/* $Id: VMM.cpp 100101 2023-06-07 17:52:38Z vboxsync $ */ /** @file * VMM - The Virtual Machine Monitor Core. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ //#define NO_SUPCALLR0VMM /** @page pg_vmm VMM - The Virtual Machine Monitor * * The VMM component is two things at the moment, it's a component doing a few * management and routing tasks, and it's the whole virtual machine monitor * thing. For hysterical reasons, it is not doing all the management that one * would expect, this is instead done by @ref pg_vm. We'll address this * misdesign eventually, maybe. * * VMM is made up of these components: * - @subpage pg_cfgm * - @subpage pg_cpum * - @subpage pg_dbgf * - @subpage pg_em * - @subpage pg_gim * - @subpage pg_gmm * - @subpage pg_gvmm * - @subpage pg_hm * - @subpage pg_iem * - @subpage pg_iom * - @subpage pg_mm * - @subpage pg_nem * - @subpage pg_pdm * - @subpage pg_pgm * - @subpage pg_selm * - @subpage pg_ssm * - @subpage pg_stam * - @subpage pg_tm * - @subpage pg_trpm * - @subpage pg_vm * * * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw * * * @section sec_vmmstate VMM State * * @image html VM_Statechart_Diagram.gif * * To be written. * * * @subsection subsec_vmm_init VMM Initialization * * To be written. * * * @subsection subsec_vmm_term VMM Termination * * To be written. * * * @section sec_vmm_limits VMM Limits * * There are various resource limits imposed by the VMM and it's * sub-components. We'll list some of them here. * * On 64-bit hosts: * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES), * can be increased up to 64K - 1. * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and * ROM pages. The limit is imposed by the 32-bit page ID used by GMM. * - A VM can be assigned all the memory we can use (16TB), however, the * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB). * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). * * On 32-bit hosts: * - Max 127 VMs. Imposed by GMM's per page structure. * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and * ROM pages. The limit is imposed by the 28-bit page ID used * internally in GMM. It is also limited by PAE. * - A VM can be assigned all the memory GMM can allocate, however, the * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB). * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_VMM #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_NESTED_HWVIRT_VMX # include #endif #include #include #include #include #include #include #if defined(VBOX_VMM_TARGET_ARMV8) # include #else # include #endif #include #include #include "VMMInternal.h" #include #include #include #include #include #include #include #if defined(VBOX_VMM_TARGET_ARMV8) # include #endif #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The saved state version. */ #define VMM_SAVED_STATE_VERSION 4 /** The saved state version used by v3.0 and earlier. (Teleportation) */ #define VMM_SAVED_STATE_VERSION_3_0 3 /** Macro for flushing the ring-0 logging. */ #define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \ do { \ size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \ if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \ || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \ { /* likely? */ } \ else \ vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \ } while (0) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static void vmmR3InitRegisterStats(PVM pVM); static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); #if 0 /* pointless when timers doesn't run on EMT */ static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser); #endif static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser); static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu); static FNRTTHREAD vmmR3LogFlusher; static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger); static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Initializes the VMM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) VMMR3Init(PVM pVM) { LogFlow(("VMMR3Init\n")); /* * Assert alignment, sizes and order. */ AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding)); AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding)); /* * Init basic VM VMM members. */ pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL; pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT; pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT; pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS(); #if 0 /* pointless when timers doesn't run on EMT */ /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms} * The EMT yield interval. The EMT yielding is a hack we employ to play a * bit nicer with the rest of the system (like for instance the GUI). */ int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies, 23 /* Value arrived at after experimenting with the grub boot prompt. */); AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc); #endif /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true} * Controls whether we employ per-cpu preemption timers to limit the time * spent executing guest code. This option is not available on all * platforms and we will silently ignore this setting then. If we are * running in VT-x mode, we will use the VMX-preemption timer instead of * this one when possible. */ PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM"); int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true); AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc); /* * Initialize the VMM rendezvous semaphores. */ pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus); if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered) return VERR_NO_MEMORY; for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); AssertRCReturn(rc, rc); } rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertRCReturn(rc, rc); /* * Register the saved state data unit. */ rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR), NULL, NULL, NULL, NULL, vmmR3Save, NULL, NULL, vmmR3Load, NULL); if (RT_FAILURE(rc)) return rc; /* * Register the Ring-0 VM handle with the session for fast ioctl calls. */ bool const fDriverless = SUPR3IsDriverless(); if (!fDriverless) { rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM)); if (RT_FAILURE(rc)) return rc; } #ifdef VBOX_WITH_NMI /* * Allocate mapping for the host APIC. */ rc = MMR3HyperReserve(pVM, HOST_PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase); AssertRC(rc); #endif if (RT_SUCCESS(rc)) { /* * Start the log flusher thread. */ if (!fDriverless) rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk"); if (RT_SUCCESS(rc)) { /* * Debug info and statistics. */ DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF); vmmR3InitRegisterStats(pVM); vmmInitFormatTypes(); return VINF_SUCCESS; } } /** @todo Need failure cleanup? */ return rc; } /** * VMMR3Init worker that register the statistics with STAM. * * @param pVM The cross context VM structure. */ static void vmmR3InitRegisterStats(PVM pVM) { RT_NOREF_PV(pVM); /* Nothing to do here in driverless mode. */ if (SUPR3IsDriverless()) return; /* * Statistics. */ STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns."); STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes"); STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up."); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i); STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i); STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i); PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger; STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i); STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i); STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i); STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i); STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i); STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i); STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i); STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i); pShared = &pVCpu->vmm.s.u.s.RelLogger; STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i); STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i); STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i); STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i); STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i); STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i); STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i); STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i); } } /** * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @thread EMT(pVCpu) */ static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu) { return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL); } /** * Initializes the R0 VMM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM) { int rc; PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu && pVCpu->idCpu == 0); /* * Nothing to do here in driverless mode. */ if (SUPR3IsDriverless()) return VINF_SUCCESS; /* * Make sure the ring-0 loggers are up to date. */ rc = VMMR3UpdateLoggers(pVM); if (RT_FAILURE(rc)) return rc; /* * Call Ring-0 entry with init code. */ #ifdef NO_SUPCALLR0VMM //rc = VERR_GENERAL_FAILURE; rc = VINF_SUCCESS; #else rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL); #endif /* * Flush the logs & deal with assertions. */ #ifdef LOG_ENABLED VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); #endif VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); if (rc == VERR_VMM_RING0_ASSERTION) rc = vmmR3HandleRing0Assert(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) { LogRel(("VMM: R0 init failed, rc=%Rra\n", rc)); if (RT_SUCCESS(rc)) rc = VERR_IPE_UNEXPECTED_INFO_STATUS; } /* * Log stuff we learned in ring-0. */ /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */ if (pVM->vmm.s.fIsUsingContextHooks) LogRel(("VMM: Enabled thread-context hooks\n")); else LogRel(("VMM: Thread-context hooks unavailable\n")); /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */ if (pVM->vmm.s.fIsPreemptPendingApiTrusty) LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n")); else LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n")); if (pVM->vmm.s.fIsPreemptPossible) LogRel(("VMM: Kernel preemption is possible\n")); else LogRel(("VMM: Kernel preemption is not possible it seems\n")); /* * Send all EMTs to ring-0 to get their logger initialized. */ for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++) rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]); return rc; } /** * Called when an init phase completes. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmWhat Which init phase. */ VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { int rc = VINF_SUCCESS; switch (enmWhat) { case VMINITCOMPLETED_RING3: { #if 0 /* pointless when timers doesn't run on EMT */ /* * Create the EMT yield timer. */ rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0, "EMT Yielder", &pVM->vmm.s.hYieldTimer); AssertRCReturn(rc, rc); rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies); AssertRCReturn(rc, rc); #endif break; } case VMINITCOMPLETED_HM: { #if !defined(VBOX_VMM_TARGET_ARMV8) /* * Disable the periodic preemption timers if we can use the * VMX-preemption timer instead. */ if ( pVM->vmm.s.fUsePeriodicPreemptionTimers && HMR3IsVmxPreemptionTimerUsed(pVM)) pVM->vmm.s.fUsePeriodicPreemptionTimers = false; LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers)); #endif /* * Last chance for GIM to update its CPUID leaves if it requires * knowledge/information from HM initialization. */ /** @todo r=bird: This shouldn't be done from here, but rather from VM.cpp. There is no dependency on VMM here. */ rc = GIMR3InitCompleted(pVM); AssertRCReturn(rc, rc); /* * CPUM's post-initialization (print CPUIDs). */ CPUMR3LogCpuIdAndMsrFeatures(pVM); break; } default: /* shuts up gcc */ break; } return rc; } /** * Terminate the VMM bits. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) VMMR3Term(PVM pVM) { PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu && pVCpu->idCpu == 0); /* * Call Ring-0 entry with termination code. */ int rc = VINF_SUCCESS; if (!SUPR3IsDriverless()) { #ifndef NO_SUPCALLR0VMM rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL); #endif } /* * Flush the logs & deal with assertions. */ #ifdef LOG_ENABLED VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); #endif VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); if (rc == VERR_VMM_RING0_ASSERTION) rc = vmmR3HandleRing0Assert(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) { LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc)); if (RT_SUCCESS(rc)) rc = VERR_IPE_UNEXPECTED_INFO_STATUS; } /* * Do clean ups. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; } RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne); pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone); pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller); pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush); pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop); pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI; RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT; RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT; vmmTermFormatTypes(); /* * Wait for the log flusher thread to complete. */ if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD) { int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL); AssertLogRelRC(rc2); if (RT_SUCCESS(rc2)) pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD; } return rc; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * The VMM will need to apply relocations to the core code. * * @param pVM The cross context VM structure. * @param offDelta The relocation delta. */ VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta)); RT_NOREF(offDelta); /* * Update the logger. */ VMMR3UpdateLoggers(pVM); } /** * Worker for VMMR3UpdateLoggers. */ static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger) { /* * Get the group count. */ uint32_t uGroupsCrc32 = 0; uint32_t cGroups = 0; uint64_t fFlags = 0; int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL); Assert(rc == VERR_BUFFER_OVERFLOW); /* * Allocate the request of the right size. */ uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]); PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq); if (pReq) { pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; pReq->Hdr.cbReq = cbReq; pReq->cGroups = cGroups; rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups); AssertRC(rc); if (RT_SUCCESS(rc)) { /* * The 64-bit value argument. */ uint64_t fExtraArg = fReleaseLogger; /* Only outputting to the parent VMM's logs? Enable ring-0 to flush directly. */ uint32_t fDst = RTLogGetDestinations(pSrcLogger); fDst &= ~(RTLOGDEST_DUMMY | RTLOGDEST_F_NO_DENY | RTLOGDEST_F_DELAY_FILE | RTLOGDEST_FIXED_FILE | RTLOGDEST_FIXED_DIR); if ( (fDst & (RTLOGDEST_VMM | RTLOGDEST_VMM_REL)) && !(fDst & ~(RTLOGDEST_VMM | RTLOGDEST_VMM_REL))) fExtraArg |= (fDst & RTLOGDEST_VMM ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG : 0) | (fDst & RTLOGDEST_VMM_REL ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL : 0); rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fExtraArg, &pReq->Hdr); } RTMemFree(pReq); } else rc = VERR_NO_MEMORY; return rc; } /** * Updates the settings for the RC and R0 loggers. * * @returns VBox status code. * @param pVM The cross context VM structure. * @thread EMT */ VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM) { /* Nothing to do here if we're in driverless mode: */ if (SUPR3IsDriverless()) return VINF_SUCCESS; PVMCPU pVCpu = VMMGetCpu(pVM); AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT); /* * Each EMT has each own logger instance. */ /* Debug logging.*/ int rcDebug = VINF_SUCCESS; #ifdef LOG_ENABLED PRTLOGGER const pDefault = RTLogDefaultInstance(); if (pDefault) rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/); #else RT_NOREF(pVM); #endif /* Release logging. */ int rcRelease = VINF_SUCCESS; PRTLOGGER const pRelease = RTLogRelGetDefaultInstance(); if (pRelease) rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/); return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug; } /** * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.} */ static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser) { PVM const pVM = (PVM)pvUser; RT_NOREF(hThreadSelf); /* Reset the flusher state before we start: */ pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX; /* * The work loop. */ for (;;) { /* * Wait for work. */ int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL); if (RT_SUCCESS(rc)) { /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */ VMMLOGFLUSHERENTRY Item; Item.u32 = pVM->vmm.s.LogFlusherItem.u32; if ( Item.s.idCpu < pVM->cCpus && Item.s.idxLogger < VMMLOGGER_IDX_MAX && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT) { /* * Verify the request. */ PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu]; PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger]; uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf; if (cbToFlush > 0) { if (cbToFlush <= pShared->cbBuf) { char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3; if (pchBufR3) { /* * Do the flushing. */ PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance(); if (pLogger) { char szBefore[128]; RTStrPrintf(szBefore, sizeof(szBefore), "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n", Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped); RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n"); } } else Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n", Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush)); } else Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n", Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf)); } else Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n", Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush)); /* * Mark the descriptor as flushed and set the request flag for same. */ pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true; } else { Assert(Item.s.idCpu == UINT16_MAX); Assert(Item.s.idxLogger == UINT8_MAX); Assert(Item.s.idxBuffer == UINT8_MAX); } } /* * Interrupted can happen, just ignore it. */ else if (rc == VERR_INTERRUPTED) { /* ignore*/ } /* * The ring-0 termination code will set the shutdown flag and wake us * up, and we should return with object destroyed. In case there is * some kind of race, we might also get sempahore destroyed. */ else if ( rc == VERR_OBJECT_DESTROYED || rc == VERR_SEM_DESTROYED || rc == VERR_INVALID_HANDLE) { LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc)); return VINF_SUCCESS; } /* * There shouldn't be any other errors... */ else { LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc)); AssertRC(rc); RTThreadSleep(1); } } } /** * Helper for VMM_FLUSH_R0_LOG that does the flushing. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling * EMT. * @param pShared The shared logger data. * @param idxBuf The buffer to flush. * @param pDstLogger The destination IPRT logger. */ static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger) { uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf; const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n"; const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n"; #if VMMLOGGER_BUFFER_COUNT > 1 /* * When we have more than one log buffer, the flusher thread may still be * working on the previous buffer when we get here. */ char szBefore[64]; if (pShared->cFlushing > 0) { STAM_REL_PROFILE_START(&pShared->StatRaces, a); uint64_t const nsStart = RTTimeNanoTS(); /* A no-op, but it takes the lock and the hope is that we end up waiting on the flusher to finish up. */ RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL); if (pShared->cFlushing != 0) { RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL); /* If no luck, go to ring-0 and to proper waiting. */ if (pShared->cFlushing != 0) { STAM_REL_COUNTER_INC(&pShared->StatRacesToR0); SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL); } } RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n", pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart); pszBefore = szBefore; STAM_REL_PROFILE_STOP(&pShared->StatRaces, a); } #else RT_NOREF(pVM, pVCpu); #endif RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter); pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true; } /** * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output. * * @returns Pointer to the buffer. * @param pVM The cross context VM structure. */ VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM) { return pVM->vmm.s.szRing0AssertMsg1; } /** * Returns the VMCPU of the specified virtual CPU. * * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the virtual CPU. */ VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL); AssertReturn(idCpu < pUVM->cCpus, NULL); VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL); return pUVM->pVM->apCpusR3[idCpu]; } /** * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output. * * @returns Pointer to the buffer. * @param pVM The cross context VM structure. */ VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM) { return pVM->vmm.s.szRing0AssertMsg2; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM) { LogFlow(("vmmR3Save:\n")); /* * Save the started/stopped state of all CPUs except 0 as it will always * be running. This avoids breaking the saved state version. :-) */ for (VMCPUID i = 1; i < pVM->cCpus; i++) SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i]))); return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */ } /** * Execute state load operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. * @param uVersion Data layout version. * @param uPass The data pass. */ static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { LogFlow(("vmmR3Load:\n")); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Validate version. */ if ( uVersion != VMM_SAVED_STATE_VERSION && uVersion != VMM_SAVED_STATE_VERSION_3_0) { AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (uVersion <= VMM_SAVED_STATE_VERSION_3_0) { /* Ignore the stack bottom, stack pointer and stack bits. */ RTRCPTR RCPtrIgnored; SSMR3GetRCPtr(pSSM, &RCPtrIgnored); SSMR3GetRCPtr(pSSM, &RCPtrIgnored); #ifdef RT_OS_DARWIN if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0) && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0) && SSMR3HandleRevision(pSSM) >= 48858 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86") || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") ) ) SSMR3Skip(pSSM, 16384); else SSMR3Skip(pSSM, 8192); #else SSMR3Skip(pSSM, 8192); #endif } /* * Restore the VMCPU states. VCPU 0 is always started. */ VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED); for (VMCPUID i = 1; i < pVM->cCpus; i++) { bool fStarted; int rc = SSMR3GetBool(pSSM, &fStarted); if (RT_FAILURE(rc)) return rc; VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED); } /* terminator */ uint32_t u32; int rc = SSMR3GetU32(pSSM, &u32); if (RT_FAILURE(rc)) return rc; if (u32 != UINT32_MAX) { AssertMsgFailed(("u32=%#x\n", u32)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } return VINF_SUCCESS; } /** * Suspends the CPU yielder. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM) { #if 0 /* pointless when timers doesn't run on EMT */ VMCPU_ASSERT_EMT(pVM->apCpusR3[0]); if (!pVM->vmm.s.cYieldResumeMillies) { uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer); uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer); if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0) pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; else pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now); TMTimerStop(pVM, pVM->vmm.s.hYieldTimer); } pVM->vmm.s.u64LastYield = RTTimeNanoTS(); #else RT_NOREF(pVM); #endif } /** * Stops the CPU yielder. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM) { #if 0 /* pointless when timers doesn't run on EMT */ if (!pVM->vmm.s.cYieldResumeMillies) TMTimerStop(pVM, pVM->vmm.s.hYieldTimer); pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; pVM->vmm.s.u64LastYield = RTTimeNanoTS(); #else RT_NOREF(pVM); #endif } /** * Resumes the CPU yielder when it has been a suspended or stopped. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM) { #if 0 /* pointless when timers doesn't run on EMT */ if (pVM->vmm.s.cYieldResumeMillies) { TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies); pVM->vmm.s.cYieldResumeMillies = 0; } #else RT_NOREF(pVM); #endif } #if 0 /* pointless when timers doesn't run on EMT */ /** * @callback_method_impl{FNTMTIMERINT, EMT yielder} * * @todo This is a UNI core/thread thing, really... Should be reconsidered. */ static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser) { NOREF(pvUser); /* * This really needs some careful tuning. While we shouldn't be too greedy since * that'll cause the rest of the system to stop up, we shouldn't be too nice either * because that'll cause us to stop up. * * The current logic is to use the default interval when there is no lag worth * mentioning, but when we start accumulating lag we don't bother yielding at all. * * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL * so the lag is up to date.) */ const uint64_t u64Lag = TMVirtualSyncGetLag(pVM); if ( u64Lag < 50000000 /* 50ms */ || ( u64Lag < 1000000000 /* 1s */ && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */) ) { uint64_t u64Elapsed = RTTimeNanoTS(); pVM->vmm.s.u64LastYield = u64Elapsed; RTThreadYield(); #ifdef LOG_ENABLED u64Elapsed = RTTimeNanoTS() - u64Elapsed; Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed)); #endif } TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies); } #endif /** * Executes guest code (Intel VT-x and AMD-V). * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu) { #if defined(VBOX_VMM_TARGET_ARMV8) /* We should actually never get here as the only execution engine is NEM. */ RT_NOREF(pVM, pVCpu); AssertReleaseFailed(); return VERR_NOT_SUPPORTED; #else Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu))); int rc; do { # ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; # else rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; # endif } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); # if 0 /** @todo triggers too often */ Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3)); # endif /* * Flush the logs */ # ifdef LOG_ENABLED VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); # endif VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); if (rc != VERR_VMM_RING0_ASSERTION) { Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu))); return rc; } return vmmR3HandleRing0Assert(pVM, pVCpu); #endif } /** * Perform one of the fast I/O control VMMR0 operation. * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param enmOperation The operation to perform. */ VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation) { VBOXSTRICTRC rcStrict; do { #ifdef NO_SUPCALLR0VMM rcStrict = VERR_GENERAL_FAILURE; #else rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu); if (RT_LIKELY(rcStrict == VINF_SUCCESS)) rcStrict = pVCpu->vmm.s.iLastGZRc; #endif } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER); /* * Flush the logs */ #ifdef LOG_ENABLED VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); #endif VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); if (rcStrict != VERR_VMM_RING0_ASSERTION) return rcStrict; return vmmR3HandleRing0Assert(pVM, pVCpu); } #if defined(VBOX_VMM_TARGET_ARMV8) /** * VCPU worker for VMMR3CpuOn. * * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform SIPI on. * @param GCPhysExecAddr The guest physical address to start executing at. * @param u64CtxId The context ID passed in x0/w0. */ static DECLCALLBACK(int) vmmR3CpuOn(PVM pVM, VMCPUID idCpu, RTGCPHYS GCPhysExecAddr, uint64_t u64CtxId) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI) return VINF_SUCCESS; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); pCtx->aGRegs[ARMV8_AARCH64_REG_X0].x = u64CtxId; pCtx->Pc.u64 = GCPhysExecAddr; Log(("vmmR3CpuOn for VCPU %d with GCPhysExecAddr=%RGp u64CtxId=%#RX64\n", idCpu, GCPhysExecAddr, u64CtxId)); # if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */ EMSetState(pVCpu, EMSTATE_HALTED); return VINF_EM_RESCHEDULE; # else /* And if we go the VMCPU::enmState way it can stay here. */ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED); return VINF_SUCCESS; # endif } /** * Sends a Startup IPI to the virtual CPU by setting CS:EIP into * vector-dependent state and unhalting processor. * * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform SIPI on. * @param GCPhysExecAddr The guest physical address to start executing at. * @param u64CtxId The context ID passed in x0/w0. */ VMMR3_INT_DECL(void) VMMR3CpuOn(PVM pVM, VMCPUID idCpu, RTGCPHYS GCPhysExecAddr, uint64_t u64CtxId) { AssertReturnVoid(idCpu < pVM->cCpus); int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3CpuOn, 4, pVM, idCpu, GCPhysExecAddr, u64CtxId); AssertRC(rc); } #else /** * VCPU worker for VMMR3SendStartupIpi. * * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform SIPI on. * @param uVector The SIPI vector. */ static DECLCALLBACK(int) vmmR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); /* * In the INIT state, the target CPU is only responsive to an SIPI. * This is also true for when when the CPU is in VMX non-root mode. * * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)". * See Intel spec. 26.6.2 "Activity State". */ if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI) return VINF_SUCCESS; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); # ifdef VBOX_WITH_NESTED_HWVIRT_VMX if (CPUMIsGuestInVmxRootMode(pCtx)) { /* If the CPU is in VMX non-root mode we must cause a VM-exit. */ if (CPUMIsGuestInVmxNonRootMode(pCtx)) return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector)); /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */ return VINF_SUCCESS; } # endif pCtx->cs.Sel = uVector << 8; pCtx->cs.ValidSel = uVector << 8; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = uVector << 12; pCtx->cs.u32Limit = UINT32_C(0x0000ffff); pCtx->rip = 0; Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector)); # if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */ EMSetState(pVCpu, EMSTATE_HALTED); return VINF_EM_RESCHEDULE; # else /* And if we go the VMCPU::enmState way it can stay here. */ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED); return VINF_SUCCESS; # endif } /** * VCPU worker for VMMR3SendInitIpi. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform SIPI on. */ static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu)); /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in * wait-for-SIPI state. Verify. */ /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */ #ifdef VBOX_WITH_NESTED_HWVIRT_VMX PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); if (CPUMIsGuestInVmxNonRootMode(pCtx)) return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */)); #endif /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT * IPI (e.g. SVM_EXIT_INIT). */ PGMR3ResetCpu(pVM, pVCpu); PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */ #if !defined(VBOX_VMM_TARGET_ARMV8) APICR3InitIpi(pVCpu); #endif TRPMR3ResetCpu(pVCpu); CPUMR3ResetCpu(pVM, pVCpu); EMR3ResetCpu(pVCpu); HMR3ResetCpu(pVCpu); NEMR3ResetCpu(pVCpu, true /*fInitIpi*/); /* This will trickle up on the target EMT. */ return VINF_EM_WAIT_SIPI; } /** * Sends a Startup IPI to the virtual CPU by setting CS:EIP into * vector-dependent state and unhalting processor. * * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform SIPI on. * @param uVector SIPI vector. */ VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector) { AssertReturnVoid(idCpu < pVM->cCpus); int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStartupIpi, 3, pVM, idCpu, uVector); AssertRC(rc); } /** * Sends init IPI to the virtual CPU. * * @param pVM The cross context VM structure. * @param idCpu Virtual CPU to perform int IPI on. */ VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu) { AssertReturnVoid(idCpu < pVM->cCpus); int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu); AssertRC(rc); } #endif /** * Registers the guest memory range that can be used for patching. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pPatchMem Patch memory range. * @param cbPatchMem Size of the memory range. */ VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { VM_ASSERT_EMT(pVM); if (HMIsEnabled(pVM)) return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem); return VERR_NOT_SUPPORTED; } /** * Deregisters the guest memory range that can be used for patching. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pPatchMem Patch memory range. * @param cbPatchMem Size of the memory range. */ VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { if (HMIsEnabled(pVM)) return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem); return VINF_SUCCESS; } /** * Common recursion handler for the other EMTs. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param rcStrict Current status code to be combined with the one * from this recursion and returned. */ static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict) { int rc2; /* * We wait here while the initiator of this recursion reconfigures * everything. The last EMT to get in signals the initiator. */ if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus) { rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); AssertLogRelRC(rc2); } rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT); AssertLogRelRC(rc2); /* * Do the normal rendezvous processing. */ VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags, pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser); /* * Wait for the initiator to restore everything. */ rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT); AssertLogRelRC(rc2); /* * Last thread out of here signals the initiator. */ if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus) { rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelRC(rc2); } /* * Merge status codes and return. */ AssertRC(VBOXSTRICTRC_VAL(rcStrict2)); if ( rcStrict2 != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcStrict2)) rcStrict = rcStrict2; return rcStrict; } /** * Count returns and have the last non-caller EMT wake up the caller. * * @returns VBox strict informational status code for EM scheduling. No failures * will be returned here, those are for the caller only. * * @param pVM The cross context VM structure. * @param rcStrict The current accumulated recursive status code, * to be merged with i32RendezvousStatus and * returned. */ DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict) { VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus); uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned); if (cReturned == pVM->cCpus - 1U) { int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelRC(rc); } /* * Merge the status codes, ignoring error statuses in this code path. */ AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), VERR_IPE_UNEXPECTED_INFO_STATUS); if (RT_SUCCESS(rcStrict2)) { if ( rcStrict2 != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcStrict2)) rcStrict = rcStrict2; } return rcStrict; } /** * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF. * * @returns VBox strict informational status code for EM scheduling. No failures * will be returned here, those are for the caller only. When * fIsCaller is set, VINF_SUCCESS is always returned. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or * not. * @param fFlags The flags. * @param pfnRendezvous The callback. * @param pvUser The user argument for the callback. */ static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) { int rc; VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS; /* * Enter, the last EMT triggers the next callback phase. */ uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered); if (cEntered != pVM->cCpus) { if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) { /* Wait for our turn. */ for (;;) { rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); } } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) { /* Wait for the last EMT to arrive and wake everyone up. */ rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); Assert(!pVM->vmm.s.fRendezvousRecursion); } else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { /* Wait for our turn. */ for (;;) { rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); } } else { Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE); /* * The execute once is handled specially to optimize the code flow. * * The last EMT to arrive will perform the callback and the other * EMTs will wait on the Done/DoneCaller semaphores (instead of * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback * returns, that EMT will initiate the normal return sequence. */ if (!fIsCaller) { for (;;) { rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); } return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion); } return VINF_SUCCESS; } } else { /* * All EMTs are waiting, clear the FF and take action according to the * execution method. */ VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS); if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) { /* Wake up everyone. */ rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); } else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { /* Figure out who to wake up and wake it up. If it's ourself, then it's easy otherwise wait for our turn. */ VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING ? 0 : pVM->cCpus - 1U; if (pVCpu->idCpu != iFirst) { rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]); AssertLogRelRC(rc); for (;;) { rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); } } } /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */ } /* * Do the callback and update the status if necessary. */ if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) ) { VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser); if (rcStrict2 != VINF_SUCCESS) { AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2))); int32_t i32RendezvousStatus; do { i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus); if ( rcStrict2 == i32RendezvousStatus || RT_FAILURE(i32RendezvousStatus) || ( i32RendezvousStatus != VINF_SUCCESS && rcStrict2 > i32RendezvousStatus)) break; } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus)); } } /* * Increment the done counter and take action depending on whether we're * the last to finish callback execution. */ uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone); if ( cDone != pVM->cCpus && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE) { /* Signal the next EMT? */ if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) { rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelRC(rc); } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING) { Assert(cDone == pVCpu->idCpu + 1U); rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]); AssertLogRelRC(rc); } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { Assert(pVM->cCpus - cDone == pVCpu->idCpu); rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]); AssertLogRelRC(rc); } /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */ if (!fIsCaller) { for (;;) { rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion); } } } else { /* Callback execution is all done, tell the rest to return. */ rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); } if (!fIsCaller) return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion); return rcStrictRecursion; } /** * Called in response to VM_FF_EMT_RENDEZVOUS. * * @returns VBox strict status code - EM scheduling. No errors will be returned * here, nor will any non-EM scheduling status codes be returned. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * * @thread EMT */ VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu) { Assert(!pVCpu->vmm.s.fInRendezvous); Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu)); pVCpu->vmm.s.fInRendezvous = true; VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags, pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser); pVCpu->vmm.s.fInRendezvous = false; Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict))); return VBOXSTRICTRC_TODO(rcStrict); } /** * Helper for resetting an single wakeup event sempahore. * * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise. * @param hEvt The event semaphore to reset. */ static int vmmR3HlpResetEvent(RTSEMEVENT hEvt) { for (uint32_t cLoops = 0; ; cLoops++) { int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/); if (rc != VINF_SUCCESS || cLoops > _4K) return rc; } } /** * Worker for VMMR3EmtRendezvous that handles recursion. * * @returns VBox strict status code. This will be the first error, * VINF_SUCCESS, or an EM scheduling status code. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param fFlags Flags indicating execution methods. See * grp_VMMR3EmtRendezvous_fFlags. * @param pfnRendezvous The callback. * @param pvUser User argument for the callback. * * @thread EMT(pVCpu) */ static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) { Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions)); AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK); Assert(pVCpu->vmm.s.fInRendezvous); /* * Save the current state. */ uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags; uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone; int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus; PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous; void * const pvParentUser = pVM->vmm.s.pvRendezvousUser; /* * Check preconditions and save the current state. */ AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, VERR_INTERNAL_ERROR); AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2); AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3); /* * Reset the recursion prep and pop semaphores. */ int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush); AssertLogRelRCReturn(rc, rc); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRCReturn(rc, rc); rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller); AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); /* * Usher the other thread into the recursion routine. */ ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0); ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true); uint32_t cLeft = pVM->cCpus - (cParentDone + 1U); if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) while (cLeft-- > 0) { rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelRC(rc); } else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING) { Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U)); for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++) { rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]); AssertLogRelRC(rc); } } else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { Assert(cLeft == pVCpu->idCpu); for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--) { rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]); AssertLogRelRC(rc); } } else AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, VERR_INTERNAL_ERROR_4); rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelRC(rc); /* * Wait for the EMTs to wake up and get out of the parent rendezvous code. */ if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus) { rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false); /* * Clear the slate and setup the new rendezvous. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); } rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS); ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous); ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser); ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags); ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions); /* * We're ready to go now, do normal rendezvous processing. */ rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush); AssertLogRelRC(rc); VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser); /* * The caller waits for the other EMTs to be done, return and waiting on the * pop semaphore. */ for (;;) { rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict); } /* * Get the return code and merge it with the above recursion status. */ VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus; if ( rcStrict2 != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcStrict2)) rcStrict = rcStrict2; /* * Restore the parent rendezvous state. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); } rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone); ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus); ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags); ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser); ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent); /* * Usher the other EMTs back to their parent recursion routine, waiting * for them to all get there before we return (makes sure they've been * scheduled and are past the pop event sem, see below). */ ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0); rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc); if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus) { rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } /* * We must reset the pop semaphore on the way out (doing the pop caller too, * just in case). The parent may be another recursion. */ rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc); rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc)); ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions); Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /** * EMT rendezvous. * * Gathers all the EMTs and execute some code on each of them, either in a one * by one fashion or all at once. * * @returns VBox strict status code. This will be the first error, * VINF_SUCCESS, or an EM scheduling status code. * * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that * doesn't support it or if the recursion is too deep. * * @param pVM The cross context VM structure. * @param fFlags Flags indicating execution methods. See * grp_VMMR3EmtRendezvous_fFlags. The one-by-one, * descending and ascending rendezvous types support * recursion from inside @a pfnRendezvous. * @param pfnRendezvous The callback. * @param pvUser User argument for the callback. * * @thread Any. */ VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) { /* * Validate input. */ AssertReturn(pVM, VERR_INVALID_VM_HANDLE); AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags)); AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE), ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK)); VBOXSTRICTRC rcStrict; PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) { /* * Forward the request to an EMT thread. */ Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags)); if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY)) rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser); else rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser); Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict))); } else if ( pVM->cCpus == 1 || ( pVM->enmVMState == VMSTATE_DESTROYING && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) ) { /* * Shortcut for the single EMT case. * * We also ends up here if EMT(0) (or others) tries to issue a rendezvous * during vmR3Destroy after other emulation threads have started terminating. */ if (!pVCpu->vmm.s.fInRendezvous) { Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags)); pVCpu->vmm.s.fInRendezvous = true; pVM->vmm.s.fRendezvousFlags = fFlags; rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); pVCpu->vmm.s.fInRendezvous = false; } else { /* Recursion. Do the same checks as in the SMP case. */ Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions)); uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK; AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE , VERR_DEADLOCK); AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK); pVM->vmm.s.cRendezvousRecursions++; uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags; pVM->vmm.s.fRendezvousFlags = fFlags; rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); pVM->vmm.s.fRendezvousFlags = fParentFlags; pVM->vmm.s.cRendezvousRecursions--; } Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict))); } else { /* * Spin lock. If busy, check for recursion, if not recursing wait for * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF. */ int rc; rcStrict = VINF_SUCCESS; if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))) { /* Allow recursion in some cases. */ if ( pVCpu->vmm.s.fInRendezvous && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE )) return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser)); AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags), VERR_DEADLOCK); Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu)); while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)) { if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS)) { rc = VMMR3EmtRendezvousFF(pVM, pVCpu); if ( rc != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rc)) rcStrict = rc; /** @todo Perhaps deal with termination here? */ } ASMNopPause(); } } Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu)); Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS)); Assert(!pVCpu->vmm.s.fInRendezvous); pVCpu->vmm.s.fInRendezvous = true; /* * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-) */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); } rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS); ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous); ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser); ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags); /* * Set the FF and poke the other EMTs. */ VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS); VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE); /* * Do the same ourselves. */ VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser); /* * The caller waits for the other EMTs to be done and return before doing * the cleanup. This makes away with wakeup / reset races we would otherwise * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller). */ for (;;) { rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); if (!pVM->vmm.s.fRendezvousRecursion) break; rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2); } /* * Get the return code and clean up a little bit. */ VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus; ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous); ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0); pVCpu->vmm.s.fInRendezvous = false; /* * Merge rcStrict, rcStrict2 and rcStrict3. */ AssertRC(VBOXSTRICTRC_VAL(rcStrict)); AssertRC(VBOXSTRICTRC_VAL(rcStrict2)); if ( rcStrict2 != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcStrict2)) rcStrict = rcStrict2; if ( rcStrict3 != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcStrict3)) rcStrict = rcStrict3; Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict))); } AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_INFO_STATUS); return VBOXSTRICTRC_VAL(rcStrict); } /** * Interface for vmR3SetHaltMethodU. * * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param fMayHaltInRing0 The new state. * @param cNsSpinBlockThreshold The spin-vs-blocking threashold. * @thread EMT(pVCpu) * * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM * component. */ VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold) { LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold)); pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0; pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold; } /** * Read from the ring 0 jump buffer stack. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param idCpu The ID of the source CPU context (for the address). * @param R0Addr Where to start reading. * @param pvBuf Where to store the data we've read. * @param cbRead The number of bytes to read. */ VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); AssertReturn(pVCpu, VERR_INVALID_PARAMETER); AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER); /* * Hopefully we've got all the requested bits. If not supply what we * can and zero the remaining stuff. */ RTHCUINTPTR off = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindSp; if (off < pVCpu->vmm.s.AssertJmpBuf.cbStackValid) { size_t const cbValid = pVCpu->vmm.s.AssertJmpBuf.cbStackValid - off; if (cbRead <= cbValid) { memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbRead); return VINF_SUCCESS; } memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbValid); RT_BZERO((uint8_t *)pvBuf + cbValid, cbRead - cbValid); } else RT_BZERO(pvBuf, cbRead); /* * Supply the setjmp return RIP/EIP if requested. */ if ( pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr && pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation < R0Addr + cbRead) { uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue; size_t cbSrc = sizeof(pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue); size_t offDst = 0; if (R0Addr < pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation) offDst = pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation - R0Addr; else if (R0Addr > pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation) { size_t offSrc = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation; Assert(offSrc < cbSrc); pbSrc -= offSrc; cbSrc -= offSrc; } if (cbSrc > cbRead - offDst) cbSrc = cbRead - offDst; memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc); //if (cbSrc == cbRead) // rc = VINF_SUCCESS; } return VINF_SUCCESS; } /** * Used by the DBGF stack unwinder to initialize the register state. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the CPU being unwound. * @param pState The unwind state to initialize. */ VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState) { PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu); AssertReturnVoid(pVCpu); /* * This is all we really need here if we had proper unwind info (win64 only)... */ pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.AssertJmpBuf.UnwindBp; pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindSp; pState->uPc = pVCpu->vmm.s.AssertJmpBuf.UnwindPc; /* * Locate the resume point on the stack. */ #ifdef RT_ARCH_AMD64 /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-amd64.asm exactly. */ uintptr_t off = 0; # ifdef RT_OS_WINDOWS off += 0xa0; /* XMM6 thru XMM15 */ # endif pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; # ifdef RT_OS_WINDOWS pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; # endif pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 8; pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off]; pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp; #elif defined(RT_ARCH_X86) /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-x86.asm exactly. */ uintptr_t off = 0; pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 4; pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 4; pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 4; pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 4; pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; off += 4; pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off]; pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp; #elif defined(RT_ARCH_ARM64) /** @todo PORTME: arm ring-0 */ #else # error "Port me" #endif } /** * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param uOperation Operation to execute. * @param u64Arg Constant argument. * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for * details. */ VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr) { PVMCPU pVCpu = VMMGetCpu(pVM); AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT); return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr); } /** * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context VM structure. * @param enmOperation Operation to execute. * @param u64Arg Constant argument. * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for * details. */ VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr) { /* * Call ring-0. */ #ifdef NO_SUPCALLR0VMM int rc = VERR_GENERAL_FAILURE; #else int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr); #endif /* * Flush the logs and deal with ring-0 assertions. */ #ifdef LOG_ENABLED VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL); #endif VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance()); if (rc != VERR_VMM_RING0_ASSERTION) { AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc), ("enmOperation=%u rc=%Rrc\n", enmOperation, rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } return vmmR3HandleRing0Assert(pVM, pVCpu); } /** * Logs a ring-0 assertion ASAP after returning to ring-3. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu) { RT_NOREF(pVCpu); LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1)); LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2)); return VERR_VMM_RING0_ASSERTION; } /** * Displays the Force action Flags. * * @param pVM The cross context VM structure. * @param pHlp The output helpers. * @param pszArgs The additional arguments (ignored). */ static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { int c; uint32_t f; NOREF(pszArgs); #define PRINT_FLAG(prf,flag) do { \ if (f & (prf##flag)) \ { \ static const char *s_psz = #flag; \ if (!(c % 6)) \ pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \ else \ pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ c++; \ f &= ~(prf##flag); \ } \ } while (0) #define PRINT_GROUP(prf,grp,sfx) do { \ if (f & (prf##grp##sfx)) \ { \ static const char *s_psz = #grp; \ if (!(c % 5)) \ pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \ else \ pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ c++; \ } \ } while (0) /* * The global flags. */ const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions; pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions); /* show the flag mnemonics */ c = 0; f = fGlobalForcedActions; PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC); PRINT_FLAG(VM_FF_,PDM_QUEUES); PRINT_FLAG(VM_FF_,PDM_DMA); PRINT_FLAG(VM_FF_,DBGF); PRINT_FLAG(VM_FF_,REQUEST); PRINT_FLAG(VM_FF_,CHECK_VM_STATE); PRINT_FLAG(VM_FF_,RESET); PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS); PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES); PRINT_FLAG(VM_FF_,PGM_NO_MEMORY); PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING); PRINT_FLAG(VM_FF_,DEBUG_SUSPEND); if (f) pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f); else pHlp->pfnPrintf(pHlp, "\n"); /* the groups */ c = 0; f = fGlobalForcedActions; PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK); PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK); PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK); PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK); PRINT_GROUP(VM_FF_,ALL_REM,_MASK); if (c) pHlp->pfnPrintf(pHlp, "\n"); /* * Per CPU flags. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions; pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions); /* show the flag mnemonics */ c = 0; f = fLocalForcedActions; #if defined(VBOX_VMM_TARGET_ARMV8) PRINT_FLAG(VMCPU_FF_,INTERRUPT_IRQ); PRINT_FLAG(VMCPU_FF_,INTERRUPT_FIQ); #else PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC); PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC); #endif PRINT_FLAG(VMCPU_FF_,TIMER); PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI); PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI); PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT); PRINT_FLAG(VMCPU_FF_,UNHALT); PRINT_FLAG(VMCPU_FF_,IEM); PRINT_FLAG(VMCPU_FF_,UPDATE_APIC); PRINT_FLAG(VMCPU_FF_,DBGF); PRINT_FLAG(VMCPU_FF_,REQUEST); PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3); PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3); PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL); PRINT_FLAG(VMCPU_FF_,TLB_FLUSH); PRINT_FLAG(VMCPU_FF_,TO_R3); PRINT_FLAG(VMCPU_FF_,IOM); if (f) pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f); else pHlp->pfnPrintf(pHlp, "\n"); /* the groups */ c = 0; f = fLocalForcedActions; PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK); PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK); PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK); PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK); PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK); PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK); PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK); if (c) pHlp->pfnPrintf(pHlp, "\n"); } #undef PRINT_FLAG #undef PRINT_GROUP }