VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 36054

Last change on this file since 36054 was 36054, checked in by vboxsync, 14 years ago

VMM/REM: Made .remstep work to some degree (might skip interrupts/traps).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 84.2 KB
Line 
1/* $Id: VMM.cpp 36054 2011-02-22 15:04:28Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 */
48
49/*******************************************************************************
50* Header Files *
51*******************************************************************************/
52#define LOG_GROUP LOG_GROUP_VMM
53#include <VBox/vmm/vmm.h>
54#include <VBox/vmm/vmapi.h>
55#include <VBox/vmm/pgm.h>
56#include <VBox/vmm/cfgm.h>
57#include <VBox/vmm/pdmqueue.h>
58#include <VBox/vmm/pdmcritsect.h>
59#include <VBox/vmm/pdmapi.h>
60#include <VBox/vmm/cpum.h>
61#include <VBox/vmm/mm.h>
62#include <VBox/vmm/iom.h>
63#include <VBox/vmm/trpm.h>
64#include <VBox/vmm/selm.h>
65#include <VBox/vmm/em.h>
66#include <VBox/sup.h>
67#include <VBox/vmm/dbgf.h>
68#include <VBox/vmm/csam.h>
69#include <VBox/vmm/patm.h>
70#include <VBox/vmm/rem.h>
71#include <VBox/vmm/ssm.h>
72#include <VBox/vmm/tm.h>
73#include "VMMInternal.h"
74#include "VMMSwitcher.h"
75#include <VBox/vmm/vm.h>
76#include <VBox/vmm/ftm.h>
77
78#include <VBox/err.h>
79#include <VBox/param.h>
80#include <VBox/version.h>
81#include <VBox/x86.h>
82#include <VBox/vmm/hwaccm.h>
83#include <iprt/assert.h>
84#include <iprt/alloc.h>
85#include <iprt/asm.h>
86#include <iprt/time.h>
87#include <iprt/semaphore.h>
88#include <iprt/stream.h>
89#include <iprt/string.h>
90#include <iprt/stdarg.h>
91#include <iprt/ctype.h>
92
93
94
95/*******************************************************************************
96* Defined Constants And Macros *
97*******************************************************************************/
98/** The saved state version. */
99#define VMM_SAVED_STATE_VERSION 4
100/** The saved state version used by v3.0 and earlier. (Teleportation) */
101#define VMM_SAVED_STATE_VERSION_3_0 3
102
103
104/*******************************************************************************
105* Internal Functions *
106*******************************************************************************/
107static int vmmR3InitStacks(PVM pVM);
108static int vmmR3InitLoggers(PVM pVM);
109static void vmmR3InitRegisterStats(PVM pVM);
110static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
111static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
112static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
113static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
114static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
115
116
117/**
118 * Initializes the VMM.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
124{
125 LogFlow(("VMMR3Init\n"));
126
127 /*
128 * Assert alignment, sizes and order.
129 */
130 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
131 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
132 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
133
134 /*
135 * Init basic VM VMM members.
136 */
137 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
138 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143
144 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
145 * The EMT yield interval. The EMT yielding is a hack we employ to play a
146 * bit nicer with the rest of the system (like for instance the GUI).
147 */
148 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
149 23 /* Value arrived at after experimenting with the grub boot prompt. */);
150 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
151
152
153 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
154 * Controls whether we employ per-cpu preemption timers to limit the time
155 * spent executing guest code. This option is not available on all
156 * platforms and we will silently ignore this setting then. If we are
157 * running in VT-x mode, we will use the VMX-preemption timer instead of
158 * this one when possible.
159 */
160 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
161 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
162 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
163
164 /*
165 * Initialize the VMM sync critical section and semaphores.
166 */
167 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
168 AssertRCReturn(rc, rc);
169 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
170 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
171 return VERR_NO_MEMORY;
172 for (VMCPUID i = 0; i < pVM->cCpus; i++)
173 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
174 for (VMCPUID i = 0; i < pVM->cCpus; i++)
175 {
176 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
177 AssertRCReturn(rc, rc);
178 }
179 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
180 AssertRCReturn(rc, rc);
181 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
182 AssertRCReturn(rc, rc);
183 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
184 AssertRCReturn(rc, rc);
185 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
186 AssertRCReturn(rc, rc);
187
188 /* GC switchers are enabled by default. Turned off by HWACCM. */
189 pVM->vmm.s.fSwitcherDisabled = false;
190
191 /*
192 * Register the saved state data unit.
193 */
194 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
195 NULL, NULL, NULL,
196 NULL, vmmR3Save, NULL,
197 NULL, vmmR3Load, NULL);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 /*
202 * Register the Ring-0 VM handle with the session for fast ioctl calls.
203 */
204 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
205 if (RT_FAILURE(rc))
206 return rc;
207
208 /*
209 * Init various sub-components.
210 */
211 rc = vmmR3SwitcherInit(pVM);
212 if (RT_SUCCESS(rc))
213 {
214 rc = vmmR3InitStacks(pVM);
215 if (RT_SUCCESS(rc))
216 {
217 rc = vmmR3InitLoggers(pVM);
218
219#ifdef VBOX_WITH_NMI
220 /*
221 * Allocate mapping for the host APIC.
222 */
223 if (RT_SUCCESS(rc))
224 {
225 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
226 AssertRC(rc);
227 }
228#endif
229 if (RT_SUCCESS(rc))
230 {
231 /*
232 * Debug info and statistics.
233 */
234 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
235 vmmR3InitRegisterStats(pVM);
236
237 return VINF_SUCCESS;
238 }
239 }
240 /** @todo: Need failure cleanup. */
241
242 //more todo in here?
243 //if (RT_SUCCESS(rc))
244 //{
245 //}
246 //int rc2 = vmmR3TermCoreCode(pVM);
247 //AssertRC(rc2));
248 }
249
250 return rc;
251}
252
253
254/**
255 * Allocate & setup the VMM RC stack(s) (for EMTs).
256 *
257 * The stacks are also used for long jumps in Ring-0.
258 *
259 * @returns VBox status code.
260 * @param pVM Pointer to the shared VM structure.
261 *
262 * @remarks The optional guard page gets it protection setup up during R3 init
263 * completion because of init order issues.
264 */
265static int vmmR3InitStacks(PVM pVM)
266{
267 int rc = VINF_SUCCESS;
268#ifdef VMM_R0_SWITCH_STACK
269 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
270#else
271 uint32_t fFlags = 0;
272#endif
273
274 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
275 {
276 PVMCPU pVCpu = &pVM->aCpus[idCpu];
277
278#ifdef VBOX_STRICT_VMM_STACK
279 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
280#else
281 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
282#endif
283 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
284 if (RT_SUCCESS(rc))
285 {
286#ifdef VBOX_STRICT_VMM_STACK
287 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
288#endif
289#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
290 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
291 if (!VMMIsHwVirtExtForced(pVM))
292 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
293 else
294#endif
295 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
296 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
297 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
298 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
299
300 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
301 }
302 }
303
304 return rc;
305}
306
307
308/**
309 * Initialize the loggers.
310 *
311 * @returns VBox status code.
312 * @param pVM Pointer to the shared VM structure.
313 */
314static int vmmR3InitLoggers(PVM pVM)
315{
316 int rc;
317
318 /*
319 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
320 */
321#ifdef LOG_ENABLED
322 PRTLOGGER pLogger = RTLogDefaultInstance();
323 if (pLogger)
324 {
325 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
326 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
327 if (RT_FAILURE(rc))
328 return rc;
329 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
330
331# ifdef VBOX_WITH_R0_LOGGING
332 for (VMCPUID i = 0; i < pVM->cCpus; i++)
333 {
334 PVMCPU pVCpu = &pVM->aCpus[i];
335
336 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
337 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
338 (void **)&pVCpu->vmm.s.pR0LoggerR3);
339 if (RT_FAILURE(rc))
340 return rc;
341 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
342 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
343 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
344 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
345 }
346# endif
347 }
348#endif /* LOG_ENABLED */
349
350#ifdef VBOX_WITH_RC_RELEASE_LOGGING
351 /*
352 * Allocate RC release logger instances (finalized in the relocator).
353 */
354 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
355 if (pRelLogger)
356 {
357 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
358 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
359 if (RT_FAILURE(rc))
360 return rc;
361 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
362 }
363#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
364 return VINF_SUCCESS;
365}
366
367
368/**
369 * VMMR3Init worker that register the statistics with STAM.
370 *
371 * @param pVM The shared VM structure.
372 */
373static void vmmR3InitRegisterStats(PVM pVM)
374{
375 /*
376 * Statistics.
377 */
378 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
436
437#ifdef VBOX_WITH_STATISTICS
438 for (VMCPUID i = 0; i < pVM->cCpus; i++)
439 {
440 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
441 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
442 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
443 }
444#endif
445}
446
447
448/**
449 * Initializes the R0 VMM.
450 *
451 * @returns VBox status code.
452 * @param pVM The VM to operate on.
453 */
454VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
455{
456 int rc;
457 PVMCPU pVCpu = VMMGetCpu(pVM);
458 Assert(pVCpu && pVCpu->idCpu == 0);
459
460#ifdef LOG_ENABLED
461 /*
462 * Initialize the ring-0 logger if we haven't done so yet.
463 */
464 if ( pVCpu->vmm.s.pR0LoggerR3
465 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
466 {
467 rc = VMMR3UpdateLoggers(pVM);
468 if (RT_FAILURE(rc))
469 return rc;
470 }
471#endif
472
473 /*
474 * Call Ring-0 entry with init code.
475 */
476 for (;;)
477 {
478#ifdef NO_SUPCALLR0VMM
479 //rc = VERR_GENERAL_FAILURE;
480 rc = VINF_SUCCESS;
481#else
482 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
483#endif
484 /*
485 * Flush the logs.
486 */
487#ifdef LOG_ENABLED
488 if ( pVCpu->vmm.s.pR0LoggerR3
489 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
490 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
491#endif
492 if (rc != VINF_VMM_CALL_HOST)
493 break;
494 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
495 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
496 break;
497 /* Resume R0 */
498 }
499
500 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
501 {
502 LogRel(("R0 init failed, rc=%Rra\n", rc));
503 if (RT_SUCCESS(rc))
504 rc = VERR_INTERNAL_ERROR;
505 }
506 return rc;
507}
508
509
510/**
511 * Initializes the RC VMM.
512 *
513 * @returns VBox status code.
514 * @param pVM The VM to operate on.
515 */
516VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
517{
518 PVMCPU pVCpu = VMMGetCpu(pVM);
519 Assert(pVCpu && pVCpu->idCpu == 0);
520
521 /* In VMX mode, there's no need to init RC. */
522 if (pVM->vmm.s.fSwitcherDisabled)
523 return VINF_SUCCESS;
524
525 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
526
527 /*
528 * Call VMMGCInit():
529 * -# resolve the address.
530 * -# setup stackframe and EIP to use the trampoline.
531 * -# do a generic hypervisor call.
532 */
533 RTRCPTR RCPtrEP;
534 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
535 if (RT_SUCCESS(rc))
536 {
537 CPUMHyperSetCtxCore(pVCpu, NULL);
538 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
539 uint64_t u64TS = RTTimeProgramStartNanoTS();
540 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
541 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
542 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
543 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
544 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
545 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
546 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
547 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
548 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
549
550 for (;;)
551 {
552#ifdef NO_SUPCALLR0VMM
553 //rc = VERR_GENERAL_FAILURE;
554 rc = VINF_SUCCESS;
555#else
556 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
557#endif
558#ifdef LOG_ENABLED
559 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
560 if ( pLogger
561 && pLogger->offScratch > 0)
562 RTLogFlushRC(NULL, pLogger);
563#endif
564#ifdef VBOX_WITH_RC_RELEASE_LOGGING
565 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
566 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
567 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
568#endif
569 if (rc != VINF_VMM_CALL_HOST)
570 break;
571 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
572 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
573 break;
574 }
575
576 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
577 {
578 VMMR3FatalDump(pVM, pVCpu, rc);
579 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
580 rc = VERR_INTERNAL_ERROR;
581 }
582 AssertRC(rc);
583 }
584 return rc;
585}
586
587
588/**
589 * Called when an init phase completes.
590 *
591 * @returns VBox status code.
592 * @param pVM The VM handle.
593 * @param enmWhat Which init phase.
594 */
595VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
596{
597 int rc = VINF_SUCCESS;
598
599 switch (enmWhat)
600 {
601 case VMINITCOMPLETED_RING3:
602 {
603 /*
604 * Set page attributes to r/w for stack pages.
605 */
606 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
607 {
608 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
609 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
610 AssertRCReturn(rc, rc);
611 }
612
613 /*
614 * Create the EMT yield timer.
615 */
616 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
617 AssertRCReturn(rc, rc);
618
619 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
620 AssertRCReturn(rc, rc);
621
622#ifdef VBOX_WITH_NMI
623 /*
624 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
625 */
626 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
627 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
628 AssertRCReturn(rc, rc);
629#endif
630
631#ifdef VBOX_STRICT_VMM_STACK
632 /*
633 * Setup the stack guard pages: Two inaccessible pages at each sides of the
634 * stack to catch over/under-flows.
635 */
636 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
637 {
638 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
639
640 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
641 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
642
643 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
644 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
645 }
646 pVM->vmm.s.fStackGuardsStationed = true;
647#endif
648 break;
649 }
650
651 case VMINITCOMPLETED_RING0:
652 {
653 /*
654 * Disable the periodic preemption timers if we can use the
655 * VMX-preemption timer instead.
656 */
657 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
658 && HWACCMR3IsVmxPreemptionTimerUsed(pVM))
659 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
660 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
661 break;
662 }
663
664 default: /* shuts up gcc */
665 break;
666 }
667
668 return rc;
669}
670
671
672/**
673 * Terminate the VMM bits.
674 *
675 * @returns VINF_SUCCESS.
676 * @param pVM The VM handle.
677 */
678VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
679{
680 PVMCPU pVCpu = VMMGetCpu(pVM);
681 Assert(pVCpu && pVCpu->idCpu == 0);
682
683 /*
684 * Call Ring-0 entry with termination code.
685 */
686 int rc;
687 for (;;)
688 {
689#ifdef NO_SUPCALLR0VMM
690 //rc = VERR_GENERAL_FAILURE;
691 rc = VINF_SUCCESS;
692#else
693 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
694#endif
695 /*
696 * Flush the logs.
697 */
698#ifdef LOG_ENABLED
699 if ( pVCpu->vmm.s.pR0LoggerR3
700 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
701 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
702#endif
703 if (rc != VINF_VMM_CALL_HOST)
704 break;
705 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
706 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
707 break;
708 /* Resume R0 */
709 }
710 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
711 {
712 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
713 if (RT_SUCCESS(rc))
714 rc = VERR_INTERNAL_ERROR;
715 }
716
717 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
718 for (VMCPUID i = 0; i < pVM->cCpus; i++)
719 {
720 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
721 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
722 }
723 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
724 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
725 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
726 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
727 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
728 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
729 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
730 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
731
732#ifdef VBOX_STRICT_VMM_STACK
733 /*
734 * Make the two stack guard pages present again.
735 */
736 if (pVM->vmm.s.fStackGuardsStationed)
737 {
738 for (VMCPUID i = 0; i < pVM->cCpus; i++)
739 {
740 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
741 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
742 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
743 }
744 pVM->vmm.s.fStackGuardsStationed = false;
745 }
746#endif
747 return rc;
748}
749
750
751/**
752 * Applies relocations to data and code managed by this
753 * component. This function will be called at init and
754 * whenever the VMM need to relocate it self inside the GC.
755 *
756 * The VMM will need to apply relocations to the core code.
757 *
758 * @param pVM The VM handle.
759 * @param offDelta The relocation delta.
760 */
761VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
762{
763 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
764
765 /*
766 * Recalc the RC address.
767 */
768#ifdef VBOX_WITH_RAW_MODE
769 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
770#endif
771
772 /*
773 * The stack.
774 */
775 for (VMCPUID i = 0; i < pVM->cCpus; i++)
776 {
777 PVMCPU pVCpu = &pVM->aCpus[i];
778
779 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
780
781 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
782 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
783 }
784
785 /*
786 * All the switchers.
787 */
788 vmmR3SwitcherRelocate(pVM, offDelta);
789
790 /*
791 * Get other RC entry points.
792 */
793 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
794 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
795
796 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
797 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
798
799 /*
800 * Update the logger.
801 */
802 VMMR3UpdateLoggers(pVM);
803}
804
805
806/**
807 * Updates the settings for the RC and R0 loggers.
808 *
809 * @returns VBox status code.
810 * @param pVM The VM handle.
811 */
812VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
813{
814 /*
815 * Simply clone the logger instance (for RC).
816 */
817 int rc = VINF_SUCCESS;
818 RTRCPTR RCPtrLoggerFlush = 0;
819
820 if (pVM->vmm.s.pRCLoggerR3
821#ifdef VBOX_WITH_RC_RELEASE_LOGGING
822 || pVM->vmm.s.pRCRelLoggerR3
823#endif
824 )
825 {
826 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
827 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
828 }
829
830 if (pVM->vmm.s.pRCLoggerR3)
831 {
832 RTRCPTR RCPtrLoggerWrapper = 0;
833 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
834 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
835
836 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
837 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
838 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
839 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
840 }
841
842#ifdef VBOX_WITH_RC_RELEASE_LOGGING
843 if (pVM->vmm.s.pRCRelLoggerR3)
844 {
845 RTRCPTR RCPtrLoggerWrapper = 0;
846 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
847 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
848
849 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
850 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
851 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
852 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
853 }
854#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
855
856#ifdef LOG_ENABLED
857 /*
858 * For the ring-0 EMT logger, we use a per-thread logger instance
859 * in ring-0. Only initialize it once.
860 */
861 for (VMCPUID i = 0; i < pVM->cCpus; i++)
862 {
863 PVMCPU pVCpu = &pVM->aCpus[i];
864 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
865 if (pR0LoggerR3)
866 {
867 if (!pR0LoggerR3->fCreated)
868 {
869 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
870 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
871 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
872
873 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
874 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
875 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
876
877 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
878 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
879 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
880 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
881
882 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
883 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
884 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
885 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
886 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
887
888 pR0LoggerR3->idCpu = i;
889 pR0LoggerR3->fCreated = true;
890 pR0LoggerR3->fFlushingDisabled = false;
891
892 }
893
894 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
895 AssertRC(rc);
896 }
897 }
898#endif
899 return rc;
900}
901
902
903/**
904 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
905 *
906 * @returns Pointer to the buffer.
907 * @param pVM The VM handle.
908 */
909VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
910{
911 if (HWACCMIsEnabled(pVM))
912 return pVM->vmm.s.szRing0AssertMsg1;
913
914 RTRCPTR RCPtr;
915 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
916 if (RT_SUCCESS(rc))
917 return (const char *)MMHyperRCToR3(pVM, RCPtr);
918
919 return NULL;
920}
921
922
923/**
924 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
925 *
926 * @returns Pointer to the buffer.
927 * @param pVM The VM handle.
928 */
929VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
930{
931 if (HWACCMIsEnabled(pVM))
932 return pVM->vmm.s.szRing0AssertMsg2;
933
934 RTRCPTR RCPtr;
935 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
936 if (RT_SUCCESS(rc))
937 return (const char *)MMHyperRCToR3(pVM, RCPtr);
938
939 return NULL;
940}
941
942
943/**
944 * Execute state save operation.
945 *
946 * @returns VBox status code.
947 * @param pVM VM Handle.
948 * @param pSSM SSM operation handle.
949 */
950static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
951{
952 LogFlow(("vmmR3Save:\n"));
953
954 /*
955 * Save the started/stopped state of all CPUs except 0 as it will always
956 * be running. This avoids breaking the saved state version. :-)
957 */
958 for (VMCPUID i = 1; i < pVM->cCpus; i++)
959 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
960
961 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
962}
963
964
965/**
966 * Execute state load operation.
967 *
968 * @returns VBox status code.
969 * @param pVM VM Handle.
970 * @param pSSM SSM operation handle.
971 * @param uVersion Data layout version.
972 * @param uPass The data pass.
973 */
974static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
975{
976 LogFlow(("vmmR3Load:\n"));
977 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
978
979 /*
980 * Validate version.
981 */
982 if ( uVersion != VMM_SAVED_STATE_VERSION
983 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
984 {
985 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
986 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
987 }
988
989 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
990 {
991 /* Ignore the stack bottom, stack pointer and stack bits. */
992 RTRCPTR RCPtrIgnored;
993 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
994 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
995#ifdef RT_OS_DARWIN
996 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
997 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
998 && SSMR3HandleRevision(pSSM) >= 48858
999 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1000 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1001 )
1002 SSMR3Skip(pSSM, 16384);
1003 else
1004 SSMR3Skip(pSSM, 8192);
1005#else
1006 SSMR3Skip(pSSM, 8192);
1007#endif
1008 }
1009
1010 /*
1011 * Restore the VMCPU states. VCPU 0 is always started.
1012 */
1013 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1014 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1015 {
1016 bool fStarted;
1017 int rc = SSMR3GetBool(pSSM, &fStarted);
1018 if (RT_FAILURE(rc))
1019 return rc;
1020 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1021 }
1022
1023 /* terminator */
1024 uint32_t u32;
1025 int rc = SSMR3GetU32(pSSM, &u32);
1026 if (RT_FAILURE(rc))
1027 return rc;
1028 if (u32 != UINT32_MAX)
1029 {
1030 AssertMsgFailed(("u32=%#x\n", u32));
1031 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1032 }
1033 return VINF_SUCCESS;
1034}
1035
1036
1037/**
1038 * Resolve a builtin RC symbol.
1039 *
1040 * Called by PDM when loading or relocating RC modules.
1041 *
1042 * @returns VBox status
1043 * @param pVM VM Handle.
1044 * @param pszSymbol Symbol to resolv
1045 * @param pRCPtrValue Where to store the symbol value.
1046 *
1047 * @remark This has to work before VMMR3Relocate() is called.
1048 */
1049VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1050{
1051 if (!strcmp(pszSymbol, "g_Logger"))
1052 {
1053 if (pVM->vmm.s.pRCLoggerR3)
1054 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1055 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1056 }
1057 else if (!strcmp(pszSymbol, "g_RelLogger"))
1058 {
1059#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1060 if (pVM->vmm.s.pRCRelLoggerR3)
1061 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1062 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1063#else
1064 *pRCPtrValue = NIL_RTRCPTR;
1065#endif
1066 }
1067 else
1068 return VERR_SYMBOL_NOT_FOUND;
1069 return VINF_SUCCESS;
1070}
1071
1072
1073/**
1074 * Suspends the CPU yielder.
1075 *
1076 * @param pVM The VM handle.
1077 */
1078VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1079{
1080 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1081 if (!pVM->vmm.s.cYieldResumeMillies)
1082 {
1083 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1084 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1085 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1086 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1087 else
1088 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1089 TMTimerStop(pVM->vmm.s.pYieldTimer);
1090 }
1091 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1092}
1093
1094
1095/**
1096 * Stops the CPU yielder.
1097 *
1098 * @param pVM The VM handle.
1099 */
1100VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1101{
1102 if (!pVM->vmm.s.cYieldResumeMillies)
1103 TMTimerStop(pVM->vmm.s.pYieldTimer);
1104 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1105 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1106}
1107
1108
1109/**
1110 * Resumes the CPU yielder when it has been a suspended or stopped.
1111 *
1112 * @param pVM The VM handle.
1113 */
1114VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1115{
1116 if (pVM->vmm.s.cYieldResumeMillies)
1117 {
1118 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1119 pVM->vmm.s.cYieldResumeMillies = 0;
1120 }
1121}
1122
1123
1124/**
1125 * Internal timer callback function.
1126 *
1127 * @param pVM The VM.
1128 * @param pTimer The timer handle.
1129 * @param pvUser User argument specified upon timer creation.
1130 */
1131static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1132{
1133 /*
1134 * This really needs some careful tuning. While we shouldn't be too greedy since
1135 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1136 * because that'll cause us to stop up.
1137 *
1138 * The current logic is to use the default interval when there is no lag worth
1139 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1140 *
1141 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1142 * so the lag is up to date.)
1143 */
1144 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1145 if ( u64Lag < 50000000 /* 50ms */
1146 || ( u64Lag < 1000000000 /* 1s */
1147 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1148 )
1149 {
1150 uint64_t u64Elapsed = RTTimeNanoTS();
1151 pVM->vmm.s.u64LastYield = u64Elapsed;
1152
1153 RTThreadYield();
1154
1155#ifdef LOG_ENABLED
1156 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1157 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1158#endif
1159 }
1160 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1161}
1162
1163
1164/**
1165 * Executes guest code in the raw-mode context.
1166 *
1167 * @param pVM VM handle.
1168 * @param pVCpu The VMCPU to operate on.
1169 */
1170VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1171{
1172 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1173
1174 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1175
1176 /*
1177 * Set the EIP and ESP.
1178 */
1179 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1180 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1181 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1182 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1183
1184 /*
1185 * We hide log flushes (outer) and hypervisor interrupts (inner).
1186 */
1187 for (;;)
1188 {
1189#ifdef VBOX_STRICT
1190 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1191 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1192 PGMMapCheck(pVM);
1193#endif
1194 int rc;
1195 do
1196 {
1197#ifdef NO_SUPCALLR0VMM
1198 rc = VERR_GENERAL_FAILURE;
1199#else
1200 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1201 if (RT_LIKELY(rc == VINF_SUCCESS))
1202 rc = pVCpu->vmm.s.iLastGZRc;
1203#endif
1204 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1205
1206 /*
1207 * Flush the logs.
1208 */
1209#ifdef LOG_ENABLED
1210 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1211 if ( pLogger
1212 && pLogger->offScratch > 0)
1213 RTLogFlushRC(NULL, pLogger);
1214#endif
1215#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1216 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1217 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1218 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1219#endif
1220 if (rc != VINF_VMM_CALL_HOST)
1221 {
1222 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1223 return rc;
1224 }
1225 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1226 if (RT_FAILURE(rc))
1227 return rc;
1228 /* Resume GC */
1229 }
1230}
1231
1232
1233/**
1234 * Executes guest code (Intel VT-x and AMD-V).
1235 *
1236 * @param pVM VM handle.
1237 * @param pVCpu The VMCPU to operate on.
1238 */
1239VMMR3_INT_DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1240{
1241 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1242
1243 for (;;)
1244 {
1245 int rc;
1246 do
1247 {
1248#ifdef NO_SUPCALLR0VMM
1249 rc = VERR_GENERAL_FAILURE;
1250#else
1251 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1252 if (RT_LIKELY(rc == VINF_SUCCESS))
1253 rc = pVCpu->vmm.s.iLastGZRc;
1254#endif
1255 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1256
1257#if 0 /* todo triggers too often */
1258 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1259#endif
1260
1261#ifdef LOG_ENABLED
1262 /*
1263 * Flush the log
1264 */
1265 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1266 if ( pR0LoggerR3
1267 && pR0LoggerR3->Logger.offScratch > 0)
1268 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1269#endif /* !LOG_ENABLED */
1270 if (rc != VINF_VMM_CALL_HOST)
1271 {
1272 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1273 return rc;
1274 }
1275 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1276 if (RT_FAILURE(rc))
1277 return rc;
1278 /* Resume R0 */
1279 }
1280}
1281
1282/**
1283 * VCPU worker for VMMSendSipi.
1284 *
1285 * @param pVM The VM to operate on.
1286 * @param idCpu Virtual CPU to perform SIPI on
1287 * @param uVector SIPI vector
1288 */
1289DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1290{
1291 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1292 VMCPU_ASSERT_EMT(pVCpu);
1293
1294 /** @todo what are we supposed to do if the processor is already running? */
1295 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1296 return VERR_ACCESS_DENIED;
1297
1298
1299 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1300
1301 pCtx->cs = uVector << 8;
1302 pCtx->csHid.u64Base = uVector << 12;
1303 pCtx->csHid.u32Limit = 0x0000ffff;
1304 pCtx->rip = 0;
1305
1306 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1307
1308# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1309 EMSetState(pVCpu, EMSTATE_HALTED);
1310 return VINF_EM_RESCHEDULE;
1311# else /* And if we go the VMCPU::enmState way it can stay here. */
1312 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1313 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1314 return VINF_SUCCESS;
1315# endif
1316}
1317
1318DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1319{
1320 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1321 VMCPU_ASSERT_EMT(pVCpu);
1322
1323 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1324 CPUMR3ResetCpu(pVCpu);
1325 return VINF_EM_WAIT_SIPI;
1326}
1327
1328/**
1329 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1330 * and unhalting processor
1331 *
1332 * @param pVM The VM to operate on.
1333 * @param idCpu Virtual CPU to perform SIPI on
1334 * @param uVector SIPI vector
1335 */
1336VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1337{
1338 AssertReturnVoid(idCpu < pVM->cCpus);
1339
1340 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1341 AssertRC(rc);
1342}
1343
1344/**
1345 * Sends init IPI to the virtual CPU.
1346 *
1347 * @param pVM The VM to operate on.
1348 * @param idCpu Virtual CPU to perform int IPI on
1349 */
1350VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1351{
1352 AssertReturnVoid(idCpu < pVM->cCpus);
1353
1354 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1355 AssertRC(rc);
1356}
1357
1358/**
1359 * Registers the guest memory range that can be used for patching
1360 *
1361 * @returns VBox status code.
1362 * @param pVM The VM to operate on.
1363 * @param pPatchMem Patch memory range
1364 * @param cbPatchMem Size of the memory range
1365 */
1366VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1367{
1368 if (HWACCMIsEnabled(pVM))
1369 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1370
1371 return VERR_NOT_SUPPORTED;
1372}
1373
1374/**
1375 * Deregisters the guest memory range that can be used for patching
1376 *
1377 * @returns VBox status code.
1378 * @param pVM The VM to operate on.
1379 * @param pPatchMem Patch memory range
1380 * @param cbPatchMem Size of the memory range
1381 */
1382VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1383{
1384 if (HWACCMIsEnabled(pVM))
1385 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1386
1387 return VINF_SUCCESS;
1388}
1389
1390
1391/**
1392 * VCPU worker for VMMR3SynchronizeAllVCpus.
1393 *
1394 * @param pVM The VM to operate on.
1395 * @param idCpu Virtual CPU to perform SIPI on
1396 * @param uVector SIPI vector
1397 */
1398DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1399{
1400 /* Block until the job in the caller has finished. */
1401 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1402 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1403 return VINF_SUCCESS;
1404}
1405
1406
1407/**
1408 * Atomically execute a callback handler
1409 * Note: This is very expensive; avoid using it frequently!
1410 *
1411 * @param pVM The VM to operate on.
1412 * @param pfnHandler Callback handler
1413 * @param pvUser User specified parameter
1414 *
1415 * @thread EMT
1416 * @todo Remove this if not used again soon.
1417 */
1418VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1419{
1420 int rc;
1421 PVMCPU pVCpu = VMMGetCpu(pVM);
1422 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1423
1424 /* Shortcut for the uniprocessor case. */
1425 if (pVM->cCpus == 1)
1426 return pfnHandler(pVM, pvUser);
1427
1428 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1429 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1430 {
1431 if (idCpu != pVCpu->idCpu)
1432 {
1433 rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SyncVCpu, 1, pVM);
1434 AssertRC(rc);
1435 }
1436 }
1437 /* Wait until all other VCPUs are waiting for us. */
1438 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCpus - 1))
1439 RTThreadSleep(1);
1440
1441 rc = pfnHandler(pVM, pvUser);
1442 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1443 return rc;
1444}
1445
1446
1447/**
1448 * Count returns and have the last non-caller EMT wake up the caller.
1449 *
1450 * @returns VBox strict informational status code for EM scheduling. No failures
1451 * will be returned here, those are for the caller only.
1452 *
1453 * @param pVM The VM handle.
1454 */
1455DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1456{
1457 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1458 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1459 if (cReturned == pVM->cCpus - 1U)
1460 {
1461 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1462 AssertLogRelRC(rc);
1463 }
1464
1465 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1466 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1467 ("%Rrc\n", rcRet),
1468 VERR_IPE_UNEXPECTED_INFO_STATUS);
1469 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1470}
1471
1472
1473/**
1474 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1475 *
1476 * @returns VBox strict informational status code for EM scheduling. No failures
1477 * will be returned here, those are for the caller only. When
1478 * fIsCaller is set, VINF_SUCCESS is always returned.
1479 *
1480 * @param pVM The VM handle.
1481 * @param pVCpu The VMCPU structure for the calling EMT.
1482 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1483 * not.
1484 * @param fFlags The flags.
1485 * @param pfnRendezvous The callback.
1486 * @param pvUser The user argument for the callback.
1487 */
1488static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1489 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1490{
1491 int rc;
1492
1493 /*
1494 * Enter, the last EMT triggers the next callback phase.
1495 */
1496 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1497 if (cEntered != pVM->cCpus)
1498 {
1499 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1500 {
1501 /* Wait for our turn. */
1502 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1503 AssertLogRelRC(rc);
1504 }
1505 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1506 {
1507 /* Wait for the last EMT to arrive and wake everyone up. */
1508 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1509 AssertLogRelRC(rc);
1510 }
1511 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1512 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1513 {
1514 /* Wait for our turn. */
1515 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1516 AssertLogRelRC(rc);
1517 }
1518 else
1519 {
1520 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1521
1522 /*
1523 * The execute once is handled specially to optimize the code flow.
1524 *
1525 * The last EMT to arrive will perform the callback and the other
1526 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1527 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1528 * returns, that EMT will initiate the normal return sequence.
1529 */
1530 if (!fIsCaller)
1531 {
1532 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1533 AssertLogRelRC(rc);
1534
1535 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1536 }
1537 return VINF_SUCCESS;
1538 }
1539 }
1540 else
1541 {
1542 /*
1543 * All EMTs are waiting, clear the FF and take action according to the
1544 * execution method.
1545 */
1546 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1547
1548 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1549 {
1550 /* Wake up everyone. */
1551 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1552 AssertLogRelRC(rc);
1553 }
1554 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1555 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1556 {
1557 /* Figure out who to wake up and wake it up. If it's ourself, then
1558 it's easy otherwise wait for our turn. */
1559 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1560 ? 0
1561 : pVM->cCpus - 1U;
1562 if (pVCpu->idCpu != iFirst)
1563 {
1564 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1565 AssertLogRelRC(rc);
1566 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1567 AssertLogRelRC(rc);
1568 }
1569 }
1570 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1571 }
1572
1573
1574 /*
1575 * Do the callback and update the status if necessary.
1576 */
1577 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1578 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1579 {
1580 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1581 if (rcStrict != VINF_SUCCESS)
1582 {
1583 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1584 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1585 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1586 int32_t i32RendezvousStatus;
1587 do
1588 {
1589 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1590 if ( rcStrict == i32RendezvousStatus
1591 || RT_FAILURE(i32RendezvousStatus)
1592 || ( i32RendezvousStatus != VINF_SUCCESS
1593 && rcStrict > i32RendezvousStatus))
1594 break;
1595 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1596 }
1597 }
1598
1599 /*
1600 * Increment the done counter and take action depending on whether we're
1601 * the last to finish callback execution.
1602 */
1603 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1604 if ( cDone != pVM->cCpus
1605 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1606 {
1607 /* Signal the next EMT? */
1608 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1609 {
1610 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1611 AssertLogRelRC(rc);
1612 }
1613 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1614 {
1615 Assert(cDone == pVCpu->idCpu + 1U);
1616 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1617 AssertLogRelRC(rc);
1618 }
1619 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1620 {
1621 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1622 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1623 AssertLogRelRC(rc);
1624 }
1625
1626 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1627 if (!fIsCaller)
1628 {
1629 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1630 AssertLogRelRC(rc);
1631 }
1632 }
1633 else
1634 {
1635 /* Callback execution is all done, tell the rest to return. */
1636 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1637 AssertLogRelRC(rc);
1638 }
1639
1640 if (!fIsCaller)
1641 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1642 return VINF_SUCCESS;
1643}
1644
1645
1646/**
1647 * Called in response to VM_FF_EMT_RENDEZVOUS.
1648 *
1649 * @returns VBox strict status code - EM scheduling. No errors will be returned
1650 * here, nor will any non-EM scheduling status codes be returned.
1651 *
1652 * @param pVM The VM handle
1653 * @param pVCpu The handle of the calling EMT.
1654 *
1655 * @thread EMT
1656 */
1657VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1658{
1659 return vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1660 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1661}
1662
1663
1664/**
1665 * EMT rendezvous.
1666 *
1667 * Gathers all the EMTs and execute some code on each of them, either in a one
1668 * by one fashion or all at once.
1669 *
1670 * @returns VBox strict status code. This will be the the first error,
1671 * VINF_SUCCESS, or an EM scheduling status code.
1672 *
1673 * @param pVM The VM handle.
1674 * @param fFlags Flags indicating execution methods. See
1675 * grp_VMMR3EmtRendezvous_fFlags.
1676 * @param pfnRendezvous The callback.
1677 * @param pvUser User argument for the callback.
1678 *
1679 * @thread Any.
1680 */
1681VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1682{
1683 /*
1684 * Validate input.
1685 */
1686 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1687 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1688 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1689 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1690 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1691 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1692 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1693
1694 VBOXSTRICTRC rcStrict;
1695 PVMCPU pVCpu = VMMGetCpu(pVM);
1696 if (!pVCpu)
1697 /*
1698 * Forward the request to an EMT thread.
1699 */
1700 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1701 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1702 else if (pVM->cCpus == 1)
1703 /*
1704 * Shortcut for the single EMT case.
1705 */
1706 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1707 else
1708 {
1709 /*
1710 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1711 * lookout of the RENDEZVOUS FF.
1712 */
1713 int rc;
1714 rcStrict = VINF_SUCCESS;
1715 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1716 {
1717 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1718 {
1719 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1720 {
1721 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1722 if ( rc != VINF_SUCCESS
1723 && ( rcStrict == VINF_SUCCESS
1724 || rcStrict > rc))
1725 rcStrict = rc;
1726 /** @todo Perhaps deal with termination here? */
1727 }
1728 ASMNopPause();
1729 }
1730 }
1731 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1732
1733 /*
1734 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1735 */
1736 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1737 {
1738 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1739 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1740 }
1741 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1742 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1743 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1744 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1745 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1746 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1747 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1748 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1749 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1750 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1751 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1752
1753 /*
1754 * Set the FF and poke the other EMTs.
1755 */
1756 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1757 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1758
1759 /*
1760 * Do the same ourselves.
1761 */
1762 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1763
1764 /*
1765 * The caller waits for the other EMTs to be done and return before doing
1766 * the cleanup. This makes away with wakeup / reset races we would otherwise
1767 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1768 */
1769 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1770 AssertLogRelRC(rc);
1771
1772 /*
1773 * Get the return code and clean up a little bit.
1774 */
1775 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1776 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1777
1778 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1779
1780 /*
1781 * Merge rcStrict and rcMy.
1782 */
1783 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1784 if ( rcMy != VINF_SUCCESS
1785 && ( rcStrict == VINF_SUCCESS
1786 || rcStrict > rcMy))
1787 rcStrict = rcMy;
1788 }
1789
1790 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1791 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1792 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1793 VERR_IPE_UNEXPECTED_INFO_STATUS);
1794 return VBOXSTRICTRC_VAL(rcStrict);
1795}
1796
1797
1798/**
1799 * Read from the ring 0 jump buffer stack
1800 *
1801 * @returns VBox status code.
1802 *
1803 * @param pVM Pointer to the shared VM structure.
1804 * @param idCpu The ID of the source CPU context (for the address).
1805 * @param R0Addr Where to start reading.
1806 * @param pvBuf Where to store the data we've read.
1807 * @param cbRead The number of bytes to read.
1808 */
1809VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1810{
1811 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1812 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1813
1814#ifdef VMM_R0_SWITCH_STACK
1815 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1816#else
1817 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1818#endif
1819 if ( off > VMM_STACK_SIZE
1820 || off + cbRead >= VMM_STACK_SIZE)
1821 return VERR_INVALID_POINTER;
1822
1823 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1824 return VINF_SUCCESS;
1825}
1826
1827
1828/**
1829 * Calls a RC function.
1830 *
1831 * @param pVM The VM handle.
1832 * @param RCPtrEntry The address of the RC function.
1833 * @param cArgs The number of arguments in the ....
1834 * @param ... Arguments to the function.
1835 */
1836VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1837{
1838 va_list args;
1839 va_start(args, cArgs);
1840 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1841 va_end(args);
1842 return rc;
1843}
1844
1845
1846/**
1847 * Calls a RC function.
1848 *
1849 * @param pVM The VM handle.
1850 * @param RCPtrEntry The address of the RC function.
1851 * @param cArgs The number of arguments in the ....
1852 * @param args Arguments to the function.
1853 */
1854VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1855{
1856 /* Raw mode implies 1 VCPU. */
1857 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1858 PVMCPU pVCpu = &pVM->aCpus[0];
1859
1860 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1861
1862 /*
1863 * Setup the call frame using the trampoline.
1864 */
1865 CPUMHyperSetCtxCore(pVCpu, NULL);
1866 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1867 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1868 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1869 int i = cArgs;
1870 while (i-- > 0)
1871 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1872
1873 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1874 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1875 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1876
1877 /*
1878 * We hide log flushes (outer) and hypervisor interrupts (inner).
1879 */
1880 for (;;)
1881 {
1882 int rc;
1883 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1884 do
1885 {
1886#ifdef NO_SUPCALLR0VMM
1887 rc = VERR_GENERAL_FAILURE;
1888#else
1889 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1890 if (RT_LIKELY(rc == VINF_SUCCESS))
1891 rc = pVCpu->vmm.s.iLastGZRc;
1892#endif
1893 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1894
1895 /*
1896 * Flush the logs.
1897 */
1898#ifdef LOG_ENABLED
1899 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1900 if ( pLogger
1901 && pLogger->offScratch > 0)
1902 RTLogFlushRC(NULL, pLogger);
1903#endif
1904#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1905 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1906 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1907 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1908#endif
1909 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1910 VMMR3FatalDump(pVM, pVCpu, rc);
1911 if (rc != VINF_VMM_CALL_HOST)
1912 {
1913 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1914 return rc;
1915 }
1916 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1917 if (RT_FAILURE(rc))
1918 return rc;
1919 }
1920}
1921
1922
1923/**
1924 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1925 *
1926 * @returns VBox status code.
1927 * @param pVM The VM to operate on.
1928 * @param uOperation Operation to execute.
1929 * @param u64Arg Constant argument.
1930 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1931 * details.
1932 */
1933VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1934{
1935 PVMCPU pVCpu = VMMGetCpu(pVM);
1936 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1937
1938 /*
1939 * Call Ring-0 entry with init code.
1940 */
1941 int rc;
1942 for (;;)
1943 {
1944#ifdef NO_SUPCALLR0VMM
1945 rc = VERR_GENERAL_FAILURE;
1946#else
1947 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1948#endif
1949 /*
1950 * Flush the logs.
1951 */
1952#ifdef LOG_ENABLED
1953 if ( pVCpu->vmm.s.pR0LoggerR3
1954 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1955 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1956#endif
1957 if (rc != VINF_VMM_CALL_HOST)
1958 break;
1959 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1960 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1961 break;
1962 /* Resume R0 */
1963 }
1964
1965 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1966 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1967 VERR_INTERNAL_ERROR);
1968 return rc;
1969}
1970
1971
1972/**
1973 * Resumes executing hypervisor code when interrupted by a queue flush or a
1974 * debug event.
1975 *
1976 * @returns VBox status code.
1977 * @param pVM VM handle.
1978 * @param pVCpu VMCPU handle.
1979 */
1980VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1981{
1982 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1983 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1984
1985 /*
1986 * We hide log flushes (outer) and hypervisor interrupts (inner).
1987 */
1988 for (;;)
1989 {
1990 int rc;
1991 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1992 do
1993 {
1994#ifdef NO_SUPCALLR0VMM
1995 rc = VERR_GENERAL_FAILURE;
1996#else
1997 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1998 if (RT_LIKELY(rc == VINF_SUCCESS))
1999 rc = pVCpu->vmm.s.iLastGZRc;
2000#endif
2001 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2002
2003 /*
2004 * Flush the loggers,
2005 */
2006#ifdef LOG_ENABLED
2007 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2008 if ( pLogger
2009 && pLogger->offScratch > 0)
2010 RTLogFlushRC(NULL, pLogger);
2011#endif
2012#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2013 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2014 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2015 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2016#endif
2017 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2018 VMMR3FatalDump(pVM, pVCpu, rc);
2019 if (rc != VINF_VMM_CALL_HOST)
2020 {
2021 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2022 return rc;
2023 }
2024 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2025 if (RT_FAILURE(rc))
2026 return rc;
2027 }
2028}
2029
2030
2031/**
2032 * Service a call to the ring-3 host code.
2033 *
2034 * @returns VBox status code.
2035 * @param pVM VM handle.
2036 * @param pVCpu VMCPU handle
2037 * @remark Careful with critsects.
2038 */
2039static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2040{
2041 /*
2042 * We must also check for pending critsect exits or else we can deadlock
2043 * when entering other critsects here.
2044 */
2045 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2046 PDMCritSectFF(pVCpu);
2047
2048 switch (pVCpu->vmm.s.enmCallRing3Operation)
2049 {
2050 /*
2051 * Acquire the PDM lock.
2052 */
2053 case VMMCALLRING3_PDM_LOCK:
2054 {
2055 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2056 break;
2057 }
2058
2059 /*
2060 * Grow the PGM pool.
2061 */
2062 case VMMCALLRING3_PGM_POOL_GROW:
2063 {
2064 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2065 break;
2066 }
2067
2068 /*
2069 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2070 */
2071 case VMMCALLRING3_PGM_MAP_CHUNK:
2072 {
2073 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2074 break;
2075 }
2076
2077 /*
2078 * Allocates more handy pages.
2079 */
2080 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2081 {
2082 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2083 break;
2084 }
2085
2086 /*
2087 * Allocates a large page.
2088 */
2089 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2090 {
2091 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2092 break;
2093 }
2094
2095 /*
2096 * Acquire the PGM lock.
2097 */
2098 case VMMCALLRING3_PGM_LOCK:
2099 {
2100 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2101 break;
2102 }
2103
2104 /*
2105 * Acquire the MM hypervisor heap lock.
2106 */
2107 case VMMCALLRING3_MMHYPER_LOCK:
2108 {
2109 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2110 break;
2111 }
2112
2113 /*
2114 * Flush REM handler notifications.
2115 */
2116 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2117 {
2118 REMR3ReplayHandlerNotifications(pVM);
2119 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2120 break;
2121 }
2122
2123 /*
2124 * This is a noop. We just take this route to avoid unnecessary
2125 * tests in the loops.
2126 */
2127 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2128 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2129 LogAlways(("*FLUSH*\n"));
2130 break;
2131
2132 /*
2133 * Set the VM error message.
2134 */
2135 case VMMCALLRING3_VM_SET_ERROR:
2136 VMR3SetErrorWorker(pVM);
2137 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2138 break;
2139
2140 /*
2141 * Set the VM runtime error message.
2142 */
2143 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2144 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2145 break;
2146
2147 /*
2148 * Signal a ring 0 hypervisor assertion.
2149 * Cancel the longjmp operation that's in progress.
2150 */
2151 case VMMCALLRING3_VM_R0_ASSERTION:
2152 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2153 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2154#ifdef RT_ARCH_X86
2155 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2156#else
2157 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2158#endif
2159#ifdef VMM_R0_SWITCH_STACK
2160 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2161#endif
2162 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2163 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2164 return VERR_VMM_RING0_ASSERTION;
2165
2166 /*
2167 * A forced switch to ring 0 for preemption purposes.
2168 */
2169 case VMMCALLRING3_VM_R0_PREEMPT:
2170 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2171 break;
2172
2173 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2174 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2175 break;
2176
2177 default:
2178 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2179 return VERR_INTERNAL_ERROR;
2180 }
2181
2182 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2183 return VINF_SUCCESS;
2184}
2185
2186
2187/**
2188 * Displays the Force action Flags.
2189 *
2190 * @param pVM The VM handle.
2191 * @param pHlp The output helpers.
2192 * @param pszArgs The additional arguments (ignored).
2193 */
2194static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2195{
2196 int c;
2197 uint32_t f;
2198#define PRINT_FLAG(prf,flag) do { \
2199 if (f & (prf##flag)) \
2200 { \
2201 static const char *s_psz = #flag; \
2202 if (!(c % 6)) \
2203 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2204 else \
2205 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2206 c++; \
2207 f &= ~(prf##flag); \
2208 } \
2209 } while (0)
2210
2211#define PRINT_GROUP(prf,grp,sfx) do { \
2212 if (f & (prf##grp##sfx)) \
2213 { \
2214 static const char *s_psz = #grp; \
2215 if (!(c % 5)) \
2216 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2217 else \
2218 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2219 c++; \
2220 } \
2221 } while (0)
2222
2223 /*
2224 * The global flags.
2225 */
2226 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2227 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2228
2229 /* show the flag mnemonics */
2230 c = 0;
2231 f = fGlobalForcedActions;
2232 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2233 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2234 PRINT_FLAG(VM_FF_,PDM_DMA);
2235 PRINT_FLAG(VM_FF_,DBGF);
2236 PRINT_FLAG(VM_FF_,REQUEST);
2237 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2238 PRINT_FLAG(VM_FF_,RESET);
2239 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2240 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2241 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2242 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2243 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2244 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2245 if (f)
2246 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2247 else
2248 pHlp->pfnPrintf(pHlp, "\n");
2249
2250 /* the groups */
2251 c = 0;
2252 f = fGlobalForcedActions;
2253 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2254 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2255 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2256 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2257 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2258 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2259 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2260 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2261 if (c)
2262 pHlp->pfnPrintf(pHlp, "\n");
2263
2264 /*
2265 * Per CPU flags.
2266 */
2267 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2268 {
2269 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2270 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2271
2272 /* show the flag mnemonics */
2273 c = 0;
2274 f = fLocalForcedActions;
2275 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2276 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2277 PRINT_FLAG(VMCPU_FF_,TIMER);
2278 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2279 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2280 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2281 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2282 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2283 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2284 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2285 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2286 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2287 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2288 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2289 PRINT_FLAG(VMCPU_FF_,TO_R3);
2290 if (f)
2291 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2292 else
2293 pHlp->pfnPrintf(pHlp, "\n");
2294
2295 /* the groups */
2296 c = 0;
2297 f = fLocalForcedActions;
2298 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2299 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2300 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2301 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2302 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2303 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2304 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2305 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2306 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2307 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2308 if (c)
2309 pHlp->pfnPrintf(pHlp, "\n");
2310 }
2311
2312#undef PRINT_FLAG
2313#undef PRINT_GROUP
2314}
2315
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette