968 * @param pUVM The user mode VM handle.
969 * @param idCpu The ID of the virtual CPU.
970 */
971VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
972{
973 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
974 AssertReturn(idCpu < pUVM->cCpus, NULL);
975 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
976 return &pUVM->pVM->aCpus[idCpu];
977}
978
979
980/**
981 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
982 *
983 * @returns Pointer to the buffer.
984 * @param pVM Pointer to the VM.
985 */
986VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
987{
988 if (HMIsEnabled(pVM))
989 return pVM->vmm.s.szRing0AssertMsg2;
990
991 RTRCPTR RCPtr;
992 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
993 if (RT_SUCCESS(rc))
994 return (const char *)MMHyperRCToR3(pVM, RCPtr);
995
996 return NULL;
997}
998
999
1000/**
1001 * Execute state save operation.
1002 *
1003 * @returns VBox status code.
1004 * @param pVM Pointer to the VM.
1005 * @param pSSM SSM operation handle.
1006 */
1007static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1008{
1009 LogFlow(("vmmR3Save:\n"));
1010
1011 /*
1012 * Save the started/stopped state of all CPUs except 0 as it will always
1013 * be running. This avoids breaking the saved state version. :-)
1014 */
1015 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1016 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
1017
1018 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1019}
1020
1021
1022/**
1023 * Execute state load operation.
1024 *
1025 * @returns VBox status code.
1026 * @param pVM Pointer to the VM.
1027 * @param pSSM SSM operation handle.
1028 * @param uVersion Data layout version.
1029 * @param uPass The data pass.
1030 */
1031static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1032{
1033 LogFlow(("vmmR3Load:\n"));
1034 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1035
1036 /*
1037 * Validate version.
1038 */
1039 if ( uVersion != VMM_SAVED_STATE_VERSION
1040 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1041 {
1042 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1043 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1044 }
1045
1046 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1047 {
1048 /* Ignore the stack bottom, stack pointer and stack bits. */
1049 RTRCPTR RCPtrIgnored;
1050 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1051 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1052#ifdef RT_OS_DARWIN
1053 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1054 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1055 && SSMR3HandleRevision(pSSM) >= 48858
1056 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1057 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1058 )
1059 SSMR3Skip(pSSM, 16384);
1060 else
1061 SSMR3Skip(pSSM, 8192);
1062#else
1063 SSMR3Skip(pSSM, 8192);
1064#endif
1065 }
1066
1067 /*
1068 * Restore the VMCPU states. VCPU 0 is always started.
1069 */
1070 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1071 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1072 {
1073 bool fStarted;
1074 int rc = SSMR3GetBool(pSSM, &fStarted);
1075 if (RT_FAILURE(rc))
1076 return rc;
1077 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1078 }
1079
1080 /* terminator */
1081 uint32_t u32;
1082 int rc = SSMR3GetU32(pSSM, &u32);
1083 if (RT_FAILURE(rc))
1084 return rc;
1085 if (u32 != UINT32_MAX)
1086 {
1087 AssertMsgFailed(("u32=%#x\n", u32));
1088 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1089 }
1090 return VINF_SUCCESS;
1091}
1092
1093
1094/**
1095 * Resolve a builtin RC symbol.
1096 *
1097 * Called by PDM when loading or relocating RC modules.
1098 *
1099 * @returns VBox status
1100 * @param pVM Pointer to the VM.
1101 * @param pszSymbol Symbol to resolv
1102 * @param pRCPtrValue Where to store the symbol value.
1103 *
1104 * @remark This has to work before VMMR3Relocate() is called.
1105 */
1106VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1107{
1108 if (!strcmp(pszSymbol, "g_Logger"))
1109 {
1110 if (pVM->vmm.s.pRCLoggerR3)
1111 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1112 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1113 }
1114 else if (!strcmp(pszSymbol, "g_RelLogger"))
1115 {
1116#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1117 if (pVM->vmm.s.pRCRelLoggerR3)
1118 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1119 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1120#else
1121 *pRCPtrValue = NIL_RTRCPTR;
1122#endif
1123 }
1124 else
1125 return VERR_SYMBOL_NOT_FOUND;
1126 return VINF_SUCCESS;
1127}
1128
1129
1130/**
1131 * Suspends the CPU yielder.
1132 *
1133 * @param pVM Pointer to the VM.
1134 */
1135VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1136{
1137 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1138 if (!pVM->vmm.s.cYieldResumeMillies)
1139 {
1140 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1141 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1142 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1143 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1144 else
1145 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1146 TMTimerStop(pVM->vmm.s.pYieldTimer);
1147 }
1148 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1149}
1150
1151
1152/**
1153 * Stops the CPU yielder.
1154 *
1155 * @param pVM Pointer to the VM.
1156 */
1157VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1158{
1159 if (!pVM->vmm.s.cYieldResumeMillies)
1160 TMTimerStop(pVM->vmm.s.pYieldTimer);
1161 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1162 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1163}
1164
1165
1166/**
1167 * Resumes the CPU yielder when it has been a suspended or stopped.
1168 *
1169 * @param pVM Pointer to the VM.
1170 */
1171VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1172{
1173 if (pVM->vmm.s.cYieldResumeMillies)
1174 {
1175 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1176 pVM->vmm.s.cYieldResumeMillies = 0;
1177 }
1178}
1179
1180
1181/**
1182 * Internal timer callback function.
1183 *
1184 * @param pVM The VM.
1185 * @param pTimer The timer handle.
1186 * @param pvUser User argument specified upon timer creation.
1187 */
1188static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1189{
1190 NOREF(pvUser);
1191
1192 /*
1193 * This really needs some careful tuning. While we shouldn't be too greedy since
1194 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1195 * because that'll cause us to stop up.
1196 *
1197 * The current logic is to use the default interval when there is no lag worth
1198 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1199 *
1200 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1201 * so the lag is up to date.)
1202 */
1203 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1204 if ( u64Lag < 50000000 /* 50ms */
1205 || ( u64Lag < 1000000000 /* 1s */
1206 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1207 )
1208 {
1209 uint64_t u64Elapsed = RTTimeNanoTS();
1210 pVM->vmm.s.u64LastYield = u64Elapsed;
1211
1212 RTThreadYield();
1213
1214#ifdef LOG_ENABLED
1215 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1216 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1217#endif
1218 }
1219 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1220}
1221
1222
1223/**
1224 * Executes guest code in the raw-mode context.
1225 *
1226 * @param pVM Pointer to the VM.
1227 * @param pVCpu Pointer to the VMCPU.
1228 */
1229VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1230{
1231 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1232
1233 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1234
1235 /*
1236 * Set the hypervisor to resume executing a CPUM resume function
1237 * in CPUMRCA.asm.
1238 */
1239 CPUMSetHyperState(pVCpu,
1240 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1241 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1242 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1243 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1244 0, /* eax */
1245 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1246
1247 /*
1248 * We hide log flushes (outer) and hypervisor interrupts (inner).
1249 */
1250 for (;;)
1251 {
1252#ifdef VBOX_STRICT
1253 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1254 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1255 PGMMapCheck(pVM);
1256#endif
1257 int rc;
1258 do
1259 {
1260#ifdef NO_SUPCALLR0VMM
1261 rc = VERR_GENERAL_FAILURE;
1262#else
1263 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1264 if (RT_LIKELY(rc == VINF_SUCCESS))
1265 rc = pVCpu->vmm.s.iLastGZRc;
1266#endif
1267 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1268
1269 /*
1270 * Flush the logs.
1271 */
1272#ifdef LOG_ENABLED
1273 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1274 if ( pLogger
1275 && pLogger->offScratch > 0)
1276 RTLogFlushRC(NULL, pLogger);
1277#endif
1278#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1279 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1280 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1281 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1282#endif
1283 if (rc != VINF_VMM_CALL_HOST)
1284 {
1285 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1286 return rc;
1287 }
1288 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1289 if (RT_FAILURE(rc))
1290 return rc;
1291 /* Resume GC */
1292 }
1293}
1294
1295
1296/**
1297 * Executes guest code (Intel VT-x and AMD-V).
1298 *
1299 * @param pVM Pointer to the VM.
1300 * @param pVCpu Pointer to the VMCPU.
1301 */
1302VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1303{
1304 Log2(("VMMR3HmRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1305
1306 for (;;)
1307 {
1308 int rc;
1309 do
1310 {
1311#ifdef NO_SUPCALLR0VMM
1312 rc = VERR_GENERAL_FAILURE;
1313#else
1314 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HM_RUN, pVCpu->idCpu);
1315 if (RT_LIKELY(rc == VINF_SUCCESS))
1316 rc = pVCpu->vmm.s.iLastGZRc;
1317#endif
1318 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1319
1320#if 0 /* todo triggers too often */
1321 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1322#endif
1323
1324#ifdef LOG_ENABLED
1325 /*
1326 * Flush the log
1327 */
1328 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1329 if ( pR0LoggerR3
1330 && pR0LoggerR3->Logger.offScratch > 0)
1331 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1332#endif /* !LOG_ENABLED */
1333 if (rc != VINF_VMM_CALL_HOST)
1334 {
1335 Log2(("VMMR3HmRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1336 return rc;
1337 }
1338 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1339 if (RT_FAILURE(rc))
1340 return rc;
1341 /* Resume R0 */
1342 }
1343}
1344
1345/**
1346 * VCPU worker for VMMSendSipi.
1347 *
1348 * @param pVM Pointer to the VM.
1349 * @param idCpu Virtual CPU to perform SIPI on
1350 * @param uVector SIPI vector
1351 */
1352DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1353{
1354 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1355 VMCPU_ASSERT_EMT(pVCpu);
1356
1357 /** @todo what are we supposed to do if the processor is already running? */
1358 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1359 return VERR_ACCESS_DENIED;
1360
1361
1362 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1363
1364 pCtx->cs.Sel = uVector << 8;
1365 pCtx->cs.ValidSel = uVector << 8;
1366 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1367 pCtx->cs.u64Base = uVector << 12;
1368 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1369 pCtx->rip = 0;
1370
1371 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1372
1373# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1374 EMSetState(pVCpu, EMSTATE_HALTED);
1375 return VINF_EM_RESCHEDULE;
1376# else /* And if we go the VMCPU::enmState way it can stay here. */
1377 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1378 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1379 return VINF_SUCCESS;
1380# endif
1381}
1382
1383DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1384{
1385 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1386 VMCPU_ASSERT_EMT(pVCpu);
1387
1388 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1389 CPUMR3ResetCpu(pVCpu);
1390 return VINF_EM_WAIT_SIPI;
1391}
1392
1393/**
1394 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1395 * and unhalting processor
1396 *
1397 * @param pVM Pointer to the VM.
1398 * @param idCpu Virtual CPU to perform SIPI on
1399 * @param uVector SIPI vector
1400 */
1401VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1402{
1403 AssertReturnVoid(idCpu < pVM->cCpus);
1404
1405 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1406 AssertRC(rc);
1407}
1408
1409/**
1410 * Sends init IPI to the virtual CPU.
1411 *
1412 * @param pVM Pointer to the VM.
1413 * @param idCpu Virtual CPU to perform int IPI on
1414 */
1415VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1416{
1417 AssertReturnVoid(idCpu < pVM->cCpus);
1418
1419 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1420 AssertRC(rc);
1421}
1422
1423/**
1424 * Registers the guest memory range that can be used for patching
1425 *
1426 * @returns VBox status code.
1427 * @param pVM Pointer to the VM.
1428 * @param pPatchMem Patch memory range
1429 * @param cbPatchMem Size of the memory range
1430 */
1431VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1432{
1433 VM_ASSERT_EMT(pVM);
1434 if (HMIsEnabled(pVM))
1435 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1436
1437 return VERR_NOT_SUPPORTED;
1438}
1439
1440/**
1441 * Deregisters the guest memory range that can be used for patching
1442 *
1443 * @returns VBox status code.
1444 * @param pVM Pointer to the VM.
1445 * @param pPatchMem Patch memory range
1446 * @param cbPatchMem Size of the memory range
1447 */
1448VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1449{
1450 if (HMIsEnabled(pVM))
1451 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1452
1453 return VINF_SUCCESS;
1454}
1455
1456
1457/**
1458 * Count returns and have the last non-caller EMT wake up the caller.
1459 *
1460 * @returns VBox strict informational status code for EM scheduling. No failures
1461 * will be returned here, those are for the caller only.
1462 *
1463 * @param pVM Pointer to the VM.
1464 */
1465DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1466{
1467 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1468 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1469 if (cReturned == pVM->cCpus - 1U)
1470 {
1471 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1472 AssertLogRelRC(rc);
1473 }
1474
1475 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1476 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1477 ("%Rrc\n", rcRet),
1478 VERR_IPE_UNEXPECTED_INFO_STATUS);
1479 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1480}
1481
1482
1483/**
1484 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1485 *
1486 * @returns VBox strict informational status code for EM scheduling. No failures
1487 * will be returned here, those are for the caller only. When
1488 * fIsCaller is set, VINF_SUCCESS is always returned.
1489 *
1490 * @param pVM Pointer to the VM.
1491 * @param pVCpu The VMCPU structure for the calling EMT.
1492 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1493 * not.
1494 * @param fFlags The flags.
1495 * @param pfnRendezvous The callback.
1496 * @param pvUser The user argument for the callback.
1497 */
1498static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1499 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1500{
1501 int rc;
1502
1503 /*
1504 * Enter, the last EMT triggers the next callback phase.
1505 */
1506 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1507 if (cEntered != pVM->cCpus)
1508 {
1509 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1510 {
1511 /* Wait for our turn. */
1512 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1513 AssertLogRelRC(rc);
1514 }
1515 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1516 {
1517 /* Wait for the last EMT to arrive and wake everyone up. */
1518 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1519 AssertLogRelRC(rc);
1520 }
1521 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1522 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1523 {
1524 /* Wait for our turn. */
1525 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1526 AssertLogRelRC(rc);
1527 }
1528 else
1529 {
1530 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1531
1532 /*
1533 * The execute once is handled specially to optimize the code flow.
1534 *
1535 * The last EMT to arrive will perform the callback and the other
1536 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1537 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1538 * returns, that EMT will initiate the normal return sequence.
1539 */
1540 if (!fIsCaller)
1541 {
1542 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1543 AssertLogRelRC(rc);
1544
1545 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1546 }
1547 return VINF_SUCCESS;
1548 }
1549 }
1550 else
1551 {
1552 /*
1553 * All EMTs are waiting, clear the FF and take action according to the
1554 * execution method.
1555 */
1556 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1557
1558 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1559 {
1560 /* Wake up everyone. */
1561 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1562 AssertLogRelRC(rc);
1563 }
1564 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1565 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1566 {
1567 /* Figure out who to wake up and wake it up. If it's ourself, then
1568 it's easy otherwise wait for our turn. */
1569 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1570 ? 0
1571 : pVM->cCpus - 1U;
1572 if (pVCpu->idCpu != iFirst)
1573 {
1574 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1575 AssertLogRelRC(rc);
1576 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1577 AssertLogRelRC(rc);
1578 }
1579 }
1580 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1581 }
1582
1583
1584 /*
1585 * Do the callback and update the status if necessary.
1586 */
1587 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1588 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1589 {
1590 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1591 if (rcStrict != VINF_SUCCESS)
1592 {
1593 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1594 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1595 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1596 int32_t i32RendezvousStatus;
1597 do
1598 {
1599 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1600 if ( rcStrict == i32RendezvousStatus
1601 || RT_FAILURE(i32RendezvousStatus)
1602 || ( i32RendezvousStatus != VINF_SUCCESS
1603 && rcStrict > i32RendezvousStatus))
1604 break;
1605 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1606 }
1607 }
1608
1609 /*
1610 * Increment the done counter and take action depending on whether we're
1611 * the last to finish callback execution.
1612 */
1613 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1614 if ( cDone != pVM->cCpus
1615 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1616 {
1617 /* Signal the next EMT? */
1618 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1619 {
1620 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1621 AssertLogRelRC(rc);
1622 }
1623 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1624 {
1625 Assert(cDone == pVCpu->idCpu + 1U);
1626 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1627 AssertLogRelRC(rc);
1628 }
1629 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1630 {
1631 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1632 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1633 AssertLogRelRC(rc);
1634 }
1635
1636 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1637 if (!fIsCaller)
1638 {
1639 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1640 AssertLogRelRC(rc);
1641 }
1642 }
1643 else
1644 {
1645 /* Callback execution is all done, tell the rest to return. */
1646 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1647 AssertLogRelRC(rc);
1648 }
1649
1650 if (!fIsCaller)
1651 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1652 return VINF_SUCCESS;
1653}
1654
1655
1656/**
1657 * Called in response to VM_FF_EMT_RENDEZVOUS.
1658 *
1659 * @returns VBox strict status code - EM scheduling. No errors will be returned
1660 * here, nor will any non-EM scheduling status codes be returned.
1661 *
1662 * @param pVM Pointer to the VM.
1663 * @param pVCpu The handle of the calling EMT.
1664 *
1665 * @thread EMT
1666 */
1667VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1668{
1669 Assert(!pVCpu->vmm.s.fInRendezvous);
1670 pVCpu->vmm.s.fInRendezvous = true;
1671 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1672 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1673 pVCpu->vmm.s.fInRendezvous = false;
1674 return rc;
1675}
1676
1677
1678/**
1679 * EMT rendezvous.
1680 *
1681 * Gathers all the EMTs and execute some code on each of them, either in a one
1682 * by one fashion or all at once.
1683 *
1684 * @returns VBox strict status code. This will be the first error,
1685 * VINF_SUCCESS, or an EM scheduling status code.
1686 *
1687 * @param pVM Pointer to the VM.
1688 * @param fFlags Flags indicating execution methods. See
1689 * grp_VMMR3EmtRendezvous_fFlags.
1690 * @param pfnRendezvous The callback.
1691 * @param pvUser User argument for the callback.
1692 *
1693 * @thread Any.
1694 */
1695VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1696{
1697 /*
1698 * Validate input.
1699 */
1700 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
1701 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1702 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1703 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1704 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1705 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1706 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1707 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1708
1709 VBOXSTRICTRC rcStrict;
1710 PVMCPU pVCpu = VMMGetCpu(pVM);
1711 if (!pVCpu)
1712 /*
1713 * Forward the request to an EMT thread.
1714 */
1715 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1716 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1717 else if (pVM->cCpus == 1)
1718 {
1719 /*
1720 * Shortcut for the single EMT case.
1721 */
1722 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1723 pVCpu->vmm.s.fInRendezvous = true;
1724 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1725 pVCpu->vmm.s.fInRendezvous = false;
1726 }
1727 else
1728 {
1729 /*
1730 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1731 * lookout of the RENDEZVOUS FF.
1732 */
1733 int rc;
1734 rcStrict = VINF_SUCCESS;
1735 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1736 {
1737 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1738
1739 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1740 {
1741 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1742 {
1743 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1744 if ( rc != VINF_SUCCESS
1745 && ( rcStrict == VINF_SUCCESS
1746 || rcStrict > rc))
1747 rcStrict = rc;
1748 /** @todo Perhaps deal with termination here? */
1749 }
1750 ASMNopPause();
1751 }
1752 }
1753 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1754 Assert(!pVCpu->vmm.s.fInRendezvous);
1755 pVCpu->vmm.s.fInRendezvous = true;
1756
1757 /*
1758 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1759 */
1760 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1761 {
1762 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1763 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1764 }
1765 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1766 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1767 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1768 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1769 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1770 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1771 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1772 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1773 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1774 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1775 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1776
1777 /*
1778 * Set the FF and poke the other EMTs.
1779 */
1780 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1781 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1782
1783 /*
1784 * Do the same ourselves.
1785 */
1786 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1787
1788 /*
1789 * The caller waits for the other EMTs to be done and return before doing
1790 * the cleanup. This makes away with wakeup / reset races we would otherwise
1791 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1792 */
1793 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1794 AssertLogRelRC(rc);
1795
1796 /*
1797 * Get the return code and clean up a little bit.
1798 */
1799 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1800 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1801
1802 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1803 pVCpu->vmm.s.fInRendezvous = false;
1804
1805 /*
1806 * Merge rcStrict and rcMy.
1807 */
1808 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1809 if ( rcMy != VINF_SUCCESS
1810 && ( rcStrict == VINF_SUCCESS
1811 || rcStrict > rcMy))
1812 rcStrict = rcMy;
1813 }
1814
1815 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1816 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1817 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1818 VERR_IPE_UNEXPECTED_INFO_STATUS);
1819 return VBOXSTRICTRC_VAL(rcStrict);
1820}
1821
1822
1823/**
1824 * Disables/enables EMT rendezvous.
1825 *
1826 * This is used to make sure EMT rendezvous does not take place while
1827 * processing a priority request.
1828 *
1829 * @returns Old rendezvous-disabled state.
1830 * @param pVCpu The handle of the calling EMT.
1831 * @param fDisabled True if disabled, false if enabled.
1832 */
1833VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1834{
1835 VMCPU_ASSERT_EMT(pVCpu);
1836 bool fOld = pVCpu->vmm.s.fInRendezvous;
1837 pVCpu->vmm.s.fInRendezvous = fDisabled;
1838 return fOld;
1839}
1840
1841
1842/**
1843 * Read from the ring 0 jump buffer stack
1844 *
1845 * @returns VBox status code.
1846 *
1847 * @param pVM Pointer to the VM.
1848 * @param idCpu The ID of the source CPU context (for the address).
1849 * @param R0Addr Where to start reading.
1850 * @param pvBuf Where to store the data we've read.
1851 * @param cbRead The number of bytes to read.
1852 */
1853VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1854{
1855 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1856 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1857
1858#ifdef VMM_R0_SWITCH_STACK
1859 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1860#else
1861 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1862#endif
1863 if ( off > VMM_STACK_SIZE
1864 || off + cbRead >= VMM_STACK_SIZE)
1865 return VERR_INVALID_POINTER;
1866
1867 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1868 return VINF_SUCCESS;
1869}
1870
1871
1872/**
1873 * Calls a RC function.
1874 *
1875 * @param pVM Pointer to the VM.
1876 * @param RCPtrEntry The address of the RC function.
1877 * @param cArgs The number of arguments in the ....
1878 * @param ... Arguments to the function.
1879 */
1880VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1881{
1882 va_list args;
1883 va_start(args, cArgs);
1884 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1885 va_end(args);
1886 return rc;
1887}
1888
1889
1890/**
1891 * Calls a RC function.
1892 *
1893 * @param pVM Pointer to the VM.
1894 * @param RCPtrEntry The address of the RC function.
1895 * @param cArgs The number of arguments in the ....
1896 * @param args Arguments to the function.
1897 */
1898VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1899{
1900 /* Raw mode implies 1 VCPU. */
1901 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1902 PVMCPU pVCpu = &pVM->aCpus[0];
1903
1904 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1905
1906 /*
1907 * Setup the call frame using the trampoline.
1908 */
1909 CPUMSetHyperState(pVCpu,
1910 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
1911 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
1912 RCPtrEntry, /* eax */
1913 cArgs /* edx */
1914 );
1915
1916 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1917 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1918 int i = cArgs;
1919 while (i-- > 0)
1920 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1921
1922 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1923 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1924
1925 /*
1926 * We hide log flushes (outer) and hypervisor interrupts (inner).
1927 */
1928 for (;;)
1929 {
1930 int rc;
1931 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1932 do
1933 {
1934#ifdef NO_SUPCALLR0VMM
1935 rc = VERR_GENERAL_FAILURE;
1936#else
1937 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1938 if (RT_LIKELY(rc == VINF_SUCCESS))
1939 rc = pVCpu->vmm.s.iLastGZRc;
1940#endif
1941 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1942
1943 /*
1944 * Flush the loggers.
1945 */
1946#ifdef LOG_ENABLED
1947 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1948 if ( pLogger
1949 && pLogger->offScratch > 0)
1950 RTLogFlushRC(NULL, pLogger);
1951#endif
1952#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1953 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1954 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1955 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1956#endif
1957 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1958 VMMR3FatalDump(pVM, pVCpu, rc);
1959 if (rc != VINF_VMM_CALL_HOST)
1960 {
1961 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1962 return rc;
1963 }
1964 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1965 if (RT_FAILURE(rc))
1966 return rc;
1967 }
1968}
1969
1970
1971/**
1972 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1973 *
1974 * @returns VBox status code.
1975 * @param pVM Pointer to the VM.
1976 * @param uOperation Operation to execute.
1977 * @param u64Arg Constant argument.
1978 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1979 * details.
1980 */
1981VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1982{
1983 PVMCPU pVCpu = VMMGetCpu(pVM);
1984 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1985
1986 /*
1987 * Call Ring-0 entry with init code.
1988 */
1989 int rc;
1990 for (;;)
1991 {
1992#ifdef NO_SUPCALLR0VMM
1993 rc = VERR_GENERAL_FAILURE;
1994#else
1995 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1996#endif
1997 /*
1998 * Flush the logs.
1999 */
2000#ifdef LOG_ENABLED
2001 if ( pVCpu->vmm.s.pR0LoggerR3
2002 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
2003 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
2004#endif
2005 if (rc != VINF_VMM_CALL_HOST)
2006 break;
2007 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2008 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2009 break;
2010 /* Resume R0 */
2011 }
2012
2013 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2014 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
2015 VERR_IPE_UNEXPECTED_INFO_STATUS);
2016 return rc;
2017}
2018
2019
2020/**
2021 * Resumes executing hypervisor code when interrupted by a queue flush or a
2022 * debug event.
2023 *
2024 * @returns VBox status code.
2025 * @param pVM Pointer to the VM.
2026 * @param pVCpu Pointer to the VMCPU.
2027 */
2028VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
2029{
2030 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2031 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2032
2033 /*
2034 * We hide log flushes (outer) and hypervisor interrupts (inner).
2035 */
2036 for (;;)
2037 {
2038 int rc;
2039 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2040 do
2041 {
2042#ifdef NO_SUPCALLR0VMM
2043 rc = VERR_GENERAL_FAILURE;
2044#else
2045 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2046 if (RT_LIKELY(rc == VINF_SUCCESS))
2047 rc = pVCpu->vmm.s.iLastGZRc;
2048#endif
2049 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2050
2051 /*
2052 * Flush the loggers.
2053 */
2054#ifdef LOG_ENABLED
2055 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2056 if ( pLogger
2057 && pLogger->offScratch > 0)
2058 RTLogFlushRC(NULL, pLogger);
2059#endif
2060#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2061 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2062 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2063 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2064#endif
2065 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2066 VMMR3FatalDump(pVM, pVCpu, rc);
2067 if (rc != VINF_VMM_CALL_HOST)
2068 {
2069 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2070 return rc;
2071 }
2072 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2073 if (RT_FAILURE(rc))
2074 return rc;
2075 }
2076}
2077
2078
2079/**
2080 * Service a call to the ring-3 host code.
2081 *
2082 * @returns VBox status code.
2083 * @param pVM Pointer to the VM.
2084 * @param pVCpu Pointer to the VMCPU.
2085 * @remark Careful with critsects.
2086 */
2087static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2088{
2089 /*
2090 * We must also check for pending critsect exits or else we can deadlock
2091 * when entering other critsects here.
2092 */
2093 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2094 PDMCritSectFF(pVCpu);
2095
2096 switch (pVCpu->vmm.s.enmCallRing3Operation)
2097 {
2098 /*
2099 * Acquire a critical section.
2100 */
2101 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2102 {
2103 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2104 true /*fCallRing3*/);
2105 break;
2106 }
2107
2108 /*
2109 * Acquire the PDM lock.
2110 */
2111 case VMMCALLRING3_PDM_LOCK:
2112 {
2113 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2114 break;
2115 }
2116
2117 /*
2118 * Grow the PGM pool.
2119 */
2120 case VMMCALLRING3_PGM_POOL_GROW:
2121 {
2122 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2123 break;
2124 }
2125
2126 /*
2127 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2128 */
2129 case VMMCALLRING3_PGM_MAP_CHUNK:
2130 {
2131 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2132 break;
2133 }
2134
2135 /*
2136 * Allocates more handy pages.
2137 */
2138 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2139 {
2140 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2141 break;
2142 }
2143
2144 /*
2145 * Allocates a large page.
2146 */
2147 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2148 {
2149 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2150 break;
2151 }
2152
2153 /*
2154 * Acquire the PGM lock.
2155 */
2156 case VMMCALLRING3_PGM_LOCK:
2157 {
2158 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2159 break;
2160 }
2161
2162 /*
2163 * Acquire the MM hypervisor heap lock.
2164 */
2165 case VMMCALLRING3_MMHYPER_LOCK:
2166 {
2167 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2168 break;
2169 }
2170
2171#ifdef VBOX_WITH_REM
2172 /*
2173 * Flush REM handler notifications.
2174 */
2175 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2176 {
2177 REMR3ReplayHandlerNotifications(pVM);
2178 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2179 break;
2180 }
2181#endif
2182
2183 /*
2184 * This is a noop. We just take this route to avoid unnecessary
2185 * tests in the loops.
2186 */
2187 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2188 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2189 LogAlways(("*FLUSH*\n"));
2190 break;
2191
2192 /*
2193 * Set the VM error message.
2194 */
2195 case VMMCALLRING3_VM_SET_ERROR:
2196 VMR3SetErrorWorker(pVM);
2197 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2198 break;
2199
2200 /*
2201 * Set the VM runtime error message.
2202 */
2203 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2204 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2205 break;
2206
2207 /*
2208 * Signal a ring 0 hypervisor assertion.
2209 * Cancel the longjmp operation that's in progress.
2210 */
2211 case VMMCALLRING3_VM_R0_ASSERTION:
2212 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2213 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2214#ifdef RT_ARCH_X86
2215 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2216#else
2217 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2218#endif
2219#ifdef VMM_R0_SWITCH_STACK
2220 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2221#endif
2222 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2223 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2224 return VERR_VMM_RING0_ASSERTION;
2225
2226 /*
2227 * A forced switch to ring 0 for preemption purposes.
2228 */
2229 case VMMCALLRING3_VM_R0_PREEMPT:
2230 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2231 break;
2232
2233 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2234 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2235 break;
2236
2237 default:
2238 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2239 return VERR_VMM_UNKNOWN_RING3_CALL;
2240 }
2241
2242 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2243 return VINF_SUCCESS;
2244}
2245
2246
2247/**
2248 * Displays the Force action Flags.
2249 *
2250 * @param pVM Pointer to the VM.
2251 * @param pHlp The output helpers.
2252 * @param pszArgs The additional arguments (ignored).
2253 */
2254static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2255{
2256 int c;
2257 uint32_t f;
2258 NOREF(pszArgs);
2259
2260#define PRINT_FLAG(prf,flag) do { \
2261 if (f & (prf##flag)) \
2262 { \
2263 static const char *s_psz = #flag; \
2264 if (!(c % 6)) \
2265 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2266 else \
2267 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2268 c++; \
2269 f &= ~(prf##flag); \
2270 } \
2271 } while (0)
2272
2273#define PRINT_GROUP(prf,grp,sfx) do { \
2274 if (f & (prf##grp##sfx)) \
2275 { \
2276 static const char *s_psz = #grp; \
2277 if (!(c % 5)) \
2278 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2279 else \
2280 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2281 c++; \
2282 } \
2283 } while (0)
2284
2285 /*
2286 * The global flags.
2287 */
2288 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2289 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2290
2291 /* show the flag mnemonics */
2292 c = 0;
2293 f = fGlobalForcedActions;
2294 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2295 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2296 PRINT_FLAG(VM_FF_,PDM_DMA);
2297 PRINT_FLAG(VM_FF_,DBGF);
2298 PRINT_FLAG(VM_FF_,REQUEST);
2299 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2300 PRINT_FLAG(VM_FF_,RESET);
2301 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2302 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2303 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2304 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2305 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2306 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2307 if (f)
2308 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2309 else
2310 pHlp->pfnPrintf(pHlp, "\n");
2311
2312 /* the groups */
2313 c = 0;
2314 f = fGlobalForcedActions;
2315 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2316 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2317 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2318 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2319 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2320 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2321 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2322 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2323 if (c)
2324 pHlp->pfnPrintf(pHlp, "\n");
2325
2326 /*
2327 * Per CPU flags.
2328 */
2329 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2330 {
2331 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2332 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2333
2334 /* show the flag mnemonics */
2335 c = 0;
2336 f = fLocalForcedActions;
2337 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2338 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2339 PRINT_FLAG(VMCPU_FF_,TIMER);
2340 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2341 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2342 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2343 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2344 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2345 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2346 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2347 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2348 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2349 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2350 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2351 PRINT_FLAG(VMCPU_FF_,TO_R3);
2352 if (f)
2353 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2354 else
2355 pHlp->pfnPrintf(pHlp, "\n");
2356
2357 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2358 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2359
2360 /* the groups */
2361 c = 0;
2362 f = fLocalForcedActions;
2363 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2364 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2365 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2366 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2367 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2368 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2369 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2370 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2371 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2372 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2373 if (c)
2374 pHlp->pfnPrintf(pHlp, "\n");
2375 }
2376
2377#undef PRINT_FLAG
2378#undef PRINT_GROUP
2379}
2380
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette